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Abstract
Semi-active control of buildings and structures with
magnetorheological (MR) dampers for earthquake hazard mitigation
represents a relatively new research area. In this paper, the Bingham model
of MR damper is introduced, and the formula relating the yielding shear
stress and the control current of MR dampers is put forward that matches the
experimental data. Then an on-line real-time control method for semi-active
control of structures with MR dampers is proposed. This method considers
the time-delay problem of semi-active control, which can solve distortion of
the responses of structures. Finally, through a numerical example of a
three-storey reinforced concrete structure, a comparison is made between
controlled structure and uncontrolled structure. The calculated results show
that MR dampers can reduce the seismic responses of structures effectively.
Moreover, the on-line real-time control method is compared with the
traditional elastoplastic time-history analysis method, and the efficacy of the
on-line real-time control method is demonstrated. In addition, the
Levenberg–Marquardt algorithm is used to train the on-line control neural
network, and studies show that the algorithm has a very fast convergence
rate.

1. Introduction

Seismic design of structures is an important and tough job.
The traditional approach to seismic hazard mitigation is to
design structures with sufficient strength capacity and the
ability to deform in a ductile manner. Recently, newer
concepts of structural control, including both passive and
active control systems, have been growing in acceptance
and may preclude the necessity of allowing for inelastic
deformations in the structural system. Passive control
devices, such as viscoelastic damper, viscous fluid damper,
friction damper and metallic damper can partially absorb
structural vibration energy and reduce seismic responses of
structures [1]. These passive devices are relatively simple and
easily implemented. However, the effectiveness of passive
control is limited due to the passive nature of devices and
3 Author to whom any correspondence should be addressed.

the random nature of earthquake events. Active control
devices, including active mass damper and active tendon
system, can be more effective in reducing the seismic structural
responses than passive control devices because feedback or
feedforward control systems are used [2]. However, the
complicated control system and the large power requirement
during a strong earthquake hamper their implementation in
practice. Therefore, a compromise between passive and active
control systems has been developed recently in the form of
semi-active control systems. Semi-active control systems
maintain the reliability of passive control systems while taking
advantage of the adjustable parameter characteristics of an
active control system [3]. Among semi-active control devices,
the magnetorheological (MR) damper is typical of a smart
damper.

Note that in active control or semi-active control, sampling
of the sensor data, transmission and calculation of signal and
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infliction of control force are time consuming procedures.
Moreover, control force is based on feedback from sensors that
measure the excitation and/or the responses of the structure [4].
Although the sensor data can be sampled at a very fast rate,
the control system must complete its computation and send
out the control signal to the damper before it can use the next
sample of the sensor data. Therefore, in closed-loop structural
control systems the output rate dictates the effective sampling
period, which, in most cases, is much slower than the input
sampling rate [5]. Since the control forces are calculated
according to the last responses of structures in the traditional
time-history analysis method, an inherent time-delay problem
lies in the traditional method. For the building structure, too
small a sampling time will lead to tremendous calculation,
especially in the elastoplastic analysis of structures. Generally,
the sampling time is chosen in the range of 0.001–0.1 s, which
is a larger time delay. Some studies have already shown
the importance of solving the time-delay problem in control
systems [5–8]. If time delay is not properly dealt with, it may
have adverse effects on the control actions. For instance, it may
cause structures to become unstable and more dangerous [5, 8].
Therefore an effective way to solve this problem is to find an
appropriate method, which can predict the future responses
of structures according to the responses and the acceleration
excitation inputs of previous epochs.

The neural network technique can be used for this
purpose. The main advantage of the neural network approach
is that identification of an unknown system and evaluation of
responses can be performed without building a mathematical
model of the system [8]. Many investigators have investigated
the use of a neural network technique for active and semi-
active control of structures, and significant progress has been
made. A backpropagation-through-time neural controller
(BTTNC) for active control of structure was developed by
Chen et al [9]. A new neural-network-based control algorithm
has been developed and tested in the computer simulation of
active control of a three-storey frame structure by Ghaboussi
et al [10]. A conventional feedforward controller and a
neurocontroller were designed to compensate for the adverse
effects of actuator dynamics and computational phase delay
by Nikzad et al [5]. Implementation of a neural network
for system identification and vibration suppression of a smart
structure was conducted by Yang [11]. An experimental study
of identification and control of structures using neural networks
was carried out by Bani-Hani et al [12]. Recently, a neuron-
control method was proposed for semi-active vibration control
of stay cables using MR dampers by Ni et al [13].

In this paper, the common mathematical model of MR
dampers (the Bingham model) is introduced, and a formula
relating the yielding shear stress and the control current of MR
dampers is put forward in agreement with the experimental
data. The equations of motion of a multi-storey frame structure
with smart damper brace systems are then established. The
on-line real-time control strategy of the smart structure with
MR dampers is proposed. A four-layer feedforward neural
network, trained on-line under the Levenberg–Marquardt (LM)
algorithm, is used to predict the future responses of the smart
structure. In order that the responses of the smart structure
satisfy the seismic requirements of the structure or are reduced
most effectively, the control current applied to the MR dampers

Figure 1. Schematic illustration of MR damper.

is calculated according to the predicting responses of the
structure. Finally, through a numerical simulation of a three-
story reinforced concrete frame structure with MR dampers
and without MR dampers by the on-line real-time control
method and the traditional elastoplastic time-history analysis
method, it is found that MR dampers can reduce the seismic
responses of the structure effectively and the on-line real-
time control method is more accurate than the traditional
elastoplastic time-history analysis method in controlling the
smart structure due to its solution to time delay.

2. Governing equations

2.1. Modeling of MR dampers

MR dampers typically consist of a hydraulic cylinder contain-
ing micrometer-sized magnetically polarizable particles dis-
persed in hydrocarbon oil, as shown in figure 1. In the pres-
ence of a strong magnetic field, the particles polarize and of-
fer an increased resistance to flow. By varying the magnetic
field, the mechanical behavior of MR dampers can be modu-
lated. Since MR fluid can be changed from a viscous fluid to
a yielding solid within milliseconds and the resulting damp-
ing force can be considerably large with a low-power require-
ment, MR dampers are applicable to large civil engineering
structures [14].

Many investigators, such as Spencer et al [15], Carlson
and Spencer [16], Dyke et al [17] and Wereley et al [18], have
studied the mechanical properties of MR dampers. The most
popular model of MR damper is the Bingham model [19, 20], in
which MR dampers are assumed to have a friction component
augmented by a Newtonian viscosity component as shown in
figure 2, and the relationship between stress and strain can be
expressed as follows:

τ = ηγ̇ + τy sgn(γ̇ ) (1)

where τ is the shear stress in fluid, η is the Newtonian viscosity,
independent of the applied magnetic field, γ̇ is the shear
strain rate and τy is the yielding shear stress controlled by the
applied field. Phillips et al [21] derived the force–displacement
relationship of MR dampers in terms of equation (1) as

F = 12ηL A2
p

π Dh3
d

u̇(t) +
3Lτy

hd
Ap sgn[u̇(t)] (2)

where L is the length of the piston, Ap is the cross-sectional
area of the piston, D is the inner diameter of the vat, hd is the
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Figure 2. Bingham model.
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Figure 3. Comparison between the experimental and numerical
results.

diameter of the small orifice in the piston and u(t) is the relative
displacement of the piston to the vat. The yielding shear stress
τy is the function of the applied field, which means τy is the
function of the controlled current I . The experiment on MR
dampers is that of Professor Ou [22], the MR damper fluid was
developed by Fudan University in China, and the viscosity η

is 0.9 Pa m. For the dampers, the effective length of the piston
L is 40 mm, the gap h is 2 mm and the inner diameter of
the vat is 80 mm. We find that the relationship between the
yielding shear stress τy and the control current I obeys the
index function law. In accordance with the experimental data,
the yielding shear stress τy is related to the control current I
by

τy = A1e−I + A2 ln(I + e) + A3 I (3)

where the coefficients A1, A2 and A3 depend on the property
of the MR fluid in the MR damper. For the MR fluid in this test,
A1 = −11 374, A2 = 14 580, A3 = 1281, and e is the natural
constant. A comparison between the experimental results
and the numerical prediction by equation (3) on the current-
dependent yield stress is shown in figure 3. It can be seen that
the numerical results agree well with the experimental results.

2.2. Equations of motion of controlled structure

For frame structures, MR dampers are usually placed on
chevron braces as shown in figure 4. In terms of stiffness,
the smart damper–chevron brace system can be treated as a
damper and a spring connected in series. For MR dampers to

Computer

Figure 4. Schematic illustration of smart structure.

function properly, the stiffness of the chevron braces is usually
strong. Accordingly, the stiffness of chevron braces can be
neglected to simplify calculation, and the equations of motion
of the structure with MR dampers can be written as

Mẍ + Cẋ + Kx = −M� ẍg − Bfd (4)

where M , C and K are the mass, damping and stiffness
matrices of the structure respectively, x is the vector of the
relative displacements of the floors of the structure, � is
the column vector of ones, ẍg is the earthquake acceleration
excitation, B is the matrix determined by the placement of
MR dampers in the structure, fd = [ fd1, fd2, . . . , fdn]T is the
vector of control forces produced by MR dampers, and fdn is
the control force of the nth floor.

The seismic responses of the structure with MR dampers
expressed as equation (4) can be calculated by the time-history
analysis method [23]. But in this method, the control forces
are calculated according to the seismic responses of structures
in the previous epochs. As a result, the control forces may
be distorted due to time delay. Such distortion usually has
adverse effects on the control actions. Furthermore, semi-
active control has inherent time delay. Therefore, an effective
way to solve this problem is to find an appropriate method
which can predict future responses of the structure and control
the structure on-line. The neural network technique has some
advantages, such as identification and prediction, and it is
considered to be the best method to solve the time-delay
problem [5, 6, 24].

3. Semi-active control using neural networks

3.1. The traditional control method

The traditional analysis method used in the controlled structure
is the time-history analysis method. For the reinforced con-
crete structure, the trilinear stiffness degeneration model [25]
is adopted to simulate the structure. The relationship curve
between the stiffness and inter-storey drift of each floor is
illustrated in figure 5. For the structure with MR dampers,
the control current I is initially set as zero. The dynamic re-
sponses of structures are then calculated. If the inter-storey
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Figure 5. The trilinear stiffness degeneration model.

drift of some a floor is not less than h/450, where h is the
storey height, the control current of the MR dampers in this
floor should be increased by an amount �I . The dynamic
responses of structures are re-calculated for the new control
current. Such a computation is repeated until the inter-storey
drift of the floor satisfies the objective request or the control
current reaches the maximum value Imax. When the control
current is determined, the dynamic responses of structures can
be calculated, and the stiffness of each floor can be evaluated
according to the responses of structures. Then the next epoch
calculation can begin.

For the elastoplastic time-history analysis method, the
control forces produced by MR dampers is based on the
previous responses of structures instead of the current
responses of structures. As a result, an inherent time-
delay problem exists in this method. In order to solve this
problem, the neural network technique is adopted to predict
the responses of structures. The control forces are calculated
according to the predicted responses.

3.2. Neural networks based on the LM algorithm

Neural networks are simplified models of the biological
structure found in human brains. These models consist of
elementary processing units (also called neurons). It is the
large amount of interconnections between these neurons and
their capability to learn from data, that makes neural networks
a strong predicting and classification tool. In this study, the
neural network approach is selected to predict the seismic
responses of structures with MR dampers. Many neural
networks are currently available, which can be divided into
two main types: feedforward neural networks and feedback
neural networks.

In this paper, a four-layer feedforward neural network is
adopted, which consists of an input layer, two hidden layers
and an output layer (as shown in figure 6). The inputs to the
neural network are the delayed earthquake accelerations, the
delayed control forces and the delayed seismic responses.

The net input netk of neuron k in some layer and the output
Ok of the same neuron are calculated by

Figure 6. The neural network architecture.

netk =
∑

w jk O j (5)

Ok = f (netk + θk) (6)

where w jk is the weight between the j th neuron in the previous
layer and the kth neuron in the current layer, O j is the output
of the j th neuron in the previous layer, f (·) is the neuron’s
activation function which can be a linear function, radial basis
function or a sigmoid function, and θk is the bias of the kth
neuron. If the bias θk is regarded as the additional input whose
weight and input are θk and 1 respectively, the adjustment for
the bias θk can be considered as the adjustment of a weight.
In the following, the adjustment for biases is the same as the
adjustment for weights.

In the neural network architecture as shown in figure 6,
the logarithmic sigmoid transfer function is chosen as the
activation function of the first hidden layer:

Ok = f (netk + θk) = 1

1 + e−(netk +θk )
. (7)

The tangent sigmoid transfer function is chosen as the
activation function of the second hidden layer:

Ok = f (netk + θk) = 1 − e−2(netk +θk )

1 + e−2(netk +θk )
. (8)

The linear transfer function is chosen as the activation function
of the output layer:

Ok = f (netk + θk) = netk + θk . (9)

We note that neural networks need be trained before
predicting seismic responses. As the inputs are applied to the
neural network, the network outputs ŷ are compared with the
targets y. The difference or error between both is processed
back through the network to update the weights and biases of
the neural network so that the network outputs more closely
match the targets. The input and output data are usually
represented by vectors called training pairs. The process as
mentioned above is repeated for all the training pairs in the data
set, until the network error converges to a threshold minimum
defined by a corresponding performance function. In this
paper, the mean square error (MSE) function is adopted.
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For the training pairs p (p = 1, 2, . . . , P), the
performance function of the total system is defined as

E = 1
2

P∑
p=1

Q∑
q=1

[yp(q) − ŷp(q)]2 = 1
2

P∑
p=1

Q∑
q=1

e2
q (10)

where Q is the number of neurons in the output layer, eq is the
error of the qth neuron in the output layer.

In order to make the network outputs ŷ approach the
targets y, the weights are moved in the opposite direction of the
gradient of the performance function [24]. The most popular
algorithm used for training neural networks is the so-called
backpropagation (BP) algorithm. The BP method is a gradient-
descent-based optimization technique. The BP algorithm can
be described by

wi+1 = wi − η0
∂E

∂wi
(11)

where i is the iteration index, ∂E/∂wi is the gradient descent
of criterion E with respect to the parameter matrix wi , and
η0 > 0 is the learning rate.

The BP algorithm has a simple structure and can be easily
understood and implemented. However, the algorithm usually
suffers from the drawback of slow convergence. This is due
to the fact that the gradient-based approach has a first-order
convergence characteristic. On the other hand, it has been
investigated that the BP algorithm can be considered as a pure
integral control procedure. This can be used to explain why
the choice of the learning rate η0 may often result in some
contradiction [26], i.e. a large η0 can obtain fast learning but
also easily cause oscillation and instability, while a small η0

can obtain stable learning but the learning process will be very
slow.

A useful way to improve the BP algorithm is by
using second-order convergence-based approaches such as the
Gauss–Newton method or the LM method [24]. The LM
method can be written as

wi+1 = wi −
[

∂2 E

∂wi2 + µI

]−1
∂E

∂wi
(12)

where µ � 0 is the learning factor and I is the unity
matrix. If the Taylor series expansion is applied to error vector
e (e = [e1, e2, . . . , eQ]T) around the operating point, the first
derivatives result in the Jacobian given by

J i =
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Q×B

(13)

where Q is the number of neurons in the output layer and B
is the number of weights. A series of changes are made for
equation (12) [27], and the following equation can be obtained:

wi+1 = wi − (J i T
J i + µI)−1J i T

e. (14)

Equation (14) is the calculating formula of the LM method.
The basic steps of this method are as follows:

Figure 7. Structure of the proposed neural network controller.

(1) Set the initial weights (or bias) wi = w0, and take a large
starting value of µ;

(2) Calculate the performance function E(wi) and the
Jacobian matrix J i ;

(3) Calculate according to wi+1 equation (14);
(4) Is |E(wi+1)| � |E(wi)|? If yes, decrease, i.e. µi+1 =

αµi(0 < α < 1), where α is the decrease coefficient;
If no, increase µ by multiplying the increase coefficient
β , i.e. µi+1 = βµi (β > 1).

(5) If the performance index E is less than target or the number
of training epochs reaches the fixed number, then stop, else
go to (2).

3.3. On-line real-time learning and control

The proposed on-line real-time learning and control
architecture is shown in figure 7. The architecture consists
of three parts to perform different tasks. The first part is
the neural network to be trained on-line. When the number
of the sample data pairs is less than 100, the training data
pairs increase step-by-step during the earthquake. When the
number of the sample data pairs is more than 100, the oldest
data pair is abandoned in every training step, so that the
number of the training data pairs remains 100. The neural
network is trained to generate the one-step-ahead prediction of
displacement x̂k+1 and velocity ˆ̇xk+1. Inputs to this network
are the delayed outputs (xk−2, xk−1, xk , ẋk−2, ẋk−1, ẋk), the
delayed control forces ( fdk−1, fdk) and the delayed earthquake
inputs (ẍgk−2 , ẍgk−1 , ẍgk ). The second part is to calculate control
currents and control forces. If x̂k+1 � desired value (in this
paper, (�k+1)max � h/450 is adopted for the frame structure,
where (�k+1)max is the maximum inter-storey drift and h is
the storey height of the maximum inter-storey drift floor), set
the control current of MR dampers I = 0; if x̂k+1 > desired
value, increase the control current I (the current increment
�I = 0.2 A) and calculate the seismic responses of structures
with MR dampers until x̂k+1 is less than or equal to the desired
value or the control current I reaches the limited value (2 A
for this paper). Then the control forces can be calculated by
equations (2) and (3), and the responses of structures with
MR dampers can be obtained by the elastoplastic time-history
analysis method after the control current I is changed. The
third part is to measure the actual responses of structures
with MR dampers. In this paper, the calculated results by
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Figure 8. Response comparison of controlled and uncontrolled structure.

the elastoplastic time-history analysis method are used to
substitute for the actual measured responses. The errors
between the predicted responses and the actual responses are
used to update the weights on-line.

4. Numerical example

To evaluate the on-line real-time method for the structure with
MR dampers, a numerical example is considered in which
a model of a three-storey reinforced concrete structure is
controlled with one MR damper in the first floor, as shown
in figure 4. In the elastoplastic analysis of the structure with
MR dampers, the frame structure is simulated by the trilinear
stiffness degeneration model as shown in figure 5 [25]. The
stiffness of each floor changes in the fold line path as shown
in figure 5 during the earthquake.

The model structure parameters are the mass vector
m = [3.24 3.06 2.88] × 104 kg, the initial stiffness vector
k = [1.86 2.60 2.60] × 107 N m−1, the story height
h = [4 3.3 3.3] m, the inter-story cracking drifts ∆c =
[6.3 4.9 4.2] mm, the inter-story yielding drifts ∆y =
[21.8 18.9 17.2] mm. The common MR damper as shown in
figure 1 is adopted in this study. The MR fluid tested by Ou [22]
is used in the MR damper, so the coefficients in equation (3)
are A1 = −11 374, A2 = 14 580 and A3 = 1281, and the
viscosity η is 0.9 Pa m. The effective length of the piston L is
400 mm, the gap hd is 2 mm, and the inner diameter of the vat
is 100 mm.

In this example, the model of the structure is subjected to
the north–south component of the 1940 El Centro earthquake
with 400 gal acceleration amplitude, and the sampling time is
0.02 s, i.e. the delay time. We developed a Matlab program for
the on-line real-time neural network control and elastoplastic
analysis of the structure with MR dampers.

The top-floor displacement and acceleration responses of
the structure with the MR damper by the on-line control method
are compared with those of the structure without the MR
damper, as shown in figure 8. Both the displacement and the
acceleration responses of the controlled structure with the MR
damper are reduced effectively. The maximum displacement
of the uncontrolled structure is 82.91 mm, while the maximum
displacement of the controlled structure is 51.47 mm. The
displacement response is reduced by 37.92%. The maximum

acceleration of the uncontrolled structure is 6.86 m s−2,
while the maximum acceleration of the controlled structure
is 4.65 m s−2. The acceleration response is reduced by
32.22%. It can also be shown that the displacement responses
are reduced more effectively than the acceleration responses.
This is due to the fact that control forces produced by MR
dampers are equivalent to increasing stiffness and damping
of structures: both are beneficial to decreasing displacement
responses, while increasing of stiffness will possibly increase
acceleration responses.

The responses of the structure with the MR damper are
calculated by the traditional elastoplastic time-history analysis
method and the on-line real-time control method. Figure 9
compares the displacement responses and the acceleration
responses of the top floor for the on-line control method and
the traditional method. The displacement and acceleration
responses calculated by the on-line control method are smaller
than those calculated by the traditional method, especially
during the periods of 1.5–3 and 4.2–6.5 s. Recall that the
traditional method does not consider the problem of time
delay, which leads to distortion of the control forces and
destabilization of the whole closed-loop control structure.
This explains why the traditional method predicts increased
oscillation compared to the on-line control method.

Figure 10 compares maximum displacement and
maximum acceleration for the uncontrolled structure, the
traditional controlled structure and the on-line controlled
structure. Both the displacement and the acceleration
responses are reduced effectively when MR dampers are used.
At the same time, it can be clearly seen that the on-line control
method can reduce the dynamic responses of the structure
more effectively than the traditional control method, especially
for the acceleration responses. Because the on-line control
method disposes of the time-delay problem, the control forces
produced by MR dampers are more accurate. Increasing the
control forces blindly is equal to increasing the stiffness and the
damping of the structure blindly, which will lead to increase of
the dynamic responses, especially for acceleration responses.

The control current–time curves calculated by the on-
line control method and the traditional time-history analysis
method are plotted in figures 11(a) and (b), respectively. The
control current of the MR damper varies in the range in
0–2 A when the earthquake excitation is strong during the
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period of 1.5–6.5 s. The control force produced by the
MR damper changes in accordance with the responses of the
structure, so that the responses of the structure are reduced
more effectively.

It must be noted that the learning algorithm for the neural
network is the LM algorithm and the objective error (MSE) is
5 × 10−5. During the learning process, the LM algorithm has
a very fast convergence rate. Only 0–10 training epochs are
required to satisfy the objective error. Figure 12 shows the error
convergence curve of training at the fifth earthquake sampling

point. It can be shown that, when the training epochs reach 3,
the error performance satisfies the objective error. Compared
with the several thousand training epochs of the BP algorithm,
the error convergence rate of the LM algorithm is very fast.

5. Conclusions

In this paper, a formula for MR dampers is derived
according to the experimental data. Then an on-line real-time
control method for semi-active control of earthquake-excited
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structures with MR dampers is proposed. In a numerical
example, a three-storey smart structure with a MR damper
in the first floor is analyzed. Some conclusions can be drawn
from the analysis.

(1) The MR damper is a kind of smart damper, and it can
reduce the responses of structures effectively.

(2) The yielding shear stresses calculated by equation (3) fit
the experimental results very well.

(3) The on-line real-time control method solves the problem
of time delay. The responses of the structure with MR
dampers calculated by this method are smaller than those
calculated by the traditional elastoplastic time-history
method, especially for the acceleration responses.

(4) The LM algorithm is a second-order-convergence
approach, which has a very fast convergence rate.

Acknowledgments

This research is financially supported by the National
Natural Science Foundation, People’s Republic of China,
grant no 50135030, and the National Postdoctoral Science
Foundation, People’s Republic of China. These supports are
gratefully acknowledged.

References

[1] Soong T T and Dargush G F 1997 Passive Energy Dissipation
Systems in Structural Engineering (Chichester: Wiley)

[2] Soong T T, Masri S F and Housner G W 1991 An overview of
active structural control under seismic loads Earthq.
Spectra 7 483–505

[3] Michael D S and Michael C C 1999 Semi-active control
systems for seismic protection of structures: a
state-of-the-art review Eng. Struct. 21 469–87

[4] Kasparian V and Batur C 1998 Model reference based neural
network adaptive controller ISA Trans. 37 21–39

[5] Nikzad K, Ghaboussi J and Stanley L P 1996 Actuator
dynamics and delay compensation using neurocontrollers
J. Eng. Mech., ASCE 122 966–75

[6] Liu G P and Daley S 1999 Output-model-based predictive
control of unstable combustion systems using neural
networks Control Eng. Prac. 7 591–600

[7] Dyke S J, Spencer B F, Quast P and Sain M K 1995 Role of
control-structure interaction in protective system design
J. Eng. Mech., ASCE 121 322–38

[8] Gallent S I 1993 Neural Network Learning and Expert System
(Cambridge, MA: MIT Press)

[9] Chen H M, Tsai K H, Qi G Z, Yang J C S and Amini F 1995
Neural network for structural control J. Comput. Civil Eng.,
ASCE 9 168–76

[10] Ghaboussi J and Joghataie A 1995 Active control of structures
using neural networks J. Eng. Mech., ASCE 121 555–67

[11] Yang S M and Lee G S 1997 Vibration control of smart
structures by using neural networks J. Dyn. Syst., Meas.,
Control, ASME 119 34–9

[12] Bani-Hani K, Ghaboussi J and Schneider S P 1999
Experimental study of identification and control of
structures using neural network Earthq. Eng. Struct. Dyn.
28 995–1018

[13] Ni Y Q, Chen Y, Ko J M and Cao D Q 2002 Neuro-control of
cable vibration using semi-active magneto-rheological
dampers Eng. Struct. 24 295–307

[14] Xu Y L, Qu W L and Ko J M 2000 Seismic response control of
frame structures using magnetorheological/
electrorheological dampers Earthq. Eng. Struct. Dyn. 29
557–75

[15] Spencer B F, Dyke S J, Sain M K and Carlson J D 1997
Phenomenological model for magnetorheological dampers
J. Eng. Mech. 123 230–8

[16] Carlson J D and Spencer B F 1996 Magnetorheological fluid
dampers: scalability and design issues for application to
dynamic hazard mitigation Proc. 2nd Int. Workshop on
Structural Control (HongKong, 1996) pp 99–109

[17] Dyke S J, Spencer B F, Sain M K and Carlson J D 1996
Modeling and control of magnetorheological dampers for
seismic responses reduction Smart Mater. Struct. 5 567–75

[18] Werely N M, Pang L and Kamath G M 1998 Idealized
hysteresis modeling of electrorheological dampers J. Intell.
Mater. Syst. Struct. 9 642–9

[19] Xu Zhao-Dong and Shen Ya-Peng 2002 The calculating
models and simulation analysis about magnetorheological
damper Build. Struct. 9 16–20 (in Chinese)

[20] Gavin G P, Hanson R D and Filisko F E 1996
Electrorheological dampers: part I. Analysis and design
J. Appl. Mech. 63 669–75

[21] Phillips R W 1969 Engineering applications of fluids with a
variable yield stress PhD Thesis University of California,
Berkeley

[22] Ou Jinpin and Guan Xinchun 1999 Experimental study of MR
damper performance Earthq. Eng. Eng. Vib. 19 76–81

[23] Clough R W and Penzien J 1975 Dynamics of Structures (New
York: McGraw-Hill)

[24] Zeidenberg M 1990 Neural Network Models in Artificial
Intelligence (New York: Horwood)

[25] Xu Z-D 2001 The experimental study on the (lead)
viscoelastic structure Doctor Thesis Xi’an University of
Architecture and Technology, China (in Chinese)

[26] Tan Y and Sain M 2000 Neural-networks-based nonlinear
dynamic modeling for automotive engines Neurocomputing
30 129–42

[27] Hagan M T and Menhaj M B 1994 Training feedforward
networks with the Marquardt algorithm IEEE Trans. Neural
Netw. 5 989–93

87


