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1 Introduction

In all calculable, confining SU(N) gauge theories in continuum, such as the Polyakov model
on R3 [1, 2], the Seiberg-Witten model on R4 [3], and deformed Yang-Mills and adjoint
QCD on R3×S1 [4, 5], the gauge dynamics Abelianize to U(1)N−1 at long distances. While
these models have taught us much about confinement, they have several features that we
do not expect of the dynamics of non-Abelian confinement. One particularly salient feature
common to all of these models is the complete Higgsing of the SN subgroup of the SU(N)
gauge group. This Higgsing of SN pervades the physics of these theories: it always gives
rise to multiple masses for the dual photons and generically to multiple fundamental string
tensions [6–8] (see ref. [9] for a case in which fundamental string tensions remain equal).
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The characterization of string tensions is an especially important point of difference
between Abelianizing and non-Abelianizing confining gauge theories. Indeed, it is well-
known that at asymptotically large distances, the string tensions of confining gauge theories
that do not undergo Abelianization should be solely characterized by center symmetry. This
is not the case in the Abelianizing theories mentioned above, at least within the low-energy
effective field theory, where string tensions are dictated by charges under U(1)N−1 rather
than N -ality [6–8].

Rather curiously, however, it has been observed in numerical experiments that the
dynamics of non-Abelian confinement admit an intermediate distance scale where the string
tensions are not solely characterized by center symmetry either [10–17]: they carry more
detailed information on the representations of the gauge group. This naturally suggests that
we should try to construct an intermediate theory between Abelian and non-Abelian worlds
to leverage what we know about the former to learn more about the latter. As mentioned
above, an understanding of unbroken SN should be an important clue in this direction.

Thus, the purpose of this work is to construct a 3-dimensional lattice model in which
these considerations can be addressed quite explicitly. We call it the semi-Abelian gauge
theory. To define it, we begin with a pure Abelian lattice model (henceforth to be referred
to as the ‘Abelian model’) with gauge group U(1)N−1 such that the permutation group SN
is present as a global symmetry. The semi-Abelian theory is then obtained by gauging this
SN , and its gauge group is given by

Ggauge = U(1)N−1 o SN . (1.1)

As pure gauge theories are not usually equipped with non-Abelian global symmetries, the
global or local SN symmetry of these models has some rather interesting consequences.

We first show that in both models, the mass gap is generated via Polyakov’s mecha-
nism whereby the proliferation of lattice monopole-instantons results in Debye screening.
Crucially, the unbroken (or un-Higgsed) SN symmetry implies that the effective potential
receives equal contributions from the monopoles associated with the entire SU(N) root
system, which in turn leads to exact degeneracy for the N − 1 dual photon masses. This
feature sharply contrasts with the mass generation in the Polyakov model on R3 or in
deformed Yang-Mills on R3 × S1, where the effective potential is sourced at leading order
only by the monopoles associated with the (affine) simple roots and the N −1 dual photon
masses are not degenerate.

After studying these properties of local operators, we move on to study properties of
test electric particles, which can be described by the behavior of Wilson loops. In 3 space-
time dimensions, the Coulomb potential is already log-confining, but due to the mass gap
generated by the monopole-instantons, the interparticle potential becomes linear-confining.
Using the dual formulation of the Wilson loop, we give a semi-classical formula for the string
tensions within a reasonable ansatz. We then find that there are infinitely many string ten-
sions. In particular, the semi-Abelian theory furnishes a unique fundamental string tension.

This, however, raises a puzzle about the string tensions. In order to study the spectral
properties of the confining forces for test quarks, we would like to have some symmetry
that acts nontrivially on the Wilson loops. One is the well-known center symmetry, which
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has been recently axiomatized in the framework of higher-form symmetry [18, 19]. Before
gauging SN , our model has a U(1)N−1 1-form symmetry, which provides sufficiently strong
selection rules to support infinitely many string tensions. But after gauging SN , the center
of the gauge group becomes tiny,

Z(Ggauge) = ZN , (1.2)

so the 1-form symmetry group becomes ZN , as it is in SU(N) Yang-Mills. And as we know
from SU(N) Yang-Mills, the ZN 1-form symmetry can only explain the N -ality behavior
of the string tensions at asymptotically large distances. However, the list of string tensions
for the semi-Abelian gauge theory turns out to be unchanged by the gauging of SN . Thus,
as in the case of SU(N) Yang-Mills at intermediate distances, the string tensions of the
semi-Abelian theory cannot be dictated by N -ality alone.

We find a resolution to this puzzle in a not-so-obvious but important symmetry of the
semi-Abelian theory, a non-invertible symmetry. Indeed, after the generalization of sym-
metry to higher-form symmetry, it has been recognized that the most essential feature of a
conservation law is the existence of topological defects, at least in the context of relativistic
quantum field theories (QFTs). In other words, as long as one keeps intact the existence
of topological defect operators, one may make up a new kind of symmetry by replacing or
weakening other features of the generalized global symmetry of ref. [18] (e.g. higher-group
symmetry [19–26]). Non-invertible symmetries are also generated by topological defects,
but their fusion rules do not conform to the usual group multiplication; as the name sug-
gests, a non-invertible symmetry transformation need not have an inverse (which of course
never occurs if the transformations form a group). The notion of non-invertible symme-
try is still in its infancy, and it seems that its mathematical formulation has been so far
established only in 2-dimensional spacetimes. Nevertheless, the utility of such topological
operators in probing quantum systems has been elucidated in several recent studies, as the
notion of symmetry itself tends to be broadened [27–35]. In that context, the new symmetry
goes by various names, such as non-invertible symmetry, categorical symmetry, etc. Here,
we would like to emphasize that the non-invertible symmetry clarifies an important feature
of our 3-dimensional semi-Abelian gauge theory. Thanks to the simplicity of the model,
the symmetry considerations we propose can be checked against concrete calculation.

We construct a generator of a continuous non-invertible symmetry, and compute its
action on several Wilson loops. By looking at its eigenvalues, we show that we can dis-
tinguish different string tensions even if they correspond to representations of the same
N -ality. We also discuss conditions where such extra selection rules by noninvertible sym-
metry are lost by the addition of dynamical electric particles, and we compare them with
the standard string-breaking arguments to check that they are consistent. Finally, as an
application, we discuss an example where the non-invertible symmetry is explicitly broken
to a discrete sub-symmetry, so that even though the number of string tensions becomes
finite, there still remain some string tensions beyond N -ality.
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2 3d U(1)N−1 lattice gauge theory with SN global symmetry

There are two basic models that we study in this paper:

• U(1)N−1 Abelian gauge theory with discrete non-Abelian global symmetry SN

• U(1)N−1 o SN semi-Abelian gauge theory

The second one can be obtained by gauging the SN 0-form symmetry of the first one, and
the main purpose of this paper is to understand its properties. To this end, we must first
understand the properties of the first theory, and this is the goal of this section.

2.1 Description of the U(1)N−1 lattice gauge theory

The U(1)N−1 lattice gauge model with the SN global symmetry can be realized either by
a standard Wilson-type formulation [36] or by a Villain-type formulation [37]. Since these
provide somewhat complementary perspectives, we end up working with both.

2.1.1 Villain formulation

To give the Villain formulation, we consider a link field A` valued in RN−1 and a plaquette
field np valued in the root lattice Γr ⊂ RN−1 of SU(N). We take for the action

S = 1
4πe2

∑
p

(Fp + 2πnp)2 (2.1)

where Fp = (dA)p is the field-strength and e is the gauge coupling. The partition function
is given by

Z =
∑

{np∈Γr}

∫
RN−1

[dA`] e−S . (2.2)

This theory is invariant under the 0-form gauge symmetry

A` → A` + (dλ)` , λs ∈ RN−1, (2.3)

and the 1-form gauge symmetry

A` → A` + 2πβ` , np → np − (dβ)p , β` ∈ Γr . (2.4)

In view of the fact that RN−1/(2πΓr) ' U(1)N−1, we see that this indeed defines a U(1)N−1

gauge model.
One way to understand this Villain-type formulation [1, 38] is to imagine that we had

begun with pure RN−1 gauge theory,

Z =
∫
RN−1

[dA`] exp
(
− 1

4πe2

∑
p

F 2
p

)
, (2.5)

and then considered gauging the discrete subgroup 2πΓr of the RN−1 1-form center sym-
metry group, which acts according to

A` 7→ A` + θ` , θ` ∈ RN−1 , (dθ)p = 0 . (2.6)

The simplest way to do that is to introduce the discrete Γr-valued plaquette field np, and
then demand that the local transformations (2.4) be gauge redundancies. Minimal coupling
to the field np would then produce the action (2.1) and the partition function (2.2).
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Global symmetries. Let us now discuss the global symmetries of this model. First, as
already noted above, there is a U(1)N−1 1-form center symmetry (2.6), where the group is
U(1)N−1 rather than RN−1 thanks to the 1-form gauge structure (2.4).

Importantly, the theory has a discrete non-Abelian 0-form global symmetry,

A` 7→ ΠA` , np 7→ Πnp, (2.7)

under O(N − 1) transformations Π that preserve the root lattice Γr. Such transformations
constitute the automorphism group of the SU(N) root system, and therefore the symmetry
group here is

G
[0]
global =

{
SN o Z2 (N > 2),
S2 ' Z2 (N = 2). (2.8)

The SN corresponds to the Weyl group of SU(N), which is generated by the reflections
in the hyperplanes orthogonal to the roots

A` 7→ A` −α(α ·A`) , np 7→ np −α(α · np) , α ∈ Φ, (2.9)

where Φ is the set of roots for SU(N). The pair (A`,np) thus transforms in the standard
representation Dstd of SN , which is the (N − 1)-dimensional irreducible representation.
Meanwhile, the Z2 is simply generated by the reflection

A` 7→ −A` , np 7→ −np, (2.10)

which we may think of as charge conjugation. We note that, for N = 2, these two operations
are identical.

Note that the existence of the non-Abelian global symmetry (2.8) is somewhat unusual
for a pure gauge theory. In general, pure gauge theories without matter fields, either
Abelian or non-Abelian, do not possess non-Abelian global symmetries. In the U(1)N−1

gauge theory we are considering, this symmetry is present. The gauging of the permutation
group SN will generate a genuinely non-Abelian gauge theory, which we shall investigate.

The basic observables we are concerned with are the Wilson loops, which are here
given by

Ww(C) = exp
(
i
∫
C
w ·A

)
, (2.11)

with w in the weight lattice Γw of SU(N). Note that it is invariance under the 1-form
gauge transformations (2.4) that requires the electric charge to be a weight. The Wilson
lines transform under the 0-form discrete symmetry (2.7) as

Ww(C) 7→WΠ−1w(C), (2.12)

and under the 1-form center symmetry (2.6) as

Ww(C) 7→Ww(C) exp
(
i
∫
C
w · θ

)
. (2.13)
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2.1.2 Wilson formulation

To construct the U(1)N−1 lattice gauge theory in the Wilson formulation, we consider N
gauge fields a1

` , . . . , a
N
` and a Lagrange multiplier v` which is an integer-valued link-field.

The dynamics is determined by the action

SW = β
∑
p

N∑
i=1

(1− cos f ip)− i
∑
`

N∑
i=1

v`a
i
`, (2.14)

where the f ip = (dai)p are the field-strengths. In the partition function, we integrate over
ai` ∈ [0, 2π] and sum over v` ∈ Z:

Z =
∑
{v`∈Z}

∫ 2π

0
[dai`]e−SW . (2.15)

In particular, summation over v` in the partition function produces the constraint

N∑
i=1

ai` = 0 mod 2π, (2.16)

so that only N − 1 of the photons are physical.1
One nice thing about this formulation is that the SN symmetry is manifest; it acts

simply by permuting the N photons:

(a1
` , . . . , a

N
` ) 7→ (aP (1)

` , . . . , a
P (N)
` ) , P ∈ SN . (2.18)

For now, we shall prefer to work with the Villain form over the Wilson one, because
the former enjoys exact dualities which allow us to analyze the dynamics most simply.
Nevertheless, the two formulations are equivalent at weak coupling, as we demonstrate in
appendix B. Later on, in section 3 where we gauge the SN global symmetry, we will find
the Wilson form more convenient.

2.2 Mass gap and spectrum

In this subsection, we discuss the mass gap of the lattice Abelian gauge theory with SN
global symmetry.

First, as we shall review in section 2.2.1, we note that the Villain form is exactly dual to
a multi-component Coulomb gas; that is, the partition function can rewritten in the form

Z =
∑

{q(x̃)∈Γr}
exp

− π
e2

∑
x̃,x̃′

v(x̃− x̃′)q(x̃) · q(x̃′)

 , (2.19)

1We could integrate out v` and any one of the photon fields. Then after some simple field redefinitions,
we would obtain the action

SW = β
∑
p

N∑
i=1

(1− cos(νi · fp)), (2.17)

where the νi are the weights of the defining representation of SU(N) and fp is the field-strength of an
(N − 1)-component Abelian gauge field a`.
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where v(x̃) is the lattice Coulomb potential, and q(x̃) is a Γr-valued scalar field on the dual
lattice. Here, one can interpret {q(x̃)} as a configuration of magnetic monopoles; q(x̃)
is the magnetic charge of the magnetic monopole at x̃. As is familiar, the proliferation
of monopoles in the Euclidean description of the vacuum results in Debye screening, and
hence, the correlation length remains finite for any nonzero value of the coupling [1]. While
this is more or less self-evident, we can go further and obtain the long-distance effective
field theory:

Z =
∫
Dσ exp

− e2

2π

∫
d3x

1
2 |dσ|

2 +M2 ∑
α∈Φ+

(
1− cos(α · σ)

)
 , (2.20)

where the dual photon field σ is a 2πΓw-periodic scalar, Φ+ is a set of positive roots for
SU(N), and M2 ∝ e−const./e2

/e2. This effective description shows very clearly the presence
of a nonzero mass gap. It will be derived in section 2.2.2.

We can immediately observe that the N − 1 dual photons must have exactly the same
mass. The degeneracy is a consequence of the SN global symmetry inherited from the
microscopic theory. To see this, note that the dual photons σ transform in the standard
representation Dstd of SN :

σ 7→ Dstd(P )σ , P ∈ SN . (2.21)

The mass matrix for the dual photons,

(M2
σ)ij = M2 ∑

α∈Φ+

αiαj , (2.22)

is also invariant under the SN transformation,

Dstd(P )M2
σD
−1
std(P ) = M2

σ, P ∈ SN . (2.23)

Since Dstd is irreducible, it follows from Schur’s lemma that M2
σ must be proportional to

the identity matrix. The mass gap is thus the (N − 1)-fold degenerate eigenvalue of M2
σ.

By taking the trace of M2
σ and using α2 = 2, one easily finds the mass gap to be

Mgap =
√
NM ∝

√
N

e
e−const./e2

. (2.24)

2.2.1 Multi-component Coulomb gas representation of the Villain form

Here we show that the Villain form (2.2) of our theory is exactly dual to multi-component
Coulomb gas (2.19), using standard techniques in Abelian lattice gauge theory [2, 39–41].
We derive the equivalence very briefly here, but the detailed derivation for the single-
component U(1) gauge theory is reviewed in appendix A.2.

We first note that the Poisson summation formula can be generalized on the weight
and root lattices to give∑

np∈Γr

exp
(
− 1

4πe2 (Fp + 2πnp)2
)

=
∑
kp∈Γw

exp
(
−πe2k2

p + ikp · Fp
)

(2.25)
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up to an overall coefficient. By performing the A` integration exactly, we obtain the
constraint (d†k)` = 0, which can be easily solved by setting

∗ k = dm, (2.26)

where m(x̃) is a Γw-valued scalar field on the dual lattice.2 After this replacement, the
partition function becomes

Z =
∑

{m(x̃)∈Γw}
exp

−πe2∑
˜̀

(dm)2
˜̀

 .3 (2.27)

We now wish to replace m(x̃) by a continuous field; it can be done with the help of the
Poisson summation formula again, this time in the form∑

m(x̃)∈Γw

δ(σ(x̃)− 2πm(x̃)) =
∑

q(x̃)∈Γr

exp(i q(x̃) · σ(x̃)), (2.28)

which introduces the dual photon field σ(x̃). The result is

Z =
∫

[dσ(x̃)]
∑

{q(x̃)∈Γr}
exp

(
− e

2

4π
∑
x̃

(∂−µ σ(x̃))2 + i
∑
x̃

q(x̃) · σ(x̃)
)
. (2.29)

After performing the Gaussian integration over σ, we arrive at the multi-component
Coulomb gas representation (2.19).

2.2.2 Long-distance effective theory

We now wish to pass to the long-distance effective description (2.20) [2, 39–41]. To this end,
we first split the Green function ∆−1 in (2.19) into two parts by adding and subtracting
(∆ +M2

PV)−1:

∆−1 = ∆−1(1 + ∆/M2
PV)−1 + (∆ +M2

PV)−1 = uMPV + wMPV . (2.30)

Here, uMPV(x̃) is the Green function of the Pauli-Villars regulated Laplacian ∆MPV ≡ ∆(1+
∆/M2

PV), and wMPV(x̃) is the Yukawa Green function. Since wMPV(x̃) decays exponentially
fast, we can take wMPV(x̃) = wMPV(0)δx̃,0. Furthermore, it is straightforward to show that
wMPV(0) = v(0)−O(1/MPV) ≈ 0.253−O(1/MPV) [42].

With the above decomposition, we rewrite the Coulomb gas partition function as

Z =
∑

{q(x̃)∈Γr}
exp

− π
e2

∑
x̃,x̃′

uMPV(x̃− x̃′)q(x̃) · q(x̃′)− 1
2I
∑
x̃

q(x̃)2

 , (2.31)

2For clarity, we ignore the effect of nontrivial spacetime topology.
3This representation may be thought of as a ‘Γw-ferromagnet’ by analogy with the corresponding ex-

pression with Z in place of Γw. The Γw-ferromagnet representation is exactly dual to the Γr-component
Coulomb gas representation (2.19). While the latter converges rapidly at weak coupling e2 → 0, the former
converges rapidly at strong coupling e2 →∞.
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where I ≡ 2πv(0)/e2, and then reintroduce the dual photon field σ to get

Z =
∫

[dσ(x̃)]e−
e2
4π
∑

x̃
σ(x̃)∆MPVσ(x̃) ∑

{q(x̃)∈Γr}
ei
∑

x̃
q(x̃)σ(x̃)e−

1
2 I
∑

x̃
q(x̃)2

. (2.32)

At this point, we want to perform a cluster expansion of the partition function. For
weak coupling, I is large, and so e−I is exponentially small. Thus, at leading order in
semi-classics, we can restrict the summation over q(x̃) to {0}∪Φ. Indeed, α2 = 2 for each
α ∈ Φ, so all the monopoles whose charges are roots have the same minimal action I, and
there are N(N − 1) degenerate saddles at leading order in semi-classics. Performing the
summation over q(x̃) with this restriction then yields

∑
q(x̃)∈{0}∪Φ

eiq(x̃)σ(x̃)e−
1
2 Iq(x̃)2 ≈ exp

2e−I
∑
α∈Φ+

cos(α · σ(x̃))

 . (2.33)

Finally, inserting this into (2.32), we get

Z =
∫

[dσ(x̃)] exp

− e2

4π
∑
x̃

σ(x̃)∆MPVσ(x̃) + 2e−I
∑
x̃

∑
α∈Φ+

cos(α · σ(x̃))

 , (2.34)

which, upon taking the continuum limit, coincides with (2.20).
We note that, in this derivation, we have neglected the effect of the spacetime topology,

and thus the periodicity of the dual photon field σ is undetermined. Had we taken it into
account, we would have identified σ as a 2πΓw-periodic scalar. (We elaborate on this
subtlety in appendix A.2.)

Remarks. The fact that the sum over monopoles goes over all roots α ∈ Φ and that
all monopoles associated with these roots have the same action distinguishes our U(1)N−1

lattice gauge theory with SN symmetry from Yang-Mills adjoint Higgs systems which ex-
hibit dynamical Abelianization SU(N)→ U(1)N−1.4 In the latter, if the adjoint Higgs are
algebra-valued, as in the Polyakov model [1], the sum over monopoles at leading order in
semi-classics is restricted to the N − 1 simple roots α ∈ ∆, while if the adjoint Higgs are
group-valued, as in deformed Yang-Mills [4], the sum over monopoles is restricted to the
N affine simple roots. There are monopoles associated with non-simple roots as well, but
these are higher action and do not contribute at leading order; in general, the monopoles
split into ZN -orbits with hierarchical fugacities e−S0 � e−2S0 � · · · � e−(N−1)S0 . In our
present construction, SN permutation symmetry guarantees that all N(N − 1) monopoles
associated with the roots have the same action. In theories like the Polyakov model and
Seiberg-Witten theory, SN is part of the gauge structure of the microscopic theory, but it
is spontaneously broken by the vacuum expectation value of the Higgs field which imposes
an ordering on the eigenvalues of the adjoint Higgs. These models therefore exhibit O(N)
different types of fundamental string tensions. We will see how the string tensions behave
in our U(1)N−1 Abelian model in the following subsection.

4It is also worth nothing that in N = 4 SU(N) super Yang-Mills theory softly broken down to N = 1∗

on R3 × S1 as well, it is necessary to sum over monopoles associated with non-simple roots in order to
capture the ground state properties correctly [43]. This data is encoded in an elliptic superpotential, but
the SN symmetry is still Higgsed in generic vacua.
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*p p

x

x-3

x+1

x

x+1+2x+2

C = @D

Figure 1. Left: the dual of the plaquette p is the link ∗p on the dual lattice intersecting p as
shown. Right: D is the shaded region bounded by the curve C. The Poincare dual [D] is a bump
1-form on the dual lattice that is 1 on each of the red links shown, and 0 everywhere else.

2.3 Wilson loops and string tensions

In this subsection, we show that the Abelian gauge model confines and we approximately
determine the string tensions.

We begin by showing how a Wilson loop Ww(C) = exp (i
∫
C w ·A) with electric charge

w ∈ Γw is computed in the long-distance effective theory [2]. For our purposes, it will suffice
to take C to be a contractible loop, so that it is the boundary of a 2-dimensional surface
D. We can then write

Ww(C) = exp
(

i
∫
D
w · F

)
= exp

(
i
∑
p

[D]∗p(w · Fp)
)
. (2.35)

Here we have introduced the Poincaré dual [D] of D; it is a bump 1-form on the dual lattice
(see figure 1) given by

[D]∗p =

1, if p ⊂ D,
0, otherwise.

(2.36)

Now let us repeat the derivation of the dual theory, this time with the insertion of the
Wilson loop. Using the Poisson resummation (2.25), the path-integral weight becomes

exp
(
−πe2k2

p + ikp · Fp + i[D]∗p(w · Fp)
)
, (2.37)

where the last term comes from the Wilson loop. The integration over A produces the
constraint, d†(k + ∗(w[D])) = 0, which can be solved by

∗ k = −w[D] + dm, (2.38)

instead of (2.26). At this point, the rest of the derivation proceeds exactly as before, and
we obtain

〈Ww(C)〉 =
∫
Dσ exp

− e2

2π

∫
d3x

1
2
∣∣∣dσ − 2πw[D]

∣∣∣2 +M2 ∑
α∈Φ+

(
1− cos(α · σ)

)
 .

(2.39)
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This expression shows that the Wilson loop is realized as a defect operator in the dual
formulation. That is to say, it is evaluated by removing the loop C from the spacetime
and restricting the path integral to configurations satisfying

∮
S1 dσ = 2πw for small loops

S1 that link with the loop C. Taking the ratio with the unconstrained path integral, we
obtain the expectation value of the Wilson loop.

We are now in a position to approximately determine the string tensions. It will suffice
to compute the functional integral in (2.39) in the classical approximation. For convenience,
let us take the loop C as well as D to lie in the z ≡ x3 = 0 plane. If we take the loop C to
be so large that D essentially fills the z = 0 plane, then the action density localizes around
z = 0. As a result, the area law decay for the Wilson loop Ww(C) is observed,

〈Ww(C)〉 ∼ exp
(
−Tw Area(D)

)
, (2.40)

and its string tension is given by the minimal action density

Tw = min
σ(z)

e2

2π

∫ +∞

−∞
dz

1
2

(dσ
dz

)2
+M2 ∑

α∈Φ+

(
1− cos(α · σ)

) , (2.41)

with the boundary condition

σ(−∞) = 0, σ(+∞) = 2πw. (2.42)

To go further, let us take as a plausible ansatz

σ(x) = wσ(z), (2.43)

and then proceed to evaluate the string tension analytically within this ansatz. Substitut-
ing (2.43) into (2.41), we obtain

Tw = min
σ(z)

e2

2π

∫ +∞

−∞
dz

w2

2

(dσ
dz

)2
+M2 ∑

α∈Φ+

(
1− cos(α ·wσ)

)
= e2M

π

∫ 2π

0
dσ
√√√√w2

2
∑
α∈Φ+

(
1− cos(α ·wσ)

)
, (2.44)

which is the Bogomol’nyi-Prasad-Sommerfield (BPS) bound [44, 45]. Although this is just
an upper bound for the actual string tension, we assume that it gives a reasonable estimate.

2.3.1 Explicit evaluation of string tensions

Using the formula (2.44), we shall evaluate the string tensions explicitly for a few cases.
Here, we take w = µ1, 2µ1, µ2, which correspond to the highest weights of the fundamen-
tal, symmetric, and anti-symmetric representations of SU(N), respectively. We will also
comment on the case w = α ∈ Γr, corresponding to the adjoint representation of SU(N).
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Let us start withw = µ1, which is the highest weight of the fundamental representation
of SU(N). We obtain

Tµ1 = e2M

π

N − 1√
2N

∫ 2π

0
dσ
√

1− cos(σ)

= 4e2M

π

N − 1√
N

. (2.45)

We will use this quantity as a unit for the other string tensions.
We next consider w = 2µ1, the highest weight of the SU(N) two-index symmetric

representation. Since σ wraps S1 twice, we find that

T2µ1 = 2Tµ1 . (2.46)

Thus, the symmetric string tension is twice the fundamental one, which suggests that the
symmetric string can be interpreted as the sum of two independent fundamental strings.
The multi-string ansatz is also a candidate, which may give a reasonable approximation of
confining strings [46], so we will compare it with (2.43) for other strings, too.

For the two-index anti-symmetric string, w = µ2, we find

Tµ2 = e2M

π

√
2(N − 2)√

N

∫ 2π

0
dσ
√

1− cos(σ)

= 8e2M

π

N − 2√
N

= 2(N − 2)
N − 1 Tµ1 . (2.47)

For N = 3, µ2 gives the conjugate representation of µ1, and in this case we indeed find
that Tµ2 = Tµ1 . For N > 3, we find Tµ1 < Tµ2 < T2µ1 = 2Tµ1 , and Tµ2 ≈ 2Tµ1 for
N � 1. Since µ2 = µ1 + (µ1 − α1), we can understand this upper bound 2Tµ1 as a sum
of two-independent fundamental strings 2Tµ1 = Tµ1 +Tµ1−α1 . Our calculation shows that,
for the anti-symmetric string, the ansatz (2.43) gives a more severe upper bound for Tµ2 .

Lastly, let us consider the adjoint string w = α ∈ Φ. Applying the formula (2.44)
within the ansatz (2.43), we obtain it as

Tα = e2M

π

∫ 2π

0
dσ
√

(1− cos(2σ)) + 2(N − 2)(1− cos(σ))

= 4e2M

π

√N + (N − 2)√
2

cosh−1

√
N

N − 2


= 1
N − 1

N + (N − 2)
√
N√

2
cosh−1

√
N

N − 2

Tµ1 . (2.48)

According to this formula, the adjoint string tension satisfies Tα ≥ 2Tµ1 , and turns out to
be only slightly larger than 2Tµ1 . But here it turns out that we can do a little bit better.
Let us explicitly take w = α1, and consider a double-string ansatz, in which the adjoint
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string consists of two fundamental strings, µ1 and α1 − µ1. Up to permutation, µ1 and
α1 − µ1 are related by complex conjugation, and we thus find

Tα = Tµ1 + Tα1−µ1 = 2Tµ1 . (2.49)

Therefore, for the adjoint string, the two-independent-string ansatz is slightly better
than (2.43), unlike the case of anti-symmetric string.

3 Semi-Abelian theory

In this section, we consider the U(1)N−1 o SN gauge theory obtained by gauging the SN
global symmetry of the U(1)N−1 gauge theory considered in section 2. We call it the
semi-Abelian gauge theory.

3.1 Gauging of the SN global symmetry

In relativistic quantum field theories, global symmetry is generated by a set of codim-
1 defects, which are topological and obey the group-multiplication law [18]. When the
global symmetry is discrete, we can gauge it by summing over all possible networks of such
codim-1 defects. This procedure may be obstructed by anomalies, which are characterized
by a topological action in one higher dimension [47–49]. We also note that the gauging
procedure admits the freedom to add a topological phase to each network configuration of
the topological defects as long as it is consistent with locality and unitarity.

In this section, we gauge the SN symmetry of the U(1)N−1 lattice gauge theory of
section 2. Assuming that its low-energy description enjoys emergent Lorentz symmetry
due to the cubic lattice rotational invariance, the gauging procedure of SN should fit into
the above general discussion. Absence of the SN anomaly is guaranteed by the explicit
construction of the lattice gauge theory. As extra topological terms, there are Dijkgraaf-
Witten (DW) terms [50] characterized by H3(BSN ,U(1)), which are nontrivial for all
N ≥ 2.5 In this paper, we limit ourselves to the case without the 3d SN DW term.

We shall now construct the semi-Abelian gauge theory on a cubic lattice, and the
simplest way to proceed is to gauge SN in the Wilson formulation (2.14). For concreteness,
it is convenient to realize the semi-Abelian gauge symmetry by N ×N matrices. We can
realize an element of U(1)N−1 o SN inside U(N) as

P · C ∈ U(N), (3.2)
5Although detailed information is not relevant for us as we neglect the nontrivial DW twist, let us give its

full information for completeness, which may be useful for possible extensions. By the universal coefficient
theorem, we obtain Hd(BSN ,U(1)) ' Hd+1(BSN ,Z) ' Hd(BSN ,Z) because they only have the torsion
part. We can find in literatures that the list of the 3d DW twist is given as

N 2 3 4 5 6 · · ·
H3(BSN ,U(1)) Z2 Z6 Z2 ⊕ Z12 Z2 ⊕ Z12 (Z2)2 ⊕ Z12 · · ·

(3.1)

For N ≥ 6, this group cohomology stabilizes and H3(BSN ,U(1)) ' (Z2)2 ⊕ Z12, i.e. we can add three
distinct DW terms, two of which give the (±1) phases and the another one gives the phases exp

(
2πi
12 n
)
, in

the path integral of SN gauge fields.
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where C = diag(eia1 , · · · , eiaN ) with det(C) = 1 describes the Cartan components, and
P ∈ SN is the N × N matrix representation of a Weyl reflection, which is realized as a
permutation matrix. The group multiplication law is given as

(P1 · C1)(P2 · C2) = (P1P2)︸ ︷︷ ︸
∈SN

· ((P−1
2 C1P2)C2)︸ ︷︷ ︸
∈U(1)N−1

, (3.3)

and this expression elucidates the semi-direct structure in a concrete manner. Letting
(P`·C`) ∈ SU(N) denote the link variable, the gauge-invariant plaquettes for the Lagrangian
consist of two terms:

Re

β1tr

1N −
∏
`⊂∂p

(P` · C`)

+ β2tr

1N −
∏
`⊂∂p

P`

 . (3.4)

The second term is the gauge-invariant kinetic term only for SN . By sending β2 → +∞,
we can impose the flatness condition on the SN gauge field,∏

`⊂∂p
P` = 1N ∈ SN . (3.5)

As it is this limit that fits into the general discussion given above for the continuum
description, we shall work with this flatness condition (3.5) on the SN link variables. We
can readily check that the Lagrangian (3.4) is equal to the Wilson action (2.14) when the
SN gauge fields are trivial, i.e. P` = 1 for all the links `, by putting β1 = β. In this manner,
we obtain the U(1)N−1 o SN gauge theory out of the U(1)N−1 pure gauge theory.

Because of the flatness condition (3.5), the local dynamics should not be much affected
by the gauging of SN , and all the interesting things in the deep infrared have to do with
the global aspects of the theory. To be more precise, let us assume that we prepare
a sufficiently large torus T 3 for the spacetime and that we are interested in computing
correlation functions inside an open ball B3 ⊂ T 3, which has a trivial topology. Using the
flatness condition, we may perform a local SN gauge transformation so that the SN gauge
fields P` are fixed to equal 1 inside B3. Hence, the correlation functions should be identical
with those of the U(1)N−1 theory of section 2 as it has a nonzero mass gap, as long as we
neglect exponentially small corrections that vanish in the thermodynamic limit. In this
sense, the gauging of SN is locally trivial.

More physically, by sending the parameter β2 → ∞ in the Lagrangian, we make the
magnetic monopoles for the SN gauge group extremely heavy. As a result, the SN gauge
fields are deconfined; i.e. the Wilson loops of SN gauge fields obey the perimeter law at any
length scale. Now, assume that we wish to compute the correlation functions of local opera-
tors. For the sake of exposition, consider a two-point function of the U(1)N−1 gauge theory

〈O1(x1)O2(x2)〉U(1)N−1 , (3.6)

though it is straightforward to extend the discussion to general n-point functions. As the
SN global symmetry is not spontaneously broken in the U(1)N−1 theory, this correlation
function has a non-zero expectation value in the thermodynamic limit only if O1(x1)O2(x2)
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contains an SN -singlet component. Thus, we may assume that O1(x1)O2(x2) is SN singlet
without loss of generality. Here, we note that the operator O1, O2 can be SN non-singlet,
but they have to be mutually conjugate representations. By introducing an SN Wilson
line W (SN )(x1, x2) connecting x1 and x2, we can construct the SN gauge invariant
operator O1(x1)W (SN )(x1, x2)O2(x2). Since the SN gauge field is deconfined, we find that〈
O1(x1)W (SN )(x1, x2)O2(x2)

〉
U(1)N−1oSN

is invariant under any continuous deformation
of the path connecting x1 and x2. In particular, by choosing a trivial path which does not
go around any nontrivial cycle of the spacetime, we obtain〈

O1(x1)W (SN )(x1, x2)O2(x2)
〉

U(1)N−1oSN
= 〈O1(x1)O2(x2)〉U(1)N−1 (3.7)

in the thermodynamic limit. Thus, any local correlation function of the U(1)N−1 theory
can be recovered in the semi-Abelian gauge theory.

3.2 ZN center symmetry

In this and the following subsections, we discuss properties of the (electric) Wilson loops
in order to identify the string tensions from the viewpoint of the symmetry. Here, we pay
especial attention to the 1-form symmetry, or center symmetry, of the U(1)N−1oSN gauge
theory.

The 1-form symmetry is generated by codim-2 topological defects, whose fusion rule
obeys group multiplication [18]. In general, when we consider a pure gauge theory with
a gauge group Ggauge, the theory enjoys a 1-form symmetry with the symmetry group
Z(Ggauge), which is the center of Ggauge. Since this acts as Z(Ggauge) phase rotations on
Wilson loops, this has been historically called the center symmetry.

In our case, the gauge group is Ggauge = U(1)N−1 o SN , and thus

Z(Ggauge) = ZN . (3.8)

To see this, it is convenient to use the embedding of U(1)N−1oSN ⊂ U(N) used above, and
to consider the defining representation of the latter. Using Schur’s lemma, one sees that the
N ×N matrix representation of center elements must be proportional to the identity ma-
trix. Such matrices are included only in U(1)N−1, which is the same as the Cartan factor of
SU(N), and thus the center elements of U(1)N−1oSN are the same as those of SU(N). Be-
fore gauging SN , the 1-form symmetry group is given by Z(U(1)N−1) = U(1)N−1 since the
theory is an Abelian gauge theory without any electric matter fields. Therefore, in view of
the 1-form symmetry, one might be led to claim that the semi-Abelian gauge theory should
be more similar to SU(N) gauge theories than the U(1)N−1 theory from which it came.

This, however, raises the following puzzle about the string tensions. In the U(1)N−1

theory, there are infinitely many different string tensions depending on the representations
of Wilson loops, which are characterized by charges of the U(1)N−1 1-form symmetry. As we
have seen in the previous subsection, the local dynamics is not affected by the gauging of SN
because we can locally set the SN gauge field to be zero by gauge transformations. As long
as we measure string tensions using large and contractible Wilson loops, the same discussion
from before should apply here, and thus, there have to be infinitely many different string
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tensions also for the U(1)N−1oSN gauge theory. But this seems rather unnatural, because
the ZN 1-form symmetry is too weak to give selection rules for these string tensions. To
put the question another way:

How is the presence of infinitely many different string tensions compatible with
the finite center symmetry?

To make things more concrete, let us construct the generator of Z[1]
N out of (U(1)[1])N−1

generators of the U(1)N−1 gauge theory. In terms of the dual photon field σ ∈ RN−1/2πΓw
from the monopole gas description in section 2.2, the generators of (U(1)[1])N−1 are given by

U
(k)
θ (C) = exp

(
i θ2π

∫
C
αk · dσ

)
, k = 1, . . . , N − 1, (3.9)

where the transformation parameter θ is 2π periodic due to the 2πΓw-periodicity of
σ. After gauging SN , these operators are no longer gauge invariant because the dual
photon field σ transforms under the standard representation of the Weyl permutations
SN . Nevertheless, the generators of Z[1]

N can be constructed as

Un(C) ≡
N−1∏
k=1

U
(k)
2π
N
kn

(C) = exp
(

i n
N

∫
C

(α1 + 2α2 + · · ·+ (N − 1)αN−1) · dσ
)
. (3.10)

Thanks to the periodicity of σ, the Un(C) are invariant under SN transformations and
thus remain good operators for the semi-Abelian gauge theory. Moreover, we have the
group multiplication law

Un(C)Um(C) = Un+m mod N (C) (3.11)

so U(C) ≡ U1(C) only generates the ZN subgroup of U(1)N−1. Other generic combinations∏
k U

(k)
θk

cannot satisfy the SN invariance, and they drop out from the possible generators
of the 1-form symmetry.

3.3 String tensions beyond N-ality, and noninvertible topological lines

Let us explicitly check whether or not the string tensions of the semi-Abelian gauge theory
obey the standard N -ality rule. Using the embedding U(1)N−1oSN ⊂ U(N), we construct
the Wilson loops with the U(N) gauge field first, and then we restrict it to the U(1)N−1oSN
gauge field. As we can locally eliminate the SN gauge field, we may restrict the U(N) gauge
field to its diagonal component in a naive way, as long as the Wilson loop is contractible.
The N -ality of the obtained Wilson loop is the same as that of the Wilson loop with SU(N)
gauge fields.

Let us write

Wk(C) = exp

i
(
µ1 −

k−1∑
j=1

αj

)
·
∫
C
A

 , k = 1, . . . , N, (3.12)

so that, for example, the fundamental Wilson loop is given by

Wfd(C) = W1(C) +W2(C) + · · ·+WN (C). (3.13)
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Each Wilson loop Wi in Wfd has the same string tension, and for large loops C it obeys
the area law: 〈

Wfd(C)
〉
∼ exp(−Tµ1Area). (3.14)

Under the 1-form symmetry,
Z[1]
N : Wfd 7→ e2πi/NWfd, (3.15)

or, more precisely,

〈U(C1)Wfd(C2)〉 = exp
(2πi
N

Link(C1, C2)
)
〈Wfd(C2)〉. (3.16)

In order to determine whether string tensions are controlled by the 1-form symmetry, let
us consider the adjoint Wilson loop,

Wad(C) =
∑
i 6=j

Wi(C)W ∗j (C) = |Wfd|2 −N. (3.17)

This has trivial N -ality, but we can readily check that its string tension is not zero using
the result of section 2.3: 〈

Wad(C)
〉
∼ exp(−TαArea), (3.18)

with Tα ' 2Tµ1 . This example clearly tells us that the string tensions of the semi-Abelian
gauge theory carry detailed data of its gauge-group representations, which cannot be cap-
tured by the Z[1]

N symmetry.
Something new is needed to explain the failure of the N -ality rule, and this is where the

non-invertible topological lines [27–35] come in. We can easily construct such an operator
by summing over all the SN conjugates of U (1)

θ (C):

Tθ(C) ≡ 1
N !

∑
P∈SN

PU
(1)
θ (C)P−1

= 1
N(N − 1)

∑
α∈Φ

exp
(

i θ2π

∫
C
α · dσ

)
. (3.19)

Since this operator is SN singlet, it can be a physical operator of the SN -gauged theory.
Since each operator in the sum is topological, so too is Tθ(C). Therefore, this SN -invariant
operator shares important features with the 1-form symmetry generators.6 However, the
group multiplication law is not satisfied for Tθ(C), as one can easily check:

Tθ(C)Tθ′(C) 6= Tθ+θ′(C). (3.20)

Because of the violation of the group multiplication property, we cannot regard Tθ(C) as a
generator of an ordinary 1-form symmetry in contrast with (3.11). Instead, it is a generator
of a non-invertible symmetry.

6Following the same logic, we can in fact construct many more continuous families of non-invertible
symmetries. Indeed, we can average over all SN conjugates of an arbitrary product U (k1)

θ1
(C) · · ·U (kr)

θr
(C)

of the operators (3.9) to get a non-invertible symmetry generator T (k1,...,kr)
θ1,...,θr

(C). In particular, the non-
invertible symmetry generator T (1,...,N−1)

θ1,...,θN−1
(C) with θk = 2πk/N will coincide with the Z[1]

N center symmetry
generator U(C), as one can readily check from (3.11). Thus, the Z[1]

N center symmetry is actually contained
within a continuous family of non-invertible symmetries.
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Let us consider the component of the Wilson loop that corresponds to the weight
w ∈ Γw. Its eigenvalue for Tθ is given by

1
N(N − 1)

∑
α∈Φ

exp (iθα ·w) . (3.21)

As a consequence, the fundamental Wilson loop transforms as

Wfd 7→
1
N

(
N − 2 + 2 cos(θ)

)
Wfd. (3.22)

More importantly, the adjoint Wilson loop also transforms nontrivially as

Wad 7→
(N − 2)(N − 3) + 4(N − 2) cos(θ) + 2 cos(2θ)

N(N − 1) Wad. (3.23)

This elucidates that we can detect the detailed information of the Wilson loop beyond
N -ality by using the non-invertible topological line operator Tθ.

As another example, we can detect the difference between the symmetric and anti-
symmetric two-index representations, Wsym and Wasym, of SU(N), whose highest weights
are given by 2µ1 and µ2, respectively. We have to note, however, thatWsym is not an eigen-
operator of Tθ, because the two-index symmetric representation of SU(N) decomposes into
two irreducible representations of U(1)N−1 o SN . Since µ2 = 2µ1−α1 and (2µ1) ·α1 = 2,
each charge in the anti-symmetric representation appears in the list of charges of the
symmetric representation exactly once, and thus the correct eigen-operator isWsym−Wasym.
Indeed, one can check that〈

(Wsym −Wasym)(C)
〉
∼ exp(−2Tµ1Area),

〈
Wasym(C))

〉
∼ exp(−Tµ2Area), (3.24)

with Tµ2 < 2Tµ1 , as we have discussed in section 2.3. We find

(Wsym −Wasym) 7→ N − 2 + 2 cos(2θ)
N

(Wsym −Wasym), (3.25)

and
Wasym 7→

(N − 2)(N − 3) + 2 + 4(N − 2) cos(θ)
N(N − 1) Wasym. (3.26)

This gives another explicit demonstration of the fact that one can distinguish different
string tensions for representations of the same N -ality with the help of the topological
operator Tθ.

3.4 Effect of dynamical electric particles

In the previous section, we discussed the behavior of string tensions for the pure semi-
Abelian gauge theory. String tensions do not obey the N -ality rule, and the presence of
non-invertible topological lines explain why they carry more detailed information. In this
section, we discuss what will happen to the string tensions once dynamical electric charges
are added.

Once electric charges are incorporated as dynamical excitations, their pair creation can
break confining strings if it is energetically favorable. If the fundamental electric charge

– 18 –



J
H
E
P
0
3
(
2
0
2
1
)
2
3
8

is added, we expect that all the confining strings can be broken and all Wilson loops will
obey the perimeter law. If the adjoint charge is added instead, we expect that the string
tensions should obey the N -ality rule, because the adjoint Wilson loop would then obey the
perimeter law. Can we justify these expectations from the viewpoint of topological lines?

For this purpose, we need to identify which line operators cease to be topological
once the dynamical electric charges are included. If a line acts nontrivially on the Wilson
loop corresponding to the dynamical excitations, then it is no longer topological after
introducing dynamical charges [33]. This is because the corresponding Wilson loop can
end on charged local operators, so that the linking number is no longer well-defined; in
other words, the topological invariance of the symmetry operator is lost.

Let us add dynamical adjoint particles, and then determine whether or not Tθ is
topological. Since the eigenvalue of Wadj has to be 1 for any topological operator, Tθ
is topological only if

(N − 2)(N − 3) + 4(N − 2) cos(θ) + 2 cos(2θ)
N(N − 1) = 1. (3.27)

This is solved only by θ = 0 mod 2π, and thus only the trivial one Tθ=0 = 1 is topological.
This implies that the non-invertible symmetry ceases to be an exact symmetry once an
adjoint matter field is added. On the other hand, the ZN 1-form symmetry is kept intact
because the generator acts trivially on Wad. In this case, the string tensions obey the
N -ality rule at least if the Wilson loops are sufficiently large, which is consistent with the
observation for 3d SU(N) Yang-Mills theory.

As a nontrivial exercise, we can add dynamical particles corresponding to nΓr with
n > 1, instead of Wad. Then the non-invertible line Tθ is topological if

(N − 2)(N − 3) + 4(N − 2) cos(nθ) + 2 cos(2nθ)
N(N − 1) = 1, (3.28)

and this has nontrivial solutions, θ ∈ (2π/n)Z. Therefore, the continuous part of the
non-invertible symmetry Tθ is explicitly broken by dynamical electric charges nΓr, but the
discrete part Tθ=2πk/n, k = 1, . . . , n still generates a good non-invertible symmetry. As
a result, Wilson lines distinguished by Tθ=2πk/n can have different string tensions even if
they share the same N -ality.

4 Summary and discussions

In this paper, we have studied the properties of the semi-Abelian gauge theory in 3 space-
time dimensions, where the gauge group is Ggauge = U(1)N−1 o SN . As we have imposed
the flatness condition on the SN gauge field, we can locally eliminate it completely, so the
spectral properties of the mass gap and string tensions can be calculated as the U(1)N−1

theory. We have seen that the mass gap is generated via the Polyakov mechanism as a con-
sequence of monopole-instanton proliferation. We can classify their magnetic charges using
the SU(N) representation, and all the monopoles for the roots give equally dominant con-
tributions to the effective potential. This point is very different from the Polyakov model

– 19 –



J
H
E
P
0
3
(
2
0
2
1
)
2
3
8

or QCD(adj) with an S1 compactification, where only the monopoles associated with the
simple roots play the dominant role, and it comes from the SN invariance of our model.

Using the dual formulation, we also computed various string tensions, and we found
that there are infinitely many different string tensions. When the SN symmetry is not
gauged, this can be explained very naturally in the context of the 1-form symmetry because
the center of U(1)N−1 is U(1)N−1 itself, and thus the 1-form symmetry group is large enough
to explain the selection rules between infinitely many confining strings.

A puzzle arises, however, after gauging SN , because the center symmetry is just
Z(Ggauge) = ZN . This is because most of the elements of U(1)N−1 do not commute with
the permutations, and the permutation invariance requires that the center elements be pro-
portional to the identity matrix. Thus, the 1-form symmetry of semi-Abelian gauge theory
is as small as that of SU(N) Yang-Mills theory, where the string tensions are character-
ized by N -ality alone. Therefore, for the semi-Abelian theory, there is a clear discrepancy
between the actual behavior of the string tensions and the natural expectation from ZN
center symmetry.

We find that the discrepancy is resolved by recognizing the presence of noninvertible
symmetry. We constructed the topological line operator Tθ out of the U(1)N−1 1-form
symmetry generators, which remain well-defined and topological after gauging SN but do
not satisfy the group multiplication law. Though this operator is noninvertible, its action
on the Wilson lines yield eigenvalues that are able to distinguish representations with the
same N -ality. Thus, we have demonstrated the utility of an extended notion of symmetry
in a 3d toy example of a gauge theory.

We should mention that the formal development of non-invertible symmetry is still
an important task. In the case of higher-form or higher-group symmetry, their formaliza-
tion not only provided the rigorous definition and generalization of the center symmetry,
but also gave new tools to analyze interacting QFTs, such as generalizations of anomaly
matching [51–63]. It would be very nice if this repertoire of useful tools could be enhanced
to include non-invertible symmetry.

Lastly, let us present some speculation. As we stated in the introduction, a similar
behavior regarding the N -ality rule has been observed in simulations of SU(N) Yang-Mills
on the lattice: there is an intermediate distance scale where the quark-antiquark potential
exhibits linear confinement but its string tension depends on the details of the gauge-group
representation. Though it is widely believed that the string tension becomes solely dictated
by N -ality once the quark-antiquark separation becomes sufficiently large, it is logically
possible that ‘sufficiently large’ is parametrically larger than the strong length scale Λ−1

at which confinement sets in. For instance, viewing N as a parameter, it may very well
be that the N -ality rule sets in at a distance scale h(N)Λ−1 � Λ−1, where h(N)→∞ as
N → ∞. We think it would be an intriguing possibility if, even in pure Yang-Mills, some
approximate notion of non-invertible symmetry could be used to explain the behavior of
string tensions beyond N -ality at these intermediate distances.

A more striking example may be QCD with fundamental or two-index matter fields,
where the 1-form ZN center symmetry is either completely or partially lost, or Yang-Mills
theories with simply-connected gauge groups without a center, such as G2. Even in cases
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where 1-form symmetry is completely lost, we believe that an approximate non-invertible
symmetry could potentially give a precise meaning to confinement of arbitrary test charges,
and therefore provide the long sought definition of confinement in such theories.
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A Review of Abelian duality on the lattice

A.1 Differential forms on the lattice

There is, on the lattice, a close analog of the notion of differential forms, and it is especially
convenient for treating Abelian lattice gauge theories. Here we give a somewhat informal
introduction to this formalism, which we use throughout this article. See [38] for a more
systematic discussion.

We begin with a bit of lattice geometry. Consider a d-dimensional cubic lattice Λd.
Such a lattice contains ‘r-cells’ c(r) for each r = 0, 1, . . . , d. Thus, the 0-cells are the
sites s, the 1-cells the links `, the 2-cells the plaquettes p, the 3-cells the cubes c, etc.,
and everything is oriented. For example, for a link ` = (x; µ̂), the oppositely oriented
link is given by −` ≡ (x + µ̂;−µ̂), and these are to be viewed as distinct objects despite
corresponding to the same unoriented edge.7 By convention, whenever we write a sum or
product over r-cells, we do not double count r-cells that only differ by orientation.

The ‘boundary operator’ ∂ takes an r-cell into the (oriented) sum of the (r−1)-cells that
constitute its boundary. For example, the boundary operator on a plaquette p = (x; µ̂, ν̂)
yields

∂(x; µ̂, ν̂) = (x; µ̂) + (x+ µ̂; ν̂)− (x+ ν̂; µ̂)− (x; ν̂). (A.1)

Importantly, the boundary operator is nilpotent, ∂2 = 0. By a slight abuse of notation, we
write

c(r−1) ⊂ ∂c(r) (A.2)

if the r-cell c(r) contains in its boundary the (r−1)-cell c(r−1). We thus have (tautologically)

∂c(r) =
∑

c(r−1)⊂∂c(r)

c(r−1). (A.3)

7In the case of sites, an opportunity for confusion may arise. In this notation, the sites s and −s
correspond to the same point x, say, but are equipped with opposite orientations.

– 21 –



J
H
E
P
0
3
(
2
0
2
1
)
2
3
8

l p

p

p

p

2

4

3

1

Figure 2. Coboundary operator on a link in a 3d lattice: δ` = p1 + p2 + p3 + p4.

We also have a kind of dual to the boundary operator, the ‘coboundary operator’ δ.
It takes an r-cell into the sum of the (r + 1)-cells that each contains c(r) in its boundary,

δc(r) =
∑

∂c(r+1)⊃c(r)

c(r+1). (A.4)

For example, for a link ` = (x; 1̂) in a three-dimensional lattice, we have

δ(x; 1̂) = (x; 1̂, 3̂) + (x; 1̂, 2̂) + (x− 3̂; 3̂, 1̂) + (x− 2̂; 2̂, 1̂) (A.5)

(see figure 2). It is easy to show that δ2 = 0.
There is another lattice Λ̃d, the ‘dual lattice’, that is naturally associated with the

primary lattice Λd. The points of Λ̃d are given by x̃ = x+ 1
2(1̂ + · · ·+ d̂), with x any point

of Λd. These lattices are connected by an operator ∗, which takes r-cells in the primary
lattice into (d − r)-cells in the dual lattice and vice versa; it is defined as follows: for an
r-cell c(r) in the primary lattice, ∗c(r) is the unique (d − r)-cell in the dual lattice such
that c(r) and ∗c(r) intersect transversally, and such that the orientation of the ordered pair
(c(r), ∗c(r)) is positive. For example, for a plaquette p = (x; 1̂, 2̂) in a 3d lattice Λ3, we have
∗p = (x̃− 3̂; 3̂) (see figure 1). On r-cells, we have

∗2 = (−)r(d−r). (A.6)

We can now define differential forms on the lattice. An r-form ω is simply a gadget
that assigns a value ωc(r) to each r-cell c(r), and it extends as a linear map. To compare
with more conventional lattice field theory notation, consider for example a 1-form θ. We
may write its value on a link ` = (x; µ̂) as

θ` ≡ θµ(x). (A.7)

We define the ‘exterior differential’ operator d to take r-forms to (r + 1)-forms according
to the formula

(dω)c(r+1) ≡
∑

c(r)⊂∂c(r+1)

ωc(r) = ω∂c(r+1) . (A.8)
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To again compare with more conventional notation, we note that the differential dθ of the
1-form θ on a plaquette p = (x; µ̂, ν̂) is given by

(dθ)p = θµ(x) + θν(x+ µ̂)− θµ(x+ ν̂)− θν(x). (A.9)

We also define the dual d† of the exterior differential, the ‘codifferential’, which takes
r-forms to (r − 1)-forms, according to the formula

(d†ω)c(r−1) ≡
∑

c(r)⊂δc(r−1)

ωc(r) = ωδc(r−1) . (A.10)

It is easy to see that d2 = (d†)2 = 0. The star operator ∗ takes r-forms on the primary
lattice to (d− r)-forms on the dual lattice, and vice versa, according to the formulae

(∗ω)c̃(d−r) = ω∗c̃(d−r) , (∗ω̃)c(d−r) = ω̃∗c(d−r) . (A.11)

It is easy to show that on r-forms, we have

∗2 = (−)r(d−r). (A.12)

One of the more useful features of lattice form notation is that it enables us to ‘integrate
by parts’ mindlessly. That is, we have the formula

∑
c(r)

(dω)c(r)τc(r) =
∑
c(r−1)

ωc(r−1)(d†τ)c(r−1) . (A.13)

Actually, it is this partial integration formula that justifies calling d† the dual of d. To
illustrate the utility of the notation, let us prove (A.13):

L.H.S. ≡
∑
c(r)

∑
c(r−1)⊂∂c(r)

ωc(r−1)τc(r) =
∑
c(r−1)

∑
c(r)⊂δc(r−1)

ωc(r−1)τc(r) ≡ R.H.S. (A.14)

Finally, let us discuss the lattice analog of the ‘Hodge decomposition’. As in the
continuum, we define the Laplacian on forms by ∆ = dd† + d†d. In particular, on 0-forms
ϕ, we have

(∆ϕ)(x) =
d∑

µ=1
[2ϕ(x)− ϕ(x+ µ̂)− ϕ(x− µ̂)]. (A.15)

Forms annihilated by ∆ are called ‘harmonic’. It is simple to show that harmonic forms are
annihilated by both d and d†. The Hodge decomposition is the statement that any r-form
ω can be written uniquely as

ω = dα+ d†β + η, (A.16)

where η is harmonic. We will not prove this here.
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A.2 3d compact QED on the lattice

Here we discuss the dual representation of 3d U(1) lattice gauge theory following the presen-
tation of ref. [41] (see also [39, 40]). We also give some attention to global issues involving
the spacetime topology. We note that, although we restrict our presentation to three di-
mensions, many techniques used here are also applicable in four-dimensional spacetime
lattices, where interesting phase diagrams have been expected through electromagnetic
dualities [64–68].

We start from the Wilson formulation of the U(1) lattice gauge theory in d = 3
spacetime dimensions:

exp(−S) = exp
(
β
∑
p

(cos fp − 1)
)

=
∏
p

eβ(cos fp−1). (A.17)

Since the action is periodic in fp, we can expand exp(−S) as a Fourier series:

eβ(cos fp−1) =
∑
kp∈Z

eikpfpIkp(β)e−β , (A.18)

where Ikp(β) is the modified Bessel function of the first kind of order kp. This representation
is useful because it allows us to integrate over the link fields in the Abelianized theory in
a straightforward manner.

The partition function can be rewritten as

Z =
∫ 2π

0
[da`] exp(−S) =

∑
{kp∈Z}

∫ 2π

0
[da`] exp

(
i
∑
p

kpfp

)∏
p

Ikp(β)e−β . (A.19)

From this expression, in the weak coupling limit β � 1, we can obtain the Villain form.
Using the asymptotic expansion, e−βIkp(β) ∼ 1√

2πβ
e−

1
2β k

2
p , we can rewrite the summation

over kp by Poisson summation formula,
∑
kp∈Z

eikpfp 1√
2πβ

e
− 1

2β k
2
p =

∑
np∈Z

e−
β
2 (fp−2πnp)2 (A.20)

Here, np can be viewed as the flux passing through the corresponding surface p. The total
flux passing through the surface of the cube c centered at x̃ is∮

∂c
n = q(x̃), (A.21)

which is just the magnetic charge located at x̃. In the following, we concentrate only on
this weak-coupling limit that is exactly equivalent to the Villain formulation.

Dual formulation, from Λ3 to Λ̃3. In order to obtain the dual representation of
the Villain form, we perform the exact integration over a` before the summation over
kp in (A.19). As ∑p kp(da)p = ∑

`(d†k)`a`, the exact integration over a` enforces the
constraint,

(d†k)` = 0. (A.22)
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As a result, the partition function can be written as a constrained sum over the kp:

Z =
∑
{kp∈Z}

{∏
`

δ(d†k)`,0

}{∏
p

e−
1

2β k
2
p

}
. (A.23)

To construct the dual formulation of the theory, it is useful to turn the constrained sum
into an unconstrained sum. To this end, we consider the decomposition of (∗k)˜̀ as

(∗k)˜̀ = (dm)˜̀ + ã˜̀, (A.24)

where ms̃ is an integer-valued scalar field, and ã˜̀ is an integer-valued link field on the dual
lattice. Since kp satisfies the constraint (A.22), ã can be regarded as a flat connection. In
computing the partition function, we may make the replacement, kp → (∗dm)p + (∗ã)p,
and the constrained sum over {kp ∈ Z} becomes an unconstrained sum over {ms̃ ∈ Z} and
[ã] ∈ H1(Λ̃,Z). As a result, the partition function in the weak-coupling limit takes the
simple form,

Z =
∑

[ã]∈H1

∑
{ms̃∈Z}

exp

− 1
2β
∑

˜̀
(dm+ ã)2

˜̀

 , (A.25)

after using the duality relation (A.24). This model is sometimes called the Z-ferromagnet
when ã = 0.

Two more steps are needed to convert Z-ferromagnet representation to a continuum
QFT. First, convert the sum into an integration over a continuous variable. Using the
Poisson resummation identity repeatedly through the lattice Λ̃3,∑

m(x̃)∈Z
δ(σ(x̃)− 2πm(x̃)) =

∑
q(x̃)∈Z

ei q(x̃)σ(x̃), (A.26)

we immediately obtain the partition function as an infinite dimensional integral,

Z =
∑

[ã]∈H1

∫
[dσ(x̃)]

∑
{q(x̃)}

exp
(
− 1

8π2β

∑
x̃

(∂−µ σ(x̃) + 2πãµ(x̃))2 + i
∑
x̃

q(x̃)σ(x̃)
)
,

(A.27)
where q(x̃) ∈ Z has an interpretation as the magnetic charge of a monopole-instanton at
position x̃ ∈ Λ̃3. The kinetic term of this expression clarifies that ã plays the role of the
gauge field for the discrete shift symmetry σ 7→ σ + 2π, and thus the dual photon field σ
is 2π-periodic scalar. Having made this point, for simplicity of notation, we shall neglect
the effect of nontrivial topology from now on, and set ã = 0.

The Gaussian integration over σ can be done exactly to produce the Coulomb gas
representation for the magnetic monopoles:

Z =
∑
{q(x̃)}

exp

 1
2β
∑
x̃,x̃′

(−4π2β2)q(x̃)v(x̃− x̃′)q(x̃′)

, (A.28)

where v(x̃ − x̃′) is the three dimensional Coulomb interaction formulated on the lattice
(lattice Green function), formally given by v(x̃) = ∆−1. Let us split this Green function
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into two parts by adding and subtracting (∆ +M2
PV)−1,

∆−1 = ∆−1 − (∆ +M2
PV)−1 + (∆ +M2

PV)−1

= ∆−1(1 + ∆/M2
PV)−1 + (∆ +M2

PV)−1

= uMPV(x̃) + wMPV(x̃), (A.29)

where uMPV(x̃) is the Green function of the Pauli-Villars (PV) regulated Laplacian ∆MPV ≡
∆(1 + ∆/M2

PV), and wMPV(x̃) is the Yukawa Green function.
With this decomposition, we reintroduce the scalar field σ for the PV regulated prop-

agator uMPV(x̃), and then we obtain the partition function as

Z =
∫

[dσ(x̃)]
∑
{q(x̃)}

e
∑

x̃

(
− 1

8π2β
σ(x̃)∆MPVσ(x̃)+i q(x̃)σ(x̃)

)
−2π2β

∑
x̃,x̃′ q(x̃)wMPV (x̃−x̃′)q(x̃′)

.

(A.30)
Since wMPV(x̃ − x̃′) is a massive propagator with the PV mass MPV, it is exponentially
damping if |x̃ − x̃′| & 1/MPV. Therefore, we can take wMPV(x̃ − x̃′) = wMPV(0)δx̃−x̃′,0,
where wMPV(0) = v(0) − O(1/MPV) ≈ 0.253 − O(1/MPV). In this limit, the partition
function simplifies into

Z =
∫

[dσ(x̃)]e−
1

8π2β

∑
x̃
σ(x̃)∆MPVσ(x̃) ∑

{q(x̃)}

∏
x̃

e−2π2βv(0)(q(x̃))2+iq(x̃)σ(x̃), (A.31)

In (A.31), 2π2βv(0)(q(x̃))2 has an interpretation as the action of the configurations with
magnetic charge q(x̃). Let us denote the minimal action by S0 = 2π2βv(0).

We now perform the dilute-gas approximation as the leading-order semiclassical ap-
proximation. We only take into account the minimal effect of the monopole-instantons
corresponding to q(x̃) = ±1 seriously, and regard higher-order effects in e−S0 as unimpor-
tant. As a result, we may approximate the sum over q(x̃) by∑

q(x̃)
e−S0q(x̃)2+iq(x̃)σ(x̃) = exp

(
2e−S0 cos(σ(x̃))

)
+O(e−2S0). (A.32)

Substituting this expression into (A.31), we obtain the local Lagrangian for the dual photon
field:

Z =
∫

[dσ(x̃)] exp
(
− 1

8π2β

∑
x̃

σ(x̃)∆MPVσ(x̃) + 2e−S0
∑
x̃

cos(σ(x̃))
)
. (A.33)

B Wilson to Villain at weak coupling

As mentioned in section 2.1, semi-Abelian U(1)N−1 gauge theory may also be given in the
Wilson formulation by taking the action

SW = β
∑
p

N∑
i=1

(1− cos f ip)− i
∑
`

N∑
i=1

v`a
i
`, (B.1)
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where the ai` ∈ [0, 2π] are U(1) gauge fields, the f ip = (dai)p are the corresponding field
strengths, and v` ∈ Z is a Lagrange multiplier. This expression has manifest SN global
symmetry. The purpose of this appendix is to demonstrate the weak-coupling equivalence
of this formulation and the Villain one (2.1).

The first step is to use (A.18) for cos(f ip) for i = 1, . . . , N with the weak-coupling
approximation, and then to apply (A.20) for i = 1, . . . , N − 1. We obtain a new action

S1 = β

2
∑
p

N−1∑
i=1

(f ip + 2πnip)2 − i
∑
`

N−1∑
i=1

v`a
i
` + 1

2β
∑
p

k2
p − i

∑
p

kpf
N
p − i

∑
`

vla
N
` , (B.2)

where we have introduced integer-valued plaquette-fields nip (i = 1, . . . , N −1) and kp, over
which we must perform the summation in the partition function. Then exact integration
over aN` gives the constraint

v = −d†k, (B.3)

and then the action becomes

S2 = β

2
∑
p

N−1∑
i=1

(f ip + 2πnip)2 + i
∑
`

N−1∑
i=1

(d†k)`ai` + 1
2β
∑
p

k2
p

= β

2
∑
p

N−1∑
i=1

(f ip + 2πnip)2 + i
∑
`

N−1∑
i=1

kpf
i
p + 1

2β
∑
p

k2
p. (B.4)

Applying the Poisson summation formula in terms of kp, we get

S3 = β

2
∑
p

N−1∑
i=1

(f ip + 2πnip)2 + β

2
∑
p

(
N−1∑
i=1

f ip + 2πnp
)2

, (B.5)

where a new integer-valued plaquette-field np has taken the place of kp.
For convenience, let us rewrite this last action in the form

S3 = β

2

N−1∑
i=1

(f ip + bip)2 + β

2

(
N−1∑
i=1

f ip + bp

)2

(B.6)

by defining bip ≡ 2πnip, bp ≡ 2πnp. Completing the square then yields

S3 = β

2
∑
p

N−1∑
i,j=1

Dij(f ip + bip + wp/N)(f jp + bjp + wp/N) + β

2
∑
p

w2
p, (B.7)

where we have defined

wp ≡ bp −
N−1∑
i=1

bip , Dij ≡ 1 + δi,j . (B.8)

At this point, we realize that if we are only interested in the weak coupling regime, then
since the fluctuations in wp are gapped and discrete, we are entitled to set wp = 0. Making
this step leaves us with the action

S4 = β

2
∑
p

N−1∑
i,j=1

Dij(f ip + bip)(f jp + bjp). (B.9)
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Now we note that the unimodular matrix

M ij = δi,j − δi+1,j (B.10)

satisfies
M tDM = C, (B.11)

where C is the Cartan matrix of SU(N):

Cij = αi ·αj = 2δi,j − δi,j+1 − δi+1,j . (B.12)

It follows that we can make the field redefinitions

ai` →
N−1∑
j=1

M ijAj` , bip →
N−1∑
j=1

M ijBj
p (B.13)

with Ai` ∈ [0, 2π], Bi
p ∈ 2πZ, by the unimodularity of M . This yields

S = β

2
∑
p

N−1∑
i,j=1

Cij(F ip +Bi
p)(F jp +Bj

p) (B.14)

which is equivalent to (2.1).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] A.M. Polyakov, Compact gauge fields and the infrared catastrophe, Phys. Lett. B 59 (1975)
82 [INSPIRE].

[2] A. Polyakov, Gauge fields and strings (mathematical reports), Contemp. Concepts Phys. 3
(1987) 1.

[3] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and
confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19
[Erratum ibid. 430 (1994) 485] [hep-th/9407087] [INSPIRE].

[4] M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: confinement and large N
volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [INSPIRE].

[5] M. Ünsal, Magnetic bion condensation: a new mechanism of confinement and mass gap in
four dimensions, Phys. Rev. D 80 (2009) 065001 [arXiv:0709.3269] [INSPIRE].

[6] M.R. Douglas and S.H. Shenker, Dynamics of SU(N) supersymmetric gauge theory, Nucl.
Phys. B 447 (1995) 271 [hep-th/9503163] [INSPIRE].

[7] P.C. Argyres and A.E. Faraggi, The vacuum structure and spectrum of N = 2
supersymmetric SU(N) gauge theory, Phys. Rev. Lett. 74 (1995) 3931 [hep-th/9411057]
[INSPIRE].

[8] A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, On the monodromies of N = 2
supersymmetric Yang-Mills theory, in Joint U.S.-Polish workshop on physics from Planck
scale to electro-weak scale (SUSY 94), (1994) [hep-th/9412158] [INSPIRE].

– 28 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(75)90162-8
https://doi.org/10.1016/0370-2693(75)90162-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB59%2C82%22
https://doi.org/10.1016/0550-3213(94)90124-4
https://arxiv.org/abs/hep-th/9407087
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9407087
https://doi.org/10.1103/PhysRevD.78.065035
https://arxiv.org/abs/0803.0344
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.0344
https://doi.org/10.1103/PhysRevD.80.065001
https://arxiv.org/abs/0709.3269
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.3269
https://doi.org/10.1016/0550-3213(95)00258-T
https://doi.org/10.1016/0550-3213(95)00258-T
https://arxiv.org/abs/hep-th/9503163
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9503163
https://doi.org/10.1103/PhysRevLett.74.3931
https://arxiv.org/abs/hep-th/9411057
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9411057
https://arxiv.org/abs/hep-th/9412158
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9412158


J
H
E
P
0
3
(
2
0
2
1
)
2
3
8

[9] E. Poppitz and M.E. Shalchian T., String tensions in deformed Yang-Mills theory, JHEP 01
(2018) 029 [arXiv:1708.08821] [INSPIRE].

[10] J. Ambjorn, P. Olesen and C. Peterson, Stochastic confinement and dimensional reduction.
2. Three-dimensional SU(2) lattice gauge theory, Nucl. Phys. B 240 (1984) 533 [INSPIRE].

[11] G.I. Poulis and H.D. Trottier, ‘Gluelump’ spectrum and adjoint source potential in lattice
QCD in three-dimensions, Phys. Lett. B 400 (1997) 358 [hep-lat/9504015] [INSPIRE].

[12] G.S. Bali, Casimir scaling of SU(3) static potentials, Phys. Rev. D 62 (2000) 114503
[hep-lat/0006022] [INSPIRE].

[13] O. Philipsen and H. Wittig, String breaking in SU(2) Yang-Mills theory with adjoint sources,
Phys. Lett. B 451 (1999) 146 [hep-lat/9902003] [INSPIRE].

[14] P.W. Stephenson, Breaking of the adjoint string in (2 + 1)-dimensions, Nucl. Phys. B 550
(1999) 427 [hep-lat/9902002] [INSPIRE].

[15] P. de Forcrand and O. Philipsen, Adjoint string breaking in 4D SU(2) Yang-Mills theory,
Phys. Lett. B 475 (2000) 280 [hep-lat/9912050] [INSPIRE].

[16] J. Greensite, The confinement problem in lattice gauge theory, Prog. Part. Nucl. Phys. 51
(2003) 1 [hep-lat/0301023] [INSPIRE].

[17] B.H. Wellegehausen, A. Wipf and C. Wozar, Casimir scaling and string breaking in G2
gluodynamics, Phys. Rev. D 83 (2011) 016001 [arXiv:1006.2305] [INSPIRE].

[18] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP
02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

[19] E. Sharpe, Notes on generalized global symmetries in QFT, Fortsch. Phys. 63 (2015) 659
[arXiv:1508.04770] [INSPIRE].

[20] A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories,
arXiv:1309.4721 [INSPIRE].

[21] C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-group global symmetries,
JHEP 02 (2019) 184 [arXiv:1802.04790] [INSPIRE].

[22] F. Benini, C. Córdova and P.-S. Hsin, On 2-group global symmetries and their anomalies,
JHEP 03 (2019) 118 [arXiv:1803.09336] [INSPIRE].

[23] T. Misumi, Y. Tanizaki and M. Ünsal, Fractional θ angle, ’t Hooft anomaly, and quantum
instantons in charge-q multi-flavor Schwinger model, JHEP 07 (2019) 018
[arXiv:1905.05781] [INSPIRE].

[24] Y. Tanizaki and M. Ünsal, Modified instanton sum in QCD and higher-groups, JHEP 03
(2020) 123 [arXiv:1912.01033] [INSPIRE].

[25] Y. Hidaka, M. Nitta and R. Yokokura, Higher-form symmetries and 3-group in axion
electrodynamics, Phys. Lett. B 808 (2020) 135672 [arXiv:2006.12532].

[26] Y. Hidaka, M. Nitta and R. Yokokura, Global 3-group symmetry and ’t Hooft anomalies in
axion electrodynamics, JHEP 01 (2021) 173 [arXiv:2009.14368] [INSPIRE].

[27] L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions,
JHEP 03 (2018) 189 [arXiv:1704.02330] [INSPIRE].

[28] M. Buican and A. Gromov, Anyonic chains, topological defects, and conformal field theory,
Commun. Math. Phys. 356 (2017) 1017 [arXiv:1701.02800] [INSPIRE].

[29] D.S. Freed and C. Teleman, Topological dualities in the Ising model, arXiv:1806.00008
[INSPIRE].

– 29 –

https://doi.org/10.1007/JHEP01(2018)029
https://doi.org/10.1007/JHEP01(2018)029
https://arxiv.org/abs/1708.08821
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.08821
https://doi.org/10.1016/0550-3213(84)90242-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB240%2C533%22
https://doi.org/10.1016/S0370-2693(97)88182-8
https://arxiv.org/abs/hep-lat/9504015
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9504015
https://doi.org/10.1103/PhysRevD.62.114503
https://arxiv.org/abs/hep-lat/0006022
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0006022
https://doi.org/10.1016/S0370-2693(99)00183-5
https://arxiv.org/abs/hep-lat/9902003
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9902003
https://doi.org/10.1016/S0550-3213(99)00210-2
https://doi.org/10.1016/S0550-3213(99)00210-2
https://arxiv.org/abs/hep-lat/9902002
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9902002
https://doi.org/10.1016/S0370-2693(00)00117-9
https://arxiv.org/abs/hep-lat/9912050
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9912050
https://doi.org/10.1016/S0146-6410(03)90012-3
https://doi.org/10.1016/S0146-6410(03)90012-3
https://arxiv.org/abs/hep-lat/0301023
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0301023
https://doi.org/10.1103/PhysRevD.83.016001
https://arxiv.org/abs/1006.2305
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.2305
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.5148
https://doi.org/10.1002/prop.201500048
https://arxiv.org/abs/1508.04770
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.04770
https://arxiv.org/abs/1309.4721
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.4721
https://doi.org/10.1007/JHEP02(2019)184
https://arxiv.org/abs/1802.04790
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.04790
https://doi.org/10.1007/JHEP03(2019)118
https://arxiv.org/abs/1803.09336
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.09336
https://doi.org/10.1007/JHEP07(2019)018
https://arxiv.org/abs/1905.05781
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.05781
https://doi.org/10.1007/JHEP03(2020)123
https://doi.org/10.1007/JHEP03(2020)123
https://arxiv.org/abs/1912.01033
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.01033
https://doi.org/10.1016/j.physletb.2020.135672
https://arxiv.org/abs/2006.12532
https://doi.org/10.1007/JHEP01(2021)173
https://arxiv.org/abs/2009.14368
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.14368
https://doi.org/10.1007/JHEP03(2018)189
https://arxiv.org/abs/1704.02330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.02330
https://doi.org/10.1007/s00220-017-2995-6
https://arxiv.org/abs/1701.02800
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.02800
https://arxiv.org/abs/1806.00008
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.00008


J
H
E
P
0
3
(
2
0
2
1
)
2
3
8

[30] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Topological defect lines and
renormalization group flows in two dimensions, JHEP 01 (2019) 026 [arXiv:1802.04445]
[INSPIRE].

[31] R. Thorngren and Y. Wang, Fusion category symmetry I: anomaly in-flow and gapped
phases, arXiv:1912.02817 [INSPIRE].

[32] W. Ji and X.-G. Wen, Categorical symmetry and noninvertible anomaly in
symmetry-breaking and topological phase transitions, Phys. Rev. Res. 2 (2020) 033417
[arXiv:1912.13492] [INSPIRE].

[33] T. Rudelius and S.-H. Shao, Topological operators and completeness of spectrum in discrete
gauge theories, JHEP 12 (2020) 172 [arXiv:2006.10052] [INSPIRE].

[34] Z. Komargodski, K. Ohmori, K. Roumpedakis and S. Seifnashri, Symmetries and strings of
adjoint QCD2, arXiv:2008.07567 [INSPIRE].

[35] D. Aasen, P. Fendley and R.S.K. Mong, Topological defects on the lattice: dualities and
degeneracies, arXiv:2008.08598 [INSPIRE].

[36] K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].
[37] J. Villain, Theory of one- and two-dimensional magnets with an easy magnetization plane.

II. The planar, classical, two-dimensional magnet, J. Phys. France 36 (1975) 581.
[38] T. Sulejmanpasic and C. Gattringer, Abelian gauge theories on the lattice: θ-terms and

compact gauge theory with(out) monopoles, Nucl. Phys. B 943 (2019) 114616
[arXiv:1901.02637].

[39] T. Banks, R. Myerson and J.B. Kogut, Phase transitions in Abelian lattice gauge theories,
Nucl. Phys. B 129 (1977) 493 [INSPIRE].

[40] R. Savit, Topological excitations in U(1) invariant theories, Phys. Rev. Lett. 39 (1977) 55
[INSPIRE].

[41] M. Gopfert and G. Mack, Proof of confinement of static quarks in three-dimensional U(1)
lattice gauge theory for all values of the coupling constant, Commun. Math. Phys. 82 (1981)
545 [INSPIRE].

[42] A. Ukawa, P. Windey and A.H. Guth, Dual variables for lattice gauge theories and the phase
structure of Z(N) systems, Phys. Rev. D 21 (1980) 1013 [INSPIRE].

[43] N. Dorey, An elliptic superpotential for softly broken N = 4 supersymmetric Yang-Mills
theory, JHEP 07 (1999) 021 [hep-th/9906011] [INSPIRE].

[44] E.B. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz.
24 (1976) 861] [INSPIRE].

[45] M.K. Prasad and C.M. Sommerfield, An exact classical solution for the ’t Hooft monopole
and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].

[46] M.M. Anber, E. Poppitz and T. Sulejmanpasic, Strings from domain walls in
supersymmetric Yang-Mills theory and adjoint QCD, Phys. Rev. D 92 (2015) 021701
[arXiv:1501.06773] [INSPIRE].

[47] G.Y. Cho, J.C.Y. Teo and S. Ryu, Conflicting symmetries in topologically ordered surface
states of three-dimensional bosonic symmetry protected topological phases, Phys. Rev. B 89
(2014) 235103 [arXiv:1403.2018] [INSPIRE].

[48] A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in three dimensions and
group cohomology, Phys. Rev. Lett. 112 (2014) 231602 [arXiv:1403.0617] [INSPIRE].

– 30 –

https://doi.org/10.1007/JHEP01(2019)026
https://arxiv.org/abs/1802.04445
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.04445
https://arxiv.org/abs/1912.02817
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02817
https://doi.org/10.1103/PhysRevResearch.2.033417
https://arxiv.org/abs/1912.13492
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.13492
https://doi.org/10.1007/JHEP12(2020)172
https://arxiv.org/abs/2006.10052
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.10052
https://arxiv.org/abs/2008.07567
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.07567
https://arxiv.org/abs/2008.08598
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.08598
https://doi.org/10.1103/PhysRevD.10.2445
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD10%2C2445%22
https://doi.org/10.1051/jphys:01975003606058100
https://doi.org/10.1016/j.nuclphysb.2019.114616
https://arxiv.org/abs/1901.02637
https://doi.org/10.1016/0550-3213(77)90129-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB129%2C493%22
https://doi.org/10.1103/PhysRevLett.39.55
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C39%2C55%22
https://doi.org/10.1007/BF01961240
https://doi.org/10.1007/BF01961240
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C82%2C545%22
https://doi.org/10.1103/PhysRevD.21.1013
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD21%2C1013%22
https://doi.org/10.1088/1126-6708/1999/07/021
https://arxiv.org/abs/hep-th/9906011
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9906011
https://inspirehep.net/search?p=find+J%20%22Sov.J.Nucl.Phys.%2C24%2C449%22
https://doi.org/10.1103/PhysRevLett.35.760
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C35%2C760%22
https://doi.org/10.1103/PhysRevD.92.021701
https://arxiv.org/abs/1501.06773
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.06773
https://doi.org/10.1103/PhysRevB.89.235103
https://doi.org/10.1103/PhysRevB.89.235103
https://arxiv.org/abs/1403.2018
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.2018
https://doi.org/10.1103/PhysRevLett.112.231602
https://arxiv.org/abs/1403.0617
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.0617


J
H
E
P
0
3
(
2
0
2
1
)
2
3
8

[49] A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and
group cohomology, arXiv:1404.3230 [INSPIRE].

[50] R. Dijkgraaf and E. Witten, Mean field theory, topological field theory, and multimatrix
models, Nucl. Phys. B 342 (1990) 486 [INSPIRE].

[51] D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal, and
temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

[52] Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifundamental gauge theories at finite
topological angles, JHEP 06 (2017) 102 [arXiv:1705.01949] [INSPIRE].

[53] Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalies, and deconfinement in
quantum antiferromagnets, Phys. Rev. B 97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].

[54] H. Shimizu and K. Yonekura, Anomaly constraints on deconfinement and chiral phase
transition, Phys. Rev. D 97 (2018) 105011 [arXiv:1706.06104] [INSPIRE].

[55] D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD4, walls, and
dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].

[56] Y. Tanizaki, T. Misumi and N. Sakai, Circle compactification and ’t Hooft anomaly, JHEP
12 (2017) 056 [arXiv:1710.08923] [INSPIRE].

[57] Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram
of massless ZN -QCD, Phys. Rev. D 97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].

[58] Y. Tanizaki, Anomaly constraint on massless QCD and the role of Skyrmions in chiral
symmetry breaking, JHEP 08 (2018) 171 [arXiv:1807.07666] [INSPIRE].

[59] Z. Komargodski, A. Sharon, R. Thorngren and X. Zhou, Comments on Abelian Higgs models
and persistent order, SciPost Phys. 6 (2019) 003 [arXiv:1705.04786] [INSPIRE].

[60] Y. Kikuchi and Y. Tanizaki, Global inconsistency, ’t Hooft anomaly, and level crossing in
quantum mechanics, PTEP 2017 (2017) 113B05 [arXiv:1708.01962] [INSPIRE].

[61] Y. Tanizaki and T. Sulejmanpasic, Anomaly and global inconsistency matching: θ-angles,
SU(3)/U(1)2 nonlinear sigma model, SU(3) chains and its generalizations, Phys. Rev. B 98
(2018) 115126 [arXiv:1805.11423] [INSPIRE].

[62] A. Karasik and Z. Komargodski, The bi-fundamental gauge theory in 3 + 1 dimensions: the
vacuum structure and a cascade, JHEP 05 (2019) 144 [arXiv:1904.09551] [INSPIRE].

[63] C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the space of coupling
constants and their dynamical applications I, SciPost Phys. 8 (2020) 001
[arXiv:1905.09315] [INSPIRE].

[64] M. Creutz, L. Jacobs and C. Rebbi, Experiments with a gauge invariant Ising system, Phys.
Rev. Lett. 42 (1979) 1390 [INSPIRE].

[65] M. Creutz, L. Jacobs and C. Rebbi, Monte Carlo study of Abelian lattice gauge theories,
Phys. Rev. D 20 (1979) 1915 [INSPIRE].

[66] J.L. Cardy and E. Rabinovici, Phase structure of Zp models in the presence of a θ parameter,
Nucl. Phys. B 205 (1982) 1 [INSPIRE].

[67] J.L. Cardy, Duality and the θ parameter in Abelian lattice models, Nucl. Phys. B 205 (1982)
17 [INSPIRE].

[68] M. Honda and Y. Tanizaki, Topological aspects of 4D Abelian lattice gauge theories with the
θ parameter, JHEP 12 (2020) 154 [arXiv:2009.10183] [INSPIRE].

– 31 –

https://arxiv.org/abs/1404.3230
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.3230
https://doi.org/10.1016/0550-3213(90)90324-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB342%2C486%22
https://doi.org/10.1007/JHEP05(2017)091
https://arxiv.org/abs/1703.00501
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.00501
https://doi.org/10.1007/JHEP06(2017)102
https://arxiv.org/abs/1705.01949
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.01949
https://doi.org/10.1103/PhysRevB.97.054418
https://arxiv.org/abs/1706.05731
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.05731
https://doi.org/10.1103/PhysRevD.97.105011
https://arxiv.org/abs/1706.06104
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.06104
https://doi.org/10.1007/JHEP01(2018)110
https://arxiv.org/abs/1708.06806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.06806
https://doi.org/10.1007/JHEP12(2017)056
https://doi.org/10.1007/JHEP12(2017)056
https://arxiv.org/abs/1710.08923
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.08923
https://doi.org/10.1103/PhysRevD.97.054012
https://arxiv.org/abs/1711.10487
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.10487
https://doi.org/10.1007/JHEP08(2018)171
https://arxiv.org/abs/1807.07666
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.07666
https://doi.org/10.21468/SciPostPhys.6.1.003
https://arxiv.org/abs/1705.04786
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.04786
https://doi.org/10.1093/ptep/ptx148
https://arxiv.org/abs/1708.01962
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.01962
https://doi.org/10.1103/PhysRevB.98.115126
https://doi.org/10.1103/PhysRevB.98.115126
https://arxiv.org/abs/1805.11423
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.11423
https://doi.org/10.1007/JHEP05(2019)144
https://arxiv.org/abs/1904.09551
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.09551
https://doi.org/10.21468/SciPostPhys.8.1.001
https://arxiv.org/abs/1905.09315
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.09315
https://doi.org/10.1103/PhysRevLett.42.1390
https://doi.org/10.1103/PhysRevLett.42.1390
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C42%2C1390%22
https://doi.org/10.1103/PhysRevD.20.1915
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD20%2C1915%22
https://doi.org/10.1016/0550-3213(82)90463-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB205%2C1%22
https://doi.org/10.1016/0550-3213(82)90464-3
https://doi.org/10.1016/0550-3213(82)90464-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB205%2C17%22
https://doi.org/10.1007/JHEP12(2020)154
https://arxiv.org/abs/2009.10183
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.10183

	Introduction
	3d mathrmU(1)**(N-1) lattice gauge theory with mathrmS(N) global symmetry
	Description of the mathrmU(1)**(N-1) lattice gauge theory
	Villain formulation
	Wilson formulation

	Mass gap and spectrum
	Multi-component Coulomb gas representation of the Villain form
	Long-distance effective theory

	Wilson loops and string tensions
	Explicit evaluation of string tensions


	Semi-Abelian theory
	Gauging of the mathrmS(N) global symmetry
	mathbbZ(N) center symmetry
	String tensions beyond N-ality, and noninvertible topological lines
	Effect of dynamical electric particles

	Summary and discussions
	Review of Abelian duality on the lattice
	Differential forms on the lattice
	3d compact QED on the lattice

	Wilson to Villain at weak coupling

