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ABSTRACT The performance of vehicle body vibration and ride comfort of active or semi-active suspension

with proper control is better than that with passive suspension. The key to achieve good control effect is that

the suspension control system should have strong real-time learning ability according to changes in the road

surface and suspension parameters. In the control strategies adopted by previous researchers, the classical

neural network controller has some learning ability, but it is mainly based on offline learning with a large

number of samples. In this paper, the deep reinforcement learning strategy is used to solve the above problems

.Aiming at the continuity of state space and execution action in vehicle active suspension system, the control

of the semi-active suspension is realized by using improved DDPG (Deep Deterministic Policy Gradient)

algorithm. To overcome the shortcoming of low efficiency of this algorithm in the initial stage of learning,

the DDPG algorithm is improved and using empirical samples in the learning method is proposed. Based

on Mujoco, the physical model of semi-active suspension is established, and its dynamic characteristics

are analyzed under the condition of various road level and vehicle speed. The simulation results show that

compared with the passive suspension, the semi-active suspension based on improved DDPG algorithm with

learningmethod using experienced samples can better adapt to various road level, more effectively reduce the

vertical acceleration of the vehicle body and the dynamic deflection of the suspension, and further improve

the ride comfort.

INDEX TERMS Semi-active suspension, deep reinforcement learning, DDPG, experienced samples.

I. INTRODUCTION

As one of the important part of vehicles, suspension sys-

tem has a huge impact on vehicle handling stability, driv-

ing safety and riding comfort. According to the working

principle, suspension system can be summarized as pas-

sive suspension, semi-active suspension and active suspen-

sion. Since the parameters of passive suspension are fixed

and unchanged, when the driving environment or vehicle

parameters change, the ride comfort, stability and comfort

of the vehicle can’t be guaranteed. Therefore, semi-active

suspension and active suspension with adjustable dynamic

parameters, which can overcome the above shortcomings of

passive suspension, have been the research hotspot in recent

decades.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudhakar Babu Thanikanti .

In practical vehicle suspension systems, the parameter

uncertainties are usually unavoidable. To solve the problem,

researchers have studied different modern control strategies.

In addition to the traditional PID control strategy, they also

adopt control strategies such as SDC (Skyhook Damper Con-

trol) [1], LQG (Linear Quadratic Gaussian) control [2], [3],

fuzzy control [4], [5], SMC (Sliding Mode Control) [6],

H∞ control [7], [8], adaptive control [9], [10], predictive

control [11], [12], neural network control [13], [14], non-

linear intelligent control [15], and compound control [16],

to reduce the vibration amplitude of vehicle body and

improve the vehicle ride smoothness, stability, and ride

comfort.

In the previous studies of active suspension control, PID

control is often use as it has a simple principle and strong

adaptability. However, it is not very effective in suspension

systems with uncertain parameters. The skyhook control

in [1] is a classic semi-active suspension control method.
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It has the characteristics of simple structure, reliable per-

formance and easy engineering implementation. However,

the time delay of the system has an obvious impact on the

suspension performance, which will lead to the instability of

the suspension system and wheel jump. Using half vehicle

suspension model, Lan and Yu [2] designed the LQG con-

troller of active suspension by using optimal control theory

and its control effect was verified by simulation. Yu et al. [3]

presented a method to determine the optimal control weight-

ing coefficient and optimal control force in the design of

LQG controller. But the control parameters are calculated on

the premise of ignoring the uncertain factors in the system

modeling. Once the system parameters change to a certain

extent, it will make the system become unstable. In [4],

the vehicle acceleration is used as the input of fuzzy controller

to design the control rules and effectiveness is verified. The

topic of [5] is to solve the problem of blind design of fuzzy

control rules, but it’s actually PID control. In fact, Fuzzy con-

trol rule development needs a lot of control experience and

knowledge, and the control effectiveness is closely related

to the rules defined. Sliding mode control strategy in [6]

shows good control effect and robustness to the control of

active suspension system. However, chattering is the fatal

disadvantage of sliding mode control, which sometimes leads

to instability or even unavailability of the control system.

Du and Zhang [7] designed a constrained delay-dependent

H∞ state feedback controller and verified the effectiveness

in spite of the existence of a time delay in control input.

Sun et al. [8] used the generalized Kalman-Yakubovich-

Popov (KYP) lemma to reduce the norm of disturbance to

the control output in a specific frequency band, and a state

feedback controller was designed under the LMI optimization

framework. However, good robustness comes at the expense

of other performance of the system. The essence of the adap-

tive control strategy adopted in [9], [10] is to ensure the per-

formance of the system by detecting the parameter changes

of the suspension system to determine the control parameters.

However, the adaptive control strategy can only be adjusted

within a certain range, once it exceeds the range, the control

effect will becomeworse. Milanese et al. [11] presented a fast

model predictive control (FMPC) implementation method

based on nonlinear function approximation technology to

solve the problem of fast calculation of predictive control rate,

and its effectiveness is verified by simulation.Wang et al. [12]

designed a robust model predictive controller (RMPC) for

active suspension system by defining the performance evalua-

tion function of RMPC. The accuracy and effectiveness of the

controller were verified by prototype vehicle simulation and

road test. The predictive control methods used in these two

papers transmit the road information to the suspension device

in advance. The key is to obtain the information with certain

accuracy, undisturbed and reflecting the real situation of the

road. But it is almost impossible tomeet the above conditions.

The neural network control method designed in [13], [14]

makes full use of the fact that neural networks are suitable for

nonlinear system, control and achieve good results. However,

as a supervised learning method, it requires the system pro-

vide many samples with labels. In the process of generating

the control strategy, only the current state is considered, but

not the future state, which severely limits the utility of the

method. Qin et al. [15] presented a new adaptive nonlinear

intelligent control strategy based on road classification, and

the effectiveness of the method was verified by simulation

with different road levels. However, due to the use of data-

driven road classification method, when the control strat-

egy changes, it is necessary to reconstruct a new classifier.

Sharma et al. [16] used disturbance rejection and continuous

state damper controllers to reduce lateral vibration of passen-

ger rail vehicle and verified the effectiveness by simulation.

However, only specific disturbances are considered in system

design and this approach has no universal applicability.

Considering the characteristics of suspension system

parameters variation and uncertainty, the control system

should have continuous learning functions. That means the

system can continuously improve the control force of the

active suspension system by its own learning mechanism

according to the actual road and suspension parameters.

DRL (Deep Reinforcement Learning) is one of the new

research hotspots in the field of machine learning. It com-

bines the perception ability of DL (Deep Learning) with

the decision-making ability of RL (Reinforcement Learning).

It can be used to realize the direct control from the original

input to the output through the end-to-end way, which has a

strong versatility. DRL has been widely used in the field of

electronic game since it was put forward. At the same time,

it has been successfully applied in parameter optimization,

robot control, machine vision, natural language processing

and other fields [17].

At present, the main DRL methods include DRL based on

value function, DRL based on policy gradient, and deep DRL

based on search and supervision. DRL algorithms mainly

include DQN (Deep Q-Network) algorithm, DDPG algo-

rithm, A3C (Asynchronous Advantage Actor-Critic) algo-

rithm and DRL method based on MCST (Monte Carlo Tree

Search). Alpha Go, the most famous robot designed by Deep-

mind, uses DRL algorithm based on MCST [18]. The DQN

algorithm proposed by this company can learn to play games

by directly observing Atari 2600’s game pictures and scoring

information, and it is universal for almost all games.

The learning mechanism of DRL is learning while obtain-

ing samples. This method updates its model after obtaining

the sample and uses the current model to guide the next

action, so it can generalize a complex situation that it has

never experienced before. This is exactly what is needed

for active suspension control in the face of different road

conditions and other uncertainties.

To solve the problem of the ride comfort and stability

of the active suspension control system during the learning

process, the passive suspension is still retained in the design

of the suspension system. In order to make full use of the

advantages of passive and active suspension force control and

its practical application, a force control strategy for vehicle
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FIGURE 1. Quarter vehicle model with semi-active suspension.

semi-active suspension system based on deep reinforcement

learning is proposed. Considering that the force control of

the suspension system of the intelligent integrated electric

wheel is a continuous action, the DDPG algorithm is adopted

in semi-active suspension control system. This method can

automatically adjust the parameters according to the external

changes of the unknownmodel, to achieve the optimal control

of vehicle ride comfort and stability. In order to improve the

learning speed of the model, the training approach of the

DDPG algorithm is improved by using some good control

experience samples as the reference.

II. QUARTER VEHICLE MODEL WITH SEMI-ACTIVE

SUSPENSION SYSTEM

The dynamic model of vehicle active or semi-active suspen-

sion system includes the quarter vehicle model, half vehicle

model and the whole vehicle model. The control algorithm

based on the multi-degree-of-freedom model of the vehi-

cle is complex and requires many sensors for collecting a

large amount of data, so it is difficult to apply in practice.

Therefore, considering the vertical motion of semi-active sus-

pension body and non-spring mass, a 2-DOF quarter vehicle

dynamic model is established in this paper, which is com-

monly used in prior work as shown in figure 1[19].

In Figure 1, mb is the mass of the vehicle body, ks is the

spring stiffness, cs is the damping coefficient, mw is the mass

of the wheel axle, kw is the equivalent stiffness of the tire, uF
is the active control force generated by the linear motor actua-

tor, xg is the road surface excitation, xb and xw are the absolute

displacement of the body and tire respectively, xb − xw is the

suspension deflection, ẍb is the body acceleration.

According to the dynamic model shown in Fig. 1, using

Newton’s second law, the differential equation of longitudinal

motion of the body and the wheel can be obtained as:










mwẍw = ks (xb − xw) + cs (ẋb − ẋw) − uF

+ kw
(

xw − xg
)

mbẍb = −ks (xb − xw) − cs (ẋb − ẋw) + uF

(1)

Define the state variables as:

x1 = xw, x2 = xb, x3 = ẋw, x4 = ẋb

u1 = xg, u2 = uF

y1 = ẍb, y2 = xb − xw

Formula (1) can be rewritten as the following state-space

form:
{

Ẋ = AX + BU

Y = CX + DU
(2)

where,

X = [xw xb ẋw ẋb]
T

U =
[

xg uF
]T

Y = [ẍb xb − xw]
T
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III. ROAD ROUGHNESS MODEL

Road roughness model is very important for analyzing the

characteristics of suspension system. Generally, road surface

roughness is random, and its statistical characteristics can

be described by PSD (Power Spectral Density). According

to ISO/TC108/SC2N67 and GB7031, the power spectrum of

road roughness is fitted by an exponential function as follows:

Gq (n) = Gq (n0)

(

n

n0

)−ω

(3)

where n0 is the reference spatial frequency, generally n0 =

0.1m−1,Gq (n0) represents the pavement flatness coefficient

(m3), ω is the frequency index, generally ω = 2[20].

There are many time domain models of road roughness

excitation [21]. Among them, the single wheel road excitation

model based on the filter white noise method is widely used.

The model expression is:

ġ (t) = −2πn00v · g (t) + 2πn0

√

Gq (n0) v · ω(t) (4)

This model is in good agreement with the standard pave-

ment spectrum. The physical meaning of the model is clear,

and it can be used as the input excitation for vehicle ride

comfort analysis [22].

IV. SEMI-ACTIVE SUSPENSION CONTROL BASED ON

DDPG ALGORITHM

The structure of the semi-active suspension control system

based on DDPG is shown in the figure 2.
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FIGURE 2. The control structure of semi-active suspension system based
on DDPG.

In this system, there are two tunable networks: actor net-

work and critical network. Actor network obtains the control

quantity according to the output state information of the sus-

pension system and acts on it. The system synthesizes the pre-

vious and current state information and control information

of suspension output, and uses DDPG algorithm to realize

the parameter learning and adjustment of actor network and

critical network based on the evaluation target.

From formula (1), adjusting the active control force uF
(abbreviated as u) of the linear motor actuator will affect the

acceleration of the body and the dynamic deflection of the

suspension at the current moment, and produce a new state.

The new state will also affect the acceleration of the body and

the dynamic deflection of the suspension at the next moment.

According to Bellman’s formula, the behavior value func-

tion of ut to take action on state st under specific control

strategy π can be expressed as follows:

Qπ (st , ut) = E[r (st , ut) + γQπ (st+1, ut+1) (5)

where, ut+1 is the control quantity adopted by current strategy

π to the state st+1, Q
π (st+1, ut+1) is the behavior value

function of the next moment, and gamma is the discount fac-

tor of future returns. The stability evaluation value r (st , ut)

obtained by feedback from semi-active suspension system

after ut control is performed under the state st is defined as:

r = −(k1y
2
1 + k2y

2
2 + k3y

2
3) (6)

where, y1 is the vehicle body acceleration, y2 is the suspen-

sion dynamic deflection, y3 is the vehicle body displacement;

k1, k2, k3 are the weights of the vehicle body acceleration,

the suspension dynamic deflection and the vehicle body dis-

placement in the stability evaluation.

A. NETWORK MODEL

The Q function calculation in equation (5) is a recursive

formula. In the actual situation, it is impossible to recursively

calculate the value at each step. Using the A-C architec-

ture [23], the Q value is simulated by the neural network

model Q_net , which is expressed as:

Qπ (st , u) = Q_net(st , u) (7)

Semi-active suspension system is a continuous control sys-

tem. Actions u are executed on state st under current policy π .

FIGURE 3. The DDPG algorithm structure.

It is provided by a policy network model A_net , which is

expressed as:

ut = (st ) (8)

The goal of the training evaluation network Q_net is to

minimize the error of theQ value, and the goal of the training

strategy network A_net is to maximize Q value by output

actions. The target functions are as follows:

{

L
(

θQ
)

= (Q_net (st , u) − yt )
2

yt = rt + γQ_net (st+1,A_net(st+1))
(9)

L
(

θA
)

= −Q_net (st ,A_net(st )) (10)

B. DDPG ARCHITECTURE

In the learning process, since the parameters of Q_net are

used to calculate the gradient of Q_net and A_net while the

gradient is updated, the learning process is more likely to

diverge. In order to solve the above problems, the DDPG

architecture algorithm is proposed in document [24]. The

algorithm creates a replica network of evaluation network

Q_net and policy network A_net to calculate the gradi-

ent respectively. At the same time, the algorithm also cre-

ates a finite size replay buffer to store exploration samples

and updates the network by uniformly sampling a small

batch. To solve the problem of sample independence, the

specific architecture is shown in figure 3.

By minimizing the objective functions L
(

θQ
)

and L
(

θA
)

,

we can find that the updating network is also used to cal-

culate the objective function of Q, so the updating of net-

work learning is difficult to converge. This document put

forward the DDPG architecture algorithm, create the replica

network of evaluation network Q_net and policy network

A_net respectively to solve this problem by calculating the

objective function. At the same time, a finite size replay buffer

is created to store the exploratory samples, and the problem

of sample independence is solved by uniformly sampling a
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TABLE 1. DDPG learning algorithm with experience values.

small batch of networks updates. Its architecture is shown

in figure 3.

C. DDPG ALGORITHM WITH EXPERIENCE LEARNING

In order to improve the learning and training speed of the

model, we consider using some good control experience

samples of passive suspension to let the model learn from

experience samples. This can provide a good reference for

learning and improve the training speed. In this paper, addi-

tional forces obtained by increasing or reducing the elastic

coefficient of passive suspension are used as control force

samples to fill in the initial buffer pool, which are the initial

learning experience. Based on this idea, the model learning

algorithm is shown in Table 1.

V. SIMULATION EXPERIMENTS

A. BUILDING OF SIMULATION ENVIRONMENT AND

PARAMETERS SETTING

In this paper, MuJoCo is used to build the quarter semi-

active suspension reinforcement learning simulation system.

Figure 4 is the simulation model of the system designed by

MuJoco.

The parameters of suspension model and DDPG model

need to be set in the simulation experiment.

The suspension model parameters are shown in

Table 2 [25].

The control force is important for the performance of

the semi-active suspension. Therefore, we carry out the sus-

pension parameter performance simulation experiment by

FIGURE 4. Simulation environment built by Mujoco.

TABLE 2. Parameters of vehicle suspension systems.

FIGURE 5. Simulation experiment results by changing the force control
range.

changing the force control range on the C level road with

the speed of 60 km/h. Figure 5 demonstrates the simulation

results. Considering the comprehensive control performance

of semi-active suspension, the force control range is set from

– 600N to 600N.

The Critic and the Actor are both neural network with

three hidden layers. Dropout is set for each layer, and the rate

coefficient are both 0.1.The number of hidden layer nodes of

the Critic are 100,100 and 50, and the activation functions

are relu, sigmoid and sigmoid respectively. The number of

hidden layer nodes of Actor are 200,100 and 50, and the

activation function are all tanh. Adam optimizer is used for

learning the neural network parameters with a base learning

rate of 0.001 and 0.003 for the Critic and Actor respectively.

The discount factor γ is set to 0.8, and the update parameter

of target network τ is set to 0.1. ℵ for action exploration is

initialized 100, and the decreasing coefficient of learning is

0.99998.
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TABLE 3. The simulation results of the two SEMI-suspensions under the
same conditions.

B. SIMULATION EXPERIMENT

1) SIMULATION EXPERIMENTS OF DIFFERENT ROAD LEVEL

AND BODY VELOCITIES

In order to verify the control performance and robust-

ness of the semi-active suspension system based on DDPG

algorithm, simulation experiments have been carried out

on the passive suspension system, the semi-active suspen-

sion system based on SDC and the semi-active suspension

system based on DDPG algorithm under the same condi-

tions. The simulation experiments were carried out on road

level B, C and D at speeds of 60 km/h and 120 km/h

respectively.

Figure 6 is part of the simulation experiment results about

the vehicle body acceleration, suspension dynamic deflection

and body displacement on level B at the speed of 60 km/h.

For convenience of comparison, the percentage of body

vertical acceleration, suspension dynamic deflection and

body displacement of the semi-active suspension system

based on SDC and the semi-active suspension system based

on DDPG algorithm to the relevant parameters of passive

suspension system under the same conditions are given in

table 3.

The simulation results show that compared with the semi-

active suspension based on SDC, the semi-active suspension

control method proposed in this paper has a certain loss in

the dynamic deflection of the suspension for different road

and different speeds, but it has a great improvement in the

acceleration and the vehicle body displacement is not too bad.

Therefore, the riding comfort of semi-active suspension based

on DDPG algorithm is the best compared with the other two

suspensions.

2) ROAD LEVEL SWITCHING TEST

In order to test the adaptability of the three suspension system

proposed in this paper to different road levels, the simulation

experiments were carried out when the vehicle body speed is

60 km/h and the road level is changed fromC to D. Figure 7 is

the simulation results.

The simulation results show that the average accelera-

tion of the suspension system based on DDPG and system

based on SDC is reduced by 24.7% and 2% respectively

compared with the passive suspension system. And the

FIGURE 6. Simulation results of the three suspensions at the same speed
and road level.

vehicle body displacement is reduced by 12.4% and 42.5%.

The results show that the suspension system based on

DDPG still has good performance when the road level is

switched.

3) VEHICLE SPEED SWITCHING TEST

Figure 8 shows the simulation results under condition of

switching the vehicle speed from 60 km/h to 120 km/h on

road level C.

The simulation results show that the average acceleration

of the suspension system based on DDPG and system based

on SDC is reduced by 24.3% and 2.4% respectively compared

with the passive suspension system. And the vehicle body

displacement is reduced by 12.9% and 52.4%. The results
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FIGURE 7. Simulation results of the three suspensions switching road
level from C to D at the same speed.

show that the suspension system based on DDPG still has

good performance when the vehicle speed is switched. The

simulation results show that the control method can adapt to

the change of speed very well.

C. COMPARISON OF DDPG LEARNING SPEED WITH

EXPERIENCE SAMPLES

In inexperienced network learning, all the sample control

quantities of filling buffer are obtained by random explo-

ration. The initial sample of filling buffer with empirical

learning is a group of samples with good control effect. The

two groups of experiments set exactly the same learning

FIGURE 8. Simulation results of the three suspensions at the same road
level with vehicle speed switching from 60km/h to 120km/h.

parameters, and the learning convergence process is shown

in figure 9.

Comparing the two groups of experiments, it is obvious

that learning with experience converges faster at the begin-

ning of learning. This shows that in the initial stage of

learning, the samples that have achieved better performance

have better learning value than those that are not based on

systematic exploration. However, as the number of learning

iterations increases, inexperienced learning can achieve the

same good results, which shows that the final learning effect

is determined by the learning structure, and has nothing to do

with the empirical samples.
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FIGURE 9. Comparison of learning efficiency.

VI. CONCLUSION

The active control system of semi-active suspension based on

improved DDPG algorithm proposed in this paper can be well

adapted to all kinds of road levels and speeds, and has good

adaptability to different road switching and different vehicle

speeds switching. The performance of this strategy is much

better than that of passive suspension and the acceleration

is much better than the SDC strategies too. The proposed

learning approach with experienced samples can accelerate

the speed of systematic training. The semi-active suspension

system based on DDPG algorithm can also continuously

learn according to external feedback information, so it can

have better adaptability. However, the current results are only

obtained through simulation studies. Whether the practical

application has similar effects still needs our further research

and exploration. In particular, the sensitivity parameter in

establishing the vehicle-road-coupling equation for the vehi-

cle dynamics model should be considered [26].
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