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Abstract

We describe the SemEval task of extract-

ing keyphrases and relations between them

from scientific documents, which is cru-

cial for understanding which publications

describe which processes, tasks and ma-

terials. Although this was a new task, we

had a total of 26 submissions across 3 eval-

uation scenarios. We expect the task and

the findings reported in this paper to be

relevant for researchers working on under-

standing scientific content, as well as the

broader knowledge base population and

information extraction communities.

1 Introduction

Empirical research requires gaining and maintain-

ing an understanding of the body of work in spe-

cific area. For example, typical questions re-

searchers face are which papers describe which

tasks and processes, use which materials and how

those relate to one another. While there are re-

view papers for some areas, such information is

generally difficult to obtain without reading a large

number of publications.

Current efforts to address this gap are search en-

gines such as Google Scholar,1 Scopus2 or Seman-

tic Scholar,3 which mainly focus on navigating au-

thor and citations graphs.

The task tackled here is mention-level iden-

tification and classification of keyphrases, e.g.

Keyphrase Extraction (TASK), as well as extract-

ing semantic relations between keywords, e.g.

Keyphrase Extraction HYPONYM-OF Informa-

tion Extraction. These tasks are related to the

tasks of named entity recognition, named entity

1https://scholar.google.co.uk/
2http://www.scopus.com/
3https://www.semanticscholar.org/

classification and relation extraction. However,

keyphrases are much more challenging to identify

than e.g. person names, since they vary signifi-

cantly between domains, lack clear signifiers and

contexts and can consist of many tokens. For this

purpose, a double-annotated corpus of 500 pub-

lications with mention-level annotations was pro-

duced, consisting of scientific articles of the Com-

puter Science, Material Sciences and Physics do-

mains.

Extracting keyphrases and relations between

them is of great interest to scientific publishers as

it helps to recommend articles to readers, high-

light missing citations to authors, identify poten-

tial reviewers for submissions, and analyse re-

search trends over time. Note that organising

keyphrases in terms of synonym and hypernym re-

lations is particularly useful for search scenarios,

e.g. a reader may search for articles on informa-

tion extraction, and through hypernym prediction

would also receive articles on named entity recog-

nition or relation extraction.

We expect the outcomes of the task to be rele-

vant to the wider information extraction, knowl-

edge base population and knowledge base con-

struction communities, as it offers a novel appli-

cation domain for methods researched in that area,

while still offering domain-related challenges.

Since the dataset is annotated for three tasks

dependent on one another, it could also be used

as a testbed for joint learning or structured pre-

diction approaches to information extraction (Kate

and Mooney, 2010; Singh et al., 2013; Augenstein

et al., 2015; Goyal and Dyer, 2016).

Furthermore, we expect the task to be interest-

ing for researchers studying tasks aiming at under-

standing scientific content, such as keyphrase ex-

traction (Kim et al., 2010b; Hasan and Ng, 2014;

Sterckx et al., 2016; Augenstein and Søgaard,

2017), semantic relation extraction (Tateisi et al.,
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2014; Gupta and Manning, 2011; Marsi and

Öztürk, 2015), topic classification of scientific ar-

ticles (Ó Séaghdha and Teufel, 2014), citation con-

text extraction (Teufel, 2006; Kaplan et al., 2009),

extracting author and citation graphs (Peng and

McCallum, 2006; Chaimongkol et al., 2014; Sim

et al., 2015) or a combination of those (Radev and

Abu-Jbara, 2012; Gollapalli and Li, 2015; Guo

et al., 2015).

The expected impact of the task is an interest

of the above mentioned research communities be-

yond the task due to the release of a new corpus,

leading to novel research methods for information

extraction from scientific documents. What will

be particularly useful about the proposed corpus

are annotations of hypernym and synonym rela-

tions on mention-level, as existing hypernym and

synonym relation resources are on type-level, e.g.

WordNet.4 Further, we expect that these methods

will directly impact industrial solutions to making

sense of publications, partly due to the task organ-

isers’ collaboration with Elsevier.5

2 Task Description

The task is divided into three subtasks:

A) Mention-level keyphrase identification

B) Mention-level keyphrase classification.

Keyphrase types are PROCESS (including

methods, equipment), TASK and MATE-

RIAL (including corpora, physical materials)

C) Mention-level semantic relation extraction

between keyphrases with the same keyphrase

types. Relation types used are HYPONYM-

OF and SYNONYM-OF.

We will refer to the above subtasks as Subtask A,

Subtask B, and Subtask C respectively.

A shortened (artificial) example of a data in-

stance for the Computer Science area is displayed

in Example 1, examples for Material Science and

Physics are included in the appendix. The first part

is the plain text paragraph (with keyphrases in ital-

ics for better readability), followed by stand-off

keyphrase annotations based on character offsets,

followed relation annotations.

4https://wordnet.princeton.edu/
5https://www.elsevier.com/

Example 1.

Text: Information extraction is the process of

extracting structured data from unstructured text,

which is relevant for several end-to-end tasks, in-

cluding question answering. This paper addresses

the tasks of named entity recognition (NER), a sub-

task of information extraction, using conditional

random fields (CRF). Our method is evaluated on

the ConLL-2003 NER corpus.

ID Type Start End

0 TASK 0 22
1 TASK 150 168
2 TASK 204 228
3 TASK 230 233
4 TASK 249 271
5 PROCESS 279 304
6 PROCESS 306 309
7 MATERIAL 343 364

ID1 ID2 Type

2 0 HYPONYM-OF
2 3 SYNONYM-OF
5 6 SYNONYM-OF

3 Resources for SemEval-2017 Task

3.1 Corpus

A corpus for the task was built from ScienceDi-

rect6 open access publications and was available

freely for participants, without the need to sign a

copyright agreement. Each data instance consists

of one paragraph of text, drawn from a scientific

paper.

Publications were provided in plain text, in ad-

dition to xml format, which included the full text

of the publication as well as additional metadata.

500 paragraphs from journal articles evenly dis-

tributed among the domains Computer Science,

Material Sciences and Physics were selected.

6http://www.sciencedirect.com/
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The training data part of the corpus consists of

350 documents, 50 for development and 100 for

testing. This is similar to the pilot task described

in Section 5, for which 144 articles were used for

training, 40 for development and for 100 testing.

We present statistics about the dataset in Ta-

ble 1. Notably, the dataset contains many long

keyphrases. 22% of all keyphrases in the train-

ing set consist of words of 5 or more tokens.

This contributes to making the task of keyphrase

identification very challenging. However, 93% of

those keyphrases are noun phrases7, which is valu-

able information for simple heuristics to identify

keyphrase candidates. Lastly, 31% of keyphrases

contained in the training dataset only appear in it

once, systems will have do generalise to unseen

keyphrases well.

3.2 Annotation Process

Mention-level annotation is very time-consuming,

and only a handful of semantic relations such as

hypernymy and synonymy can be found in each

publication. We therefore only annotate para-

graphs of publications likely to contain relations.

We originally intended to identify suitable doc-

uments by automatically extracting a knowledge

graph of relations from a large scientific dataset

using Hearst-style patterns (Hearst, 1991; Snow

et al., 2005), then using those to find potential re-

lations in a distinct set of documents, similar to

the distant supervision (Mintz et al., 2009; Snow

et al., 2005) heuristic. Documents containing a

high number of such potential relations would

then be selected. However, this requires auto-

matically learning to identify keyphrases between

which those potential relations hold, and requires

relations to appear several times in a dataset for

such a knowledge graph to be useful.

In the end, this strategy was not feasible due to

the difficulty of learning to detect keyphrases au-

tomatically and only a small overlap between rela-

tions in different documents. Instead, keyphrase-

dense paragraphs were detected automatically us-

ing a coarse unsupervised approach (Mikolov

et al., 2013) and those likely to contain relations

were selected manually for annotation.

For annotation, undergraduate student volun-

teers studying Computer Science, Material Sci-

ence or Physics were recruited using UCL’s stu-

7Parts of speech are determined automatically, using the
nltk POS tagger

dent newsletter, which reaches all of its students.

Students were shown example annotations and the

annotation guidelines, and if they were still inter-

ested in participating in the annotation exercise,

afterwards asked to select beforehand how many

documents they wanted to annotate. Approxi-

mately 50% of students were still interested, hav-

ing seen annotated documents and read annotation

guidelines. They were then given two weeks to an-

notate documents with the BRAT tool (Stenetorp

et al., 2012), which was hosted on an Amazon EC2

instance as a web service. Students were compen-

sated for annotations per document. Annotation

time was estimated as approximately 12 minutes

per document and annotator, on which basis they

were paid roughly 10 GBP per hour. They were

only compensated upon completion of all annota-

tions, i.e. compensation was conditioned on an-

notating all documents. The annotation cost was

covered by Elsevier. To develop annotation guide-

lines, a small pilot annotation exercise on 20 doc-

uments was performed with one annotator after

which annotation guidelines were refined.8

We originally intended for student annotators

to triple annotate documents and apply majority

voting on the annotations, but due to difficulties

with recruiting high-quality annotators we instead

opted to double-annotate documents, where the

second annotator was an expert annotator. Where

annotations disagreed, we opted for the expert’s

annotation. Pairwise inter-annotator agreement

between the student annotator and the expert anno-

tator measured with Cohen’s kappa is shown in Ta-

ble 2. The * indicates annotation quality decreased

over time, ending with the annotator not complet-

ing annotating all documents. To account for this,

documents for which no annotations are given are

excluded from computing inter-annotator agree-

ment. Out of the annotators completing the an-

notation exercise, Cohen’s kappa ranges between

0.45 and 0.85, with half of them having a substan-

tial agreement of 0.6 or higher. For future itera-

tions of this task, we recommend to invest signifi-

cant efforts into recruiting high-quality annotators,

perhaps with more pre-annotation quality screen-

ing.

8Annotation guidelines were available to task partici-
pants, they can be found here: https://scienceie.

github.io/resources.html
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Characteristic
Labels Material, Process, Task
Topics Computer Science, Physics, Material Science
Number all keyphrases 5730
Number unique keyphrases 1697
% singleton keyphrases 31%
% single-word mentions 18%
% mentions, word length >= 3 51%
% mentions, word length >= 5 22%
% mentions, noun phrases 93%
Most common keyphrases ‘Isogeometric analysis’, ‘samples’, ‘calibration process’,‘Zirconium alloys’

Table 1: Characteristics of SemEval 2017 Task 10 dataset, statistics of training sets

Student Annotator IAA

1 0.85

2 0.66

3 0.63

4 0.60

5 0.50

6 0.48

7 0.47

8 0.45

9* 0.25

10* 0.22

11* 0.20

12* 0.15

13* 0.06

Table 2: Inter-annotator agreement between the

student annotator and the expert annotator, mea-

sured with Cohen’s Kappa

4 Evaluation

SemEval 2017 Task 10 offers three different eval-

uation scenarios:

1) Only plain text is given (Subtasks A, B, C).

2) Plain text with manually annotated keyphrase

boundaries are given (Subtasks B, C).

3) Plain text with manually annotated

keyphrases and their types are given

(Subtask C).

We refer to the above scenarios as Scenario 1, Sce-

nario 2, and Scenario 3 respectively.

4.1 Metrics

Keyphrase identification (Subtask A) has tradi-

tionally been evaluated by calculating the ex-

act matches with the gold standard. There is

existing work for capturing semantically similar

keyphrases (Zesch and Gurevych, 2009; Kim

et al., 2010a), however since these are captured us-

ing relations, similar to the pilot task on keyphrase

extraction (Section 5) we evaluate keyphrases,

keyphrase types and relations with exact match

criteria. The output of systems is matched ex-

actly against the gold standard. The traditionally

used metrics of precision, recall and F1-score are

computed and the micro-average of those metrics

across publications of the three genres are calcu-

lated. These metrics are also calculated for Sub-

tasks B and C. In addition, for Subtasks B and

C, participants are given the option of using text

manually annotated with keyphrase mentions and

types.

5 Pilot Task

A pilot task on keyphrase extraction from scien-

tific documents was run by other organisers at Se-

mEval 2010 (Kim et al., 2010b). The task was

to extract a list of keyphrases representing key

topics from scientific documents, i.e. similar to

the first part of our proposed Subtask A, only on

type-level. Participants were allowed to submit

up to 3 runs and were required to submit a list

of 15 keyphrases for each document, ranked by

the probability of being reader-assigned phrases.

Data was collected from the ACM Digital Library

for the research areas Distributed Systems, Infor-

mation Search and Retrieval, Distributed Artifi-

cial Intelligence Multiagent Systems and Social

and Behavioral Sciences Economics. Participants

were provided with 144 training, 40 development

and 100 test articles, each set containing a mix

of articles of the different research areas. The

data was provided in plain text, converted from

pdf with pdftotext. Publications were annotated

with keyphrases by 50 Computer Science students

and added to author-provided keyphrases required

by the journals they were published in. Guide-

lines were for the keyphrases to exactly appear
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anywhere in the text of the paper, in reality 15%

of annotator-provided keyphrases did not, as well

as 19% of author-provided keyphrases. The num-

ber of author-specified keywords was 4 on aver-

age, whereas annotators identified 12 on average.

Returned phrases are considered correct if they are

exact matches of either the annotator- or author-

assigned keyphrases, allowing for minor syntactic

variations (A of B → B A ; A’s B → A B). Preci-

sion, recall and F1 is calculated for the top 5, top

10 and all keywords. 19 systems were submitted

to the task, the best one achieving an F1 of 27.5%

on the combined author-assigned and annotator-

assigned keywords.

Lessons learned from the task were that perfor-

mance varies depending on how many keywords

are to be extracted, the task organisers recom-

mend against fixing a threshold for a number of

keyphrases to extract lead. They further recom-

mend a more semantically-motivated task, taking

into account synonyms of keyphrases instead of

requiring exact matches. Both of those recommen-

dations will be taken into account for future task

design. To fulfill the latter, we will ask annotator

to assign types to the identified keywords (process,

task, material) and identify semantic relations be-

tween them (hypernym, synonym).

6 Existing Resources

As part of the FUSE project with IARPA, we cre-

ated a small annotated corpus of 100 noun phrases

generated from the titles and abstracts derived

from the Web Of Science corpora9 of the domains

Physics, Computer Science, Chemistry and Com-

puter Science. These corpora cannot be distributed

publicly and were made available by the IARPA

funding agency. Annotation was performed by 3

annotators using 14 fine-grained types, including

PROCESS.

We measured inter-annotator agreement among

the three annotators for the 14 categories using

Fleiss’ Kappa. The k value was found to be 0.28

which implies that there was fair agreement be-

tween them, however distinguishing between the

fine-grained types added significantly to the an-

notation time. Therefore we only use three main

types for the SemEval 2017 Task 10.

9http://thomsonreuters.

com/en/products-services/

scholarly-scientific-research/

scholarly-search-and-discovery/

web-of-science.html

There are some existing keyphrase extraction

corpora, however, they are not similar enough to

the proposed task to justify reuse. Below is a de-

scription of existing corpora.

The SemEval 2010 Keyphrase Extraction cor-

pus (Kim et al., 2010b)10 consists of a handful of

document-level keyphrases per article. In contrast

to the task proposed, the keyphrases are annotated

on type-level and not further classified as process,

task or material and semantic relations are not an-

notated. Further, the domains considered are dif-

ferent and mostly sub-domains of Computer Sci-

ence.

The corpus released by Tateisi et al. (2014)11

contains sentence-level fine-grained semantic an-

notations for 230 publication abstracts in Japanese

and 400 in English. In contrast to what we pro-

pose, the annotations are more fine-grained and

annotations are only available for abstracts.

Gupta and Manning (2011) studied keyphrase

extraction from ACL Anthology articles, applying

a pattern-based bootstrapping approach based on

15 016 documents and assigning the types FO-

CUS, TECHNIQUE and DOMAIN. Performance

was evaluated on 30 manually annotated docu-

ments. Although the latter corpus is related to

what we propose, manual annotation is only avail-

able for a small number of documents and only for

the Natural Language Processing domain.

The ACL RD-TEC 2.0 dataset (QasemiZadeh

and Schumann, 2016) consists of 300 ACL An-

thology abstracts annotated on mention-level with

seven different types of keyphrases. Unlike our

dataset, it does not contain relation annotations.

Note that this corpus was created at the same time

as the one SemEval 2017 Task 10 dataset and thus

we did not have the chance to build on it. A more

in-depth comparison between the two datasets as

well as keyphrase identification and classification

methods evaluated on them can be found in Au-

genstein and Søgaard (2017).

6.1 Baselines

We frame the task as a sequence-to-sequence pre-

diction task. We preprocess the files by splitting

documents into sentences and tokenising them

with nltk, then aligning span annotations from

.ann files to tokens. Each sentence is regarded

as one sequence. We then split the task into the

10https://github.com/snkim/

AutomaticKeyphraseExtraction
11https://github.com/mynlp/ranis
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three subtasks, keyphrase boundary identification,

keyphrase classification and relation classification

and add three output layers. We predict the fol-

lowing types, for the three subtasks respectively:

Subtask A: tA = O,B, I for tokens being outside,

at the beginning, or inside a keyphrase

Subtask B: tB = O,M, P, T for tokens being out-

side a keyphrase, or being part of a material, pro-

cess or task

Subtask C: tC = O,S,H for Synonym-of and

Hyponym-of relations. For Subtask A and B, we

predict one output label per input token. For Sub-

task C we predict a vector for each token, that

encodes what the relationship between that token

and every other token in the sequence is for the

first token in each keyphrase. After predictions

for tokens are obtained, these are converted back

to spans and relations between them in a post-

processing step.

We report results for two simple models: one to

estimate the upper bound, that converts .ann files

into instances, as described above, then converts

them back into .ann files. Next, to estimate a lower

bound, a random baseline, that for each token as-

signs a random label for each of the subtasks.

The upper bound span-token-span round-trip

conversion performance, an F1 of 0.84, shows that

we already lose a significant amount of perfor-

mance due to sentence splitting and tokenisation

alone. The random baseline further shows hard

especially the keyphrase boundary identification

task is and as a result the overall task, since the

subtasks depend on one another. For Subtask A,

a random baseline achieves an F1 of 0.03. The

overall tasks gets easier if keyphrase boundaries

are given, resulting in F1 of 0.23 for keyphrase

classification, and if keyphrase types are given, an

F1 of 0.04 are achieved with the random baseline

for Subtask C.

7 Summary of Participating Systems

In this section, we summarise the outcome of

the competition. For more details please re-

fer to the respective system description papers

and the task website https://scienceie.

github.io/.

We had three subtasks, described in Sec 2,

which were grouped together in three evaluation

scenarios, described in Sec 4. The competition

was hosted in CodaLab12 in two phases: (i) de-

12https://competitions.codalab.org/

velopment phase and (ii) testing phase. Fifty four

teams participated in the development phase, and

out of them twenty six teams participated in the fi-

nal competition. One of the major success of the

competition is due to such wide participation and

application of various different techniques start-

ing from neural networks, supervised classifica-

tion with careful feature engineering to simple rule

based methods. We present a summary of ap-

proaches used by task participants below.

7.1 Evaluation Scenario 1

In this scenario teams need to solve all three sub-

tasks A, B, and C; where no annotation informa-

tion was given. Some teams participated only in

Subtask A, or B; but the overall micro F1 perfor-

mance across subtasks is considered for the rank-

ing of the teams. Seventeen teams participated in

this scenario. The F1 scores range from 0.04 to

0.43. Complete results are given in Table 3.

Various different types of methods have been

applied by different teams with various levels of

supervision. The best three teams TTI COIN,

TIAL UW, and s2 end2end have used recurrent

neural network (RNN) based approaches to ob-

tain F1 scores of 0.38, 0.42 and 0.43 respectively.

However, TIAL UW, and s2 end2end, by using a

conditional random fields (CRF) layer on top of

RNNs achieve a higher F1 in Subtask A compared

to TTI COIN.

The fourth team PKU ICL with an F1 of 0.37

found classification models based on random for-

est and support vector machines (SVM) useful

with carefully engineered feature such as TF-IDF

over a very large external corpus, IDF weighted

word-embeddings etc, along with an existing tax-

onomy. SciX on the other hand used noun phrase

chunking and trained an SVM classifier on pro-

vided training data to classify phrases, and used a

CRF to predict labels of the phrases. CRF based

methods with parts-of-speech (POS) tagging and

orthographic features such as presence of symbols

and capitalisation have been tried by several teams

(NTNU, SZTE-NLP, WING-NUS) and they lead-

ing to a reasonable performance (F1: 0.23, 0.26,

and 0.27, respectively).

Noun phrase extraction with length constraint

by HCC-NLP, and using a global list of keyphrases

by NITK IT PG are found not to perform satis-

factorily (F1: 0.16 and 0.14 respectively). The

competitions/15898
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Teams Overall A B C

s2 end2end (Ammar et al., 2017) 0.43 0.55 0.44 0.28

TIAL UW 0.42 0.56 0.44

TTI COIN (Tsujimura et al., 2017) 0.38 0.5 0.39 0.21

PKU ICL (Wang and Li, 2017) 0.37 0.51 0.38 0.19

NTNU-1 (Marsi et al., 2017) 0.33 0.47 0.34 0.2

WING-NUS (Prasad and Kan, 2017) 0.27 0.46 0.33 0.04

Know-Center (Kern et al., 2017) 0.27 0.39 0.28

SZTE-NLP (Berend, 2017) 0.26 0.35 0.28

NTNU (Lee et al., 2017b) 0.23 0.3 0.24 0.08

LABDA (Segura-Bedmar et al., 2017) 0.23 0.33 0.23

LIPN (Hernandez et al., 2017) 0.21 0.38 0.21 0.05

SciX 0.2 0.42 0.21

IHS-RD-BELARUS 0.19 0.41 0.19

HCC-NLP 0.16 0.24 0.16

NITK IT PG 0.14 0.3 0.15

Surukam 0.1 0.24 0.1 0.13

GMBUAP (Flores et al., 2017) 0.04 0.08 0.04

upper bound 0.84 0.85 0.85 0.77

random 0.00 0.03 0.01 0.00

Table 3: F1 scores of teams participating in Scenario 1 and baseline models for Overall, Subtask A,

Subtask B, and Subtask C. Ranking of the teams is based on overall performance measured in Micro F1.

former is surprising, as keyphrases are with an

overwhelming majority noun phrases, the latter

not as much, many keyphrases only appear once

in the dataset (see Table 1). GMBUAP further

tried using empirical rules obtained by observ-

ing the training data for Subtask A, and a Naive

Bayes classifier trained on provided training data

for Subtask B. Such simple methods on their own

prove not to be accurate enough. Attempts of such

give us additional insight about the hardness of the

problem and applicability of simple methods to the

task.

7.2 Evaluation Scenario 2

In this scenario teams needed to solve sub-tasks

B, and C. Partial annotation was provided to the

teams, that is, solution to the Subtask A. Four

teams participated in this scenario with F1 cores

ranging from 0.43 to 0.64. Please refer to Table 4

for complete result.

Except MayoNLP, other three teams partici-

pated only in Subtask B. Although ranking is done

based on overall performance, but in this scenario

13After the end of the evaluation period, team
UKP/EELECTION discovered those results were based
on training on the development set. For training on the
training set, their results are: 0.69 F1 overall and 0.72 F1 for
Subtask B only

rankings are consistent in each category. BUAP

with the worst F1 score for Subtask B (0.45),

is still better than the best team in Scenario 1

s2 end2end for Subtask B (0.44). Partial annota-

tion or accuracy for Subtask A proves to be crit-

ical, reinforcing again that identifying keyphrase

boundaries is the most difficult part of the shared

task.

Unlike the Scenario 1, in this case the top

two teams used classifiers with lexical features

(F1: 0.64) as well as neural networks (F1: 0.63).

The first team MayoNLP used SVM with rich

feature sets like n-grams, lexical features, or-

thographic features, whereas the second team

UKP/EELECTION used used three different neu-

ral network approaches and subsequently com-

bined them via majority voting. Both these meth-

ods perform quite similarly. However, a CRF

based approach and an SVM with simpler fea-

ture sets attempted by the two teams LABDA and

BUAP are found to be less effective in this sce-

nario.

MayoNLP applied a simple rule based method

for synonym-of relation extraction, and Hearst

patterns for hyponym-of relation detection. The

rules for synonym-of detection is based on pres-

ence of phrases such as in terms of, equivalently,
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Teams Overall B C

MayoNLP (Liu et al., 2017) 0.64 0.67 0.23

UKP/EELECTION (Eger et al., 2017)13 0.63 0.66

LABDA (Segura-Bedmar et al., 2017) 0.48 0.51

BUAP (Alemán et al., 2017) 0.43 0.45

upper bound 0.84 0.85 0.77

random 0.15 0.23 0.01

Table 4: F1 scores of teams participating in Scenario 2 and baseline models for Overall, Subtask B,

and Subtask C. Ranking of the teams is based on overall performance measured in Micro F1. Teams

participating in Scenario 2 received partial annotation with respect to Subtask A.

Teams Overall

MIT (Lee et al., 2017a) 0.64

s2 rel (Ammar et al., 2017) 0.54

NTNU-2 (Barik and Marsi, 2017) 0.5

LaBDA (Suárez-Paniagua et al., 2017) 0.38

TTI COIN rel (Tsujimura et al., 2017)15 0.1

upper bound 0.84

random 0.04

Table 5: F1 scores of teams participating in Sce-

nario 3 and baseline models. Teams participating

in Scenario 3 received partial annotation with re-

spect to Subtask A, and Subtask B. Ranking of the

teams is based on overall performance measured

in Micro F1.

which are called etc in the text between two

keyphrases. Interestingly, the RNN based ap-

proach of s2 end2end in Scenario 1 performs bet-

ter than MayoNLP without using partial annota-

tion of Subtask A.

7.3 Evaluation Scenario 3

In this scenario, teams need to solve only Subtask

C. Partial annotations were provided to the teams

for Subtask B and C. Five teams participated in

this scenario, and F1 scores ranged from 0.1 to

0.64. Please refer to Table 5 for complete result.

Neural network (NN) based models are found to

perform better than other methods in this scenario.

The best method by MIT uses a convolutional NN

(CNN). The other method uses two phases of NN

and found to be reasonably effective (F1: 0.54).

On the other hand, application of supervised

classification with five different classifiers (SVM,

decision tree, random forest, multinomial naive

15After the end of the evaluation period, team
TTI COIN rel discovered a bug in preprocessing, lead-
ing to low results. Their overall result after having corrected
for that error is a Macro F1 of 0.48.

Bayes and k-nearest neighbour) using three differ-

ent feature selection techniques (chi square, deci-

sion tree, and recursive feature elimination) found

close accuracy (F1: 0.5) with the top performing

ones.

LaBDA also use a CNN based method. How-

ever, the rule based post-processing and argument

ordering strategy applied by MIT seemed to give

additional advantage as also observed by them.

However most of the teams in this scenario out-

perform, all teams from other scenarios (who did

not have access to partial information for Subtask

B, and C) in relation prediction. This also asserts

the significance of accuracy on Subtask A, and B

in order to perform accurately on Subtask C.

8 Conclusion

In this paper, we present the setup and discuss

participating systems of SemEval 2017 Task 10

on identifying and classifying keyphrases and re-

lations between them from scientific articles, to

which 26 systems were submitted. Successful

systems vary in their approaches. Most of them

use RNNs, often in combination with CRFs as

well as CNNs, however the system performing

best for evaluation scenario 1 uses an SVM with

a well-engineered lexical feature set. Identify-

ing keyphrases is the most challenging subtask,

since the dataset contains many long and infre-

quent keyphrases, and systems relying on remem-

bering them do not perform well.
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