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 
Abstract—This paper reviews and extends a method for the 

semi-analytical solution of the coupled linear differential 

equations that describe the linear mode coupling arising in few-

mode fibers due to waveguide imperfections. The semi-analytical 

solutions obtained proved to be accurate when compared to 

numerical solution methods. These solutions were integrated 

into a multi-section model with split-steps for mode dispersion 

and mode coupling. Simulations using this model matched the 

analytical predictions for the statistics of group-delays in few-

mode fiber links, considering different coupling regimes with 

and without mode delay management. 

 
Index Terms—Mode-division multiplexing, multimode fiber, 

few-mode fiber, linear mode coupling. 

 

I. INTRODUCTION 

ODE-DIVISION MULTIPLEXING over few-mode 
fibers (FMFs) has been proposed as a next-generation 

solution to overcome the impeding installed capacity 
exhaustion of current single-mode fibers (SMFs) [1]-[2]. 
However, these systems require significantly higher equalizer 
complexity given the overall group-delay (GD) spread due to 
differential mode delay (DMD) and linear mode coupling [2]-
[4]. To correctly estimate the GD spread and the performance 
of a MDM equalizer, the mode coupling arising from the 
waveguide imperfections [5], need to be correctly modelled. 
Thereby, intense research has been accomplished to study the 
statistics of GDs analytically [6]-[10] and numerically [13]-
[17].  

A significant number of works assume systems operating 
in the strong mode coupling regime, e.g. [6] and [10], and 
consider a multi-section model where mode coupling is 
introduced through random unitary matrices each section, 
where the length of each section must be longer than the 
correlation length. However, few-mode fibers ([18]-[21]) 
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usually operate in the weak or intermediate coupling regime 
for transmission distances 100-1000km. Even tough strong 
mode coupling can be assumed within groups of degenerate 
modes [11], the mode coupling between groups of non-
degenerate modes cannot either be considered negligible or 
strong. Note that, nonlinear simulation requires a step-size 
much smaller than nonlinear effective length (~20 km) [22], 
thus the generation of coupling matrices with the appropriate 
level for 10-100m is required. Therefore, models considering 
random unitary matrices do not cover many of the cases of 
interest. 

To model systems operating in the weak and intermediate 
coupling regime, the introduction of coupling in the form of 
misaligned fiber splices in each section of a multi-section 
model was proposed [14]. In this case, the mode coupling 
matrices are obtained using an overlap integral approach. 
However, the matrix elements obtained this way present two 
limitations. First, even though the coefficients are effective in 
describing the mode power distribution, they fail to consider 
phase effects thereby appropriate only for incoherent sources 
[24]. Second, the coupling elements inevitably include mode 
dependent loss given the nature of the overlap integral. Even 
though splices do introduce mode dependent loss, splices are 
here being used as a discrete representation of continuous 
imperfections which may introduce or not introduce mode 
dependent loss. Therefore, a model able to separate mode 
coupling from mode dependent loss is preferable. 

Recently, the authors have presented a semi-analytical 
model capable of describing the linear mode coupling for 
fibers operating in the intermediate coupling regime [15]-
[16]. Using such method, the authors matched the analytical 
predictions for group-delay in few-mode fiber links [25]-[26].  

In this paper, we review and extend the derivation of a 
semi-analytical solution method for the linear mode coupling 
equations, and validate the group-delay spreading predictions 
for different coupling regimes and different link 
configurations. Section II presents the coupled differential 
equations that describe the linear mode coupling and the well-
known solutions for two modes propagation case. Section III 
presents the semi-analytical solution method proposed for the 
higher-order modes case including the explicit solutions for 
three modes and the symbolic computation code for higher-
order modes cases. Section IV provides the validation of the 
semi-analytical solutions obtained for one coupling segment. 
Section V described the proposed multi-section model using 
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the semi-analytical solutions including a validation of the 
accumulated mode coupling evolution with transmission 
length. Section VI presents a validation of the multi-section 
model for non-GD managed links by matching different 
analytical predictions for the statistics of the GDs, namely: 
standard deviation, probability density function, and 
cumulative distribution function. Section VII presents a 
validation of the multi-section model for GD managed links 
by matching the analytical predictions for standard deviation 
of the GDs. Conclusions are drawn in Section IV. 

II. COUPLED-MODE THEORY FOR FEW-MODE FIBERS 

The linear mode coupling in few-mode fibers is due to 
refractive-index inhomogeneities or small deviations of the 
core-cladding boundary caused by perturbations introduced 
during the fabrication process or by mechanical stresses 
imposed on the fiber in the field. Fig. 1 (a) shows a fiber 
dielectric waveguide with distorted core-cladding boundary. 
These imperfections cause the modes of the fiber to couple 
among each other. When exciting a pure mode at the fiber 
beginning, some of its power is transferred to other guided 
modes. This power transfer results in signal distortion because 
each guided mode travels at its own characteristic group 
velocity. Therefore, the equalization of the received signal must 
span over a time window that covers all the significant 
distortions undergone by a given information symbol. 

Mode coupling may even be a desirable effect. The mode 
delay spread can be reduced by introducing a significant 
amount of distributed coupling among all guided modes 
which introduces a sufficiently strong averaging effect of the 
different mode group velocities, see section V. However, in 
mode delay compensated fiber links, mode coupling may or 
may not be desirable, as discussed in section VI. 

A. Coupled-Mode Equations 

The perturbations that couple the ideal modes of the ideal 
waveguide can be described by variations of the dielectric 
tensor. This is, the perturbed dielectric tensor (εp) as a 
function of the space coordinates is written as: 
 

 εp(x,y,z) = εu(x,y) +Δε(x,y,z) (1) 
 

where εu(x,y) is the unperturbed part of the dielectric tensor, 

thereby invariant with the fiber longitudinal coordinate z, and 
Δε(x,y,z) represents the dielectric perturbation, which in the 
general case varies with all space coordinates. Eq. (1) can 
adequately describe the core-cladding perturbations in Fig. 1 (a). 

If an arbitrary field of frequency  is excited at z = 0, the 
propagation of this field in the unperturbed dielectric 
waveguide can be expressed as a linear combination of the 
ideal modes: 
 

 E(x,y,z,t) = ∑Am(z,t)Em(x,y)ej(wt-mz) (2) 
 

where m is the mode index, Am(z,t) is the slowly varying 
mode field envelope, m is the mode propagation constant at 
, and Em(x,y) is the electric field distribution.  

In the presence of a dielectric perturbation Δε(x,y,z), the 
coupling between the ideal modes are described by the 
following coupled-mode equations [5], [7], [23]: 
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where lm is the lth order coefficient of a Taylor series 
expansion of m() centered at the carrier frequency . Cm,n 
are the coupling coefficients given by the area integral of the 
dot product of the electrical fields of mode m and mode n, 
over the area where the permittivity perturbation Δε(x,y,z) ≠ 0. 

For the general case, where Δε is varying continuously 
with z, so is Cm,n, the solution of the coupling operator in (1) 
can only be achieved using numerical methods, e.g. Runge-
Kutta method. However, the usage of these methods is 
computationally inviable for simulation of long-haul 
transmission links. To overcome such limitation, we propose 
a model that discretizes the core-cladding fluctuations by 
dividing the fiber in multiple sections, each with a random 
displacement of the core center position constant along the 
section. In this case, the dielectric tensor is given by: 
 

 εp(x,y,z) = εr0(x+x(z),y+y(z),z) (5) 
 

where x and y are the random displacement of the abscissa 
and ordinate coordinates, respectively. Fig. 1 (b) shows a 
diagram of the discretization of the core-cladding fluctuations 
given the proposed method. In this case, each section has 
constant coupling coefficients. Therefore, in theory it should be 
possible to find (semi-)analytical solutions for the coupling 
operator present in (3).  

Assuming the fiber section length is much shorter than both 
the dispersion length LD = T0

2/|β2m| and the walk-off length 
LW = T0/|β1m-β1n|, where T0 is a measure of the pulse width, an 
approximate solution of (3) can be obtained by assuming the 
dispersive effects and linear coupling effects act 
independently. In the following, we will focus on finding a 
(semi-)analytical solution for the coupling operator, this is, 
we will be trying to solve: 
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Fig. 1. Fiber dielectric waveguide with distorted core-cladding boundary. 
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B. Coupled-Mode Equations Solution for Two-Mode Fibers 

The simple case of a two-mode fiber, where only the 
coupling between the LP01 mode (m = 1) and the LP11 mode 
(n = 2) is present, (6) can be solved analytically in each 
section [5]: 
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where  = 01 - 02, s2 = *+(/2)2, and  = C12 = C21*. 
From (7) and (8), it can be concluded that the coupling 
strength depends on the relation between ||2 and   

Fig. 2 a) and Fig. 2 b) show the mode powers |A1|2 and |A2|2 
as functions of the interaction distance z, for ∆β = 0 and for 
∆β = 4|κ|, respectively, with κ = π/2. Fig. 2 shows that the 
coupling efficiency is 100 % when the phase mismatch is 
zero, a full power swap happens for every |κ|z odd multiple of 
π/2. However, if the phase mismatch is different from zero 
the coupling is no longer the power coupling is incomplete, 
for ∆β = 2|κ| the maximum coupling is ½. 
 For higher number of modes, the dependence of the 
coupling strength on the phase mismatch and on the coupling 
coefficient should follow similar dependencies. Next section 
presents a solution method for higher number of modes.  

III. SEMI-ANALYTICAL SOLUTIONS FOR 
HIGHER-ORDER MODE FIBERS 

 For the simple case of a fiber with two modes, (6) can be 
easily solved by hand, however, this method becomes endless 

for higher number of modes. The use of a numerical method 
for the solution of (6), such as the Runge-Kutta-Fehlberg 
(RK45) method, is also not an option since it would be 
necessary to solve these equations for each fiber section with 
different fiber displacements, thus leading to computation 
times that are unaffordable in most applications. Therefore, 
an analytical approach is desirable.  

Our approach starts by taking the Fourier Transform of (6) 
on z to avoid the complex exponentials, obtaining:  
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where wz is the spatial frequency and ∆βm,n = 0m-0n. The 
system of equations (9) can be solved by substitution, thereby 
eliminating each Ap from all the equations for all p ≠ m, 
obtaining an equation for Am which can be written as: 
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where R is equal to 2(M - 1), with M equal to the number of 
modes, and am,r are functions of Δβmn and Cmn. The process 
described must be performed for m = 1, ..., M to obtain 
equations like (10) for each mode. Now, by applying the 
inverse Fourier transform to (10), a differential equation with 
constant coefficients is obtained which can be solved using 
the method of the characteristic polynomial, obtaining: 
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where sm,r are the characteristic polynomial roots and bm,r are 
constants that can be determined from the initial conditions at 
z = 0 obtained by differentiating (6), (dz

iAm)z=0, and equating 
the results. Finally, the coefficients bm,r are the solutions of 
the linear equations system:  
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The solution method described is easily applied using a 
software tool with symbolic computation capability. We have 
used the Symbolic Math Toolbox from Matlab® to generate 
equations for am,r and (dz

iAm)z=0 as function of ∆βmn and Cmn. 
Finally, the derived equations can be written into a 
conventional text file and compiled using any programming 
language (we used a C-compiler). Afterwards, those 
equations can be evaluated allowing to find the roots of the 
polynomials in (10) and to solve the system of linear 
equations in (12). 

In summary, instead of numerically solving a coupled-
system of M differential equations (6), the method proposed 
requires the finding the roots of a 2(M - 1) order polynomial, 
for which efficient and accurate algorithms are available, e.g. 
Bairstow’s method [28], and the solution of a system of linear 
equations (12). 

A. Analytical expressions for the three-modes case 

The analytical expression for am,r and (dz
rAm)z=0 as a 
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Fig. 2. Fiber dielectric waveguide with distorted core-cladding boundary. 
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function of ∆βm,n and Cm,n for M = 3 are given by equations 
(13) to (18), obtained executing the MATLAB code presented 
in Appendix. Replacing the ∆βm,n and Cm,n numeric values in 
the am,r analytical equations, the sm,r values can be calculated 
using algorithms for the calculation of polynomial roots. 
Moreover, (dz

rAm)z=0 values are obtained replacing the ∆βm,n 
and Cm,n numeric values in the analytical formulas. Finally, 
the system of linear equations (12) can be numerically solved.  

B. Analytical expressions for more than three-modes 

The analytical expression for am,r and (dz
rAm)z=0 as a 

function of ∆βm,n and Cm,n for M > 3 can be obtained 
executing Matlab code similar to that made available in the 
Appendix. However, the equations become too long to be 
printed here in full. The authors have made available the 
analytical equations for 6-modes and the respective 
MATLAB script for their derivation, at: 
http://doi.org/10.17036/researchdata.aston.ac.uk.00000206. 
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 (18) 

C. Algorithm Complexity 

The RK45 method requires a step-size of a fraction of the 
beat-length between the two mode-groups most farther apart, 
which can easily be of the order of a millimeter or less [11]. 
In this way, to resolve a one millimeter beat-length, more 
than 104 and 106 steps are required for a transmission length 
of 1 and 100 meters, respectively. Each RK45 step requires 
six evaluations of a system of M equations (6), each equation 
with 2(M - 1) multiplications, thus totalizing 12M(M - 1) 
multiplication operations per step. 

The semi-analytical method proposed uses the Bairstow’s 
method to find the roots of M polynomials of order 2(M - 1). 
This method consists on the progressive division of the 
original polynomial by quadratic polynomials while adjusting 
the coefficients of the later. Thus, the method requires (M - 1) 
polynomial divisions of progressively lower complexity. 
Assuming the number of multiplications required to be the 
product of the number of terms of the polynomials involved, 
the ith-division requires [(2(M - 1) + 1) - 2(i - 1)](2+1), adding 
up to 3(M2 - 1) multiplication operations. Finally, this figure 
must be multiplied by the number of iterations for coefficients 
adjustment, which we cap to be lower than 100, and observed 
that in general only 20 repetitions were required. Thus, the 
total complexity is on the order of 60M(M2 - 1). 

Finally, the proposed semi-analytical method reduces the 
number of multiplications required by a factor from 280 to 
28000 when transmitting over 1 to 100 meters, for M = 6. 
These factors agree with the observed simulation times. 

http://doi.org/10.17036/researchdata.aston.ac.uk.00000206
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IV. SINGLE-SECTION MODELLING 

In this section, the semi-analytical solutions of section III 
are validated using the Runge-Kutta-Fehlberg (RK45) method 
[29]. The fiber considered for guides six linearly polarized 
(LP) modes: LP01, LP11a, LP11b, LP21a, LP21b, and LP02. It has a 
relative index gradient at the core–cladding interface 4.5×10-3 
and a core radius (w1) of 12.83 m, optimization details [27]. 
Table I shows the fiber characteristics at 1550nm (for the 
sake of clarity, the modes were numbered from one to six). 
Fig. 3 depicts the amplitude of Cm,n as a function of the fiber 
displacement vector for a radial displacement from 0 to 
0.3∙w1. Note that, the coupling coefficients were found to be 
real and symmetric has concluded in [23], therefore only Cm,n 
with n > m are shown. From Fig. 3, the pairs of modes with 
higher coupling strength can be identified, and it can be 
verified that the coupling between symmetric modes (LP01, 
for example) and anti-symmetric modes (LP11, for example) 
requires a non-symmetrical perturbation. The surfaces shown 
in Fig. 3 allow the rapid calculation of the coupling 
coefficients Cm,n using interpolation for a random 
displacement, as required for integration in a modified split-
step Fourier method (SSMF). 

In the following, the semi-analytical (SA) solutions are 
compared to the numerical solutions obtained using the RK45 
method. The variable-step width of the RK45 method is 
specified considering a relative error tolerance of 10−6 and an 
absolute error tolerance of 10−9. Fig. 4 shows the overlap of 
the modal powers given by the SA solutions and the modal 
powers given by the numerical method as a function of z, 
considering a fiber core displacement of ρd =0.08∙w1 and 
φd = π/3, for an even power distribution between the modes at 
the input. A very good agreement between the SA and 
numerical solutions can be noticed in Fig. 4 inset which 
zooms in the mode power evolution around 0.8 m. Similar 
agreement is obtained for different input conditions. 

To have a better measure of the error magnitude, the mean 
squared error (MSE) between the semi-analytical (SA) results 
and the numerical (NUM) results is calculated for each mode, 
MSEm, given by:  

 

   
2

1

1 N
SA NUM

m m n m n

n

MSE A z A z
N 

   (19) 
 

where ASA
m is the SA mode amplitude solution, ANUM

m is the 
numerical mode amplitude solution, and zn are the discrete 
points considered in a specific fiber length. MSEm has been 
calculated considering 105 discrete points equally spaced 
along a fiber with 1 m, considering ρd varying 0 and 0.08∙w1 
(1000 points equally spaced), and φd varying from –π to π 
(1000 points equally spaced). In all the cases tested the MSEm 
was always of the order of magnitude of the RK45 absolute 
tolerance, as verified by repeating the error calculation for 
different tolerance values. Therefore, it can be concluded that 
the semi-analytical method proposed provides an accurate 
estimative of the linear mode coupling taking place along a 
FMF. More importantly, using the semi-analytical method the 
computation time required to calculate the linear coupling 

along a fiber with a few meters is reduced by three orders of 
magnitude compared to the RK45 method which required 
tens of seconds executing on a standard personal computer 
operating at 2.8GHz.  

In conclusion, the semi-analytical solutions obtained enable 
a time efficient and accurate computation of the linear 
coupling occurring along the fiber length. They are therefore 
a valuable alternative to the numerical solution, which would 
not be practical due to computation time constraints. 

 
 

Fig. 4. Normalized mode power as a function of the fiber length, for uneven 
power distribution at the fiber input. The subscripts SA and RK45 were 
used for semi-analytical and numerical solutions, respectively. The inset 
shows the excellent agreement between SA and RK45 around 0.8 m. 
 

TABLE I 
FIBER PROPERTIES AT 1550 nm. 

 1-LP01 2-LP02 3-LP11a 4-LP11b 5-LP21a 6-LP21b 

Δβn
x 

0 7.4 3.7 3.7 7.4 7.4 

β(1)
1,n

(ps/km) 
0 -2.6 -0.4 -0.4 2.6 2.6 

Dn 

(ps/km/nm) 
22.2 21.5 22.2 22.2 21.8 21.8 

Sn 

(ps/km/nm2) 
66.4 61.5 66.2 66.2 63.7 63.7 

where  is the wave number. 
 

 
 

Fig. 3. Cm,n as a function of the fiber displacement vector, minimum and 
maximum values as (min, max). 
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V. MULTI-SECTION MODELLING 

We propose a multi-section model were the coupling 
strength is set using a given radial displacement and a 
uniformly distributed azimuthal displacement for each 
section. The radial displacement to be used depends not only 
on the target coupling strength but also on the fiber step 
length to be used. But first we quantitatively define the mode 
coupling strength and present its dependence on the radial 
displacement. 

A. Setting Mode Coupling Strength and Correlation Length  

The statistical nature of polarization mode dispersion 
(PMD) in SMFs is mainly determined by the correlation 
length, which is defined in terms of fiber mode coupling. In 
SMFs, the mode coupling is easily defined as there is only 
two polarizations, and the Lc is defined as the length for 
which the average power in the orthogonal polarization is 
within e-2 of the power in the launching polarization. In FMFs, 
the mode coupling strength can be quantified as the ratio 
between the average power in all the other orthogonal modes 
and average power remaining in the launching mode, after a 
certain distance. Thus, there are as many coupling strength 
values and Lc as the number of modes. Inevitable, the fiber 
mode m showing higher coupling strength will set an important 
reference for the study of the mode group-delay statistics. 
Finally, the mode coupling strength definition for FMFs is:  

 

XTm = ∑v≠m(Pv / Pm), (20) 
 

where Pv is the power of mode v, after a given fiber segment 
under test, when only the m mode was launched, where m is 
the mode that shows higher coupling strength. In the FMF 
case, we generalize Lc for mode m as the length for which 
(Pm - ∑v≠mPv) = e-2, this is XTm = [e2 - 1]/[e2 + 1] (-1.18 dB). 

In our multi-step model a given amount of coupling is set 
by selecting a fixed amount of radial displacement and 
selecting a random azimuth displacement given by a uniform 
distribution. In this way, the proposed model introduces a 
random amount of crosstalk per step that in average 
approximates the desired level. Fig. 5 shows the mode 

coupling strength averaged over the azimuth displacement, as 
a function of the normalized radial displacement, for a 6 LP 
mode fiber presented in section IV. Note that, coupling 
strengths are calculated considering degenerate modes such as 
LP11a and LP11b as one mode, e.g. XTLP11a,b equals to 
∑v≠LP11a,b{Pv / (PLP11a+PLP11b)}. In Fig. 5, the mode coupling 
strength only depends significantly on the mode being 
considered for displacements higher than 1 %. Such higher 
coupling for LP02 and LP21 can be explained noting they 
belong to the same LP mode group. Moreover, 
XTLP21 ≤ XTLP02 for any displacement in Fig. 5 because any 
power launched in LP21a couples preferentially with LP21b 
(and vice-versa) and in the second place to LP02. Given the 
higher values of XTLP02, we define Lc for this mode. Note that 
XTm values above 10 dB mean that almost all power launched 
in mode m has been transferred to other modes. 

In the literature, the mode coupling values of fabricated 

FMFs range from -50 dB/100m to -40 dB/100m for fibers 
with step-index or graded-index profiles [18], [19], going up 
to -28 dB/100m for coupled multi-core fibers [20] and 
-7 dB/100m for fibers with ring-index profiles [21].  

B. Mode Coupling Accumulation over Transmission Length 

In a multi-section model, the mode coupling accumulates 
section after section in such a way that in average should 
follow the same continuous growing function that was first 
derived to describe the accumulation of polarization coupling 
in polarization-maintaining fibers [30]: 

 

XT = tanh(hz) (21) 
 

where h is the mode coupling parameter (measured in m-1 
units) and z is the fiber length.  

To validate our multi-section model, we have run 10,000 
transmission simulations considering the 6-mode fiber 
presented in section IV. Fig. 6 shows the average XTLP02 as a 
function of the fiber length (L) from 10 m to 1000 km, 
considering a fiber section of 10 m and different values of 
coupling strength. Note that the dashed lines in Fig. 6 
represent the evolution predicted for (21) using the respective 
h coefficient. A very good agreement between the proposed 
multi-section model and (21) is noticeable. Furthermore, 
similar matches were obtained for other section sizes and 
respective radial displacements. 

The executable code to generate the coupling matrices for 
different strengths as presented in Fig. 6 are available at: 
http://doi.org/10.17036/researchdata.aston.ac.uk.00000206. 

C. Polarization Mode Coupling 

After a few meters, the two nearly degenerate polarization 
modes of each spatial mode strongly couple to each other and 
the FMF enters the polarization coupling state [7], [23]. Such 
propagation mode coupling can be described by a block 
diagonal matrix with a sequence of M/2 submatrices along the 
diagonal. Each of these 2 × 2 random unitary submatrices is a 
PMD transfer matrix [7]. 

The full coupling matrix for the ith-section is modelled as 
the product of two matrices: one block diagonal matrix 

 
Fig. 5. XTm averaged over the azimuth displacement as a function of the radial 

displacement. 
 

http://doi.org/10.17036/researchdata.aston.ac.uk.00000206


 7 

describing the polarization mode coupling, and one matrix 
describing finite inter- and intra-mode group coupling (as 
described in Section III, IV, V-A and V-B). This approach 
follows a similar reasoning to that in [7] and [11] to deal with 
coupling processes having different correlation lengths. 

VI. GD STATISTICS IN NON-DELAY-MANAGED LINKS 

In previous work [31], it has been shown that the approach 
of considering principal states of polarization (PSPs) with 
well-defined GDs in SMFs, can be extended to FMFs. In 
FMFs, the coupled modes having well defined GDs are called 
principal modes (PMs). In both cases the statistics of the GDs 
are dependent on the linear coupling strength, thus the 
correlation length Lc. The coupling regimes may then be 
broadly defined as strong coupling when L >> Lc, weak 
coupling when L << Lc, and intermediate coupling otherwise. 
In the FMF case, the statistical properties of the GDs are well 
known for the two extreme regimes [6]-[10]. In the weak 
coupling regime, the GD spread grows linearly with distance 
and in the strong coupling regime grows with the square root 
of the distance. In the intermediate coupling regime, we have 
shown in [26] through simulation that the GDs statistics in 
SMFs can be extended to FMFs, at least for fibers guiding 3 
LP modes. At the same time, the complete analytical 
derivation of such extension was presented in [32]. 

The temporal spread of propagating pulse is determined by 
the modal dispersion (MD) vector τ, as defined for a 
generalized (M2 - 1)-dimensional Stokes space in [9] (M 
modes). Knowledge of the MD vector allows the extraction of 
the PMs and respective GDs as explained in [9]. Moreover, the 
square modulus of the MD vector is proportional to the sum 
of the GDs τi (with ∑τi = 0) [9]: 

 

2 2

1

M

i

i

M 


 τ  (22) 
 

In this way, it can be noted that ||τ||/M is the standard 
deviation of the GD vector [τ1, τ2, …τM], σgd. The MD vector 

has been used to explicitly determine the delay spread T in 
two limiting cases: one in which the PMs change rapidly 
across the signal bandwidth, and one in which the bandwidth 
of the PMs is much larger than the signal bandwidth. In the 
first case, T is a deterministic quantity and determined by σgd, 
T2 = E{||τ||2}/M2 = E{σgd

2} [10], where E{} denotes 
expectation. In the latter case, T is a random quantity given by 
maxi{τi} - mini{τi} [6], [9], determined by the GD PDF. 

In the following, we review the known MD statistics and 
use them to validate the multi-section model proposed in 
section V for a fiber guiding 6 LP modes despite the different 
coupling strengths between different pairs of modes 
belonging to different mode groups. The FMF presented in 
section IV is considered again, the modal and chromatic 
dispersion values are given in Table I. The fiber presents a 
DMD of 5.19 ps/km and we assumed zero DMD between 
degenerate LP modes and between orthogonal polarizations. 
As explained in section V-B, the polarization mode coupling 
is considered in each section using a block diagonal matrix. 
Regarding the coupling matrix describing finite inter- and 
intra-mode group coupling, the XTLP02 value was varied from 
-50 to 0 dB/100m by using a given radial displacement and a 
uniformly distributed azimuthal displacement for each section 
(see Fig. 5), assuming a section length of 10 m. This range 
fully covers the range of coupling values presented in the 
literature [18]-[21]. Finally, the GDs of the PMs are the 
eigenvalues of the semi-analytically simulated transmission 
matrix. Note that the simulated transmission matrix must be 
compensated for chromatic dispersion as introduced by (3). 

A. GD Standard Deviation and Intensity Impulse Response 

Knowledge of the modulus of the MD vector ||τ|| allows to 
determine the standard deviation of the GD vector 
[τ1, τ2, …τM] σgd, since σgd = ||τ||/M. E{||τ(z)||2} can be found 
by integration of two deterministic differential equations (z 
dependence is omitted) [12], [32]: 
 

∂zE{||τ||2} = E{2∂β τ} = 2∂β E{τ} 

∂zE{τ} = ∂β – 1/Lc E{τ} (23) 

 

where ∂β term represents the uncoupled GDs per unit length 
and Lc is the correlation length characteristic of the fiber, 
considering the same Lc for all groups of modes. 

For non-DMD-managed spans (this is, ∂β constant), 
E{||τ(z)||2} can be found through analytical integration of 
(23), and is given by [12], [32]:  
 

E{||τ||2} = 2||∂β||2Lc
2(e-z/Lc + z/Lc – 1) (24) 

 

Equation (24) was proposed and validated by simulation in 
[26] for fibers guiding 3 LP modes, and at the same time its 
analytical derivation being presented in [32]. 
 Fig. 7 shows the standard deviation of the GD vector 
([τ1, τ2, …τ12]) as a function of distance up to 1,000 km, 
obtained by averaging over 6,000 different realizations of 
lateral offsets giving rise to a given XTLP02 value. These 
results were obtained using the fiber presented in Table I, 
treating the polarization mode coupling as described in 

 

 

Fig. 6. Accumulated XT as a function of the fiber length, for different 

coupling strength, averaged over 10,000 runs. 
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section V-B. Fig. 7 shows a good agreement between 
simulation and (24), for any coupling value studied and for 
any distance up to 1,000 km (even 10,000km has further 
results shown). Similar agreement between (24) and 
simulation results has been presented in Fig. 3 of [12]. This 
provides mutual validation of (24) and the proposed multi-
section model proposed. In Fig. 7, for coupling values ranging 
from -50 to -40 dB/100m, σgd scales approximately linearly 
with distance. But, at -40 dB/100m the deviation from linear 
growth is already noticeable around 1,000 km, thus even with 
such a low coupling, the FMF is operating in intermediate 
coupling regime. Increasing XTLP02, σgd gradually converges to 
the strong coupling regime. However, even for a XTLP02 equal 
to -7.01 dB/100m (the highest value found in literature [21]), 
the fiber is still not well modelled by random unitary matrices 
every 100 m, it would underestimate σgd by a factor of 2.76. 

For FMFs where the PMs change rapidly across the signal 
bandwidth, MD can be conviniently characterized by exciting 
each spatial channel (one at a time) with a short optical pulse 
and measuring the received intensities in each of the output 
spatial channels. Such process leads to M × M intensity 
waveforms, whose sum I(t) has been used to assess the signal 
delay spread caused by MD [10], [12]. For strong mode-
coupling and typical MD values, it has been shown that 
I(t) = r(t)∗I0(t) [10], where ∗ represents convolution, I0(t) is 
the launching signal intensity waveform, and r(t) is FMF’s 
intensity impulse response (IIR). Also in [10], it was shown 
theoretically and experimentally that r(t) is a Gaussian function 
with variance equal to T2 = E{||τ||2}/M2 = E{σgd

2}, thus: 
 

 
2

22

1
exp

22

t
r t

TT

 
  

 
 (25) 

 

Equation (25) is valid as long as the correlation bandwidth 
(BMD = 1/2πT) of the fiber transfer matrix is much smaller  
than the channel bandwidth (B ~ tens of GHz). Fig. 8 shows 
the mode-averaged intensity waveform for M = 12 modes 
after transmission of a Nyquist signal 
I0(t) = √B sin(πBt)/(πBt), with B = 20 GHz, over a 1000km 
link with coupling values ranging from -30 to 0 dB/100m. 

Simulation results, r(t)∗I0(t) waveform, and r(t) IIR are 
plotted using colored full lines, black dashed lines, and red 
dashed lines, respectively. Fig. 8 displays simulation results 
for 100 different fiber realizations for each XTLP02 value. All 
the waveforms were normalized so that their peak value is one. 
Fig. 8 shows an excellent agreement between simulations and 
theory (experimentally validated) as obtained in [10]. Note 
that the deviations from theory reduce as the coupling strenght 
increases and the PMs bandwidth decreases. Finally, further 
results show that the deviation of T(z) from theory is in 
agreement with the theory in [10]. 

B. GD Probability Density Function and Maximum GD Spread 

The probability density function (PDF) of the GDs has 
been derived analytically for strong coupling [6] where the 
coupling matrix can be described as a Gaussian unitary 
ensemble. The ordered joint pdf of the eigenvalues (τi) of a 
M × M Gaussian unitary ensemble with zero trace (∑τi = 0) is: 
 

     2

1
2

1 1
0

, ,
M

ii

M M M i j

M i j

p e


     



  

  ...  (26) 

 

with order constrain τ1 ≤ τ2 ≤ … ≤ τM and where the constant 
M is defined by requiring (26) to integrate to unity. The 
unordered joint PDF is just 1/M! of (26) but without the order 
constraint. In this way, the marginal PDF of τ is can be 
obtained by integrating over τ2, …, τM-1: 
 

   2 1 2 1

1
... , ,..., ...

!M M M M
p p d d

M
      

 

 
 

    (27) 

 

Analytical solutions of (27) can be find in [6]-[7] for any M. 
Fig. 9 shows the PDF of the ordered GDs (τm, 

τ1 ≤ τ2 ≤ … ≤ τ6) obtained for 6000 different fiber matrix 
realizations, normalized by the σgd, after 1000 km for two 
different coupling values, overlapped with the analytical joint 
PDF (thin black line) derived for the strong coupling regime 
(27). Note that the normalization factor (σgd) depends on the 
XTLP02 (Lc) value, see (24). Exceptionally, these results were 
obtained for single-polarization to facilitate the visualization 

r(t)

r(t)∗I0(t)

 

Fig. 8. Mode-averaged intensity waveform for different coupling values 
after transmission of a Nyquist signal. Simulation results, r(t)∗I0(t) and r(t) 
plotted using colored full lines, black dashed lines and red dashed lines, 
respectively.  

 

 

Fig. 7. Standard deviation of the GDs of the PMs as a function of 
transmission distance showing simulation results (markers) and analytical 
results (solid lines). 
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of the individual GDs evolution in Fig. 9, but similar 
matching between simulation and theory was obtained when 
considering dual-polarization. Fig. 9 (a) shows that for 
-30 dB/100m the GDs of the PMs vaguely resemble the GDs 
of the LP modes given the impulse-like PDF of τ2 (“LP11a”) 
and τ3 (“LP11b”). Further results for lower coupling values 
shown that all GDs present impulse-like PDFs. In Fig. 9 (b), 
for -20 dB/100m, the match between the simulated PDFs and 
the analytical PDF for strong coupling is good, even though 
the GDs have been normalized by different factors (24). 
Further increase of the coupling strength leads to improved 
matching between the simulated PDFs and the analytical 
PDF, as observed in additional results. 

In a MDM system for which the bandwidth of the PMs is 
much larger than the signal bandwidth, the digital equalizer 
must span a temporal memory at least as long as the the 
difference between the maximum and the minimum group 
delay (τM - τ1)total. As shown in [8], the probability of having a 
GD spread lower than x, P(τM - τ1 ≤ x) – the cumulative 
distribution function, can be computed as a function of the joint 
probability of having all eigenvalues falling within an arbitrary 
interval [x, y], P(τM ≤ x, τ1 ≥ y), this is: 
 

   1 1,
M y M

P x P y x y dy   




         (28) 

   1 1, ... ...
x x

M M M

y y

P x y p d d        τ   (29) 

 

According to [8], (27)-(29) can be evaluated using at least 
three methods: Fredholm determinant, Andréief identity or 
one approximation based on Tracy–Widom distribution. 
Finally, from (27), we can obtain the equalizer memory 

length x required to accommodate the GD spread with a given 
outage probability p, this is: 
P(τM - τ1 > x) = p = 1 - P(τM - τ1 ≤ x). 

Fig. 10 shows the complementary cumulative distribution 
function (CCDF) of the normalized GD spread, 
P[(τ6 - τ1)/σgd > p], obtained through simulation after 1000 km 
for different coupling values (averaging over 6000 different 
realizations). These results were obtained for single-
polarization to be consistent with the PDFs in Fig. 9. Fig. 10 
shows that for XTLP02 ≥ -30 dB/100m the CCDFs are very 
similar to the analytical approximation obtained for strong 
coupling (28) (dashed line). Conversely, for XTLP02 lower than 
-30 dB/100m the normalized GD spread is significantly 
smaller than the normalized GD spread for strong coupling. 
Finally, we can conclude that the required temporal equalizer 
memory length (in time units) to span a channel with an 
outage probability smaller than 10−4 is equal to 4.5σgd, for any 
coupling strength, where σgd depends on the mode coupling 
strength, see (24). 

VII. GD STATISTICS IN DELAY-MANAGED LINKS 

In differential mode delay (DMD) managed spans, GD 
spread is reduced by cascading fibers with opposite sign 
DMD. In the absence of mode coupling, the GD spread at the 
end of the span would be zero. However, in the presence of 
coupling, the DMD compensation is no longer fully effective. 
In order to minimize the impact of coupling, the length of the 
segments over which DMD sign is inverted has to be made 
much smaller than the correlation length set by the coupling, Lc. 

To compensate for linear mode coupling and group delay 
spread, MIMO-DSP can be used, but DSP complexity 
increases with the number of modes and the total GD spread. 
In order to minimise complexity, the total GD spread should 
typically be reduced to less than 10 ns [33].  

For DMD-managed spans, where uncoupled GDs (per unit 
length) ∂β are a piecewise constant function of z a general 
analytical solution of (23) for E{||τ(z)||2}, rapidly becomes too 
complex as the number of fiber segments increases. Therefore, 
numerical integration should be performed as in [32]. 

In order to verify the deterministic numerical integration of 

 

(28)

 

Fig. 10. Complementary cumulative distribution of the normalized GD 

spread, obtained through simulation after 1000 km, with different XTLP02. 
 

 (27)

 

Fig. 9. Probability density function of the ordered normalized GDs 

(τm/σgd), obtained through simulation after 1000 km, with different 

XTLP02 values. 
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(23) we made use of the multi-section model presented in 
section V. The simulations considered that each span of 
length L comprised S segments, where each segment was 
itself composed by two fibres of length L/S/2 with the same 
characteristics but opposite sign GD. The first fibre is the 
same presented in section V. The second fibre is not obtained 
through optimization but just by negating the GD vector, 
keeping the remaining characteristics of the first fibre. 

Fig. 11 shows the evolution of the standard deviation of the 
GD vector ([τ1, τ2, …τ12]) with propagation distance, assuming 
compensation length of 20 km (10 km with the positive GD 
vector followed by 10km with the negative GD vector), for 
different values of coupling strength. In Fig. 11, there are two 
sets of results, one obtained for transmission using the 
proposed multi-section model (dot markers) and one given by 
the deterministic numerical integration of (23) (full lines). A 
section length of 10 m was used as smaller section lengths 
generated similar results. In Fig. 11, we can observe a very 
good match between the deterministic numerical integration 
and the proposed multi-section model. It can be inferred from 
these results that the semi-analytical solutions in section IV 
multi-section model in section V are accurate under any 
coupling regime for DMD managed links. 

In order to study a broader range of DMD scenarios, the 
GD vector was normalized by the highest GD value in the 
vector. Fig. 12 shows the combinations of (DMD, XT) that 
allow for a GD spread lower than 800 ps after 100 km with a 
probability higher than 95 %. In Fig. 12, for a given span 
configuration, GD spread is lower than 800 ps for (DMD, XT) 
pairs below the respective curve. For non-DMD-managed 
spans, the maximum tolerable DMD increases with the 
coupling strength, being very low for weak coupling. For 
DMD-managed spans, as the number of segments increases, 
increasingly high DMD values are tolerable for weak 
coupling. For higher levels of coupling (above -20 dB/100m), 
the tolerable DMD converges to that of the non-DMD-
managed spans. Importantly, the tolerable DMD for the 

DMD-managed spans is always greater than or equal to the 
non-DMD-managed spans. 

VIII. CONCLUSION 

This paper proposes a semi-analytical solution method for 
the coupled linear differential equations that describe the 
linear modal coupling in FMFs. The analytical solutions 
obtained enable a time efficient computation of the mode 
coupling occurring after any fiber length in such a way that 
they can be integrated into a multi-section propagation model. 
This semi-analytical model is therefore a valuable alternative 
to the numerical methods which would not be practical due to 
computation time constraints. More importantly, the proposed 
model proved accurate against analytical predictions for the 
statistics of group-delays in few-mode fiber links, namely: 
standard deviation, probability density function, and 
cumulative distribution function. The proposed model proved 
accurate for different transmission lengths 10 m-to-
10,000 km, in any coupling regime -50 dB/100m to 
0 dB/100m, without and with GD management. Finally, the 
proposed semi-analytical solution method is an accurate and 
efficient tool for the modelling and development of future 
high-capacity multimode fiber systems.  

APPENDIX 

TABLE I 
MATLAB CODE FOR FINDING EQUATIONS FOR am,r WITH M = 3 

syms k12 k13 k23 B1 B2 B3 dB12 dB13 dB23 w 
  
A1 = sym('A1(w)'); A2 = sym('A2(w)');  
A3 = sym('A3(w)');  

%% Equations (9) 
aA1 = (-1*k12*subs(A2,w,w-(B1-B2))... 
    -1*k13*subs(A3,w,w-(B1-B3)))/w; 
aA2 = (-1*k12*subs(A1,w,w+(B1-B2))... 
    -1*k23*subs(A3,w,w-(B2-B3)))/w; 
aA3 = (-1*k13*subs(A1,w,w+(B1-B3))... 
    -1*k23*subs(A2,w,w+(B2-B3)))/w; 

 

(23)

 
 

Fig. 11. Standard deviation of the GDs as a function of the propagation 
distance, for fibers with a compensation length of 20 km and different values 
of coupling strength. 
 

 

Fig. 12. Contour plot of the pairs (DMD, XT) that allow for a GD spread 
lower than 800 ps after 100 km with a probability higher than 95 %. 
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%% Elimination of aA1 from aA2 and aA3 
xA2 = ... 
 (subs(aA2,'A1(w+(B1-B2))',subs(aA1,w,w+(B1-B2)))); 
xA3 = ... 
 (subs(aA3,'A1(w+(B1-B3))',subs(aA1,w,w+(B1-B3))));  

%% Find coefficient of A2,A3 on the RHS of xA2,xA3 
c_xA2 = subs((xA2-subs(xA2,'A2(w)',0)),'A2(w)',1); 
c_xA3 = subs((xA3-subs(xA3,'A3(w)',0)),'A3(w)',1); 

%% Passing the coefficients to the LHS 
xA2 = subs(xA2,'A2(w)',0) / (1-c_xA2); 
xA3 = subs(xA3,'A3(w)',0) / (1-c_xA3); 

%% Elimination of A2 from xA3 
zA3 = ... 
 subs(xA3,'A2(w+(B2-B3))',subs(xA2,w,w+(B2-B3))); 

%% Equations (10) after passing A3 to the LHS of zA3 
eq3 = (1-subs(zA3,'A3(w)',1)); 

%% Characteristic Polynomial Coefficients 
[N3,D3] = numden(eq3); 
[C3,T3] = coeffs(N3,w); 

%% Final rearrangements 
C3 = subs(C3,B1,dB12+B2); 
C3 = subs(C3,B2,-dB12+B1); 
C3 = subs(C3,B1,dB13+B3); 
C3 = subs(C3,B3,-dB13+B1); 
C3 = subs(C3,B2,dB23+B3); 
C3 = subs(C3,B3,-dB23+B2); 
C3 = simplify(C3); 
% similar for C1 and C2 % 

 
MATLAB CODE FOR FINDING EQUATIONS FOR (dz

rAm)z=0 WITH M = 3 

%% Boundary conditions 
syms z 
A1 = sym('A1(z)'); A2 = sym('A2(z)');  
A3 = sym('A3(z)'); 

%% Equations(6) 
dA1 = ... 
-1i*(k12*A2*exp(1i*dB12*z)+k13*A3*exp(1i*(dB13)*z)); 
dA2 = ... 
-1i*(k12*A1*exp(-1i*dB12*z+k23*A3*exp(1i*dB23*z)); 
dA3 = ... 
-1i*(k13*A1*exp(-1i*dB13*z+k23*A2*exp(-1i*dB23*z)); 

%% 2nd-order derivative 
d2A1 = diff(dA1,z); 
d2A2 = diff(dA2,z); 
d2A3 = diff(dA3,z); 

%% Replacing known 1st-order derivatives  
d2A1 = (subs(d2A1,diff(A1,z),dA1)); 
d2A1 = (subs(d2A1,diff(A2,z),dA2)); 
d2A1 = (subs(d2A1,diff(A3,z),dA3)); 
% similar for d2A2 and d2A2 % 

%% 3rd-order derivative 
d3A1 = diff(d2A1,z); 
d3A2 = diff(d2A2,z); 
d3A3 = diff(d2A3,z); 

%% Replacing known 1st-order derivatives  
d3A1 = (subs(d3A1,diff(A1,z),dA1)); 
d3A1 = (subs(d3A1,diff(A2,z),dA2)); 
d3A1 = (subs(d3A1,diff(A3,z),dA3)); 
% similar for d3A2 and d3A2 % 

%% Derivatives to be evaluated at z = 0 
BB1 = [subs(A1,'z',0) 
       subs(dA1,'z',0) 
       subs(d2A1,'z',0) 
       subs(d3A1,'z',0)]; 
% similar for BB2 and BB3 % 

RESEARCH DATA 

The Matlab scripts, source C-code, mex compiled C-code, 
and figure data points are available at 
http://doi.org/10.17036/researchdata.aston.ac.uk.00000206. 
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