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Abstract: The traditional classification methods for limb motion recognition based on sEMG have

been deeply researched and shown promising results. However, information loss during feature

extraction reduces the recognition accuracy. To obtain higher accuracy, the deep learning method

was introduced. In this paper, we propose a parallel multiple-scale convolution architecture.

Compared with the state-of-art methods, the proposed architecture fully considers the characteristics

of the sEMG signal. Larger sizes of kernel filter than commonly used in other CNN-based hand

recognition methods are adopted. Meanwhile, the characteristics of the sEMG signal, that is, muscle

independence, is considered when designing the architecture. All the classification methods were

evaluated on the NinaPro database. The results show that the proposed architecture has the highest

recognition accuracy. Furthermore, the results indicate that parallel multiple-scale convolution

architecture with larger size of kernel filter and considering muscle independence can significantly

increase the classification accuracy.
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1. Introduction

Surface electromyographic (sEMG) signals which are generated by the electrical activity of the

muscle fibers can be noninvasively detected by the surface electrodes. Those signals reflect the muscle

activity and provide limb movement information. Under the assumption that the patterns of sEMG

signal are repeatable for the same movements and distinguishable for the different movements [1],

the recognition of limb motions based on surface electromyographic signal have been widely used in

many man–machine interfaces [2,3] such as upper-limb prostheses [4]. However, there are some gaps

between application and research [5]. In practical applications, some conditions such as low power

consumption [6], portable, space constraints [7] and extensive sEMG data with multiple channels and

high sample rate [8] must be considered. Besides those, sEMG-based classification techniques have

been extensively researched [9].

The quality of sEMG signal and the processing method are the main factors affecting the

classification accuracy. The correct electrode locations, appropriate choice of channels, and the proper

selection of hand gestures improve the signal quality and lead to high classification accuracy [10–12].

When processing signals, the raw sEMG signals are rarely used directly to recognize limb motions,

as it can easily be disturbed by environmental noises, electrode location shifts and loose electrode–skin
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contacts causing inaccuracy in recognition of limb movements. To mitigate this issue and improve

the accuracy, traditional methods usually consist of four phases: preprocessing, windowing, feature

extraction and classification [13]. Feature extraction converts the sEMG signals to a compact and

informative set of features. Those features are usually hand-crafted by human experts and those

extraction methods can be categorized into operating in time domain [13–16], frequency domain [17,18]

and time–frequency domain (TFD) [19]. For example, the features in time domain usually consist of

Mean Absolute Value (MAV), The Root Mean Square (RMS), Mean Absolute Value Slope (MAVSlope),

Waveform Length (WL), Slope Sign Changes (SSC), Zero Crossings (ZC) and EMG Histogram

(HIST) which is an extension of the Zero Crossings. The characteristic frequency domain features

include Median Frequency (MDF), the 3rd Spectral Moments (SM3) and Media Amplitude Spectrum

(MDA). All these features are designed by human experts, and some have a strong correlation

with muscle function. For example, the RMS is related to the constant force and non-fatiguing

contraction. The ZC represents the muscle fatigue. As regard to the classification phase, the machine

learning algorithms assign the extracted features to the class (gesture) they most probably belong.

In the past decade, the optimal methods of classifying EMG signal patterns have been extensively

researched [20,21]. Different classifiers have been introduced such as k-Nearest Neighbors (KNN) [22],

neural networks [14,23], Bayesian classifier [17,24], linear discriminant analysis (LDA) [25], Support

vector machine (SVM) [26,27] and Random Forests (RF) [28–31]. Besides, the combination of multiple

classifiers is also a desirable method to improve classification accuracy. Ahmed et al. proposed a new

dynamic channel selection method which combines the multiple classifiers (LDA, SVM, quadratic

discriminant analysis, Bayes classifier and extreme learning machine) in the algorithm [32]. Both phases

(feature extraction and classification) affect the classification accuracy, especially for the feature set.

Hence, to get a higher classification accuracy, some researchers focused on the method to obtain an

appropriate feature set, such as the principal component analysis (PCA) of TFD feature, nonnegative

matrix factorization (NMF) algorithm and Nonlinear Multiscale Maximal Lyapunov Exponent [9,19,33].

Despite the promising performance have been shown, the greatest disadvantage of those traditional

methods is that some useful information may be discarded when extracting feature.

Inspired by the recent success of deep learning which has been widely used in speech recognition

and computer vision [34], Atzori et al. introduced a new method based on Convolutional Neural

Network (CNN) to decode the sEMG signals [35]. Along the time sequence, those sEMG signals from

different electrodes were regarded as the sEMG images. Being different from traditional methods,

CNN can extract feature without any additional information or manually designed feature extractor.

Four convolutional layers with three different sizes of kernel (3 × 3, 5 × 5 and 9 × 1) and two pooling

layers are adopted. The result of [35] indicates that the classical machine learning classification methods

are slightly inferior to convolution neural network with a simple architecture. The architecture of

CNN has a significant influence on the classification accuracy. Geng et al. [36] and Du et al. [37] used

the same ConvNet architecture which consists of four convolutional layers and two fully connected

layers to recognize hand gesture by the instantaneous sEMG image. On the choice of kernel sizes,

each of the first two convolutional layers consists of 64 filters of 3 × 3, while each of the last two

convolutional layers consists of 64 non-overlapping filters of 1 × 1. The result shows a significant

improvement in accuracy than classical classifiers. With the accuracy of 76.1% on single frame of

sEMG signals and 77.8% using simple majority voting over a 200 ms windows implemented on DB2

of Ninapro [36], the architecture shows better performance than Atzori’s method. Ulysse et al. [38]

also adopt these small convolution kernel sizes (3 × 3 and 4 × 3) to process myoelectric information.

However, they calculated the spectrograms of the raw sEMG data and delivered the spectrograms to

CNN. Xiaolong et al. [39] proposed an improved method based on the spectrogram of sEMG. After the

calculation of spectrogram, the principal component analysis (PCA) is performed to reduce the

dimensionality. The CNN model used in [38] only contains one convolutional layer with 5 × 5 kernel

sizes. After a series of the processing procedure, Xiaolong’s method achieved 78.71% classification

accuracy. All those previous results show that the CNN is an effective method for electromyographic
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signal pattern recognition. However, in the current method, the size of the kernel filter is usually

the same as the size commonly used in computer vision. It might not be suitable for sEMG signals.

The choice of the size of the kernel filter should consider the characteristics of the EMG signal itself.

Meanwhile, considering the non-stationary and noisy nature of myoelectric signals, the existing

architecture may not be so complex that it is difficult to obtain appropriate sEMG feature set.

In this study, to better adapt to the characteristics of sEMG signals and achieve higher classification

accuracy, we proposed a parallel multiple-scale convolution architecture which can extract features

without any additional information or manually designed feature extractors. In the design of

CNN network architecture, the characteristics of sEMG signals are considered. Unlike the kernel

filter commonly used in computer vision, our architecture utilizes a larger size of kernel filter.

In addition, the proposed architecture is neither the fusion of different sEMG channel information

at the beginning, nor the analysis of each channel first and then fusion of each channel at the result

level. Instead, the characteristics of the sEMG signal are fully considered. That is, considering the

muscle independence, each sEMG channel at the front end is processed independently, eliminating the

error that may be caused by premature fusion, and then the information of each channel is fused and

analyzed jointly. To evaluate the proposed parallel architecture, some reference experiments such as

classical method were implemented.

2. The Proposed sEMG-Based Gesture Recognition

2.1. Database

The data used in our work are the second database (DB2) from the Ninapro project, which is

a publicly accessible database and has previously been used for hand gesture recognition. In DB2

40 intact subjects (28 males, 12 females; 34 right-handed, 6 left-handed; age 29.9 ± 3.9 years) were

instructed to perform 50 types of hand, wrist and functional and grasping movements, organized

in three distinct sets of exercises (referred to as Exercises B, C and D in [40]). Each movement was

repeated six times with a 3 s rest posture in between.

Twelve Trigno wireless electrodes were used to record the sEMG signals. Eight electrodes were

located around the forearm at the height of the radiohumeral joint. Two electrodes were placed on

the flexor and extensor digitorum superficialis. Two electrodes were placed on the biceps and triceps.

The raw sEMG signals were sampled at a rate of 2 kHz with a baseline noise of less than 750 nV RMS.

Before the raw data could be used, those signals were processed by several steps such as filtering using

a Hampel filter (cleaning the signals from the 50 Hz power-line interference), synchronization and

relabeling. The detail can be found in [40].

In this study, 17 hand and wrist movements of Exercise B (8 isometric and isotonic hand

configurations and nine basic movements of the wrist) were considered. Approximately 2/3 of

the movement repetitions (Repetitions 1, 3, 4 and 6) were used as the training set, and the other two

movement repetitions (Repetitions 2 and 5) were used as the testing set.

2.2. Data Analysis and Processing

The classification procedure is similar to Englehart et al. [13] and consists of windowing, feature

extraction, and classification. No preprocessing procedure such as low-pass filtering [36], fast Fourier

transform (FFT) [39] and Standardization [4,41] was implemented in our algorithm. On the one hand,

the preprocessing such as FFT and low-pass filtering may cause the loss of useful information. On the

other hand, the preprocessing such as low-pass filtering will introduce the time latency which is not

conducive to the real-time control.

2.2.1. Windowing

Before feeding the sEMG signals to the classification algorithm, the data should be processed to

match the input dimension of the algorithm. For each channel, the sEMG signals were segmented
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using a sliding window with a length of L milliseconds (2L samples). The increment of the sliding

windows was set to 10 ms (20 samples). Figure 1 presents the segmentation and combination of sEMG

signals. The sEMG signals were converted to several 12 × 2L sEMG images for each subject, where 12

represents the number of electrodes.

The length of the window represents a compromise between time latency and classification

accuracy. As described in [14], to satisfy the requirement of real-time control, the time latency is less

than 300 ms. The more extended window lengths led to higher controller delays as well as increased

classification accuracy [42–44]. In previous works [13,40,45], L is greater than 200 ms to get higher

classification accuracy. To test the performance of the proposed algorithm in this study, L equal to

100 ms was chosen. Ultimately, the sEMG signals from 12 electrodes were converted into the sEMG

images of size 12 × 200.
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（ , ）Figure 1. Converting the sEMG signals to sEMG images by sliding window. P(a,b) represents a segment

of sEMG signal from electrode b at the time a. Pa represents the sEMG signals from 12 electrodes at the

time a.

2.2.2. Feature Extraction and Classification

We employed the deep convolutional network to classify the hand gesture without any additional

information or manually designed feature extractors. Figure 2 shows the architecture of proposed

deep convolutional network named Convolution with two Parallel Block (C-B1PB2) which consists of

two parts represented by the red dotted line: feature extractor and classifier.

The feature extractor is used to select the appropriate feature representation for sEMG and reduce

the input dimension of the classifier. It is composed of two blocks represented by the black dotted line.

In the Block 1, five convolution layers and two maximum pooling layers are employed. The first

three convolution layers contain 40 2D filters of 1 × 13 with the stride of 1 and a zero padding of

0. The last two convolution layers are similar to anterior layers except for the first dimension of

kernel filter. In these two layers, the information from different electrodes is mixed to detect the

relevance of each electrode. The two maximum pooling layers using the filters of 1 × 2 are followed by
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the first and second convolution layer, respectively. The pooling layer is considered to improve the

robustness of the algorithm. The local disturbance of sEMG signal caused by noise will not affect the

classification results.

Compared with the Block 1, the Block 2 is different in first three convolution layers which adopt

the bigger filter kernel size. The first three convolution layers contain 40 2D filters of 1 × 57 with the

stride of 1 and a zero padding of 0. The following two convolution layers are the same as the last two

convolution layers of Block 1. The pooling layers were not adopted in Block 2.

Those two blocks are parallel and do not influence the one another when extracting feature.

The outputs of the two blocks are concatenated and then delivered to the classifier.

The classifier is composed of three fully connected layers and a softmax layer. The input layer

consists of 520 units which are corresponding to the feature extracted by two blocks. The first and the

second hidden layers consist of 260 and 130 units, respectively. The output layer has 17 units which

are equal to the number of hand gestures.

In both blocks, the batch normalization is employed between each convolution layer and activation

function. In classifier, after first and second fully connected layers, the dropout with a probability of

0.5 is adopted.
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Figure 2. Schematic of C-B1PB2 used on the sEMG signals.

3. Experiments and Results

As described above, there are some distinguishing features of the proposed method such as

parallel block and the size of the convolution kernel. Several reference experiments were conducted to

evaluate the performance of C-B1PB2 with those distinctive features.

Classical Classification (CC):

For each channel, all data were standardized to have zero mean and unit standard deviation [39].

The length of sliding window was 100 ms (200 samples). The increment of sliding window was set

to 10 ms (20 samples). The selected signal features include: Mean Absolute Value (MAV), Waveform

Length (WL), Zero Crossings (ZC), Histogram (HIST) and marginal Discrete Wavelet Transform

(mDWT) [14,43,46]. The HIST needs to predefine the number of bins. The mDWT decomposes

the signals in terms of a basis function (i.e., the wavelet) at different levels of resolution, resulting

in a high-dimensional frequency-time representation [46]. The predefined number of bins and the

parameters of the wavelet are listed in Table 1. The random forests (RF) was implemented to recognize

the hand gesture.

Table 1. The parameters of HIST and mDWT.

Feature Parameter

Histogram (HIST) 10 bins along with 3σ threshold
marginal Discrete Wavelet Transform (mDWT) db7 wavelet, 3 level
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Convolution with two parallel Block 1 (C-2B1):

As shown in Figure 3a, C-2B1 is composed of two parallel Block 1 which has been described in

Figure 2. The input layer of classifier has 400 units to match the extracted feature by the two Block 1

while the remaining layers of the classifier are the same as in Figure 2.

Convolution with two parallel Block 2 (C-2B2):

Figure 3b shows the architecture of C-2B2 which consists of two parallel Block 2. The input layer

of the classifier is replaced by 640 units, and the rest layers remain unchanged.

Convolution with a different kernel (C-DK):

As represented in Figure 3c, the structure is the same as in Figure 2 except the first dimension of

filter for each convolution layer. For the upper block in feature extractor, the first four convolution

layers have 40 2D filters of 3 × 13 while the last convolution layer has 40 2D filters of 4 × 13 with the

stride of 1 and a zero padding of 0. The maximum pooling layers are the same as Block 1, followed

by the first and second convolution layers. For the lower block in feature extractor, the first three

convolution layers have 40 2D filters of 3 × 57 while the last two convolution layers are identical to the

last two convolution layers of upper block. The remaining parameters are same with C-B1PB2.

Convolution with the small kernel (C-SK):

As shown in Figure 3d, the architecture of C-SK contains two identical parallel CNN blocks.

Meanwhile, the size of kernel filter is smaller than used in previous comparison experiments but

is similar to the state-of-the-art methods [35–39]. The first four convolution layers contain 40 2D

filters of 3 × 3 with the stride of 1 and a zero padding of 0. The last convolution layer is similar to

anterior layers except for the first dimension of kernel filter. It consists 40 2D filters of 4 × 3. The two

maximum pooling layers using the filters of 1 × 2 are followed by the first and second convolution

layer, respectively.
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Figure 3. Schematics of three reference experiments: (a) convolution with two parallel Block 1 (C-2B1);

(b) convolution with two parallel Block 2 (C-2B2); (c) convolution with a different kernel (C-DK);

(d) convolution with the small kernel(C-SK); and (e) convolution with the small kernel 2 (C-SK2).
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Convolution with the small kernel 2 (C-SK2):

As represented in Figure 3e, the architecture of C-SK2 is similar to the architecture of C-SK except

for the first dimension of kernel filter for each convolution layer. Compared with the C-B1PB2 method,

the most difference is the second dimension of kernel filter which corresponded to the sampling points.

The C-SK2 architecture adopts the smaller kernel filter. The first three convolution layers are composed

by kernel filters of 1 × 3 while the last two layers use the kernel filters of 7 × 3 and 6 × 3, respectively.

By comparing the results of C-SK2, C-2B1, C-2B2, and C-B1PB2, the influence of the different size

of kernel filter on classification accuracy can be obtained. The results of C-DK and C-B1PB2, or C-SK

and C-SK2 can reveal the effect of considering the sEMG signal characteristics on classification accuracy.

Moreover, we evaluated the C-B1PB2 on all hand gestures of NinaPro DB2 (including Exercises B, C

and D) to verify the effectiveness of the proposed classification algorithm.

The Classical Classification method which consists of preprocessing, windowing, feature

extraction and classification was implemented in MATLAB. The other experiments were implemented

with Pytorch.

Table 2 gives the average classification accuracy results for each experiment. The first five rows

show the average classification accuracy of each method on NinaPro DB2 Exercise B, while the last

row shows the result on all hand movements of NinaPro DB2 (Exercises B, C, and D).

Table 2. The results of classification methods.

Method Classification Accuracy

C-B1PB2 83.79%
CC 77.96%

C-2B1 82.16%
C-2B2 82.49%
C-DK 79.23%
C-SK 75.82%

C-SK2 81.30%
C-B1PB2 (all gestures of DB2) 78.86%

In all experiments, the proposed C-B1PB2 obtains the best performance on Ninapro DB2 Exercise

B, while the C-SK gets the lowest classification accuracy. Except for the C-SK which consists of small

kernel filter and combines the information from different channels in every convolution layer, the other

methods based on CNN get higher accuracy than classical method. The C-2B2 with a larger filter

kernel size obtained a higher classification accuracy than the C-2B1 and C-SK2 methods. Meanwhile,

as the size of the kernel filter increases (C-SK2, C-2B1, and C-2B2), the classification accuracy also

increases. Among the CNN based methods, C-SK and C-DK, both ignoring muscle independence,

achieve lower classification accuracy.

Figure 4 shows the average confusion matrix, which details the classification and misclassification

of the hand gesture for proposed C-B1PB2. Movements 1, 2, 6, 12, 14 and 15, which corresponded

with Thumb up, Extension of the index and middle fingers, Fingers flexed together in fist, Wrist

pronation, Wrist extension and Wrist radial deviation, respectively, can be more accurately classified

than remaining movements. Movements 1–8 belong to the movement of the finger while remaining

movements belong to the movement of the wrist.

The C-B1PB2 method can obtain an average of 5.83% increase in accuracy compared with CC

method. The result shows the effectiveness of CNN in sEMG based hand gesture recognition.

In addition to the disparities caused by the framework, the most significant difference between

C-B1PB2 and CC is the input data. Before windowing, the latter was filtered to remove the

interference and standardized to have zero mean and unit standard deviation, while the former

was not preprocessed. The preprocessing of sEMG signals will influence the performance in real-time

control of upper-limb prostheses.
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Figure 4. Confusion Matrix.

Compared with existing convolution architecture applied in sEMG-based hand gesture

recognition [35–39,47], the parallel multiple-scale convolutional layers and filter kernel size of C-B1PB2

are the most significant disparities. As described in Section 2.2, the first dimension of the filter kernel

corresponds to the electrodes, and the second dimension of the filter kernel corresponds to the sampling

points. The size of filter kernel determines the size of the receptive field. In this paper, the larger size

of filter kernel means the larger size in the second dimension of the filter kernel.

As listed in Table 2, the average classification accuracy of C-2B2 is 0.33% higher than the C-2B1

and 1.19% higher than the C-SK2 method. It indicates that a larger receptive field can cause a slight

increase in classification accuracy. The most commonly used kernel filter of 3 × 3 in the state-of-the-art

methods of CNN-based hand gesture recognition [35–39] is not optimal. This may be because, for the

same kernel size, the higher the sampling rate of the sEMG signal, the less information it contains.

Meanwhile, the average classification accuracy of C-B1PB2 is 1.3% higher than the C-2B2 method.

It indicates that mining the information at different scales can obtain better performance than just

single scale.

The average classification accuracy of C-DK is only a little higher than CC method while the

C-SK is even a little lower than CC method. Compared with the other CNN-based reference methods,

the biggest difference of C-DK and C-SK focus on how to deal with the information from different

electrodes (the first dimension of filter kernel) in each convolution layer. The C-DK and C-SK methods

combine information from different electrodes in every convolution layer while the other convolution

methods process the signals for each electrode independently in the first three convolution layers and

combine the information from different electrodes in the last two convolution layers. As described

in [11], the sEMG signals from neighbor muscles are statistically independent. Those muscles change

the activation intensity and sequence leading to different gestures. Our proposed algorithm first

processes the signals from each channel independently then fuses the information of each channel

and produce the feature of sEMG image. This architecture not only fully considers the correlation

of each muscle but also ensures the independence of each muscle. Compared with other fusion

methods, it considers more sEMG characteristics and leads to better results. The results indicate

that considering the characteristics of sEMG signals such as muscle independence is essential when

designing the architecture.

The C-B1PB2 method is implemented on all hand gestures of DB2 to verify the effectiveness of

the proposed classification algorithm compared with state-of-the-art methods. As listed in Table 3,

the average recognition accuracy reached 78.86%. Atzori et al. [35] achieved a recognition accuracy of
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60.27% based on the CNN method and 75.27% based on the classical classification method (Random

Forests with all features), with the low-pass Butterworth filter (1 dst, 1 HZ) preprocessing and the

200 ms window. Xiaolong et al. [39] achieved a recognition accuracy of 78.71% based on the CNN

method, with the preprocessing (normalization and FFT) and 200 ms window. Even without a

long-length window and preprocessing, the result of our method is comparable to state-of-the-art

methods on DB2. These results further confirm the effectiveness of our architecture.

Table 3. Performance comparison with state of the art methods on all hand gesture of DB2.

Methods
Atzori et al. [35] Weidong et al. [36] Xiaolong et al. [39] Proposed

CNN RF CNN (Single Frame) CNN (20 Frames) KNN CNN SVM CNN

Accuracy 60.27% 75.27% 76.1% 77.8% 70% 78.71% 77.44% 78.86%

The selection of hand gestures affects the classification accuracy [11,12,33]. The confusion matrix

shows that, the more similar the hand gestures and rest posture, the lower classification rate. As for

the wrist movements, the accuracy of extension and supination movements are higher than the

corresponding flexion and pronation movements. It may be caused by the inherent joints. The extension

and supination movements may produce a higher level of muscle activation.

4. Conclusions

In the past few years, to obtain higher accuracy of sEMG-based gesture recognition, many kinds of

research have been focused on feature extraction manually. Since the CNN was introduced to this field,

the results demonstrate its powerful ability to extract feature. The architecture of CNN has a significant

influence on classification accuracy. In the state-of-the-art methods, the classification algorithms usually

adopt the simple architecture with a small kernel filter, regardless of sEMG characteristics. In this paper,

we proposed a parallel multiple-scale convolution architecture with different size of the receptive field

(C-B1PB2) for hand gesture recognition. The proposed algorithm, employing the larger size of kernel

filter and considering the muscle independence, produces accurate results than classical classification

method and state-of-the-art methods on NinaPro database 2. The results show that a larger kernel filter

can cause a slight increase in classification accuracy. Moreover, the combination of different sizes of

kernel filter in the parallel blocks can yield better performance than single size. Furthermore, the result

also indicates that, when designing the algorithm, considering the sEMG characteristics such as muscle

independence are necessary since it can significantly increase the recognition accuracy.

Future work will focus on reducing computational complexity and the real-time control

of prostheses.
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