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Semi-Analytical Approach for Finite Element Analysis of  

Multi-turn Coil Considering Skin and Proximity Effects 
 

Hajime Igarashi, Member, IEEE 
 

Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan 

 

Native application of finite element method (FEM) to analysis of skin and proximity effects in multi-turn coils results in large equation 

systems whose solution needs long computational time. This paper proposes a semi-analytical approach to overcome this problem. For 

analysis of the proximity effect, the complex permeability of a round conducting wire immersed in uniform time-harmonic magnetic 

fields is represented in a closed form. Then, the homogenized complex permeability over the cross section of the multi-turn coil is 

analytically evaluated using the Ollendorff formula. The magnetoquasistatic problem is thus replaced by the magnetostatic one in which 

the multi-turn coil is treated as a uniform material with the homogenized complex permeability. The skin effect is taken into 

consideration by introducing the corresponding impedance in the circuit equation. The proposed method is shown to give the impedance 

of multi-turn coils which is in good agreement with that obtained by conventional FEM as well as experiments. 

 
Index Terms—Skin effect, proximity effect, eddy current, homogenization, complex permeability, multi-turn coil.  

 

I. INTRODUCTION 

T is of importance to numerically evaluate the eddy current 

losses in multi-turn coils used in electric machines and 

devices such as motors [1, 2] and inductors [3] because of 

increase in the driving frequency. Moreover, development of 

contactless energy transfer systems [4, 5] and eddy-current 

sensors [6] requires to accurately compute frequency 

dependence of the impedance in multi-turn coils. The eddy 

current loss P in the multi-turn coil is composed of 𝑃𝑠𝑘𝑖𝑛 and 

𝑃𝑝𝑟𝑜𝑥  which are attributed to the skin and proximity effects, 

respectively. Because currents in a wire tend to localize near its 

surface due to the skin effect, the wire resistance increases with 

frequency. The proximity effect is due to the magnetic 

induction, 𝐵0, generated by the currents surrounding the wire. 

The magnetic dipole appears to prevent the time variation of 𝐵0 

on the cross section of the wire. For this reason, the multi-turn 

coil has essentially diamagnetic property which has to be 

considered in the field analysis. 

Two types of analytical approaches for evaluation of P in 

multi-turn coils have been proposed so far. In the first approach 

[7], which has also been discussed in other papers as referred in 

[8], each column of round wires is approximately replaced by 

an infinitely long conducting foil. Then P in each foil is 

analytically computed assuming that the foils are immersed in 

one-dimensional magnetic field. On the other hand, in the 

second approach [9], P in an isolated round wire is evaluated 

neglecting the magnetic fields generated by the currents 

flowing along other wires. The magnetic induction 𝐵0  which 

causes the proximity effect is not accurately evaluated by either 

of them. Indeed, it has been pointed out in [8] that the former 

and latter approaches under- and over-estimate 𝑃𝑝𝑟𝑜𝑥. 

To compute the eddy current losses using conventional FE 

analysis, each wire has to be subdivided into so fine elements 

that the element size is sufficiently smaller than the skin depth. 

The whole cross-section of a multi-turn coil may, therefore, 

include huge number of finite elements. For this reason, the 

conventional FE analysis of multi-turn coil would need 

considerably long computational time. 

It has been shown that 𝑃𝑝𝑟𝑜𝑥 can be effectively evaluated by 

subdividing the cross-section of a multi-turn coil into 

elementary cells, each of which spans one spatial period, and 

performing FE analysis of quasi-static fields in the elementary 

cell under appropriate boundary conditions [10]. In this method, 

the homogenized complex permeability < 𝜇̇ >  which 

represents the diamagnetic effect of eddy currents is evaluated 

from the quasi-static FE analysis. Then 𝐵0 is determined from 

the magnetostatic FE analysis in which the multi-turn coil is 

modeled as a homogeneous material whose permeability is <
𝜇̇ >. Moreover, on the basis of this approach, the analytical 

formula proposed in [9] to compute 𝑃𝑝𝑟𝑜𝑥 has been extended to 

improve its accuracy [8]. The dependence of P on the shape of 

the wire cross section and configuration has also been discussed 

[11]. Although these methods seem effective, one has to 

perform FE analysis to obtain < 𝜇̇ > for different frequencies 

and volume fraction of multi-turn coils. 

In this paper, a semi-analytical approach for the eddy current 

analysis of multi-turn coils is proposed. In this method, from 

the complex permeability 𝜇̇  of a round wire expressed in a 

closed form, the homogenized complex permeability < 𝜇̇ > 

over the cross section of a multi-turn coil is analytically 

evaluated using the Ollendorff formula [12]. Then, 

magnetostatic FE analysis is performed to determine magnetic 

fields around the homogenized coil region with permeability <
𝜇̇ >  for computation of 𝑃𝑝𝑟𝑜𝑥 . On the other hand, 𝑃𝑠𝑘𝑖𝑛  is 

evaluated by introducing the AC resistance. The FE analysis of 

multi-turn coils is simplified by the proposed method because 

it determines < 𝜇̇ > for any frequency and volume fractions 

without field computations. It will be shown that the impedance 

of the multi-turn coil computed by the proposed method agrees 

well with that computed by the conventional FE approach in 

which the each coil is subdivided into sufficiently fine FE 

meshes. Moreover, the coil impedance computed by the  
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TABLE I Nomenclature 

Symbol Quantity 
Symbo

l 
Quantity 

a wire radius 𝑩 magnetic induction 

𝜎 conductivity 𝑩0  external uniform 

magnetic induction 

𝜇 permeability 𝑯 magnetic field 

𝜇0 permeability of 

vacuum 

𝑴 magnetization 

𝜔 angular frequency E electric field 

𝐽𝑛 n-th order Bessel 

function 

A vector potential 

𝑙 wire length 𝑚 magnetic moment 

𝛿 skin depth 𝜇̇ complex 

permeability of 

isolated wire 

𝛺𝑐 wire region 〈𝜇̇〉 homogenized 

complex 

permeability 

𝛺𝑜𝑢𝑡 air region 𝜂 volume fraction 

𝑘 √−𝑗𝜔𝜎𝜇 = (1 − 𝑗)/𝛿 𝑁 diamagnetic 

constant 

𝑧 𝑘𝑎 𝐼 current 

𝑤 scalar interpolation 

function in FEM 

𝑉 voltage 

𝑆𝑐 area of 𝛺𝑐 𝑃 power 

𝑍𝑒 impedance of 

external circuit 

𝑗 imaginary unit 

 

proposed method will be shown to agree well with experimental 

results. 

II. FORMULATION 

The nomenclature is summarized in TABLE I. 

A. Electromagnetic field around a round wire 

Let us consider a round wire, carrying a uniform current, 

immersed in a uniform time-harmonic magnetic field 

𝑩0𝑒𝑗𝜔𝑡  perpendicular to the wire axis as show in Fig.1. The 

coordinate systems (𝑥, 𝑦, 𝑧) and (𝑟, 𝜃, 𝑧) are introduced where 

 𝑦 and z-axes are defined parallel to 𝑩0 and the wire axis, 

respectively. It is assumed that 𝜎 = 0 in 𝛺𝑜𝑢𝑡. Moreover, it is 

assumed that the curvature of the wire is negligible and there is 

no field variation in 𝑧 direction. We consider only 𝐸𝑧  as the 

currents flow in 𝑧 direction. From the Maxwell equations under 

the quasi-static approximation [13, 14] 

rot𝑯 = 𝜎𝑬                                                      (1a) 

rot𝑬 = −𝑗𝜔𝜇𝑯                                             (1b) 

we obtain 

𝜕2𝐸𝑧

𝜕𝑟2
+

1

𝑟

𝜕𝐸𝑧

𝜕𝑟
+

1

𝑟2

𝜕2𝐸𝑧

𝜕𝜃2
+ 𝑘2𝐸𝑧 = 0                      (2) 

where 𝑘 = 0 for 𝑟 ≥ 𝑎. Applying the variable separation  𝐸𝑧 =
𝑅(𝑟)𝛩(𝜃) to (2), we obtain 

𝑟2𝑅′′ + 𝑟𝑅′ + (𝑘2𝑟2 − 𝛽2)𝑅 = 0                       (3a) 

Θ′′ + 𝛽2Θ = 0                       (3b) 

The current due to skin effect is free from 𝜃 whereas the eddy 

current, which flows in ±𝑧 -directions to generate dipole 

magnetic fields in response to 𝑩0 , would depend on cos 𝜃 . 

Hence, we consider the following solutions to (3) 

𝐸𝑧 = 𝑝0𝐽0(𝜁) + 𝑝1𝐽1(𝜁) cos 𝜃 , 𝑟 ≤ 𝑎       (4) 

where 𝜁 = 𝑘𝑟. The first and second terms in (4) express the skin 

and proximity effects. By substituting (4) into (1b), we obtain 

the 𝜃-component of 𝑯 in the form 

𝐻𝜃 =
𝑗𝑘

𝜔𝜇
[𝑝0𝐽1(𝜁) − 𝑝1𝐽1

′(𝜁) cos 𝜃], 𝑟 ≤ 𝑎       (5) 

When 𝑟 ≥ 𝑎 , (2) reduces to the Laplace equation whose 

solution of our interest is written as 

𝐸𝑧 = (
𝑞1

𝑟
+ 𝑗𝜔𝑟𝐵0) cos 𝜃 ,                 𝑟 ≥ 𝑎   (6) 

𝐻𝜃 = −
𝑗

𝜔𝜇0

(−
𝑞1

𝑟2
+ 𝑗𝜔𝐵0) cos 𝜃 , 𝑟 ≥ 𝑎  (7) 

The first and second terms in (6) and (7) express the dipole field 

due to the eddy currents generated by the proximity effect and 

the uniform external field, respectively. Note here that the 

components independent of 𝜃 , which will not appear in the 

formulation, are omitted in (6) and (7) for simplicity. 

When the total current I flowing along the wire is given, 𝑝0 

can be determined by applying the Ampere law to (5) as follows 

[15, sec.60]: 

𝑝0 =
𝑘𝐼

2𝜋𝑎𝜎𝐽1(𝑧)
                                 (8) 

The constants 𝑝1 , 𝑞1  can be determined from the continuity 

condition for 𝐸𝑧 , 𝐻𝜃  on the surface of the wire, which is 

expressed by 

[
𝐽1(𝑧) − 1 𝑎⁄

𝑧𝐽1
′ (𝑧) 𝜇𝑟  ⁄ 1 𝑎⁄

] [
𝑝1

𝑞1
] = 𝑗𝜔𝑎𝐵0 [

1
1

]           (9)  

where 𝜇𝑟 = 𝜇 𝜇0⁄ . 

Fig. 1.  Cross-section of a straight round conducting wire immersed in 

uniform, time-harmonic magnetic field 
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B. Energy conservation 

From the Maxwell equations (1), the energy conservation law  

∫ (
Ω𝑐

𝜎|𝑬|2 + 𝑗𝜔𝜇|𝑯|2)𝑑𝑣 = − ∫ 𝑬 × 𝑯∗

𝜕Ω𝑐

⋅ 𝑑𝑺        (10) 

can be derived. On the other hand, the power P = 𝑉𝐼∗ 2⁄  

supplied by the external source equals the increase in the 

magnetic energy and eddy current loss in the wire. Hence we 

have [15, sec.60] 

𝑃 =
𝑗𝜔

2
∫ 𝜇|𝑯|2

𝛺𝑐+𝛺𝑜𝑢𝑡

𝑑𝑣 +
1

2
∫ 𝜎|𝑬|2

𝛺𝑐

𝑑𝑣                    (11) 

Substitution of (10) into (11) yields 

𝑃 =
𝑗𝜔

2
∫ 𝜇|𝑯|2

𝛺𝑜𝑢𝑡

𝑑𝑣 −
1

2
∫ 𝑬 × 𝑯∗

𝜕Ω𝑐

⋅ 𝑑𝑺                   (12) 

By inserting (4), (5) into (12), we find 

𝑃 =
𝑗𝜔

2
∫ 𝜇|𝑯|2

𝛺𝑜𝑢𝑡

𝑑𝑣 +
𝑅0 𝑧𝐽0(𝑧)

4 𝐽1(𝑧)
|𝐼|2                               

+𝑗2𝜋𝜔𝑎2𝑙𝐵0
2

𝜇𝑟

𝜇0

𝐽1(𝑧)(𝑧𝐽0(𝑧) − 𝐽1(𝑧))
∗

|𝑧𝐽0(𝑧) + 𝐽1(𝑧)(𝜇𝑟 − 1)|2
        (13) 

where 𝑅0 = 𝑙 (𝜎𝜋𝑎2) ⁄  denotes the DC resistance of the wire. 

The first, second and third terms in the right hand side of (13) 

represent change in magnetic energy stored in 𝛺𝑜𝑢𝑡 , eddy 

currents losses 𝑃𝑠𝑘𝑖𝑛 , 𝑃𝑝𝑟𝑜𝑥  due to skin and proximity effects, 

respectively. The eddy current losses are separated into 

𝑃𝑠𝑘𝑖𝑛 , 𝑃𝑝𝑟𝑜𝑥  due to orthogonality as pointed out in [9]. From 

(13), it is also possible to determine the impedance of the wire. 

To compute the complex power and impedance, however, we 

have to know 𝐵0  which is generated by wire currents 

surrounding 𝛺𝑐  and magnetic cores. A numerical method to 

evaluate 𝑃 will be given in II.D. 

C. Complex permeability of isolated wire 

By introducing the complex permeability, we can evaluate the 

eddy currents due to the proximity effect in the wire through 

magnetostatic field analysis without fine FE discretization. We 

will derive the complex permeability of the wire on the basis of 

the above formulation. First of all, the permeability of the wire 

is assumed to be 𝜇0 . Then, the vector potential in 𝛺𝑜𝑢𝑡 

generated by the eddy current 𝐽𝑧  due to the proximity effect, 

which corresponds to the second term of (4), flowing along the 

wire shown in Fig.1 satisfies the two-dimensional Poisson 

equation 

∇2𝐴𝑧 = −𝜇0𝐽𝑧                                    (14) 

From (14) it follows that 

𝐴𝑧(𝒓) = −
𝜇0

2𝜋
∫ 𝐽𝑧(𝒓′) log|𝒓 − 𝒓′|𝑑𝑆′              (15)

𝛺𝑐

 

Now it is assumed that the observation point 𝒓 is sufficiently far 

from the source 𝒓′, that is, |𝒓| ≫ |𝒓′|. Then, we can obtain 

𝐴𝑧(𝒓) =
𝜇0

2𝜋
∫ 𝐽𝑧(𝒓′)

𝒓 ⋅ 𝒓′

𝑟2
𝑑𝑆′

𝛺𝑐

                    (16) 

where we use the fact that the integral of 𝐽𝑧 over 𝛺𝑐 vanishes. 

Moreover, the integral of 𝐽𝑧𝑦′  also vanishes because 𝐽𝑧  is 

symmetric with respect to the x-axis. Thus (16) can be written 

as 

𝐴𝑧(𝒓) = −
𝜇0

2𝜋

𝑚

𝑟
cos 𝜃                                 (17a) 

𝑚 = − ∫ 𝐽𝑧(𝒓′)𝑟′ cos 𝜃′ 𝑑𝑆′
𝛺𝑐

                         (17b) 

where 𝑚  denotes the magnetic moment parallel to y-axis. 

Equation (16) indicates that only the dipole field remains and 

the contributions from higher multipole components vanish in 

far fields when there are no net currents. Simultaneously we 

conclude that the dipole moment (17b) generates the vector 

potential written by (17a). If there exists only the eddy current 

due to the proximity effect, which corresponds to the dipole 

field represented by the second term of (4), the magnetic field 

can be written by (17a) even in near fields. Substituting (4) into 

(17b), where 𝐽𝑧 = 𝜎𝐸𝑧 , the magnetic moment generated by the 

eddy current in the wire, which expresses the diamagnetic effect, 

is obtained as follows: 

 𝑚 = 2𝜋
𝐵0

𝜇0

𝑎2
𝐽1(𝑧) − 𝑧𝐽1′(𝑧)

𝐽1(𝑧) + 𝑧𝐽1′(𝑧)
                     (18) 

When the wire is made of magnetic material which has 

permeability 𝜇 ≠ 𝜇0, magnetization current has to be included 

in 𝐽𝑧 in (14). Instead of doing so, we evaluate 𝑚 based on the 

fact that the first term in (7) expresses the dipole field, which is 

also represented in terms of 𝑚 using (17a). This leads to 𝑚 =
−2𝜋𝑗𝑞1 (𝜇0𝜔)⁄ , from which we obtain 

𝑚 = 2𝜋
𝐵0

𝜇0

𝑎2
𝜇𝑟𝐽1(𝑧) − 𝑧𝐽1′(𝑧)

𝜇𝑟𝐽1(𝑧) + 𝑧𝐽1′(𝑧)
                (19) 

Obviously, (19) is the extension of (18). The magnetization 

𝑀 = 𝑚 (𝜋𝑎2)⁄  is readily obtained from (19) as 

  𝑀 = 2
𝐵0

𝜇0

𝜇𝑟𝐽1(𝑧) − 𝑧𝐽1′(𝑧)

𝜇𝑟𝐽1(𝑧) + 𝑧𝐽1′(𝑧)
                    (20) 

In the static limit 𝜔 → 0, (20) reduces to the magnetization of a 

cylinder immersed in the magnetostatic field 𝐵0 [e.g. 16] 
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𝑀 = 2
𝐵0

𝜇0

𝜇𝑟 − 1

𝜇𝑟 + 1
                                 (21) 

Here let us define the complex permeability 𝜇̇ of a round wire 

such that (20) is consistent with (21), that is 

 
𝜇̇𝑟 − 1

𝜇̇𝑟 + 1
=

𝜇𝑟𝐽1(𝑧) − 𝑧𝐽1′(𝑧)

𝜇𝑟𝐽1(𝑧) + 𝑧𝐽1′(𝑧)
                    (22) 

From (22) it follows that 

𝜇̇𝑟 = 𝜇𝑟

𝐽1(𝑧)

𝑧𝐽1′(𝑧)
                                  (23) 

which is the complex permeability of an isolated round wire. 

The denominator in (23) can also be written as 𝑧𝐽0(𝑧) − 𝐽1(𝑧). 

Note that (23) is valid under the assumption that the external 

magnetic field is nearly uniform. 

D. FE analysis using complex permeability 

The complex number next to 𝜇𝑟  in (23) expresses the 

diamagnetic property due to the proximity effect. The question 

now arises: is it possible to correctly compute 𝑃𝑝𝑟𝑜𝑥 using (23)? 

To answer to this equation, let us evaluate the power in 𝛺𝑐 using 

(23). When a round wire, complex permeability 𝜇̇, is immersed 

in a uniform magnetic field 𝐵0 as shown in Fig.1, the magnetic 

field in 𝛺𝑐 is given by 𝐻 = 2𝐵0 (𝜇̇ + 𝜇0)⁄ . Thus the power can 

be written as 

𝑗𝜔 ∫ 𝜇̇
|𝑯|2

2𝛺𝑐

𝑑𝑣 = 𝑗𝜔𝜋𝑎2𝑙
𝜇̇

2
|

2

𝜇̇ + 𝜇0

|
2

𝐵0
2        (24) 

By substituting (23) into the right hand side of (24), we find that 

(24) equals the third term of (13). Hence, the complex 

permeability gives the complex power which is consistent with 

that obtained from the energy conservation law. This is the 

consequence of the fact that the dipole field generated by the 

eddy currents due to the proximity effect is correctly 

represented by (23). From this proposition, it is concluded that 

the whole power can be computed from 

𝑃 =
𝑗𝜔

2
∫ 𝜇|𝑯|2

𝛺𝑐+𝛺𝑜𝑢𝑡

𝑑𝑣 + 𝑍𝑠𝑘𝑖𝑛|𝐼|2                  (25) 

where 𝜇 is set to 𝜇̇ in the wire, and 𝑍𝑠𝑘𝑖𝑛 = 𝑅0 𝑧𝐽0(𝑧) 4 𝐽1(𝑧)⁄  

which approaches  𝑅0 2⁄  in the static limit. The real and 

complex parts of the first term in (25) represent the sum of 𝑃𝑝𝑟𝑜𝑥 

and time variation in the stored magnetic energy, while the 

second term represents 𝑃𝑠𝑘𝑖𝑛 including the DC Joule loss. It is 

clear in light of the above discussions that (25) is valid even 

when there are multiple wires. 

The first term in (25) can be evaluated by performing FE 

analysis of magnetostatic field assuming that the external 

magnetic field is nearly uniform in the scale of the wire 

diameter. The FE equation for two-dimensional fields can be 

written in the form 

K𝒂 = 𝒃                                          (26) 

where the components in K and b are given by 

𝐾𝑖𝑗 = ∫
1

𝜇
∇𝑤𝑖 ⋅ ∇𝑤𝑗  𝑑𝑆

𝛺𝑐+𝛺𝑜𝑢𝑡

,   𝑏𝑖 =
𝐼

𝑆𝑐

∫ 𝑤𝑖  𝑑𝑆
𝛺𝑐

       (27) 

In (26) and (27), 𝒂  denotes the vector containing the nodal 

values of 𝐴𝑧. The permeability 𝜇 in (27) is again set to 𝜇̇ in the 

wire. When there are other conductors, the eddy current term is 

added to 𝐾𝑖𝑗 . The current in the right hand side of (26) 

represents the imposing current which is assumed uniform. The 

diamagnetic effect due to the eddy currents in the wire is 

represented by the complex permeability. Note here that the 

wire cross sections can be subdivided into FEs without 

considering the skin depth in contrast to the conventional FE 

analysis. Hence the number of unknowns in (26) can be reduced. 

When we consider the voltage input problem, the current is 

determined by solving the FE equation coupled with the circuit 

equation as 

[
K −𝒃

−𝒃𝑡 𝑗𝑍𝑒 𝜔⁄
] [

𝒂
𝐼

] = [
0

𝑗 𝑉 𝜔⁄ ]                          (28) 

The three-dimensional FE equation can also be derived in a 

similar way. When the number of turns is large, the FE 

discretization of each wire cross-sections would still result in a 

large equation system. To circumvent this problem, 

homogenization introduced below is effective. 

E. Homogenization 

The homogenized permeability of magnetic composite can 

be evaluate using the Ollendorff formula [12] 

〈𝜇𝑟〉 = 1 +
𝜂(𝜇𝑟 − 1)

1 + 𝑁(1 − 𝜂)(𝜇𝑟 − 1)
                  (29) 

where the diamagnetic constant 𝑁 is 1 2⁄  for round wires. 

Although (29) has been introduced in [12], a brief derivation is 

given in Appendix A for completeness of this paper. Moreover 

it can be shown that (29) is essentially equivalent to the 

Clausius-Mossotti formula, which is shown in Appendix B. 

For magnetostatic fields, the homogenized permeability 

computed from (29) has been shown to agree well with that 

computed from the FE analysis of an elementary cell under the 

periodic boundary condition [17, 18]. We here extend (29) to 

evaluate the homogenized complex permeability < 𝜇̇𝑟 > of the 

multi-turn coil in time-harmonic fields. That is, using (23), (29), 

the homogenized complex permeability of the multi-turn round 

coil is computed from 

< 𝜇̇𝑟 >= 1 +

2𝜂 (𝜇𝑟
𝐽1(𝑧)

𝑧𝐽1
′(𝑧)

− 1)

2 + (1 − 𝜂) (𝜇𝑟
𝐽1(𝑧)

𝑧𝐽1
′(𝑧)

− 1)
              (30) 
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Validity of this extension is clear in light of the derivation of 

(29) given in Appendix A. The profile of < 𝜇̇𝑟 > is plotted as a 

function of the wire radius normalized with the skin depth, 𝑎 𝛿⁄ , 
in Fig.2, where 𝜇𝑟 = 1 is assumed. The curves for 𝜂 = 1 are 

plotted as a limiting case which cannot be realized when using 

round wires. 

Now it is possible to treat the multi-turn coil as a 

homogenous material whose permeability is < 𝜇̇𝑟 > . The 

computational time to solve (26) or (28) can be significantly 

reduced especially when the number of turns is large. The 

impedances computed by the proposed method will be 

compared with those obtained by numerical computations and 

experiments in the next section.  

III. NUMERICAL AND EXPERIMENTAL  RESULTS 

The multi-turn copper coil, wound around a core of 

permeability 𝜇𝑐𝑜𝑟𝑒,  placed above a copper disk, shown in Fig.3 

is analyzed using the proposed method and conventional FEM. 

The copper conductivity is set to 5.76 107 S/m. In the latter 

analysis, the quasi-static Maxwell equations (1) are solved by 

discretizing each wire into fine elements so that the element size 

 

is sufficiently smaller than the skin depth. In the proposed 

analysis, the magnetostatic problem (26) is solved where the 

coil region in Fig.3 is modeled as a homogenous material of  <
𝜇̇𝑟 >. In both analyses, the imposing current is assumed to be 

given. The impedance of the coil, 𝑍 = 2𝑃 𝐼2⁄ , is computed 

from (25) in the proposed analysis, while in the conventional 

FE analysis it is obtained from the complex power 𝑃 given by 

(11). When computing 𝑃 from (25), the permeability of the coil 

region is set to < 𝜇̇𝑟 >. The number of elements in the coil 

region are 35240 and 740 for the conventional and proposed FE 

analyses. 

Fig.4 shows the dependence of the impedance 𝑍 of the multi-

turn copper coil on the normalized wire radius when 𝜇𝑐𝑜𝑟𝑒 = 𝜇0 

and 𝜇𝑐𝑜𝑟𝑒 = 1000𝜇0 . The proposed method provides almost 

the same results as those obtained by the conventional FE 

analysis. The difference between both results is found to be 

lower than 2%. This good correspondence would be due to the 

fact that the local field, which is 𝑯𝑙𝑜𝑐  in (A1), acting on a wire 

is rather uniform. We expect this uniformity considering the 

fact that the magnetic field in a cylindrical hole in a cylindrical 

conductor along which a constant current flows is uniform [15, 

sec.30]. 

The AC resistance Re(Z) of a 50-turn enameled copper coil, 

conductor radius 0.15 mm, cover thickness 0.03 mm, shown in 

Fig. 5, is computed using the proposed method. The coil is 

wound around a bobbin made of photocurable resin, PRH35-

ST2, whose radius is 30mm. The volume fraction is evaluated 

 
to be 62.9%. The AC resistance is measured using an LCR 

meter, HIOKI IM3523. The results are plotted in Fig.6. The 

relative error of the computational result is less than 3%. The 

computed and measured inductances are about 0.32 mH. If the 

number of turn is further increased, the effect of electrostatic 

capacitance among the coil turns becomes non-negligible. 

Numerical evaluation of this effect remains as our future work. 

IV. CONCLUSIONS 

In this paper, a semi-analytical approach to analyze the 

electromagnetic property of multi-turn coils has been presented. 

The homogenized complex permeability of the multi-turn coil,  

Fig.2 Dependence of homogenized permeability < 𝜇̇𝑟 > 

on normalized radius 𝑎 𝛿⁄ , where denotes 𝛿  skin 

depth. 

(b) Imaginary part 

(a) Real part 

Fig. 3 Multi-turn copper coil placed above a conducting disk. The 

system is assumed axisymmetric. The coil radius and air gap 

between coils are 0.5 and 0.1 mm, and number of turn is 81 so that 

𝜂 = 0.64. The FE meshes in a part of the coil region for the 

conventional and proposed FE analyses are shown . 
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which depends on the wire conductivity, permeability and 

volume fraction, has been analytically derived. The impedance 

and loss of the multi-turn coil can be computed from 

magnetostatic field analysis where the coil region is modeled as 

a uniform material with the homogenized complex permeability. 

By natural extension of the proposed method, electromagnetic 

properties of the magnetic plated wires could also be analyzed. 

Numerical evaluation of electrostatic capacitance among multi-

turn coil as well as analysis of twisted and woven Litz wires 

remain as our future work.  

APPENDIX A 

Here the Ollendorff formula (29) is derived. Let us consider 

a composite composed of magnetic particles with permeability 

𝜇 , diamagnetic constant 𝑁  and volume fraction 𝜂  which are 

embedded in non-magnetic medium. The macroscopic 

magnetic field, magnetic induction and magnetization are 

denoted by 𝑯, 𝑩 and 𝑴. 

The local field 𝑯𝑙𝑜𝑐  in which the magnetic particle is 

immersed can be obtained by taking the particle away. That is, 

𝑯𝑙𝑜𝑐 = 𝑯 + 𝑁𝑴                                   (A1) 

The magnetic field 𝑯𝑖𝑛 inside the particle can be expressed as 

𝑯𝑖𝑛 = 𝑯𝑙𝑜𝑐 − 𝑁𝑴𝑖𝑛                              (A2) 

where 𝑴𝑖𝑛 is the magnetization inside the particle which is, by 

definition, given by 

𝑴𝑖𝑛 = (𝜇𝑟 − 1)𝑯𝑖𝑛                               (A3) 

It follows from (A1)-(A3) that 

𝑴𝑖𝑛 =
𝜇𝑟 − 1

1 + 𝑁(𝜇𝑟 − 1)
𝑯𝑙𝑜𝑐                         (A4) 

By averaging the magnetization over the particle and non-

magnetic medium, the macroscopic magnetization 𝑴  is 

obtained as 

𝑴 =
𝜂(𝜇𝑟 − 1)

1 + 𝑁(𝜇𝑟 − 1)
𝑯𝑙𝑜𝑐                         (A5) 

Substituting (A5) into (A1), we find 

𝑴 =
𝜂(𝜇𝑟 − 1)

1 + 𝑁(1 − 𝜂)(𝜇𝑟 − 1)
𝑯                   (A6) 

The coefficient in (A6) is the homogenized magnetic 

susceptibility < 𝜒 >. The homogenized permeability is given 

by < 𝜇𝑟 >= 1+< 𝜒 > which is the Ollendorff formula (29). In 

the proposed method, the complex permeability 𝜇̇𝑟 is defined 

so that (A4), which corresponds to (20) and (21) in the static 

limit, holds. Hence use of 𝜇̇𝑟 in stead of 𝜇 in (29) is valid. 

APPENDIX B 

The Clausius-Mossotti formula is widely used to evaluate the 

macroscopic permittivity of nonpolar molecules [e.g. 19] . Here 

the magnetic counterpart of Clausius-Mossotti formula will be 

shown essentially equivalent to the Ollendorff formula (29). 

 

(a) Real part 

Fig. 4 Impedance 𝑍 [Ω] of the copper multi-turn coil shown in 

Fig.3 plotted against normalized wire radius. 

(b) Imaginary part 
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The molecules in the Clausius-Mossotti theory are replaced by 

the magnetic particles with permeability 𝜇 , diamagnetic 

constant 𝑁 embedded in non-magnetic medium. The magnetic 

moment of the particle, number density and polarizability are 

denoted by 𝒎 , 𝑛  and 𝛼 , respectively. Because the local 

magnetic field, called Lorentz field, is given by (A1), the 

macroscopic magnetization, 𝑴 = 𝑛𝒎, is given by 

𝑴 = 𝑛𝛼𝑯𝑙𝑜𝑐 = 𝑛𝛼(𝑯 + 𝑁𝑴)                        (B1) 

Inserting (B1) into 𝑩 = 𝜇0(𝑯 + 𝑴), we have the macroscopic 

relative permeability 

< 𝜇𝑟 >CM= 1 +
𝑛𝛼

1 − 𝑁𝑛𝛼
                               (B2) 

The magnetic moment in a magnetic particle immersed in the 

local field is given by 

𝒎 = Δ𝑉
(𝜇𝑟 − 1)

1 + 𝑁(𝜇𝑟 − 1)
𝑯𝑙𝑜𝑐                     (B3) 

where 𝛥𝑉  denotes the volume of the particle. The number 

density can be expressed in terms of the volume fraction 𝜂 as 

𝑛 = 𝜂 Δ𝑉⁄ . Since the coefficient in (B3) corresponds to 𝛼, we 

obtain 

𝑛𝛼 = 𝜂
𝜇𝑟 − 1

1 + 𝑁(𝜇𝑟 − 1)
                              (B4) 

Substituting (B4) into (B2), we find that < 𝜇𝑟 >CM=< 𝜇𝑟 >.  

Similarly, the Maxell-Garnett formula, widely used in 

microwave engineering [e.g. 20], for spherical particles (𝑁 =
1 3⁄ ) 

〈𝜇〉MG − 𝜇0

〈𝜇〉MG + 2𝜇0

= 𝜂
𝜇 − 𝜇0

𝜇 + 2𝜇0

                       (B5) 

can also be shown equivalent to (29). 
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