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Abstract In this work we present a novel method for
the solution of gear contact problems in flexible multi-

body. These problems are characterized by significant
variation in the location and size of the contact area,
typically requiring a high number of degrees of free-

dom to correctly capture deformation and stress fields.

Therefore fully dynamic simulation is computationally

prohibitive. To overcome these limitations, we exploit

a combined analytic-numerical contact model within a

Parametric Model Order Reduction (PMOR) scheme.
The reduction space consists of a truncated set of eigen-
vectors augmented with a parameter dependent set of

residual static shape vectors. Each static shape is com-

puted by interpolating among a set of displacement

modes of the interacting bodies, obtained from a se-

ries of precomputed static contact analyses. During the

contact analyses, an analytic model based on the Hertz

theory describes the teeth local deformation. We im-

plement the proposed method in an in-house code and

we apply it to spur and helical gears dynamic contact

analyses. We compare the results with classical PMOR

schemes highlighting how the combined use of the semi-

analytic contact model allows to decrease further the
model complexity as well as the computational burden,
for both static and dynamic cases. Finally, we validate
the methodology by means of a comparison with ex-

perimental data found in literature, showing that the

numerical method is able to capture quantitatively the

static transmission error measurements in case of both

helical and spur geared transmission for different torque
levels.
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1 Introduction

The use of gears is widespread in mechanical industry

since they allow high efficiency and high power den-
sity for a wide range of speeds and torques and their
applications span from everyday life to very dedicated
solutions. In spite of the long track of gears application

and usage, the complex phenomena in which gears are

involved in the meshing process still constitute an ac-

tive research topic.

1.1 Analytical Models for gear contact problems

First attempts to tackle gear contact problems have

been done using analytical models, which offer a high

computational speed yet require the need of a-priori

assumptions to simplify meshing condition and system

complexity [4, 9, 14, 16]. Most of these formulations are

derived by a series of numerical or experimental results

in order to extrapolate stiffness relationships in func-

tion of basic manufacturing gear parameters. However

due to weight and mounting restrictions as well as more

stringent functional requirements, modern gear trans-

mission designs correspond less to the situations for

which these modelling techniques were designed and the

underlying assumptions become questionable [24].
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Global Deformation
(numerical solution)

Total deformation Local Deformation
(analytic solution)

Fig. 1: Semi-analytic gear contact model.

1.2 Finite element-based models for gear contact

problems

On the other hand, the Finite Element (FE) Method is

the most powerful general numerical method to simu-

late gear contact problem. However the need for highly

refined mesh near the contact zone implies large num-

ber of degrees of freedom (DOFs). The contact width is

typically one order of magnitude smaller than the other

gear characteristic dimensions and its location varies

in three directions during the gear meshing. Therefore

the large number of DOFs, together with the relatively

high cost of imposing the non-penetrability condition,

yields a feasible computational time only for static sim-

ulations. Its very high computational cost makes it im-

practical to treat dynamic problems, especially when

a long time-stable simulation is requested. Evaluating

quantities such as tooth deflections, gear meshing stiff-

ness or stress distribution in dynamic conditions is still

too time expensive with the FE method.

In order to reduce the computational cost of stan-
dard FE simulations for gear contact problems, many

authors [1, 5, 25] have proposed semi-analytic contact

models, where the tooth deformation is calculated by

combining a numerical (FE) and an analytic solution.

As shown in Fig. 1, this approach splits the total gear

deformation into a local and a global contribution, de-

scribed respectively by an analytic and a numerical so-
lution. The former describes the local displacement field

close to the contact point, while the latter captures the
remaining deformation defined as global. This approach

assumes that the gear teeth flank is subjected to a load
distribution for which a corresponding analytic expres-
sion of the deformation field is available (for example

the Hertz’s pressure distribution [10, Chapter 6.3] or

a combination of Boussinesq’s point loads [12, Chap-

ter 2.1]). Moreover semi-analytic approaches make it

possible to use a relatively coarse mesh to compute the

numerical displacement field since the FE model does

not capture the local deformation. This aspect means

a consequent consistent gain in memory storage and

computational time. Although these approaches reduce

significantly the size of the model as compared to tra-

ditional FE based contact simulations, the procedure

of matching the analytic and the FE solutions at a cer-

tain depth below the contact surface is computationally
involved and it does not ensure a continuous displace-
ment and stress field within the gear tooth. This fact is

not discussed in the literature.

In this context, it is relevant to mention the work
of Andersson-Vedmar [1], who introduced a method to

calculate the tooth deformation under a known load

applied on the gear teeth flanks: synthesized in Fig. 2,

their approach exploits a finite element model in the

pre-processing phase to extrapolate a stiffness function

of the gear flank. This FE-based stiffness is combined

with an analytic stiffness derived by the formula of We-
ber and Banaschek [26]. More conspicuously, in order to
obtain the global (numerical) deformation field of Fig.

1 (and from that to derive the global stiffness), An-
dersson and Vedmar propose to perform two FE static
analyses at each possible contact node. Both FE analy-
ses are carried out under a unitary point load acting on

the same FE model with different Boundary Conditions
(B.C.). The two cases are shown on the right-hand side
of Fig. 2, where the second element represents the par-

tial model used to eliminate the local deformation from

the total model (first element). Such partial model is

obtained by clamping a tooth section located at a dis-

tance h underneath the tooth flank.

A similar approach has been proposed by Chang [5],

who combines a global linear deformation (captured by

a FE model) with a non linear local contact deformation

described by means of an analytic formula for finite
length line contact (proposed by Ding and Zhang [7]).
The main difference with respect to the method [1] lays
in the boundary conditions of the partial FE model used

to correct for the local deformation. As shown in Fig.
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Computed using a coarse FE model

Distributed load act-
ing on the gear

Concentrated load
acting on the gear
(globally correct, but
locally wrong solution:
principle of Saint-
Venant

Computed using
an analytical solu-
tion (Weber and
Banaschek)

Concentrated load
acting in the opposite
direction on a slice of
the gear (to remove
the locally incorrect
solution)

Distributed load act-
ing on a slice of the
gear (locally correct
solution)

Fig. 2: The approach of Andersson and Vedmar.

3, the surfaces in orange are clamped while the load

is applied on the right tooth flank. The dependency of

the local deformation from mesh size and partial model

boundary conditions remain an unsolved issue in [1,5].

Differently from [1] or [5], Vijayakar [25] proposes

a method where the FE solution and the analytic con-

tact model are solved simultaneously at each time step.

Numerical and analytic solutions are matched at the
matching surface by solving a least-squares problem.

Between the matching surface and the force location,

Vijayakar uses the Boussinesq’s analytic solution for

point load to describe the displacement field, while the

numerical solution is considered to be valid in the re-

maining part of the gear .

1.3 Flexible multibody models for gear contact

problems

Other authors modelled gears as flexible bodies in a

multibody environment, where the use of conventional

FE to represent flexible bodies can be rendered prac-
tical with the aid of model order reduction (MOR)
techniques. Using the floating frame of reference for-

mulation [19, Chapter 5.6], the linear elastic deforma-

tion of a flexible body is separated from the gross non-

linear motion of its body reference, thus allowing linear

MOR techniques to be applied for reducing the number

of elastic DOFs of the body. However, these methods

cannot readily be applied to general contact problems

to yield computationally efficient reduced-order mod-

els (ROM): contact problems in multibody dynamics
are characterized by significant variations in the loca-
tion and size of the contact area and for a flexible body
discretized using FE, this implies a multitude of pos-

sibly although not necessarily simultaneously loaded

DOFs. Furthermore, as contact interactions generally

involve steep stress gradients and relatively small vol-

umes of stressed material, highly refined meshes are
mandatory to capture correctly these stress fields. The
multiple input - multiple output (MIMO) behaviour of
the multibody-contact problem poses considerable dif-

ficulties to classical model reduction techniques, such

as the traditional CMS [6].

In this respect, some authors have proposed new

procedures for the analysis of dynamic contact prob-

lems: the first successful attempt has been done with

the static modes switching (SMS) method [11] where a
discontinuous reduction space has been used to achieve
accurate contact forces with a limited computational
burden. Such method has been applied to the gear con-

tact problems by Tamarozzi et al. [23] showing the

applicability to examples of industrial relevance but

posing some questions regarding the discontinuous be-

haviour of the reduction space. Particularly suitable to
deal with loads moving across model boundaries are
parametric model order reduction (PMOR) techniques,
where the location of the contact force is parametrized

in the full-order model and the parameter dependency
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Computed using a coarse FEM Computed using
the analytic so-
lution of Ding and
Zhang [7] (finite
length - line contact)

Fig. 3: The approach of Chang.

is preserved throughout the reduction process. Relevant
is the work of Blockmans et al. [3], where a PMOR
scheme is developed and applied to gear contact prob-
lems. [3] uses a reduction space that consists of a trun-

cated set of eigenvectors augmented with a parameter

dependent set of static shape vectors. The static shape

is computed by interpolating among a set of displace-

ment modes of the interacting bodies obtained from a

series of static contact analyses. The interpolation of

these displacement modes is based on the parameter(s)

describing the rigid-body configuration of the multi-

body system. In the field of bearing analysis, Fiszer et

al. [8] proposes to combine the aforementioned PMOR

technique with a semi-analytic contact model similar to

the one described in [1]. The total deformation is sep-

arated in the global deformation of the rings and their

support, represented by a parametrically reduced order

model, and the non-linear local Hertzian deflections at

the contact zone.

1.4 Contribution and structure

This work proposes a parametric model order reduc-

tion technique combined with a semi-analytic contact

model. The combination of these two methods allows

to overcome the main limitations of a standard pe-
nalty approach for describing the contact condition.
First, we can describe the bodies’ deformation using
a much lower number of DOFs since the local contact

deformation is described by means of an analytic for-

mulation. This allows to assemble particularly light re-

duced order models, with a significant gain in compu-

tational speed. Second, the dynamic contact problem
using a semi-analytic model is characterised by a lower
numerical stiffness as compared to standard non-linear

FE with penalty formulation. As consequence, we can

use a larger simulation time step while maintaining the

same level of accuracy. Since in literature a systematic

study on the assumptions which lay as foundations of
semi-analytic contact model is not present and several
key-issues remain not answered, in this paper we pro-

pose a novel approach that respects the physic of the

contact problems. We compare the methodology with

the semi-analytic methods often applied to gear con-

tact problems, questioning their assumptions. We also
implement a semi-analytic contact model in MUTANT
(MUltibody Transient ANalysis of Transmissions - a
code for gear dynamic problems) [13] and we apply it

to spur and helical gears simulations. We validate static

results against experimental data available in the litera-

ture, showing an excellent capability of capturing quan-

titative relevant behaviour such as static transmission
error for different torque levels. Finally, we compare the
obtained dynamic results with numerical results of the
same parametric reduction scheme combined with stan-

dard penalty approach. The method used as reference

in this case has been already presented and validated

in [3].

The remainder of this paper is structured as follows.
In Sec. 2, we describe the semi-analytic contact model:

we discuss in detail how to combine analytic and numer-
ical solution, comparing the proposed method with the
models available in literature. In Sec. 3, we present the

PMOR scheme, focusing on the definition of the reduc-

tion space and the interpolation of the static vectors.

Sec. 4 deals with the integration of the semi-analytic

contact model in the PMOR technique and Sec. 5 with

its numerical implementation strategy. Finally, in Sec.

6, we propose the results of the novel methodology vali-

dated by means of comparison with both numerical and

experimental data.
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Analyzed by
analytic solution

Distributed load
acting on the gear

Finite model with
applied load cut out

from an infinite region

Discretized by Fi-
nite Element Model

Finite model with-
out applied load

F F

u = 0 u = uan

+σan

u = −uan

−σan−σan

Fig. 4: Combined analytic-numerical model.

2 Semi-analytic contact model

In this section we discuss the combination of an ana-

lytic formula with a numerical model for describing the

contact condition. The section is divided in two parts

as follows. The first part presents a novel theoretical

method for combining analytic and numerical models:

such a solution not only respects the boundary condi-

tions of the given structural problem but also ensures

continuity with respect to stresses and displacements.

The second part addresses the method implemented in

this work for combining analytic and numerical model.

The method is compared against the novel theoretical

approach as well as other solutions proposed in liter-

ature in order to analyse its physical limitations and

accuracy.

2.1 Theoretical method for combining analytic and

numerical model

The basic idea of combined numerical-analytic methods
( [25], [1] and [5]) consists in describing the solution of a

given structural problem as combination of a numerical
and an analytic solution allowing to obtain continuous
displacement and stress fields which respect the bound-

ary conditions of the original problem. The example

shown in Fig. 4 can be taken as reference study case

to illustrate the procedure: the actual problem on the

left-hand side of the Fig. 4, shows the reference body,

subjected to a contact force on the left face and essen-

tial boundary conditions on the bottom surface. The

consequent deformation can be modelled as sum of a

numerical and an analytic displacement field (Fig. 4 -

right side). This approach is shared by several authors

( [1, 5]) and differs mainly for the spatial region exten-

sion where the analytic solution domain is considered

valid (i.e. how far from the contact force location the
analytic solution is still valid). Indeed one key-issue of
the method consists in avoiding that the numerical so-
lution describes the same deformation effect captured

by the analytic model and that the sum of numerical

and analytic solutions correctly represent the initial de-

formation field.

Closed form expressions of displacement and stress

fields under an applied load are available in the liter-

ature (analytic models), but they are mathematically

derived assuming that the body is of infinite exten-

sion (half space (Boussinesq) or infinite length(Hertz)).

When such analytic expressions have to be combined

with a numerical model of finite dimension, their do-
main has to be relegated to a finite region as well. It may
be noticed that, when a finite (analytic) sub-region is
cut out from the initial infinite (analytic) domain (Fig.

4 right), the analytic stress and displacement functions
do not respect the new domain boundaries any more:
for example stresses or displacements are identified also

on surfaces respectively free or clamped in the actual

problem.

The aim of the proposed method, inspired by acous-

tic applications, is to allow combining numerical and



6 Niccolò Cappellini et al.

analytic models (Fig. 4 - right side) while respecting

the (physical) initial problem boundary conditions and

to ensure continuity of displacement and stress fields.

Steps for implementing a combined numerical-analytic

contact model.

1. Identify and isolate the two bodies in contact.

The element shown in Fig. 4 (left side) represents

schematically one of the two bodies in contact, i.e.

one of the two gears, where the “physical” boundary

conditions are applied (see point 4).

2. Choose the analytic formula to describe con-

tact load and deformation field. In a semi-analytic
contact model, one assumption consists in the a pri-

ori known load distribution on the body during con-
tact. The analytic formula that describes the ap-
plied force and the consequent body deformation

field must be known, but the process steps remain

the same regardless the chosen specific formula.

3. Create the FE model. The body of Fig. 4 is dis-
cretized by means of FE mesh: the total displace-

ment field of the actual problem is evaluated at the
FE nodes locations and it is identified by the vector
u. It can be calculated as follows:

u = ufe + uan (1)

where the vector ufe represents the nodal displace-

ments of the FE model, while uan describe the ana-

lytic displacement field uan(x), function of the spa-

tial coordinate x, evaluated at the FE nodes loca-

tion. Similar to the calculation of the displacement
field, the stress field can be calculated as following:

σ = σfe + σan (2)

4. Impose the bodies boundary conditions. The

boundary conditions for a body subjected to contact
forces can be represented by the example of Fig.
5: here the element boundary domain Ω has been

divided in three regions as follows:

– Γ, where the essential boundary conditions on

displacements are applied ;
– Π, where the natural boundary conditions on

loads are applied;
– Θ, identified as Ω − (Γ ∪Π).

The natural boundary conditions on the loaded sur-

faces are imposed by the chosen contact formula (see

point 2.), while the essential boundary conditions

are dictated by the physics of the problem.

Regardless of the particular analytic contact formu-

lation, the following system of equations describes

Fig. 5: Boundary conditions scheme of the actual prob-
lem.

the developed approach and its solution provides a
continuous displacement and stress field:

Model

{
u = ufe + uan

σ = σfe + σan

B.C.





uΓ = ûimposed

imposed disp. (essential B.C.)

σΠ = σ̂imposed

imposed loads (natural B.C.)

σnΘ = 0

normal stresses null on

external (free) surfaces

(3)

5. Derive the numerical boundary conditions.

In this example the numerical model is a linear

FE model, characterized by constant mass Mfe and
stiffness Kfe matrices. Since the analytic displace-

ment and stress fields (uan and σan, respectively)
are known from the chosen contact formula, the un-

known ufe is calculated solving the equations system

3 as following:

Modelfe

{
ufe = u− uan

σfe = σ − σan

B.C.fe





ufe
Γ = uΓ − uan

Γ

σfe
Π = σΠ − σan

Π

σfe
nΘ = 0− σan

nΘ

(4)

Without loss of generality and for sake of exposition,

we can assume that the initial model of Fig. 5 is

clamped at Γ , so uΓ = ûimposed = 0:

ufe
Γ = uΓ − uan

Γ = −uan
Γ (5)

In this way, the numerical model boundary con-
ditions ufe

Γ , once combined with the analytic dis-

placement field calculated on Γ , respect the original
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model boundary conditions uΓ .

The same concept is applied to the natural bound-
ary conditions and since the load in the original
model coincides with the analytic forces distribu-

tions (σΠ = σan
Π ), the load on the numerical model

σfe
Π is:

σfe
Π = σΠ − σan

Π = 0 (6)

Finally, the numerical stress field on the free sur-

faces Θ can be calculated from the last Eq. of sys-

tem 4. The numerical stress field is necessary to bal-

ance the analytic stress field on the analytic domain

boundaries and will cause the FE model to deform

(see Fig. 4). As result, the initial model physical

condition of null normal stress on the free surfaces

are satisfied.

σfe
nΘ = −σan

nΘ (7)

By integrating σn
fe
Θ on the surface we can calcu-

late the nodal forces Ffe
Θ of the numerical model.

With these forces and the boundary conditions of

Eq. 5 we can solve the numerical model and obtain

as a solution the part of the deformation of the ini-

tial problem (Fig. 4) not captured by the analytic

model.
6. Solve the numerical displacements field. From

Eq. 5,6 and 7, the following set of Eq.s 8 can be

derived:


KΓΓ KΓΠ KΓΘ

KΠΓ KΠΠ KΠΘ

KΘΓ KΘΠ KΘΘ




︸ ︷︷ ︸
Kfe





ufe
Γ

ufe
Π

ufe
Θ





︸ ︷︷ ︸
ufe

=





Ffe
Γ

Ffe
Π

Ffe
Θ



 (8)

where the unknown displacement vector ufe and the

matrix Kfe have been partitioned following the sur-

faces definition above. The vector ufe
Γ is directly

solved by using Eq. 5 while the forces vector [FfeT
Π FfeT

Θ ]T

of system 8 is computed from Eq.s 6 and 7 by in-

tegrating on the FE surfaces. The unknown part of
ufe ([ufeT

Π ufeT
Θ ]T ) can be computed by:

{
ufe
Π

ufe
Θ

}
=

[
KΠΠ KΠΘ

KΘΠ KΘΘ

]−1 {
Ffe

Π

Ffe
Θ

}
− (9)

[
KΠΓ

KΘΓ

] {
ufe
Γ

}

The displacements vector ufe = [ufeT
Γ ufeT

Π ufeT
Θ ]T

is computed from Eq.s 5 and 9. Such vector, com-
bined with the analytic displacement vector uan, re-

spects the initial problem boundary conditions en-
suring continuous displacement and stresses fields

(see Eq. 1 and Eq. 2) and is such that u = ufe+uan

as requested.

In case of dynamic gear contact problem, the pre-

sented method implies to integrate Eq. 7 on a highly
non-regular domain where the force location and dis-
tribution changes in time. Moreover it is necessary to

modify Eq. 8 in order to take into account the body in-

ertia effects and the contact condition has to be solved

at each time step. This makes the computational cost

particularly high. However the method remains suitable
for problems where the body domain is regular and it
is the only method that assures a continuous stress and

displacement field.

2.2 Global attachment modes set

An attachment mode is defined by [6] as the displace-
ment vector obtained by applying a unit load to a se-
lected degree of freedom. In this work, we define as

Global Attachment Mode the deformation patter ob-

tained by applying a unit load to a certain degree of

freedom and discarding the local deformation that oc-

curs in proximity of the force location. In order to ex-

tract only the global displacement field, the method
proposed by Chang [5] has been used in this work and
further developed within the MOR technique (see Sec.

4.3). Therefore the global displacement vector ufe of

Eq. 1 is calculated as

ufe = ufe
total + ufe

partial (10)

Looking back at the system of Eq. 3, it is already clear
that this approach does not ensure a continuous stress

field. The two displacement fields ufe
total and ufe

partial are
calculated using the FE model shown in Fig. 6, which

has the base clamped in the total model and a clamped

vertical section in the plane YZ in the partial model,

perpendicular to the force direction and located at a

distance h from the force application point. When the
two FE deformation fields, total and local, are summed

together, the displacement gradient present in the local
model nearby the clamped section, introduces a stress
field in the global model that has no physical mean-

ing. The global model should indeed capture stress and

deformation due to the body bending and no residual

of the local deformation should be present. However,

by moving the clamped section further from the force

location, the stresses introduced in proximity of the
clamped surface have a lower magnitude than in the
other cases. It is indeed one of the goal of this article

to evaluate quantitatively the influence of the clamped

section in the partial model. Nevertheless also by vary-

ing the position of the clamped section, the method

does not respect the condition of Eq. 3 necessary for

obtaining a continuous stress field. By means of model
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Fig. 6: Total and partial model used to compute the global displacement field of Eq. 10.

shown in Fig. 6 we evaluate the influence of the distance

h between the force location and the clamped section

in the partial model. The position of the clamped sur-

face determines indeed the main difference between the

methods proposed by Chang and Andersson-Vedmar.

Figures 7 and 8 illustrate the effects on the stress

field of the position of the clamped section used in

the partial model. In particular we propose three cases

where the clamped section is gradually moved further

from the force location and we plot the stresses in the

same direction of the applied force as well as the von

Mises stresses. In each plot we can observe the the stress

field of the globally deformed body that should have a

component only in proximity of the body base (due

to the bending). However, the use of a sub-model to

eliminate the local deformation component implies the
presence of a residual stress in proximity of the vertical
clamped section. The magnitude of such induced stress
becomes less relevant compared to the bending stress

value by increasing the distance h between the clamped

section and the force location. It can be concluded that
the accuracy of the method on a stress level depends

on the distance of the clamped section from the force
application point and from the mesh size. Neither the
solution proposed by [25] ensures a continuous stress
field and its computational time, although less expen-

sive than high-fidelity FE models, is much higher than

the approaches proposed by [1] or [5]. In term of ac-

curacy on the stress field, the limitations of the me-

thod proposed by [5] are overtaken by the numerical

advantages in the gear application case. Moreover, the

level of introduced von Mises stress in correspondence

of the clamped surfaces is less than 5% of the stress

level at the tooth root (due to the bending). This makes

the former negligible even if non-physical. Finally, von

Mises stress analysis is generally used in gear appli-

cations for evaluating durability and failure prediction

during a post-processing phase. However, in the final

part of this work, we assess the accuracy of the combi-

nation of semi-analytic contact model with MOR tech-

nique through the analysis of Transmission Error. This

quantity is influenced mainly by the accuracy on a de-

formation level of the contacting tooth. In this respect,

we show in Sec. 6 that eq. 10 provides a sufficient level

of accuracy.

3 Paramentric Model Order Reduction

Technique

The PMOR technique considered in this section has

been developed by [3], starting from the work of [22],

as an adaptation of the traditional CMS approach. The

method exploits a reduction space consisting of a trun-

cated set of eigenvectors augmented with a parameter-

dependent set of static shape vectors. Such static vec-

tors are obtained by interpolating among a set of global

contact shapes, which represent the displacement modes

of the interacting bodies obtained from a series of static

contact analyses.

3.1 Reduction Space

The PMOR scheme adopted here belongs to the class of

projection-based methods. In general, the aim of MOR

techniques is to reduce the number of DOFs of the full-

order model. In this case, the number n of nodal DOFs
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Fig. 7: Stress field in the globally deformed body
calculated in x-direction varying the position of the
clamped vertical section.

Fig. 8: Stress field in the globally deformed body cal-
culated at the element centres (von Mises) varying
the position of the clamped vertical section.

of the Full Order Model (FOM) of the gears, discretized by means of the Finite Element Method, can easily
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reach up to n ≈ 105÷6, far too high to be integrated

dynamically in an efficient manner. In order to alle-
viate the computational cost, the nodal displacements
vector of the i−th gear, indicate by ui

f ∈ R
n×1, is ap-

proximated by a vector of lower dimension as follows:

ui
f ≈ Viηi (11)

where Vi ∈ R
n×nη is the model reduction space and

ηi ∈ R
nη×1 is the generalized elastic coordinates vector.

The reduction space Vi, used to reduce the model, is

composed by two components:

Vi = [Φi Ψi] (12)

where Φi indicates a set of eigenvectors, truncated in
order to capture the dominant physic of the problem,

while the computation and interpolation (based on the
rigid-body configuration of the multibody system) of
the parameter-dependent set of static shape vectors Ψi

are explained in the next paragraph.

3.2 Global contact shape calculation

A global contact shape Si is defined as the displace-

ment mode of the i−th meshing gear obtained from a

static contact analysis of the gear pair, locked at a cer-

tain configuration and experiencing a defined external

torque. At each angular position and applied torque

will correspond a certain global contact shape. In or-

der to calculate a global contact shape, the following

non-linear system has to be solved:




0 0 0

K1
FE 0

sym. K2
FE







θ1
u1
f

u2
f



 =





T 1

0T

0T



+QC (13)

where S1 = u1
f and S2 = u2

f , QC represent the con-
tact force vectors and it is calculated by means of a pe-

nalty contact formulation. Finally KFE identifies the
FE stiffness matrix of the i−th gear. The solution of

the system of Eq. 13 corresponds to the static equilib-

rium of the two gears in contact with each other, given

their angular positions (in cinematic condition) and the
applied external torque (T 1). The unknowns θ1, u

1
f and

u2
f correspond respectively to the angle of the gear 1

(driving gear) and the displacement modes of gear 1 and

2 at static equilibrium. When the static equilibrium is

reached, the unknown θ1, due to the gears deformation,

is different from the cinematic angle of gear 1; the angle

θ2 of gear 2 (driven gear) is instead held fixed.

By evaluating the system of Eq. 13 for different an-

gular positions nθ of the gear pair and different torques

nt applied to the driven gear, the set of static shape

vectors Si is assembled. Multiple levels of torque en-

sure that the non-linear relationship between applied

torque and resulting nodal displacements is properly

captured. The result is a set of ns = nθ × nt global
contact shapes. For more details about the choice of nθ

and ntwe refer the interest reader to [3]. Finally, in or-

der to obtain dynamic decoupling between the elastic

coordinates corresponding to Si and Φi, the global con-

tact shapes obtained from the system of Eq. 13 must be

made residual with respect to the vectors Φi. In such

case it can be shown [23] that the resulting global con-
tact shapes satisfy the following relations:

Φi TM i
FES

i = 0 , Φi TKi
FES

i = 0 (14)

where MFE represents the FE mass of the ith gear.

3.2.1 Interpolation of the global contact shapes

The static shape vectors Ψ i are obtained by interpolat-

ing among the set of global contact shapes Si, based

on the current configuration of the gear pair.
The PMOR method is not restricted to a specific in-
terpolation scheme. In this work a linear interpolation

scheme has been used to construct the static shape vec-

tors. Denoting the global contact shapes correspond-

ing to θi = θis by Si
s and the ones corresponding to

θi = θis+1 by Si
s+1, the matrix of static shape vectors

Ψ i at an intermediate angle θ̄i can be defined by using
the following linear interpolation formula:

Ψ i = (1− p)Si
s + pSi

s+1 ∈ R
n×nt (15)

where p is a parameter depending only on the angular

position θi of the gear. The relation between p and θ̄i

is linear and can be written explicitly as

p =
θ̄i − θis
θis+1 − θis

=
θ̄i − θis
∆θi

(16)

where the angular increment △θi is defined as ∆θi =

θis+1 − θis. Hence, the parametric reduction space V i

that underlies the presented PMOR technique is com-

posed of a constant set of eigenvectors Φi and a confi-
guration -dependent set of interpolated global contact

shapes ψi(θi):

V i(θi) =
[
Φi Ψ i(θi)

]
=

[
Φi (1− p(θi))Si

s + p(θi)Si
s+1

]

(17)
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4 Semi-analytic contact model in a parametric

model order reduction scheme

This section illustrates the procedure for combining the

semi-analytic contact model together with the PMOR

technique presented in the previous section. In the first

part, an overview on the calculation of the standard

global contact shapes by means of a ROM is given;

such ROM problem is modified in the second part in
order to separate the local contact deformation from
the gear total deformation. Finally, the ROM is com-

bined with a Hertzian contact model for calculating the

contact forces and a new basis for the PMOR scheme

is assembled.

4.1 The ROM for calculating the global contact shapes

In the standard PMOR technique, the system of non-
linear equations (Eq. 13) necessary for calculating the

set of global contact shapes is solved by means of a

statically complete ROM in order to limit the over-

all cost of the computation [22]. The reduction of the

FOM is performed with a standard CMS method, where

the reduction space ψi
CMS ∈ R

n×nc contains one static
attachment mode for each nodal degree of freedom j

(j = 1...nc) that can be possibly loaded during the com-

putation of the shapes (hence all the nodes on the gears

flanks that can go in contact). Each attachment mode

represents the displacement vector calculated when the

corresponding degree of freedom is loaded.

The matrix ψi
CMS is used to transform Eq. 13 to an

equivalent system of reduced dimension as follow:




0 0 0

K1
CMS 0

sym. K2
CMS







θ1
u1
CMS

u2
CMS



 =





T 1

0T

0T



+ Q̃pen

(18)

where:

Ki
CMS = ψiT

CMSK
i
FEψ

i
CMS ∈ R

nc×nc (19)

and the vector ui
CMS represents the modal participa-

tion factors of the reduction space ψCMS . The pro-

jected contact forces Q̃pen are calculated by project-

ing the physical contact forces on the reduced space;

the physical forces are calculated by means of a stan-

dard penalty formulation, so by multiplying the pene-
tration gap between the teeth in contact by a chosen

penalty factor. Indications about how to choose the pe-

nalty factor are given in [23], that generally should be 2

order of magnitude stiffer than the bodies involved into

contact. Finally the linear combination of the modal

participation factors ui
CMS , calculated by solving the

system of Eq. 18 at a certain angular position and

torque level, is used to compute one displacement mode

Si
s = ψ

i
CMSu

i
CMS .

4.2 The new reduction space for the ROM problem

In the proposed method, the calculation of contact forces

and reduction space of the ROM are modified with re-

spect to the scheme illustrated previously. The proce-

dure to calculate the new reduction space of the ROM

consists in the following steps:

1. Calculate ψi
glob, the global attachment modes

setA global attachment mode is defined as the static

displacement vector of the system when a certain

DOF is subjected to a unit load but excluding the lo-

cal deformation close to the load application point.

The procedure to extract the local deformation is

explained in Sec. 2.2. Then the new set includes

one mode for each nodal DOF that can possibly be

loaded during the computation of the shapes (for

each gear). The result is a mode set that describes

the tooth bending and shearing for each possible

force input location.

2. Calculate the new reduction space ψi
sv of the

ROM. The matrix ψi
glob contains all the global

attachment modes but, in this case, the displace-

ment vectors represented by such modes describe

“almost” the same physical phenomena. Therefore

a singular values decomposition (SVD) is performed

in order to avoid having badly conditioned reduced

matrices. The result is the matrix ψi
sv ∈ R

n×nsv ,
whose dimensions are significantly lower with re-

spect to the above -mentioned standard ψi
CMS ∈

R
n×nc , reducing drastically the numerical complex-

ity of solving Eq. 18. The procedure to assemble the

new reduction space ψi
sv is illustrated in Tab. 1.

The number nsv of retained SVs is selected by means

of an energy-based criterion (as explained in Tab. 1)

in order to conserve a user-defined percentage pen of

the system deformation energy. The new projection ma-

trix ψi
sv is used to reduce the FOM problem, obtaining

an equivalent system of reduced dimension shown in

Eq. 23. By solving such system, the unknown modal
participation factors ui

sv can be calculated for a cer-

tain angular position and torque level. Finally they will

be used to construct a new displacement modes set as

Si
s,sv = ψi

svu
i
sv and the new global contact shape is cal-

culated by interpolating within the displacement modes

set.
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Table 1: SVD process.

Algorithm 1 Procedure for selecting the SVs and assembling ψi
sv

Input: set of global attachment modes ψi
glob ∈ R

n×nc

Output: reduction space ψi
sv ∈ R

n×nsv

1. Compute Ki
r = ψiT

globK
i
FEψ

i
glob, where Ki

r ∈ R
nc×nc

2. Compute U i, Σi ∈ R
nc×nc where Ki

r = U iΣiV i∗ is the singular values decomposition of Ki
r

3. Find nsv, such that

√∑nsv
i

σ2

i√∑nc
i

σ2

i

< pen

100
, where σ = diag(Σi) and i = 1, ..., nsv, ..., nc

4. Define Ũ
i
∈ R

nc×nsv by extracting the first nsv column vectors of U i

5. Compute ψi
sv = ψi

globŨ
i
∈ R

n×nsv

Fig. 9: Classic penalty approach (left) and semi-analytic

contact method (right).

4.3 Contact force calculation

As first step of the implemented semi-analytic contact

model within the PMOR technique, the local contact
deformation has been separated from the numerical so-
lution. Hence, the new global contact shape, calculated

from Eq. 23, describes the gear body deformation as

well as the teeth bending and shearing, without tak-

ing into consideration the local deformation in corre-

spondence of the contact points. This part of the defor-

mation is described by the contact model and used to
calculate contact forces and local stress field.

In this case the contact forces cannot be calculated

by imposing a non-penetration condition for the teeth
flanks, like in the classical penalty approach for contact
problem (by using for example the Signorini’s condi-

tion [27, Chapter 5.1]). If so, the two gears would be

able neither to penetrate each other nor locally deform,

resulting in an overestimation of the total contact stiff-

ness. Therefore the contact model has to allow a certain

penetration between the teeth flanks: such penetration

gap has to match the local deformations of the teeth

flanks that are not captured by the numerical ROM

(and represented by the red area on the right-hand side

of Fig. 9).

The output contact forces are calculated starting

from the penetration gap between the teeth flanks. The

Fig. 10: Contact between two cylinders with parallel

axes [18].

contact model uses a formula (Eq. 20) derived from the

Hertz theory by [10, Chapter 6.3] in case of parallel
axes cylinders in contact with each others (with ideal
line contact) 1 :

α =
2P

πl

(1− ν21
E1

+
1− ν22
E2

)
· (20)

ln
[πl2
P

( 1

R1

+
1

R2

)(1− ν21
E1

+
1− ν22
E2

)−1]

where α represents the amount of penetration due to

the force P , R1 and R2 the curvature radii of the cylin-

ders at the contact location, l the contact length while
(ν1, E1) and (ν2, E2) identify respectively the Poisson’s

ratio and the Young’s modulus of the two cylinders ma-

terials. In the implemented method, the Eq. 20 is nu-

merically inverted in order to find from the penetration

gap α the output force P . The amount of penetration

gap is computed by a contact detection algorithm that
is illustrated in section 5.1. Moreover the teeth axial

width is divided in sections according to the axial sec-
tions of the finite elements model and the contact forces

1 In the remainder of this paper we will refer to α and P
of Eq. 20 respectively as Hertz-penetration gap and Hertz-
contact force.



Semi-analytic contact technique in a non-linear parametric model order reduction method for gear simulations 13

are calculated on all the sections where the contact oc-

curs. Therefore in this model there is no coupling be-

tween the slices in the local effect, which is a fair as-

sumption due to the exponential decay of the local de-

formation from the location of the applied force [12,

Chapter 2.1]. Finally the contact force distribution can

be calculated according to the Hertz hypothesis:

p =

√
2P

πl

(1− ν21
E1

+
1− ν22
E2

)−1( 1

R1

+
1

R2

)
(21)

The distribution p is integrated in the numerical model

along a rectangular domain of size l × 2β, where l is

the half-section length and β is the semi-width of the

contact surface. The latter is calculated from [10, Chap-

ter 6.3] as following:

β =

√
4P

πl

(1− ν21
E1

+
1− ν22
E2

)( 1

R1

+
1

R2

)−1

(22)

In such manner there are no a-priori assumptions of

constant pressure distribution along the whole tooth

flank, but only within each axial slice in contact. The

result is a set of nodal physical contact forces. As final

remark, the variables of the contact Eq. 20, such as

radii of curvature and contact length that depends on

the current contact location, are evaluated considering

the geometry of the globally deformed bodies.

4.4 New Reduction Space

The new global contact shape can be calculated by solv-

ing the ROM problem of Eq. 23.



0 0 0

K1
sv 0

sym. Ksv

2







θ1
u1
sv

u2
sv



 =





T 1

0T

0T



+ Q̃hertzian (23)

The system has been reduced with the matrix ψsv,
that together with Ki

sv and ui
sv, is presented in sec-

tion4.2. The projected contact forces are calculated as

Q̃hertzian = ψT
svQhertzian, where the computation of

the physical contact forces Qhertzian is illustrated in
section 4.3. The results is a new set of displacement

modes, each calculated as Si
s,sv = ψi

svu
i
sv, varying an-

gular position and torque level. As in Eq. 12, the reduc-

tion space can be written as by interpolating among the

displacement modes set Si
sv:

Ṽ
i
= [Φi Ψ i

sv(s)] (24)

The number of DOFs of Ṽ
i
is the same as V i of the

PMOR scheme presented initially (Eq. 12), but there
are consistent computational advantages in both assem-
bling (pre-processing) and using (processing) the new

proposed reduction matrix that will be illustrated in

the next section.

5 Computer Implementation

The implementation of the PMOR technique combined

with a semi-analytic contact model is discussed. The

main features of the method are illustrated in this sec-

tion, and applied to two gear pairs in sections 6.1 and

6.2. In order to perform a dynamic simulation using

such scheme, a phase of pre-processing, processing and

post-processing is required. During pre-processing phase

the basis matrices Ṽ
i
of Eq. 24 are computed and, mak-

ing use of such matrices, the equation of motions are

reduced and solved in the subsequent processing phase.

5.1 Pre-processing phase: computing the basis

matrices

In the pre-processing phase the basis matrices Ṽ
i
of

Eq. 24 are assembled after calculating eigenvectors and

global contact shapes of the two gears. The required

steps to their computation are illustrated in the flowchart

of Fig. 11. The inputs to this phase are the FE mass

and stiffness matrices (M i
FE and Ki

FE) and the corre-
sponding vectors of the undeformed nodal coordinates

(ui
0), while the inner bores of the two gears are con-

strained to the center points by means of rigid mul-

tipoint constraints. The eigenvectors Φi ∈ R
n×nk of

the two gears correspond to the nk lowest eigenfre-

quency retaining their center point fixed. The global

contact shape Si is defined as the gear static defor-
mation for a fixed angular configuration and under an

applied torque: each combination of T i and Θi repre-
sents a sampling point of the parametric model order

reduction scheme. In the present work, the global con-

tact shapes are computed for a set of external torques,

typically 2 or 3, while the angular sampling points are

selected equidistantly along one angular pitch of the

driving gear, taking advantage of the symmetry of the

gears. The set of global contact shape is computed us-
ing a ROM model and a semi-analytic contact model
(see section 4.2). Due to the use of the modified CMS

approach proposed in this work, the local deformation

is separated by the rest of the deformation of the ROM

(and captured by the analytic contact model), further

reducing the computational effort of solving the FOM.

Eq. 23, that corresponds to the ROM problem, is solved

iteratively for a particular combination of T i and θi.

Within each iteration a sub-loop is necessary to com-

pute the contact forces due to the non-linear nature of

the analytic contact model. The loop starts from the po-

sition of the non-locally deformed gears for evaluating

the local contact parameters characteristic of Eq. 20,
such as curvature radii and length of contact. Then,
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using Eq. 20 and Eq. 22, the contact pressure distri-

bution is calculated and integrated on the FE model

to obtain the nodal contact forces of the FOM. Such

forces are projected on the ROM space and Eq. 23 can

be solved.

Once the global contact shapes have been computed,

a mass orthonormalization procedure is performed to

make these vectors residual with respect to the set of

kept eigenvectors, Φi, in order to allow faster inversions

of the reduced matrices in the processing phase. A de-

tailed description of this procedure can be found in [3],

as well as the procedure to calculate the mass and stiff-

ness invariants of the gears. These data, along with the

eigenvectors and global contact shapes of the gears, are

sent to the processing phase of the simulation.

5.2 The processing phase: solving the equations of

motion

The steps for efficiently solve this system have been

illustrated by Blockmans et al. [3], hence only the new

implemented contact model will be explained in this

section. The equations of motion of the gear pair have

the form of a system of non-linear second-order ordinary

differential equations and they can be written in the
following form:

M i(q)q̈i +Kiqi = Qi
e(q, t) +Q

i
c(q) +Q

i
v(q, q̇) (25)

where qi represents the vector of generalized coordi-

nates of the i-th gear, defined as:

qi
T
= {θi ηiT } ∈ R

1×nq (26)

The vectors Qi
e, Q

i
c represent respectively the external

and the contact forces2, while the quadratic velocity

vector, which contains the gyroscopic and Coriolis force

components, is defined as

Qi
v = −Ṁ

i
q̇i +

1

2

[
∂

∂qi
(q̇i

T

M iq̇i)

]T
(27)

The inputs to this phase consist of the initial conditions

qi(0) and q̇i(0), the external loads Qi
e(t) and the data

computed during the pre-processing phase, that is the

mass invariants and basis vectors [19, Chapter 5.6]. In

order to solve system of Eq.s 25 by means of an ex-

plicit fourth-order RungeKutta solver [2, Chapter 4.2],

2 In the remaining of this paper the q-dependence of the
matrices and vectors in Eq. 25 are implied for notational con-
venience.

the previous equations are converted into a first-order

system as following:

ẏi =

{
q̇i

q̈i

}
=

{
q̇i

M i−1

{Qi
e +Q

i
c +Q

i
v −K

iqi}

}

∈ R
2nq×1 (28)

where the state vector yi is twice the size of the vector

of generalized coordinates qi.

During the processing phase, the rigid-body parameters

needed for interpolating among the set of pre-computed

global contact shapes are calculated. By means of those

parameters the reduction basis V of equation 11 is in-

terpolated. Next, the right-hand side of Eq. 28 is con-

structed. The contact forces Qi
c are computed by using

the contact model presented in section 4.3. The pre-

sented method requires the inversion of a non-linear

equation to find from the penetration gaps the corre-
sponding distributed contact forces. As consequence,
the computational cost for solving each time-step is

higher with respect to a standard penalty-based con-

tact algorithm. Despite this, the numerical stiffness of

the problem, the ratio between contact force and pen-

etration gap in the new contact model is much lower

(at least two orders of magnitude) than the penalty

factor generally used in a standard penalty approach.

The ratio between contact force and penetration gap

could be defined as a new penalty factor, that is in this

case based on the physic of the problem and derived by

the Hertz theory and it is not a numerical expedient to

approximate the Signorini’s conditions. The lower mag-

nitude of the physic-based penalty factor allows the use

of an higher time step for the solver with a consequent

consistent gain in the computational time required in
dynamic simulations. An example is shown in section
6.2, where the proposed approach is compared with
the method developed by [3] and already validated by

means of numerical comparison against full order FE

simulations. In both cases, the dimensions of the dy-

namic problem are dictated by the reduction basis V

of Eq. 11, so they do not depend on the chosen method

(standard-penalty approach or Hertz based penalty for-

mulation) but on the selected number of global contact

shapes and retained normal modes (as explained in sec-

tion 3.1).

6 Numerical Results

In this section the proposed PMOR technique com-

bined with a semi-analytic contact model (combined

PMOR-Hertz) is applied to several gear contact ex-

amples. Results are analyzed with respect to accuracy
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Start

Compute Global at-
tachment modes

Compute Singular Value
Decompostion, as in Tab.1

Loop over all
sampling points

Compute the static
vectors using Eq. 23

All sampling
points evaluated?

Compute eigenvectors

Orthonormalize
global contact shapes

End

Evaluate local con-
tact parameters

Evaluate the penetration
gap between the gear teeth

Calculate the contact forces
and the load distribution

Compute the physical
forces by integrating
the load distribution

M i
FE ,K

i
FE

Si
sv ∈ R

n×ns

ψi
sv ∈ R

n×nsv

θi, T i

Si
s,sv ∈ R

n×1

No

ψi
glob ∈ R

n×ncΦi ∈ R
n×nk

V i

Qi
hertzian

Ri, li

αi

Fi, βi, pi

Fig. 11: Flowchart for the offline calculation of the reduction basis V i.

and computational time, providing both experimental

and numerical comparisons. The combined PMOR-

Hertz strategy is implemented in the KU Leuven code
MUTANT (MUltibody Transient ANalysis of Trans-

missions - a code for gear dynamic problems) [13].MU-

TANT has been already used by Blockmans et al.

[3] to numerically validate the PMOR technique pre-

sented in Sec. 3 (and referred to asPMOR-standard).

Concerning validations, the experimental data obtained

by a single flank gear-testing machine developed by

Kurokawa in [15] are used to compare Static Transmis-

sion Error (STE) results. Both spur and helical gears

are analyzed providing a very valuable experimental

validation of both the PMOR techniques analyzed. The

two proposed methods are briefly compared in Tab. 2.
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Table 2: Numerical codes characteristics.

PMOR standard Combined PMOR-Hertz

Implementation
Floating frame of reference
FMBS

Floating frame of reference
FMBS

Contact Formulation Penalty Hertz-based contact model

Contact search
Node-to-surface
(only on teeth flanks)

Max penetration gap on each
axial section of teeth flanks

Contact force detection Master-slave double pass
Hertz-based pressure distrubution
integrated on FE model

Static solver
Force equilibrium through
modified Newton-Rapson

Force equilibrium through
modified Newton-Rapson

Dynamic solver Runge-Kutta order 4 (RK4) Runge-Kutta order 4 (RK4)
Element type Bilinear 8-nodes hexahedral Bilinear 8-nodes hexahedral

6.1 Static Results

EXAMPLE 1. The first example case concerns a se-
ries of static simulations of a spur gear pair. Manu-

facturing parameters and operating conditions of the
studied gears are taken by the work of Kurokawa [15]
and displayed respectively in Tab. 3 and Tab. 4. For
this gear pair Kurokawa measured the STE in func-

tion of the rotational angle of the driven gear, varying

the applied load. In particular, the specific load varies

from 22 [N/mm] until 392 [N/mm] and it identifies the

applied load per unit of length at the operating pitch

point in a normal direction with respect to the tooth

involute.

Table 3: Gears manufacturing parameters.

Gear 1 Gear 2

Manufacturing parameters
Norm. Module 6.0 6.0
Pressure Angle 20 [deg] 20 [deg]
Number of Teeth 21 31
Facewidth 15 [mm] 15 [mm]

Material parameters
Young’s Modulus 200 [GPa] 200 [GPa]
Density 7700 [kg/m3] 7700 [kg/m3]
Poisson’s ratio 0.3 0.3

Table 4: Performed static analyses.

Spec. Load [N/mm] Torque [Nmm]

Simulation
1 22 20790
2 65 61709
3 131 123417
4 196 185126
5 262 246834
6 327 308543
7 392 370251

The conditions detailed in Tab. 3 and 4 have been

reproduced numerically using both the PMOR stan-

dard and the combined PMOR-Hertz. A series of
static simulations for different angular configurations of

the gears has been performed covering the full length of
the path of contact for each loading condition. Practi-
cally the series of static analyses is obtained by locking

gear 2 at discrete angular configurations and applying

the desired torque to gear 1 (see Tab. 4). The equilib-

rium solution is obtained thanks to a relatively stan-

dard Newton based non-linear solver.

Figure 12 and 13 show the FE mesh of the driving

gear and a detail of the FE mesh of the driven gear.

For sake of memory requirement and without any loss of

generality, only the teeth involved in the contact during

the prescribed rotation are finely meshed while the rest
of the teeth and the gear blank are coarsely meshed but
correctly represent the stiffness distribution of the gear.
As far as the transition between the fine and the coarse

mesh is concerned, we use a surface-based constraint.

The latter ties the active DOFs on the slave surface

to the active DOFs of the master surface through the

use of position-based interpolation formula that derive
from the element’s shape functions.

Static analyses are performed to create the reduc-

tion spaces needed to apply the combined PMOR-

Hertz and standard-PMOR. In order to speed up

this preparation phase each global contact shape (which
is by definition the solution of a static contact problem)
is solved by means of a reduced order model. One of the
benefits of the combined PMOR-Hertz strategy is

that it allows to have a much shorter computational
time and memory requirement during the computation
of the global contact shapes (see also Sec. 4.1). In ex-

ample 1 if the standard PMOR approach is used, a

static shape (attachment mode) has to be computed
for each DOF that can possibly be loaded during the

meshing cycle. Therefore the reduction space adopted

to evaluate the global contact shapes (see ψCMS in Eq.
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Fig. 15: Comparison with experimental data for spur gears [15].

Fig. 12: Finite element model of the driver generated in
Matlab.

Fig. 13: Teeth mesh of the driven gear.

18) can remain very large. The ROM used to create
the global contact shapes maintains a very large di-
mensionality and includes 14850 shapes (as opposed

to the 264762 DOFs of the FOM). On the contrary

by using the combined PMOR-Hertz method, the

dimension of the ROM after SVD decreases to only

21 shapes (by choosing pen of Tab. 1 equals to 0.99).

As consequence, the time required to solve the static
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Fig. 16: STE comparison between the combined PMOR-Hertz approach and the standard PMOR method for
different torque levels - spur gears.

analysis decreases significantly and so the memory re-
quirements. The gain in computational time for calcu-
lating each each static analysis can be appreciated in

Fig. 14, where the computational time for the six levels

of selected torque (y-axis) is presented in logarithmic

scale against the static simulations along the sampled

angular pitch (x-axis). In case of spur gears, for each

torque level, the time required for calculating 41 static

simulations is 1461 [s] (35.61 [s] for each simulation)

with standard-PMOR approach, while it decreases

to 44.20 [s] (1.078 [s] for each simulation) if the com-

bined PMOR-Hertz method is employed. Moreover

Fig. 14 shows the speed-up of the proposed approach

as compared to the standard-PMOR method. It is

worth to notice that the complexity of the contact for-
mulations is proportional to the number of nodes in

contact. In case of aligned spur gears, the number of
gear axial sections (and therefore nodes) in contact is
proportional to the number of engaging tooth pairs.
Therefore we normalize the speed-up with respect to

the number of tooth pairs in contact and we obtain

an average normalized speed-up of 18.03 times. It has
to be underlined that the amount of global contact

shapes needed in the processing phase (see Sec. 6.2)

remains the same for both the methods presented. Fig-

Finite Element models parameters Gear 1 Gear 2

El. on tooth flanks 53 53
El. along axial direction 15 15
DOFs of FOM 127581 137181
DOFs that can possibly be loaded 7425 7425
DOFs of ROM (standard CMS - Eq. 18 ) 7425 7425
DOFs of ROM (new SVs - Eq. 23 ) 13 8

Table 5: Characteristics of the FE models and reduced

models.

ure 15 compares the experimetal STE curves measured

by Kurokawa [15] against the results obtained with the

combined PMOR-Hertz approach. The results are

properly matching both along the line of action and

with respect to the varying torque. Shape and peak-to-

peak value present a very similar behaviour both during

the period of single tooth in contact as well as during

the period of two teeth in contact. As expected, the pe-

riod of single tooth contact, identified by the number

1 in Fig. 15, is shorter according to the load increase.

Conversely, the period of double tooth contact, repre-

sented by the number 2 in Fig. 15, is longer due to the
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Fig. 14: Preprocessing computational time - comparison

between standard-PMOR and combined PMOR-Hertz

methods for spur gears.

tip-involute-contact that is induced by the tooth defor-

mation. Finally the load induced stiffening effect typical

of gear contact problems is properly matched by the nu-

merical strategy. Figure 16 shows a comparison between

the two modelling techniques. The degree of similarity

is satisfactory and the combined PMOR-Hertz ap-

proach is able to closely match the performance of the

standard PMOR method. However a slight worsen-

ing of the degree of similarity occurs with increasing the

input torque level. Indeed the STE peak-to-peak value

is slightly underestimated by the combined PMOR-

Hertz approach and this difference increases with in-

creasing load.

EXAMPLE 2. Similarly to example 1, this sec-
ond example proposes a series of static simulations of

a helical gear pair based on the work of Kurokawa [15].

As compared to spur gears, the main advantage of he-

lical gear transmission consists in a more gradual and

smoother engagement as well as a better capability to

carry high loads and a smoother pressure distribution
over the teeth flanks. For this reason the combined

PMOR-Hertz method is expected to perform to the

best of its capacities since the boundaries of validity of
Hertz theory are usually not approached. The analysis
of the contact interactions for helical gears is signif-

icantly more complicated than for spur gears. During

the engagement of a helical gear pair, the contact starts

Table 6: Gears manufacturing parameters.

Gear 1 Gear 2

Manufacturing parameters
Norm. Module 6.0 6.0
Pressure Angle 20 [deg] 20 [deg]
Helix Angle 20 [deg] 20 [deg]
Number of Teeth 21 31
Facewidth 40 [mm] 40 [mm]

Material parameters
Young’s Modulus 200 [GPa] 200 [GPa]
Density 7700 [kg/m3] 7700 [kg/m3]
Poisson’s ratio 0.3 0.3

Table 7: Performed static analyses.

Spec. Load [N/mm] Torque [Nmm]

Simulation
1 8 21070
2 98 229433
3 147 344149
4 196 458866
5 392 917731
6 637 1491313
7 784 1835462

at one end of the tooth root and then gradually spreads

over the complete tooth flank throughout the rotation
to finally gradually exit plane of contact. In this situa-
tion the contact width of the tooth flank is not constant

and the corresponding contact pressure present a more

complex shape and variation during the relative motion

of the 2 gears. From a modeling standpoint, such load-

ing conditions require an accurate description of the

teeth and gear flexibility. In particular the tooth bend-
ing and torsion during the partial loading of the teeth
flanks is of particular importance and requires a fine

axial discretization of the FE model. This translated

into a larger number of DOFs included in the FOM as

compared to spur gears.

The parameters and working conditions of the gear

pair examined ( [15]) are presented in Tab. 6 and Tab.

7. The measurement data include STE values over path

of contact of the driven gear 1 for several operating con-

ditions ranging from 8 [N/mm] to 784 [N/mm]. Figure
17 shows a front 2 − D view of the gear pair at the

start of engagement while Fig. 18 shows a view of the

FE model of the driven gear.

Other information about the modeling choices are

displayed in Tab. 8 while Fig. 20 underlines the po-

tential of the combined PMOR-Hertz in reducing

the pre-processing effort with respect to the standard

PMOR approach. As already shown for the case of

spur gear pair, also in case of helical gears the required

computational time for calculating each each static con-
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Fig. 19: Comparison with experimental and numerical data for helical gears [15].

tact analysis can be observed in Fig. 20: here the com-

putational time for the six levels of selected torque (y-
axis) is presented in logarithmic scale against the static
simulations along the sampled angular pitch (x-axis).
In case of helical gears, for each torque level, the time

required for calculating 31 static simulations is 5208 [s]

(168.0 [s] for each simulation) with standard-PMOR

approach, while it decreases to 347.5 [s] (11.21 [s] for

each simulation) if the combined PMOR-Hertz me-
thod is employed. Figure 20 illustrates also the speed-up

of the proposed approach with respect to the standard-

PMOR method. The speed-up is in this case 15.73

times as average along an angular pitch3.

Figure 19 shows the comparison between numerical

and experimental STE at different torque levels dur-

ing three angular pitches. The numbers 2 and 3 at

the bottom of the figure identifies the period of double

and triple tooth contact respectively. The results clearly

show that the a very high degree of similarity between

3 Differently from the spur gear example, in case of aligned
helical gears the complexity of the contact formulations does
not vary along the angular pitch just as the number of gear
axial sections in contact.

Table 8: Characteristics of the FE models and reduced

models.

Finite Element models parameters Gear 1 Gear 2

El. on tooth flanks 24 24
El. along axial direction 24 24
DOFs of FOM 165000 190620
DOFs that can possibly be loaded 7800 7800
DOFs of ROM (standard CMS - Eq. 18 ) 7800 7800
DOFs of ROM (new SVs - Eq. 23)

with pen of Tab. 1 equals to 0.99 64 48

the experimental and the numerical results. As it can be

noticed the behaviour of the STE curve with respect to

both angular rotation and torque is strongly non-linear

but despite this fact is correctly captured by the pro-

posed numerical approach. In particular the delay in

the transit from 3 to 2 teeth in contact with increas-

ing torque is well capture together with a more pro-

longed period of triple tooth contact. This phenomenon

is particularly relevant in the analysis of helical geared

transmission and is usually hard to capture numerically.

Finally it can be noticed that the two proposed meth-

ods present a higher degree of similarity as compared

to the example 1 as anticipated. Helical gears generally
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Fig. 17: Engagement of the helical gear pair.

Fig. 18: Mesh detail of the driven gear.

present a lower peak-to-peak value for the STE even

for higher external torques. This is due to the gener-

ally higher contact ratio that is characteristic of helical

pairs. In this specific case the contact ratio remains be-

tween 2 and 3 under any loading. In such conditions the

contact interaction on each teeth pair remains largely

within the validity range of the Hertz theory, with a
consequent accurate results match of the two numeri-
cal methods.

6.2 Dynamic Results

In order to finalize the analysis regarding the potential
of the method, a highly transient dynamic simulation of
a spur gear pair is presented. The results of the com-

bined PMOR-Hertz method are compared against

the standard PMOR method that is taken as refer-

ence.

EXAMPLE 3. The gear pair starts to spin with an

initially zero velocity. During the time simulation an
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Fig. 20: Preprocessing computational time - comparison

between standard-PMOR and combined PMOR-Hertz
methods for helical gears.

external torque ramp-up is applied to the driving gear

and reaches a constant value of 185 [Nm] after 5 [ms].
The driven gear reacts to the external load with a vis-

cous torque of 20 [Nm · s/rad] such that a steady-state
angular velocity of about 13.63 [rad/s] is reached. The

duration of the simulation is 25 [ms]. More details about

the simulation can be found in Tab. 9. The manufac-

turing parameters of the spur gear pair used in this

simulation are the same of example 1 and are shown in
Tab. 3; The FE mesh used presents a larger amount of

elements along the involute flank, 53, leading to a to-
tal number of DOFs equals to 264762 for the FOM of
the two meshing gears. The projection space, used to

reduce Eq. 25, has been assembled following the proce-

dure explained in Sec. 5.1. The number of precomputed

global contact shapes is 40 along one angular pitch for

each of the two precomputed torque levels, respectively

150 and 250 [Nm]. During the dynamic simulation, the
amount of DOFs retained in the combined PMOR-

Hertz and the standard PMOR is the same and

amount to 42 divided in 40 eigenmodes and 2 global

contact shapes (one for each level of torque) obtained

by interpolation as explained in Sec. 3.2.1.

The accuracy of the proposed method during tran-

sient simulation is assessed by analysing the dynamic

transmission error (DTE). The standard PMOR me-

thod is kept as a reference since already validated in



22 Niccolò Cappellini et al.

Simulation Data

Initial rotational speed [rad/s] 0
Torque applied to gear 1 [Nm] 190
Torque ramp-up time [s] 5 · 10−3

Torque ramp-up function [s] haversine
Viscous torque applied to gear 2 [Nm · s/rad] 110
Print interval [s] 1 · 10−6

Penalty factor [N/mm] 5 · 105

Stiffness-proportional damping
(%of crit. damp. of the lowest eigenfrequency)

1

Proportional damping global contact shapes
(% of crit. damp. of the lowest eigenfrequency)

5

Solver
explicit four-stage

Runge-Kutta
Number of degrees of freedom 42

Table 9: Parameters of the dynamic simulation
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Fig. 21: Dynamic transmission error of spur gear pair.

Standard PMOR Combined PMOR-Hertz

Simulation time [s] 0.025 0.025
Max time step [s] 1.7 · 10−7 1 · 10−6

Total computational time [s] 4.6149 · 103 1.0055 · 103

Table 10: Dynamic simulation results

[3, 20, 21]. The DTE of a gear pair is fundamental in

order to properly study the noise and vibrations per-

formances of geared transmissions. The DTE is defined

in literature as the difference between the actual posi-

tion of the driven gear and the theoretical position it

would occupy if the gears were infinitely stiff and no
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micro-geometry modification with respect to the ideal

involute teeth profile were present. Until recently, ac-

curate DTE simulations have not been achievable in

reasonable computational times due to the complex-

ity of the this problem. Despite this fact, a drive-train

design based on the study of dynamic transient simu-

lations and DTE would significantly improve its NVH

and durability performances.

Figure 21 illustrates a comparison of the DTE re-

sults of the gear pair, computed using the standard

PMOR technique and the combined PMOR-Hertz

method. A steep transition in the DTE appears around
12.09 [ms] of simulation: This phenomena is noticeable

also in the static analysis of example 1 and is caused

by the varying number of teeth in contact during the

meshing. The proposed combined PMOR-Hertz ap-

proach matches the reference simulation very closely. In

contrast, the computational cost of the two methods is

substantially different, as Tab. 10 shows: such differ-
ence can be explained by analysing how the dynamic
problem is solved. In this example but without loss

of generality with respect to any integrator adopted,

the equations of motion are solved by using an explicit

four-stage Runge-Kutta solver with constant time-step.

The computational performances scale linearly with re-

spect to the selected time-step. It is well known that,
in contact problems in general in particular for penalty
based contact methods, the strictest condition for the

stability of an explicit integrator is dictated by contact

stiffness. This is to say that is the penalty factor could

be reduced in absolute value, the computational bene-

fits would significant since the region of stability of the

integrator would be significantly broadened. In shorter

terms the problem would become numerically less stiff.

Generally, such penalty factor is selected to be around

two orders of magnitude higher than the physical stiff-

ness of the bodies in contact [23]. In this way the error

induced by the regularization of the Signorini condi-

tions can be reduced significantly at the expenses of

a more stiff numerical problem. If the penalty factor

is chosen properly, the residual and not physical pene-

tration between the contacting bodies can be brought

to negligible terms. The proposed combined PMOR-

Hertz approach can be seen as physic-based penalty

approach. In this respect the two contacting bodies are

meant to maintain a certain level of penetration that
correspond to the combined local deformation effects of
both bodies (and here described by Hertz theory). To

further expand this concept to the gear pair example,

it is possible to say that, when the force equilibrium is

reached, a penetration corresponding to the teeth local

deformation has to be present between the gear teeth.

By writing and deriving the dependency of the applied

force in Eq. 20 with respect to the penetration, we can

obtain the value for an ’equivalent’ penalty factor to be
compared with the numerical penalty factor used in the
standard PMOR approach. The ratio between a nu-

merical penalty factor and a Hertz-based penalty factor
is highly case dependent. In example 3 we obtained a

ratio between the penalty factor used for the standard
PMOR approach and the combined PMOR-Hertz

approach of around 7. This allowed to maintain a stable
solution, for the latter case, using a time step that is
up to 6 times larger than the standard method with a

subsequent computational gain without compromising

in accuracy.

A few extra remarks are needed regarding the com-

putational performances. Firstly, it has to be said that,

despite the deceased numerical stiffness of the problem

obtained with the proposed approach, a small time step

is always required in contact problems due to their im-

pulsive nature: the relevant dynamic phenomena hap-
pen at a small time-scale. Secondly, as it can be seen
in Tab. 10 the computational performances of the new

approach are only 4.5 times better as compared to the

standard method despite a 6 times larger time step. The

combined PMOR-Hertz approach adopts a non-linear

relationship between penetration and contact force. This

calls for a solution of multiply scalar non-linear prob-

lems at each time-step and causes a slight performance

decrease as compared to the theoretical one. It has to

be noticed that the relation between penetration and

contact forces in the Hertz model is load, geometry and

material dependent, with the consequence that also the

maximum allowed time steps and computational gain

is problem specific.

7 Conclusion and future work

Starting from a theoretical analysis of the existing and

most often used semi-analytic contact methods, we orig-

inally highlight the most critical aspects of such method-

ologies. In particular, our investigation clarifies why the

model presented by Chang [5] outperforms the model

proposed by Andersson and Vedmar [1], by demonstrat-

ing that the error arising from the non- physical under-

lying assumptions of the above-mentioned methods is

negligible.

Strengthened by the gained theoretical insight, this
paper proposes an original method that combines an

advanced parametric model order reduction method and

a Hertz based contact model. As confirmed by our re-

sults, the method can be applied to solve dynamic gear

contact problems more efficiently and without sacrific-

ing accuracy.



24 Niccolò Cappellini et al.

Static numerical simulations of both spur and heli-

cal gear contact analyses showed very accurate agree-
ment with experimental data (Transmission Error curves)
measured by Kurokawa [15]. However the STE compar-

ison between the proposed Hertz-based approach and

penalty-based contact methods showed a different peak-

to-peak value at high input torque levels. This emerges

very clearly during the period of single pair in con-
tact which corresponds to high local contact pressure
applied to the teeth flanks. Further investigations are

needed to assess if this effect is due to the limitations of

the Hertz theory, which assumes the area of contact to

remain much smaller than the characteristic dimensions

of the contacting bodies.

Dynamic simulations confirm that the paradigm shift

from penalty-based contact model towards the proposed

Hertz based allows to achieve a dramatic reduction of

the overall computational complexity: lower pre-processing

time and reduced memory usage requirements due to

smaller number of necessary degrees of freedom and a

faster execution due to a lower penalty factor are con-

siderable advantages of the proposed method.

Taking advantage of the performance delivered by

the proposed methodology, upcoming research will fo-

cus on the following aspects: 1) investigation of the
Hertz-based contact model for high specific load as well
as gears with micro-geometry modifications; 2) dynamic

experimental validation of the method will be carried

out by using the set-up of [17] for measuring dynamic

Transmission Error curves; 3) lubricated contact prob-

lems will be studied by taking into account the lubri-

cant properties within the semi-analytic contact model;
4) more complex system level cases will be investigated
and the method will be integrated in a 1D environment

to efficiently capture geared transmission torsional be-

haviour.
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