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Analysing two-dimensional shallow water equations with idealised bottom topographies have many ap-
plications in the atmospheric and oceanic sciences; however, restrictive flow pattern assumptions have been
made to achieve explicit solutions. This work employs the Adomian decomposition method (ADM) to de-
velop semi-analytical formulations of these problems that preserve the direct correlation of the physical
parameters while capturing the nonlinear phenomenon. Furthermore, we exploit these techniques as reverse
engineering mechanisms to develop key connections between some prevalent ansatz formulations in the
open literature as well as derive new families of exact solutions describing geostrophic inertial oscillations
and anticyclonic vortices with finite escape times. Our semi-analytical evaluations show the promise of this
approach in terms of providing robust approximations against several oceanic variations and bottom to-
pographies while also preserving the direct correlation between the physical parameters such as the Froude
number, the bottom topography, the Coriolis parameter, as well as the flow and free surface behaviours. Our
numerical validations provide additional confirmations of this approach while also illustrating that ADM
can also be used to provide insight and deduce novel solutions that have not been explored, which can be
used to characterize various types of geophysical flows.
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1. Introduction

Analysing two-dimensional shallow water equations has been extensively studied in geophys-
ical fluid dynamics to understand a myriad of atmospheric and oceanic phenomena. Some
examples include understanding the effects of long-term oceanic waves (Pedlosky 2013, Vallis
2017), analyzing the behaviour of oceanic warm-core rings (Cushman-Roisin 1987), investigat-
ing flows in channels and shorelines (Shapiro 1996, Sampson et al. 2005), studying steady-state
flows (Iacono 2005, Sun 2016), and grasping the temporal instability of barotropic zonal flows
(Clark and Herron 2013). These theoretical analyses also serve as a good basis for numer-
ical simulations and validations. For example, the creators of the Shallow Water Analytic
Solutions for Hydraulic and Environmental Studies (SWASHES) software library (Delestre
et al. 2013) incorporated a significant number of theoretical solutions of the shallow water
equations in the open literature, which has been cited by over 200 research papers currently.
Furthermore, several of the solutions in this library are obtained from Thacker (1981) in which
have been widely used to demonstrate the validity and accuracy of several numerical schemes
including finite volume schemes (Gallardo et al. 2007, Bollermann et al. 2011, Nikolos and
Delis 2009) and discontinuous Galerkin methods (Ern et al. 2008, Kesserwani and Liang 2012,
Li et al. 2017, Wintermeyer et al. 2018). Some significant advancements include the original
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works of Ball and Thacker who demonstrated that nonlinear oscillations can be modelled as
either low-order polynomials or normal modes (Ball 1963, 1964, 1965, Thacker 1977, 1981).
Researchers also developed elliptical vortex solutions to understand the temporal effects of
oceanic warm-core rings including stationary clockwise rotations (rodons), pulsating circular
eddies (pulsons), and a subclass of these phenomena called pulsrodons (Cushman-Roisin 1987,
Cushman-Roisin et al. 1985, Rogers 1989b). Extensions to these approaches have been made,
where some examples include the work of Sachdev et al. (1996) who extended the approach of
Clarkson and Kruskal (1989) and derived new families of solutions in paraboloidal basins that
provided additional insights in terms of describing flow behaviour due to deformation modes.
Additionally, Matskevich and Chubarov (2019) extended the results of Ball and Thacker to
include the effects of Coriolis forces and bottom friction. Bristeau et al. (2021) also extended
the results of Thacker and introduced two respective solutions describing velocity distributed
along the vertical axis and velocity accounting for variable density.

Group analysis was also explored. Some pioneering works in this area include that of Currò
(1989) and Rogers (1989a) who also advanced the works of Thacker and Ball and related sev-
eral forms of the depth function as well as developed invariance theorems. Levi et al. (1989)
developed symmetry reductions for flows with elliptic and circular bottom topographies. Bila
et al. (2006) derived Lie point symmetries and conservation laws. Chesnokov (2009) discovered
9-dimensional Lie algebra point symmetries and developed transformations between rotating
and non-rotating cases, which were later used to describe spatial oscillations in spinning
paraboloids (Chesnokov 2011). Some recent advancements include Meleshko (2020) and Bihlo
et al. (2020) who performed group classification and analysis for zero and constant Corio-
lis parameters. Meanwhile, Meleshko and Samatova (2020) performed similar analysis and
considered the beta-plane approximation of the Coriolis parameter and an irregular bottom
topography.

However, deriving theoretical solutions to the two-dimensional shallow water equations poses
the following main challenges. First, these efforts involve making specific assumptions regard-
ing the flow conditions which only satisfy specific cases. Some solutions also contain combi-
nations of special functions and integral expressions (Shapiro 1996, Rogers 1989b), which in
turn makes it difficult to determine the correlation between the physical quantities of these
models. Finding invariant solutions via group analysis has the additional advantage of deriv-
ing conservation laws to these equations. However, this approach depends on the construction
of Lie-groups which depend on the problem formulation as well as specific assumptions such
as the Coriolis parameter and bottom topography. Therefore, there is a need to find solutions
that are not only flexible, in terms of relaxing certain limiting assumptions, but also provide
a direct correlation of the physical parameters.

This work applies Adomian decomposition method (ADM) (Adomian 1990) to the shal-
low water equations to provide the following main contributions. First, we present the ADM
formulation of the rotating shallow water equations where we also present key connections
between the ansatz formulations in the work of Thacker (1981), Shapiro (1996), Matskevich
and Chubarov (2019). Next, we derive and present some new families of exact solutions, for
flat bottom topographies, that describe inertial oscillations in geostrophic flows and anticy-
clonic vortices with finite escape times. The rest of this paper is organised in the following
manner. Section 2 presents the ADM formulation and initial theoretical formulation of the
problem, where we present the connection to fundamental assumptions on the formulation of
the solutions. Section 3 presents derivations of new families of solutions and their properties.
Section 4 provides numerical experimentation and results. Section 5 provides some concluding
remarks, where we also list some future research directions.
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2. Adomian Decomposition Formulation

Figure 1.: Illustration of a thin layer of incompressible flow under the Earth’s rotation
described by rotating shallow-water equations with idealised bottom topography.

The non-dimensional form of the governing equations is defined as

∂u

∂t
=− u∂u

∂x
− v∂u

∂y
− 1

F 2

∂h

∂x
+ f̄v, (1a)

∂v

∂t
=− u∂v

∂x
− v∂v

∂y
− 1

F 2

∂h

∂y
− f̄u, (1b)

∂h

∂t
=− ∂

∂x
[u(h+D)]− ∂

∂y
[v(h+D)]. (1c)

This is illustrated in figure 1, where u and v are the flow velocity components, h is the
free surface height, f̄ = fL0/U0 is the dimensionless Coriolis parameter (associated with the
Coriolis force), and F = U0/

√
gH0 is the Froude number. Here, the spatial variables x, y, l,

and L are normalised by the horizontal length scale L0; h is normalised by a vertical length
scale H0; the horizontal velocities, u and v, are normalised by the characteristic velocity U0;
and time t is normalised by L0/U0. Hence, the dimensionless form of the idealised bottom
topography is defined as

D(x, y) = D0

(
1− x2

L2
− y2

l2

)
, (2)

where D0 is also normalised by a vertical length scale H0. It is noteworthy to mention that
other bottom topographies can be determined from (2) such as flat bottom (D0 = 0), circular
paraboloid (l = L), and channel (l → ∞ or L → ∞) terrains. Additionally, D(x, y) can
also be used to incorporate linear terms in its description via change of variables (Shapiro
1996, Thacker 1981). The total fluid depth D+ h, shown in figure 1, follows the formulations
of Thacker (1981) and Shapiro (1996) where D + h = 0 represents a moving shoreline and
D+h < 0 represents dry regions. When the moving shoreline is closed, the water mass within
the shoreline is conserved (Thacker 1981, Shapiro 1996). When the moving shoreline is open
such as in tsunami modelling, then water within a bounded domain will have mass exchange
with an infinite mass reservoir. It is also important to mention that our explorations in this
section consider flow velocities that are linearly varying spatially while the free surface height



January 31, 2023 Geophysical and Astrophysical Fluid Dynamics GAFD-2022-0015-main

4 C. LIU and A.D. CLARK

either varies linearly or in a quadratic fashion. The initial conditions are given by

u(x, y, 0) =u0(x, y), (3a)

v(x, y, 0) =v0(x, y), (3b)

h(x, y, 0) =h0(x, y). (3c)

Next, u, v, and h are decomposed as followsu(x, y, t)
v(x, y, t)
h(x, y, t)

 =

∞∑
n=0

un(x, y, t)
vn(x, y, t)
hn(x, y, t)

 , (4)

where the initial components are defined by equation (3). Thus, the recurrence relationships
to equation (1) (for n ≥ 0) are given by

un+1(x, y, t) = L−1
t

{
−An

(
u,

∂u

∂x

)
−An

(
v,

∂u

∂y

)
− 1

F 2

∂hn
∂x

+ f̄vn

}
, (5a)

vn+1(x, y, t) = L−1
t

{
−An

(
u,

∂v

∂x

)
−An

(
v,

∂v

∂y

)
− 1

F 2

∂hn
∂y
− f̄un

}
, (5b)

hn+1(x, y, t) = L−1
t

{
− ∂

∂x
[An(u, h)]− ∂

∂y
[An(v, h)]− ∂

∂x
[unD]− ∂

∂y
[vnD]

}
, (5c)

where

Lt =
∂(·)
∂t

, and L−1
t =

∫ t

0
(·) dτ,

and the Adomian polynomial representing the quadratic nonlinearity is defined as (Adomian
1990, 2013)

An(u, h) =
n∑

j=0

ujhn−j . (6)

It is important to note that equation (6) can be used to approximate the quadratic nonlinear
terms, such as uh, as follows

uh =

( ∞∑
p

up

)( ∞∑
q

hq

)
=

∞∑
n

An(u, h)

and thus the semi-analytical solution to (1) is expressed via the partial sumsu(x, y, t)
v(x, y, t)
h(x, y, t)

 =

SN (u)
SN (v)
SN (h)

 =

N∑
n=0

un(x, y, t)
vn(x, y, t)
hn(x, y, t)

 . (7)

Next, the following results connect the properties of the initial conditions to the behaviours
of the true solutions via their partial sums.

Lemma 2.1: Let {un(x, y, t)}, {vn(x, y, t)}, {hn(x, y, t)} be the sequence of decomposed func-
tions of u, v, and h, where their relationship is defined by (5) (for n ∈ N) given an ideal
parabolic topography (2). If the initial conditions u0(x, y), v0(x, y), h0(x, y) are defined such
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that

∂2u0(x, y)

∂x2
=
∂2v0(x, y)

∂x2
=

∂3h0(x, y)

∂x3
= 0, (8a)

∂2u0(x, y)

∂y2
=
∂2v0(x, y)

∂y2
=

∂3h0(x, y)

∂y3
= 0, (8b)

∂2u0(x, y)

∂xy
=
∂2v0(x, y)

∂x∂y
=

∂3h0(x, y)

∂x2∂y
=

∂3h0(x, y)

∂x∂y2
= 0. (8c)

Then the higher order components un(x, y, t), vn(x, y, t), hn(x, y, t) also satisfy the same prop-
erty, where

∂2un(x, y, t)

∂x2
=
∂2vn(x, y, t)

∂x2
=

∂3hn(x, y, t)

∂x3
= 0, (9a)

∂2un(x, y, t)

∂y2
=
∂2vn(x, y, t)

∂y2
=

∂3hn(x, y, t)

∂y3
= 0, (9b)

∂2un(x, y, t)

∂x∂y
=
∂2vn(x, y, t)

∂x∂y
=

∂3hn(x, y, t)

∂x2∂y
=

∂3hn(x, y, t)

∂x∂y2
= 0 (9c)

for n ∈ N+.

Proof : This is proven via mathematical induction by examining the recursion relationships
for u, v, and h in equation (5). Condition (9a) is demonstrated by examining the following
relationships

∂2un+1

∂x2
=− L−1

t

{
∂2

∂x2

[
An

(
u,

∂u

∂x

)
+An

(
v,

∂u

∂y

)]
+

1

F 2

∂3hn
∂x3

− f̄ ∂2vn
∂x2

}
, (10a)

∂2vn+1

∂x2
=− L−1

t

{
∂2

∂x2

[
An

(
u,

∂v

∂x

)
+An

(
v,

∂v

∂y

)]
+

1

F 2

∂3hn
∂x2∂y

+ f̄
∂2un
∂x2

}
, (10b)

∂3hn+1

∂x3
=− L−1

t

{
∂4

∂x4
[An(u, h)] +

∂4

∂x3∂y
[An(v, h)] +

∂4

∂x4
[unD] +

∂4

∂x3∂y
[vnD]

}
. (10c)

Therefore, when n = 0 equations (10a-c) representing the relationship between the initial and
first components for u, v, and h become

∂2u1

∂x2
=− L−1

t

{
∂2

∂x2

[
u0

∂u0

∂x
+ v0

∂u0

∂y

]
+

1

F 2

∂3h0

∂x3
− f̄ ∂2v0

∂x2

}
, (11a)

∂2v1

∂x2
=− L−1

t

{
∂2

∂x2

[
u0

∂v0

∂x
+ v0

∂v0

∂y

]
+

1

F 2

∂3h0

∂x2∂y
+ f̄

∂2u0

∂x2

}
, (11b)

∂3h1

∂x3
=− L−1

t

{
∂4

∂x4
[u0h0] +

∂4

∂x3y
[v0h0] +

∂4

∂x4
[u0D] +

∂4

∂x3∂y
[v0D]

}
. (11c)

Employing (8a-c) it can be shown that equations (11a-c) reduce to the following relationship

∂2u1(x, y, t)

∂x2
=

∂2v1(x, y, t)

∂x2
=

∂3h1(x, y, t)

∂x3
= 0.

Continuing this argument for n = {1, 2, . . . , n − 1} yields equation (9a). Similar arguments
can be made to produce (9b,c), respectively. �

Theorem 2.2 : Let {un(x, y, t)}, {vn(x, y, t)}, {hn(x, y, t)} be the sequence of decomposed
functions of u, v, and h, where their relationship is defined by (5) (for n ∈ N) given an ideal
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parabolic topography (2). If the initial conditions u0(x, y), v0(x, y), h0(x, y) are defined as
(8a-c), then the solutions of u, v, and h have the same property where

∂2u(x, y, t)

∂x2
=
∂2u(x, y, t)

∂y2
=

∂2u(x, y, t)

∂x∂y
= 0, (12a)

∂2v(x, y, t)

∂x2
=
∂2v(x, y, t)

∂y2
=

∂2v(x, y, t)

∂x∂y
= 0, (12b)

∂3h(x, y, t)

∂x3
=
∂3h(x, y, t)

∂x2∂y
=

∂3h(x, y, t)

∂x∂y2
=

∂3h(x, y, t)

∂y3
= 0. (12c)

Consequently, these solutions can be expressed as

u(x, y, t) =ũ0(t) + ũx(t)x+ ũy(t)y, (13a)

v(x, y, t) =ṽ0(t) + ṽx(t)x+ ṽy(t)y, (13b)

h(x, y, t) =h̃0(t) + h̃x(t)x+ h̃y(t)y + 1
2 h̃xx(t)x2 + 1

2 h̃yy(t)y2 + h̃xy(t)xy, (13c)

where the coefficients ũ0(t), ũx(t), ũy(t), ṽ0(t), ṽx(t), ṽy(t), h̃0(t), h̃x(t), h̃y(t), h̃xx(t), h̃yy(t),

and h̃xy(t) are time-dependent.

Proof : Applying Lemma 2.1 to each component in (4) yields (12a-c). From (12a), we observe
that

∂2u(x, y, t)

∂x2
= 0 yields u(x, y, t) = C1(y, t)x+ C2(y, t),

where the integration constants, C1(y, t) and C2(y, t), are independent of x. Similarly, we have

∂2u(x, y, t)

∂x∂y
= 0 yields C1(y, t) = ũx(t),

and

∂2u(x, y, t)

∂y2
= 0 yields C2(y, t) = ũy(t)y + ũ0(t),

and thus (13a) is achieved. Similar arguments can be made to achieve (13b,c), respectively. �

We note the significance of Theorem 2.2. In the works of Thacker (1981), Shapiro (1996),
and Matskevich and Chubarov (2019) equations (13a-c) were presented as ansatz solutions,
where they were also used to produce the reduced system of shallow water equations to derive
closed-form solutions. This theorem removes these assumptions and provides more insight to
this behaviour by connecting it to the initial conditions (8a-c).

3. Novel exact solutions for flat bottom topographies with constant Coriolis force

Next, we use the ADM construction to derive new families of solutions and their properties
that describe other geophysical flows such as inertial oscillations and anticyclonic vortices
which have a profound effect on oceanic and atmospheric dynamics (Vallis 2017, Kafiabad
et al. 2021). Here, we consider flows over flat bottom topologies where D0 = 0 in (2) with
constant Coriolis parameter (f̄ 6= 0).

3.1. Inertial oscillations in geostrophic flows

For these types of flows, our analysis considers the following initial conditions.
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• Condition I

u0(x, y) = v0(x, y) = 0, h0(x, y) = ηxx+ ηyy, (14)

• Condition II

u0(x, y) = v0(x, y) = 0, h0(x, y) = ηxx, (15)

• Condition III

u0(x, y) = v0(x, y) = 0, h0(x, y) = ηyy, (16)

where ηx and ηy are the respective constant free surface gradients in the x and y directions.
We note that the behaviour of the initial conditions (14) - (16) affect the decomposition of
the decomposed functions of u, v, and h as presented in the following lemma.

Lemma 3.1: Let {un(x, y, t)}, {vn(x, y, t)}, {hn(x, y, t)} be the sequence of decomposed func-
tions of u, v, and h such that their relationship is defined by (5) (for n ∈ N). If D = 0 and
the initial conditions u0(x, y), v0(x, y), h0(x, y) satisfy the following properties

∂u0(x, y)

∂x
=
∂v0(x, y)

∂x
=

∂2h0(x, y)

∂x2
= 0, (17a)

∂u0(x, y)

∂y
=
∂v0(x, y)

∂y
=

∂2h0(x, y)

∂y2
= 0, (17b)

∂2h0(x, y)

∂x∂y
=0. (17c)

Then the higher order components un(x, y, t), vn(x, y, t), hn(x, y, t) also satisfy the property
that

∂un(x, y, t)

∂x
=
∂vn(x, y, t)

∂x
=

∂hn(x, y, t)

∂x
= 0, (18a)

∂un(x, y, t)

∂y
=
∂vn(x, y, t)

∂y
=

∂hn(x, y, t)

∂y
= 0 (18b)

for n ∈ N+.

Proof : This is proven via mathematical induction by examining the recursion relationships
for u, v, and h in (5). Condition (18a) is demonstrated by examining the following relationships

∂un+1

∂x
=− L−1

t

{
∂

∂x

[
An

(
u,

∂u

∂x

)
+An

(
v,

∂u

∂y

)]
+

1

F 2

∂2hn
∂x2

− f̄ ∂vn
∂x

}
, (19a)

∂vn+1

∂x
=− L−1

t

{
∂

∂x

[
An

(
u,

∂v

∂x

)
+An

(
v,

∂v

∂y

)]
+

1

F 2

∂2hn
∂x∂y

+ f̄
∂un
∂x

}
, (19b)

∂hn+1

∂x
=− L−1

t

{
∂2

∂x2
[An(u, h)] +

∂2

∂x∂y
[An(v, h)]

}
. (19c)

Therefore, when n = 0, equations (19a-c) representing the relationship between the initial and
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first components for u, v, and h become

∂u1

∂x
=− L−1

t

{
∂

∂x

[
A0

(
u,

∂u

∂x

)
+A0

(
v,

∂u

∂y

)]
+

1

F 2

∂2h0

∂x2
− f̄ ∂v0

∂x

}
, (20a)

∂v1

∂x
=− L−1

t

{
∂

∂x

[
A0

(
u,

∂v

∂x

)
+A0

(
v,

∂v

∂y

)]
+

1

F 2

∂2h0

∂x∂y
+ f̄

∂u0

∂x

}
, (20b)

∂h1

∂x
=− L−1

t

{
∂2

∂x2
[A0(u, h)] +

∂2

∂x∂y
[A0(v, h)]

}
. (20c)

Employing (17a-c) it can be shown that equations (20a-c) reduce to the following relationship

∂u1(x, y, t)

∂x
=

∂v1(x, y, t)

∂x
=

∂h1(x, y, t)

∂x
= 0,

and continuing this argument for n ∈ N+ yields equation (18a). Following similar arguments
yields (18b). �

From this, the behaviour of uniform u, v over space, and planar free surface h with constant
spatial gradients over time can be summarised in the following theorem.

Theorem 3.2 : Let {un(x, y, t)}, {vn(x, y, t)}, {hn(x, y, t)} be the sequence of decomposed
functions of u, v, and h, where their relationship is defined by (5) (for n ∈ N). If D = 0 and
the initial conditions u0(x, y), v0(x, y), h0(x, y) satisfy the properties defined in (17a-c), then
the solutions u, v, and h have the following properties

∂u(x, y, t)

∂x
=
∂u(x, y, t)

∂y
= 0, (21a)

∂v(x, y, t)

∂x
=
∂v(x, y, t)

∂y
= 0, (21b)

∂h(x, y, t)

∂x
=
∂h(x, y, 0)

∂x
, (21c)

∂h(x, y, t)

∂y
=
∂h(x, y, 0)

∂y
, (21d)

∂2h(x, y, t)

∂x2
=
∂2h(x, y, t)

∂x∂y
=

∂2h(x, y, t)

∂y2
= 0. (21e)

Additionally, u, v, and h are reduced to the following forms

u(x, y, t) =ũ0(t), (22a)

v(x, y, t) =ṽ0(t), (22b)

h(x, y, t) =h̃0(t) + h̃xx+ h̃yy, (22c)

where the coefficients ũ0(t), ṽ0(t), and h̃0(t) are time-dependent, while h̃x and h̃y are constants.
Additionally, (22a-c) satisfy the reduced system of equations

d

dt
ũ0(t) =− 1

F 2
h̃x + f̄ ṽ0(t), (23a)

d

dt
ṽ0(t) =− 1

F 2
h̃y − f̄ ũ0(t), (23b)

d

dt
h̃0(t) =− ũ0(t)h̃x − ṽ0(t)h̃y. (23c)
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Proof : Applying Lemma 3.1 to each component in (4) yields (21). From (21a), we observe
that

∂u(x, y, t)

∂x
= 0 yields u(x, y, t) = C1(y, t),

where the integration constants, C1(y, t), are independent of x. Similarly, we have

∂u(x, y, t)

∂y
= 0 yields C1(y, t) = ũ0(t)

and thus (22a) is achieved. Similar arguments can be made to achieve (22b,c), respectively.
Substituting (22a-c) into (1) achieves the reduced system of equations (23), which completes
the proof. �

Hence, we have the following results for inertial oscillations for geostrophic flows.

Theorem 3.3 : Given inertial oscillations over flat bottom topographies with constant Cori-
olis parameter f̄ 6= 0, where the initial behaviour is defined by (14). The solutions u, v, and
h are expressed as

u(x, y, t) =− ηx
f̄F 2

sin
(
f̄ t
)
− ηy

f̄F 2

[
1− cos

(
f̄ t
)]
, (24a)

v(x, y, t) =
ηx
f̄F 2

[
1− cos

(
f̄ t
)]
− ηy

f̄F 2
sin(f̄ t), (24b)

h(x, y, t) =
η2
x

f̄2F 2

[
1− cos

(
f̄ t
)]

+ xηx +
η2
y

f̄2F 2

[
1− cos

(
f̄ t
)]

+ ηyy, (24c)

where ηx and ηy are the constant free surface gradients in the x and y directions, respectively.

Proof : The initial conditions (14) satisfy (17a-c). Therefore, the sequence of decomposed
functions {un(x, y, t)}, {vn(x, y, t)}, {hn(x, y, t)} satisfy (18a,b) for n ∈ N+ which satisfies
Lemma 3.1 and consequently Theorem 3.2. Examining the system of reduced equations (23),
the initial conditions (14) also produce the following reduced relationships: h̃x = ηx, h̃y = ηy,

and ũ(t = 0) = ṽ(t = 0) = h̃0(t = 0) = 0. Solving this reduced system achieves (24a-c) which
proves the theorem. �

Corollary 3.4: Given inertial oscillations over flat bottom topographies with constant Cori-
olis parameter f̄ 6= 0.

(i) If the initial behaviour is defined by (15), then the solutions u, v, and h are expressed
as

u(x, y, t) =− ηx
f̄F 2

sin
(
f̄ t
)
, (25a)

v(x, y, t) =
ηx
f̄F 2

[
1− cos

(
f̄ t
)]
, (25b)

h(x, y, t) =
η2
x

f̄2F 2

[
1− cos

(
f̄ t
)]

+ xηx. (25c)

(ii) If the initial behaviour is defined by (16), then the solutions u, v, and h are expressed
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as

u(x, y, t) =− ηy

f̄F 2

[
1− cos

(
f̄ t
)]
, (26a)

v(x, y, t) =− ηy

f̄F 2
sin
(
f̄ t
)
, (26b)

h(x, y, t) =
η2
y

f̄2F 2

[
1− cos

(
f̄ t
)]

+ ηyy. (26c)

ηx and ηy are the constant free surface gradients in the x and y directions, respectively.

Proof : This is a special case of Theorem 3.3 for ηy = 0 and ηx = 0, respectively. �

Theorem 3.3 and Corollary 3.4 show the explicit relationship between these types of flows
with respect to the constant Coriolis parameter, the free surface gradients, and the Froude
number where the inertial oscillation frequency is defined by the constant Coriolis parameter
f̄ . These results also demonstrate that these oscillations are based on the magnitude of the
free surface gradients that depend on the initial behaviour and the geostrophic flows, which
are consistent with the results of (Vallis 2017). Moreover, Theorem 3.3 describes these types
of oscillations as the interaction between the geostrophic flow fluctuations and the free surface
gradients, where Corollary 3.4 considers cases when these gradients are negligible in the x and
y directions.

3.2. Anticyclonic vortices with finite escape times

For these types of flows our analysis considers the following initial conditions

• Condition IV

u0(x, y) = f̄y, v0(x, y) = 0, h0(x, y) = h0, (27)

• Condition V

u0(x, y) = f̄y, v0(x, y) = −f̄x+ f̄y, h0(x, y) = h0, (28)

• Condition VI

u0(x, y) = 0, v0(x, y) = −f̄x, h0(x, y) = h0, (29)

• Condition VII

u0(x, y) = f̄x+ f̄y, v0(x, y) = −f̄x, h0(x, y) = h0, (30)

where h0 is the constant free surface height. These describe anticyclonic vortices for the initial
vorticity is proportional to the negative constant Coriolis parameter. The behaviour of the
initial conditions (27) - (30) affect the decomposition of the decomposed functions of u, v,
and h as presented in the following lemmas.

Lemma 3.5: Let {un(x, y, t)}, {vn(x, y, t)}, {hn(x, y, t)} be the sequence of decomposed func-
tions of u, v, and h, where their relationship is defined by (5) (for n ∈ N) given a flat bottom
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topography D = 0. If the initial conditions u0(x, y), v0(x, y), h0(x, y) are defined such that

u0(x, y) =f̄y, (31a)

∂2v0(x, y)

∂x2
=
∂h0(x, y)

∂x
= 0, (31b)

∂2v0(x, y)

∂y2
=
∂h0(x, y)

∂y
= 0, (31c)

∂2v0(x, y)

∂x∂y
=0. (31d)

Then the higher order components un(x, y, t), vn(x, y, t), hn(x, y, t), for n ∈ N+ satisfy

un(x, y, t) =0, (32a)

∂2vn(x, y, t)

∂x2
=
∂hn(x, y, t)

∂x
= 0, (32b)

∂2vn(x, y, t)

∂y2
=
∂hn(x, y, t)

∂y
= 0, (32c)

∂2vn(x, y, t)

∂x∂y
=0. (32d)

Proof : This is proven via mathematical induction by examining the recursion relationships
for u, v, and h in equation (5). Condition (32a) is demonstrated by examining

un+1 = −L−1
t

{[
An

(
u,

∂u

∂x

)
+An

(
v,

∂u

∂y

)]
+

1

F 2

∂hn
∂x
− f̄ vn

}
, (33)

In the case of n = 0 and using (31a) - (31d), it reduces to

u1 = −L−1
t

{[
A0

(
u,

∂u

∂x

)
+A0

(
v,

∂u

∂y

)]
+

1

F 2

∂h0

∂x
− f̄ v0

}
= −L−1

t

{
A0

(
v,

∂u

∂y

)
− f̄ v0

}
= −L−1

t

{
v0

∂u0

∂y
− f̄ v0

}
= 0,

and continuing this argument for n = {1, 2, . . . , n− 1} yields equation (32a). Condition (32b)
is demonstrated by examining the following relationships

∂2vn+1

∂x2
=− L−1

t

{
∂2

∂x2

[
An

(
u,

∂v

∂x

)
+An

(
v,

∂v

∂y

)]
+

1

F 2

∂3hn
∂x2∂y

+ f̄
∂2un
∂x2

}
, (34a)

∂hn+1

∂x
=− L−1

t

{
∂2

∂x2
[An(u, h)] +

∂2

∂x∂y
[An(v, h)]

}
. (34b)

Therefore, when n = 0, equations (34a,b) representing the relationship between the initial
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and first components for v and h become

∂2v1

∂x2
=− L−1

t

{
∂2

∂x2

[
A0

(
u,

∂v

∂x

)
+A0

(
v,

∂v

∂y

)]
+

1

F 2

∂3h0

∂x2∂y
+ f̄

∂2u0

∂x2

}
, (35a)

∂h1

∂x
=− L−1

t

{
∂2

∂x2
[A0(u, h)] +

∂2

∂x∂y
[A0(v, h)]

}
. (35b)

Employing (31a-d), it can be shown that equations (35a,b) reduce to the following relationship

∂2v1(x, y, t)

∂x2
=

∂h1(x, y, t)

∂x
= 0,

and continuing this argument for n = {1, 2, . . . , n−1} yields equation (32b). Following similar
arguments yields (32c,d). �

Lemma 3.6: Let {un(x, y, t)}, {vn(x, y, t)}, {hn(x, y, t)} be the sequence of decomposed func-
tions of u, v, and h, where their relationship is defined by (5) (for n ∈ N) given a flat bottom
topography D = 0. If the initial conditions u0(x, y), v0(x, y), h0(x, y) are defined such that

v0(x, y, t) =− f̄x, (36a)

∂2u0(x, y)

∂x2
=
∂h0(x, y)

∂x
= 0, (36b)

∂2u0(x, y)

∂y2
=
∂h0(x, y)

∂y
= 0, (36c)

∂2u0(x, y)

∂x∂y
=0. (36d)

Then the higher order components un(x, y, t), vn(x, y, t), hn(x, y, t), for n ∈ N+ satisfy the
property

vn(x, y, t) =0, (37a)

∂2un(x, y, t)

∂x2
=
∂hn(x, y, t)

∂x
= 0, (37b)

∂2un(x, y, t)

∂y2
=
∂hn(x, y, t)

∂y
= 0, (37c)

∂2un(x, y, t)

∂x∂y
=0. (37d)

Proof : This is proven via mathematical induction by examining the recursion relationships
for u, v, and h in equation (5). Condition (37a) is demonstrated by examining the following
relationships

vn+1 = −L−1
t

{[
An

(
u,

∂v

∂x

)
+An

(
v,

∂v

∂y

)]
+

1

F 2

∂hn
∂y

+ f̄ un

}
. (38)
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At n = 0, we have

v1 = −L−1
t

{[
A0

(
u,

∂v

∂x

)
+A0

(
v,

∂v

∂y

)]
+

1

F 2

∂h0

∂y
+ f̄ u0

}
= −L−1

t

{
A0

(
u,

∂v

∂x

)
+ f̄ u0

}
= −L−1

t

{
−u0f̄ + f̄ u0

}
= 0.

Employing a similar argument for n = {1, 2, . . . , n − 1}, we have (37a). Equation (37b) is
demonstrated by examining the following

∂2un+1

∂x2
=− L−1

t

{
∂2

∂x2

[
An

(
u,

∂u

∂x

)
+An

(
v,

∂u

∂y

)]
+

1

F 2

∂3hn
∂x3

− f̄ ∂2vn
∂x2

}
, (39a)

∂hn+1

∂x
=− L−1

t

{
∂2

∂x2
[An(u, h)] +

∂2

∂x∂y
[An(v, h)]

}
. (39b)

Therefore, when n = 0, equations (39a,b) representing the relationship between the initial
and first components for u and h become

∂2u1

∂x2
=− L−1

t

{
∂2

∂x2

[
u0

∂u0

∂x
+ v0

∂u0

∂y

]
+

1

F 2

∂3h0

∂x3
− f̄ ∂2v0

∂x2

}
, (40a)

∂h1

∂x
=− L−1

t

{
∂2

∂x2
[A0(u, h)] +

∂2

∂x∂y
[A0(v, h)]

}
. (40b)

Employing (36a-d), it can be shown that equations (40a,b) reduce to the following relationship

∂2u1(x, y, t)

∂x2
=

∂h1(x, y, t)

∂x
= 0,

and continuing this argument for n = {1, 2, . . . , n−1} yields equation (37b). Following similar
arguments yields (37c,d). �

Therefore, the behaviour of u, v, and h can be summarised in the following theorem.

Theorem 3.7 : Given a flat bottom topography, let {un(x, y, t)}, {vn(x, y, t)}, {hn(x, y, t)}
be the sequence of decomposed functions of u, v, and h, defined by (5) (for n ∈ N). If the
initial conditions u0(x, y), v0(x, y), h0(x, y) are defined as (31a-d), then the solutions of u, v,
and h have the same property where

u(x, y, t) =f̄y, (41a)

∂2v(x, y, t)

∂x2
=
∂2v(x, y, t)

∂y2
=

∂2v(x, y, t)

∂x∂y
= 0, (41b)

∂h(x, y, t)

∂x
=
∂h(x, y, t)

∂y
= 0. (41c)

Consequently, these solutions can be expressed as

u(x, y, t) =f̄y, (42a)

v(x, y, t) =ṽ0(t) + ṽx(t)x+ ṽy(t)y, (42b)

h(x, y, t) =h̃0(t), (42c)
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where the coefficients ṽ0(t), ṽx(t), ṽy(t), and h̃0(t) are time-dependent that also satisfy the
following reduced system of equations

d

dt
ṽ0(t) =− ṽ0(t)ṽy(t), (43a)

d

dt
ṽx(t) =− ṽx(t)ṽy(t), (43b)

d

dt
ṽy(t) =− f̄ ṽx(t)− ṽy(t)2 − f̄2, (43c)

d

dt
h̃0(t) =− h̃0(t)ṽy(t). (43d)

Proof : Applying Lemma 3.5 to each component in (4) yields (41a-c). From (41b), we observe
that

∂2v(x, y, t)

∂x2
= 0 yields v(x, y, t) = C1(y, t)x+ C2(y, t),

where the integration constants, C1(y, t) and C2(y, t), are independent of x. Similarly, we have

∂2v(x, y, t)

∂x∂y
= 0 yields C1(y, t) = ṽx(t)

and

∂2v(x, y, t)

∂y2
= 0 yields C2(y, t) = ṽy(t)y + ṽ0(t).

and thus (42b) is achieved. Similar arguments can be made to achieve (42a,c), respectively.
The reduced system of equations (43) is obtained via substituting (42a-c) into (1). �

Theorem 3.8 : Let {un(x, y, t)}, {vn(x, y, t)}, {hn(x, y, t)} be the sequence of decomposed
functions of u, v, and h, where their relationship is defined by (5) (for n ∈ N) given a flat
bottom topography D = 0. If the initial conditions u0(x, y), v0(x, y), h0(x, y) are defined as
(36a-d), then the solutions of u, v, and h have the same property, where

∂2u(x, y, t)

∂x2
=
∂2u(x, y, t)

∂y2
=

∂2u(x, y, t)

∂x∂y
= 0, (44a)

v(x, y, t) =− f̄x, (44b)

∂h(x, y, t)

∂x
=
∂h(x, y, t)

∂y
= 0. (44c)

Consequently, these solutions can be expressed as

u(x, y, t) =ũ0(t) + ũx(t)x+ ũy(t)y, (45a)

v(x, y, t) =− f̄x, (45b)

h(x, y, t) =h̃0(t), (45c)

where the coefficients ũ0(t), ũx(t), ũy(t), and h̃0(t), are time-dependent. These coefficients
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satisfy

d

dt
ũ0(t) =− ũ0(t)ũx(t), (46a)

d

dt
ũx(t) =− ũx(t)2 + f̄ ũy(t)− f̄2, (46b)

d

dt
ũy(t) =− ũy(t)ũx(t), (46c)

d

dt
h̃0(t) =− h̃0(t)ũx(t). (46d)

Proof : Applying Lemma 3.6 to each component in (4) yields (44a-c). From (44a), we observe
that

∂2u(x, y, t)

∂x2
= 0 yields u(x, y, t) = C1(y, t)x+ C2(y, t),

where the integration constants, C1(y, t) and C2(y, t), are independent of x. Similarly, we have

∂2u(x, y, t)

∂x∂y
= 0 yields C1(y, t) = ũx(t)

and

∂2u(x, y, t)

∂y2
= 0 yields C2(y, t) = ũy(t)y + ũ0(t).

and thus (45a) is achieved. Similar arguments can be made to achieve (45b,c). The reduced
equations (46) is obtained by substituting (45a-c) into (1). �

Therefore, the following results describe closed-form solutions for anticyclonic vortices with
finite escape times.

Theorem 3.9 : For any flows over flat bottom topographies (D = 0) with a constant Coriolis
parameter (f̄ 6= 0) and initial constant free surface height (h0), the solutions u, v, and h with
respect to their corresponding initial conditions are defined as follows.

(i) If the initial behaviour is defined by (27) then

u(x, y, t) =f̄y, (47a)

v(x, y, t) =− f̄y tan(f̄ t), (47b)

h(x, y, t) =h0 sec(f̄ t). (47c)

(ii) If the initial behaviour is defined by (28) then

u(x, y, t) =f̄ y, (48a)

v(x, y, t) =f̄y sec(f̄ t)− f̄y tan(f̄ t) + x

[
− d

dt
tan(f̄ t) +

d

dt
sec(f̄ t)

]
, (48b)

h(x, y, t) =
h0

f̄

[
d

dt
tan(f̄ t)− d

dt
sec(f̄ t)

]
. (48c)

Furthermore, these solutions describe anticyclonic vortices with finite escape times that are
based on the initial zonal velocity being represented as u(x, y, 0) = u0(x, y) = f̄y.

Proof : Equations (27) and (28) satisfy Theorem 3.7, where these flows can be represented
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by (43). The initial conditions (27) require

ṽ0(t = 0) =ṽx(t = 0) = ṽy(t = 0) = 0, (49a)

h̃0(t = 0) =h0. (49b)

Similarly, the initial conditions (28) require

ṽ0(t = 0) =0, ṽx(t = 0) = −f̄ , ṽy(t = 0) = f̄ , (50a)

h̃0(t = 0) =h0. (50b)

Solving (43) with the initial conditions, defined by (49) and (50), achieves (47) and (48),
respectively. �

Theorem 3.10 : For any flows over flat bottom topographies (D = 0) with a constant Cori-
olis parameter (f̄ 6= 0) and initial constant free surface height (h0 6= 0), the solutions u, v,
and h with respect to their corresponding initial conditions are defined as follows.

(i) If the initial behaviour is defined by (29) then

u(x, y, t) =− f̄x tan(f̄ t), (51a)

v(x, y, t) =− f̄x, (51b)

h(x, y, t) =h0 sec(f̄ t). (51c)

(ii) If the initial behaviour is defined by (30) then

u(x, y, t) =f̄x sec(f̄ t)− f̄x tan(f̄ t) + y

[
d

dt
tan(f̄ t)− d

dt
sec(f̄ t)

]
, (52a)

v(x, y, t) =− f̄x, (52b)

h(x, y, t) =
h0

f̄

[
d

dt
tan(f̄ t)− d

dt
sec(f̄ t)

]
. (52c)

Furthermore, these solutions describe anticyclonic vortices with finite escape times that are
based on the initial meridional velocity being represented as v(x, y, 0) = v0(x, y) = −f̄x.

Proof : Equations (29) and (30) satisfy Theorem 3.8, where these flows can be represented
by (46). The initial conditions (29) require

ũ0(t = 0) =ũx(t = 0) = ũy(t = 0) = 0, (53a)

h̃0(t = 0) =h0. (53b)

Similarly, the initial conditions (30) require

ũ0(t = 0) =0, ũx(t = 0) = ũy(t = 0) = f̄ , (54a)

h̃0(t = 0) =h0. (54b)

Solving (46) with the initial conditions, defined by (53) and (54), achieves (51) and (52),
respectively. �

Theorems 3.9 and 3.10 show that the flow velocity components directly depend only on
the constant Coriolis parameter whereas the free surface height depends on both the con-
stant Coriolis parameter and the initial free surface height. Since these solutions are valid
for t ∈

[
0, π/

(
2f̄
))

, these results also represent anticyclonic vortices with finite escape times
that rotate faster and are more unstable than cyclonic ones which is consistent with previ-
ous observations (Tsang and Dritschel 2015, McKiver 2020). These solutions also consider
the nonlinear balance between the inertial and Coriolis terms in the momentum portion of
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the shallow water equations, which is important to understand irregularities between cyclonic
and anticyclonic vortices which also improves previous results using quasi-geostrophic approx-
imations (Vallis 2019, McKiver 2020), linear stability analysis techniques (Clark and Herron
2013), and numerical approaches (Tsang and Dritschel 2015).

4. Numerical validation and results

Numerical validation is provided via examining the convergence and accuracy of the partial
sums of u, v, and h (given by SN (u), SN (v), and SN (h)) against the governing equations (1),

the exact solutions (u, v, and h), and numerical solutions (û, v̂, and ĥ) via the relative integral
squared error defined as

E(N) =

∫ Lx

−Lx

∫ Ly

−Ly

∫ T
0 e(N ;x, y, t) dt dx dy∫ Lx

−Lx

∫ Ly

−Ly

∫ T
0 (u2 + v2 + h2) dt dx dy

, (55)

where Lx = 1, Ly = 1, and T = 1. The convergence Ec(N) is measured by evaluating (55)
with

e(N ;x, y, t)

=

{
∂SN (u)

∂t
+ SN (u)

∂SN (u)

∂x
+ SN (v)

∂SN (u)

∂y
+

1

F 2

∂SN (h)

∂x
− f̄SN (v)

}2

+

{
∂SN (v)

∂t
+ SN (u)

∂SN (v)

∂x
+ SN (v)

∂SN (v)

∂y
+

1

F 2

∂SN (h)

∂y
+ f̄SN (u)

}2

+

{
∂SN (h)

∂t
+

∂

∂x
[SN (u)(SN (h) +D)] +

∂

∂y
[SN (v)(SN (h) +D)]

}2

. (56)

Eex(N) is the accuracy of the partial sums of u, v, and h against the exact solutions which is
measured via evaluating (55) with

e(N ;x, y, t) = (SN (u)− u)2 + (SN (v)− v)2 +
(
SN (h)− h

)2
. (57)

Ê(N) is the accuracy of the partial sums of u, v, and h against the numerical solutions which
is measured via evaluating (55) with

e(N ;x, y, t) = (SN (u)− û)2 + (SN (v)− v̂)2 +
(
SN (h)− ĥ

)2
. (58)

Êex is the accuracy between the numerical and exact solutions, which is measured via evalu-
ating (55) with

e(N ;x, y, t) = (u− û)2 + (v − v̂)2 +
(
h− ĥ

)2
. (59)

In all evaluations, we follow Matskevich and Chubarov (2019) where F = 1 represents
the characteristic velocity as U0 =

√
gH0. The summaries of all parameters used for our

evaluations are listed in Table 1 below. Equation (55) is discretised with spatial grid spacings of
∆x = 0.1 and ∆y = 0.1 and a temporal grid spacing of ∆t = 0.1. Numerical implementations
(û, v̂, and ĥ) are done using the large-particle method as outlined by Matskevich and Chubarov
(2019).
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Table 1.: Summary of evaluation parameters, initial conditions, and applicable exact
solutions used to validate Conditions I-VII.

Condition F f̄ D0 L l Other Parameters Exact solutions
I 1 0.5 0 - - ηx = 10−4 Theorem 3.3
II 1 0.5 0 - - ηy = 10−4 Corollary 3.4(i)
III 1 0.5 0 - - ηx = ηy = 10−4 Corollary 3.4(ii)
IV 1 0.5 0 - - h0 = 10−4 Theorem 3.9(i)
V 1 0.5 0 - - h0 = 10−4 Theorem 3.9(ii)
VI 1 0.5 0 - - h0 = 10−4 Theorem 3.10(i)
VII 1 0.5 0 - - h0 = 10−4 Theorem 3.10(ii)

4.1. Results

Table 2 presents a summary of the convegence and accuracy results, where the partial sums
(for N = 2, 4 and 6) was used to assess the level of convergence. We note the convergence
trend where the relative error margins stabilise between O

(
10−11

)
and O

(
10−6

)
at N = 6,

which indicate that the Adomian approximations of up to six terms in its partial sum yield
effective and robust estimates for Conditions I-VII. This is further validated when examining
the accuracy of these partial sums with the numerical solutions, where the accuracies range
between O

(
10−6

)
and O

(
10−4

)
. We also note the comparisons between the explicit solutions

generated for Conditions I-VII and the numerical solutions, where these deviations are also
miniscule.

Table 2.: Summary of convergence trend (for N = 2, 4 and 6) and accuracy (for N = 6) via
integral squared error E(N) calculations for Conditions I-VII.

Ec(N = 2) Ec(N = 4) Ec(N = 6) Eex(N = 6) Ê(N = 6) Êex

Minimum 3.3× 10−3 1.5× 10−6 8.2× 10−11 1.6× 10−12 3.1× 10−6 3.1× 10−6

Maximum 6.5× 10−3 2.5× 10−4 7.0× 10−6 1.3× 10−7 2.1× 10−4 2.1× 10−4

Figures 2 through 3 present the behaviour of the ADM partial sums of u, v, and h (forN = 6)
along with Conditions II and IV (section 3) are used as examples. In each case we note the
direct relationship between the initial conditions (figures 2-3 part (a)) and a temporal snapshot
of the behaviour of the corresponding partial sums at t = 1 (figures 2-3 part (b)), which
illustrates the velocity vector field u = 〈u (x, y, 1) , v (x, y, 1)〉 over the contour representing
the free surface height h (x, y, 1). Figure 2(a) shows the initial zero velocity over constant
free surface gradient ηx = 10−4, which corresponds to the initial conditions represented by
(15). Figure 2(b) confirms the temporal behaviour where we note the behaviour of u over
the contour, which is analogous to the exact solutions described in equation (25). However,
in figure 2(b) we also observe the rotating velocity field u over the contour illustrating the
behaviour of inertial geostrophic oscillations. These effects are not only driven by the pressure
gradient due to variations in the free surface height but also due to the Coriolis force, which
are also noticed analytically when constructing the ADM decompositions. These confirmations
continue in figure 3, where part (a) illustrates the behaviour of the initial velocity u0 =
〈u (x, y, 0) , v (x, y, 0)〉 with respect to the initial free surface height h0 = h (x, y, 0). Figure 3
also shows the correlation between the initial conditions and analytical solutions to Condition
IV while also illustrating the effects of anticyclonic vortices with finite escape time as shown
in figure 3 (b). Specifically, we note the clockwise orientation of u that is consistent with the
behaviour of anticyclonic vortices which are valid for t ∈

[
0, π/

(
2f̄
))

.
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(a) (b)

Figure 2.: Velocity vector field u (arrow) and free surface height h (contour) behaviour for
Condition II: (a) initial condition at t = 0 and (b) partial sum approximation based on

ADM (with N = 6) at t = 1. Parameters used include F = 1, f̄ = 0.5, D0 = 0, and
ηx = 10−4 (Colour online).

(a) (b)

Figure 3.: Velocity vector field u (arrow) and free surface height h (contour) behaviour for
Condition IV: (a) initial condition at t = 0, (b) partial sum approximation based on ADM

(with N = 6) at t = 1. Parameters used include F = 1, f̄ = 0.5, D0 = 0, and h0 = 10−4

(Colour online).

5. Discussion

This work employs Adomian decomposition method (ADM) to the shallow water equations,
where we made the following main contributions. First, we used these methods as reverse
engineering mechanisms to develop theoretical connections between the ansatz formulations
of previous works, such as Thacker (1981), Shapiro (1996) and Matskevich and Chubarov
(2019), as well as develop a connection to the corresponding reduced systems of shallow
water equations. Furthermore, we developed some novel families of closed-form solutions that
respectively describe inertial oscillations and anticyclonic vortices with finite escape times over
flat bottom topographies. We perform various numerical experiments against several cases that
yielded relative errors between O

(
10−6

)
and O

(
10−4

)
. Our numerical visualizations further

demonstrate the validity of our approach, which illustrate the consistency with the dynamic
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behaviour for several scenarios while also preserving the correlation between the physical
parameters.

Our study establishes the flexibility of these methods in terms of not only preserving the
correlation of parameters with respect to the overall nonlinear physical behaviour but also
alleviating the need to make restrictive assumptions like those based on the overall flow
behaviour. Moreover, we illustrate that these techniques can be used to analytically deduce
other aspects of shallow water phenomenon based on the characteristics of initial flows in
which, to the best of our knowledge, this work is the first to explore these concepts. Therefore,
some avenues of future work include extending these techniques to understand the implications
of external forces such as the effects of bottom friction which are applicable to understanding
various coastal effects such as impacts from tsunamis. Another area of research is extending
this framework to analyse practical bottom topographies and shocks, which will consider
bottom terrains that extend beyond those of parabolic shapes.
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