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Abstract

Background: Segmentation of gliomas in multi-parametric (MP-)MR images is challenging due to their

heterogeneous nature in terms of size, appearance and location. Manual tumor segmentation is a time-consuming

task and clinical practice would benefit from (semi-) automated segmentation of the different tumor compartments.

Methods: We present a semi-automated framework for brain tumor segmentation based on non-negative matrix

factorization (NMF) that does not require prior training of the method. L1-regularization is incorporated into the NMF

objective function to promote spatial consistency and sparseness of the tissue abundance maps. The pathological

sources are initialized through user-defined voxel selection. Knowledge about the spatial location of the selected

voxels is combined with tissue adjacency constraints in a post-processing step to enhance segmentation quality. The

method is applied to an MP-MRI dataset of 21 high-grade glioma patients, including conventional,

perfusion-weighted and diffusion-weighted MRI. To assess the effect of using MP-MRI data and the L1-regularization

term, analyses are also run using only conventional MRI and without L1-regularization. Robustness against user input

variability is verified by considering the statistical distribution of the segmentation results when repeatedly analyzing

each patient’s dataset with a different set of random seeding points.

Results: Using L1-regularized semi-automated NMF segmentation, mean Dice-scores of 65%, 74 and 80% are found

for active tumor, the tumor core and the whole tumor region. Mean Hausdorff distances of 6.1 mm, 7.4 mm and 8.2

mm are found for active tumor, the tumor core and the whole tumor region. Lower Dice-scores and higher Hausdorff

distances are found without L1-regularization and when only considering conventional MRI data.

Conclusions: Based on the mean Dice-scores and Hausdorff distances, segmentation results are competitive with

state-of-the-art in literature. Robust results were found for most patients, although careful voxel selection is

mandatory to avoid sub-optimal segmentation.

Keywords: MRI, Segmentation, Brain tumors, Non-negative matrix factorization, Unsupervised classification

*Correspondence: nicolas.sauwen@kuleuven.be
1Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical

Systems, Signal Processing and Data Analytics, KULeuven, Kasteelpark

Arenberg, Leuven, Belgium
2 imec, Kapeldreef 75, 3001 Leuven, Belgium

Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-017-0198-4&domain=pdf
mailto: nicolas.sauwen@kuleuven.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Sauwen et al. BMCMedical Imaging  (2017) 17:29 Page 2 of 14

Background
High-grade gliomas (HGGs) account for 80% of all malig-

nant primary brain tumors [1]. Standard treatment of

HGG consists of complete or partial resection of the

gross tumor volume, followed by radiotherapy and/or

chemotherapy to attack the remaining tumor cells and

to counteract tumor recurrence. So far, recent advance-

ments in glioma research have only had little effect on

patient outcome. The 5 year survival rate of the most

common histopathological subtypes, anaplastic astrocy-

toma and glioblastoma multiforme (GBM) are 26 and 5%,

respectively [1].

MRI has become the imaging modality of choice for

evaluating tumor progression and the efficacy of a cho-

sen treatment strategy. GBM, the most malignant and

most common type of glioma, tends to invade the

healthy tissue, such that tumor margins extend beyond

the imageable component of the tumor based on con-

ventional MRI (cMRI). Numerous recent studies have

recommended incorporating additional imaging biomark-

ers from advanced MRI modalities such as perfusion-

weighted imaging (PWI) and diffusion-weighted imaging

(DWI) [2–4]. PWI is used for studying tumor angiogen-

esis, as HGGs are known to stimulate vascular ingrowth

[5]. PWI measurements in the peritumoral region have

been reported to differentiate GBM frommetastases, sug-

gesting the detection of tumor infiltration [6]. PWI was

also found useful in differentiating tumor recurrence from

radiation necrosis [7]. DWI assesses the mobility of water

molecules within tissue due to Brownian motion. Because

glioma infiltration disrupts the organization of the white

matter tracts, DWI is potentially useful to characterize the

extent of infiltration. Diffusion tensor imaging has been

reported to better delineate tumor margins in gliomas

than cMRI [8].

Assessment of tumor extent plays a key role at all stages

of the treatment process. An outline of the gross tumor

volume is made upon planning surgical resection and for

defining the radiotherapy target volume. During follow-

up, the response assessment in neuro-oncology (RANO)

criteria are applied for monitoring tumor growth, assess-

ing the maximal diameter of the lesion in 2 orthogonal

directions on axial slices [9]. Clinical practice would ben-

efit from volumetric measurements of the tumor and

its subcompartments. With the recent emergence of the

dose-painting concept in radiotherapy, segmentation of

the active tumor region would allow focusing the radi-

ation energy to the most active part of the tumor in a

non-uniform way [10]. Volume measures of the active

tumor and necrotic region have been reported to be

significant predictors of patient outcome to treatment

[11, 12]. Furthermore, the RANO criteria acknowledge

that volumetric measurements might be favorable com-

pared to cross product diameters in cases of irregularly

shaped tumors, multi-focal tumors and tumors with cys-

tic or necrotic components. However, segmentation of

HGGs in MRI is a challenging task, due to their hetero-

geneous nature: several stages of the disease can occur

throughout the same lesion and diffuse boundaries exist

between active tumor, necrosis, edema and the surround-

ing healthy brain. Manual segmentation of 3D images is

also time-consuming, which is the main reason why vol-

umetric tumor delineation has not become widespread in

clinical practice.

In recent years, significant advancements have been

made in the field of automated brain tumor segmentation.

Both semi-automatic and fully automatic methods have

been proposed [13]. A popular approach is to combine

imaging biomarkers from different MRI sequences on a

voxel-wise basis, thereby increasing specificity and reduc-

ing overlap between tissue classes. Nowadays, supervised

classification methods are receiving most attention [14].

These methods rely on an extensive set of training images

with manually annotated ground truth to learn deci-

sion boundaries between the tissue classes in feature

space. The most popular methods include random forests

[15, 16], support vector machines [17, 18] and neural net-

works [19]. Additional constraints may be imposed to

further enhance performance, such as spatial consistency

of the tissue regions [20, 21].

Unsupervised classification methods are also being con-

sidered for tumor segmentation. These methods are very

flexible, as they don’t require an extensive training dataset

with a uniform acquisition protocol. They learn classifica-

tion rules directly from the imaging data at hand, based

on some similarity criterion. Popular approaches include

fuzzy C-means clustering (FCM) [22, 23], Gaussian mix-

ture modeling [24, 25], hidden Markov Random Fields

[26, 27] and non-negative matrix factorization (NMF)

[28, 29]. Due to the absence of training data, unsuper-

vised methods rely more strongly on the incorporation of

prior knowledge to obtain competitive results. As gliomas

exhibit a wide variability in terms of size, shape, location

and appearance, imposing proper prior knowledge is dif-

ficult. Several studies make use of a normal brain atlas to

differentiate the pathological region from the healthy tis-

sue structures [25, 30]. This approach assumes that the

healthy brain structures are not altered by the tumor,

which might not be valid for large tumors deforming

the surrounding healthy tissue. Some studies assume the

active tumor region to be either enhancing [30] or non-

enhancing [22], or hyper-perfused [23]. These assump-

tions do not hold in general in heterogeneous gliomas with

varying degrees of contrast enhancement and/or perfu-

sion. Another approach is to detect tumors by looking at

the dissimilarity across the hemispheres, thereby suppos-

ing that the tumor volume is restricted to one of the hemi-

spheres [31]. For the removal of false positives, several
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segmentation algorithms only retain the largest connected

component in the segmentation mask, thereby assuming

only one tumor volume [22, 32]. Evidently, many unsuper-

vised segmentation studies incorporate prior knowledge

in the form of simplifying rules, limiting their applicability

to a subset of gliomas with specific characteristics. Some

methods are limited to a particular set of MRI parameters,

as they rely on one or more specific imaging biomarkers.

Semi-automated segmentation algorithms incorporate

prior knowledge in the form of user-specific input, either

as an initialization or as a post-processing step. Compet-

itive performance has been reported for semi-automated

algorithms [14]. Kwon et al. combined a normal brain

atlas with a tumor growth model [33]. User-defined seed-

ing points are used to initiate the tumor growth model,

allowing to model multi-focal gliomas as well. Hamamci

et al. initialized a cellular automata algorithm based on

the maximal tumor diameter as drawn by the user on T1C

images [34]. An active level-set surface is then initialized

from the user-defined maximal diameter, to impose spa-

tial smoothness on the contour of the pathological region.

Havaei et al. initialized a k-nearest neighbors (kNN) clas-

sifier with user-selected voxels in the tumor subcompart-

ments as well as in the healthy brain regions [35]. Spatial

coordinates of the seeding points were also exploited in

the feature set. The main drawback of semi-automated

methods is that they don’t provide reproducible results,

as the segmentation depends on subjective user input.

Robustness against user input variability is therefore a key

aspect of these methods. In the current study, we propose

a semi-automated brain tumor segmentation method

based on regularized non-negative matrix factorization.

User-defined seeding points in the pathological regions

are combined with a sophisticated seeding method for

the normal brain tissues to initialize the NMF algorithm.

Piece-wise spatial smoothness as well as sparseness of the

NMF tissue abundance maps are encouraged through L1-

regularization. Morphological post-processing based on

the spatial location of the user-defined seeds is exploited

to further remove false positives. The proposed method

is applicable to all types of gliomas with any MP-MRI

dataset, as the user-defined prior knowledge is patient-

specific. We illustrate segmentation performance on an

MP-MRI dataset of 21 HGGs combining cMRI, PWI

and DWI. To verify robustness against user input vari-

ability, each patient’s dataset is repeatedly analyzed with

randomly selected seeding points from the pathological

subcompartments.

Methods

Patient population

Twenty-one patients who were diagnosed with a HGG

were enrolled in the study: 1 grade II astrocytoma

with focal progression to grade III anaplasia, 2 grade II

oligodendrogliomas with focal progression to grade III, 1

oligo-astrocytoma with focal progression to grade III, 6

anaplastic oligo-astrocytomas, 1 anaplastic astrocytoma

with focal progression to GBM and 10 GBMs. The Ghent

University Hospital local ethics committee allowed a ret-

rospective analysis of the data.

Multi-parametric MRI dataset

The MR examinations were performed on a 3T Siemens

Trio Tim scanner (Erlangen, Germany), using a standard

12-channel phased array head coil. All patients underwent

anMP-MRI acquisition protocol, consisting of cMRI, PWI

and DWI.

cMRI consisted of a 3-dimensional T1-weighted

gradient-echo sequence (MPRAGE) before and after

contrast administration, with isotropic voxels, and a

3-dimensional T2-weighted inversion recovery sequence

(FLAIR) with isotropic voxels. An overview of the

image acquisition settings which are defined for all MRI

modalities is given in Table 1.

PWI was performed by using a lipid-suppressed, T2*-

weighted echo-planar imaging sequence. A series of 90

multi-section acquisitions was acquired at 1 second inter-

vals. The first 10 acquisitions were performed before

contrast agent injection to establish a pre-contrast base-

line. At the tenth acquisition, a 0.1 mmol/kg body weight

bolus of gadobutrol (Gadovist, Bayer) was injected with a

power injector (Spectris, Medrad Inc., Indianola, PA) at

a rate of 4 ml/s through a 18-gauge intravenous catheter,

immediately followed by a 20 ml bolus of sodium chloride

solution at 4 ml/s. Relative cerebral blood volume (rCBV)

maps were derived from the dynamic signal intensity

curves in the DSCoMAN software (Dynamic Susceptibil-

ity Contrast MR Analysis, Duke University, Durham, NC).

DSCoMAN computes rCBV based on the method pro-

posed by Boxerman et al. [36], compensating for contrast

agent leakage due to disruption of the blood-brain barrier.

The measured relaxivity change in each voxel is approxi-

mated as a linear combination of the whole-brain average

relaxivity change in non-enhancing voxels,�R∗
2(t), and its

time integral:

�R∗
2(t) ≈ K1�R∗

2(t) − K2

∫ t

0
�R∗

2(τ )dτ (1)

where �R∗
2(t) represents the measured relaxivity change

in a voxel. The first term reflects the uncontaminated

relaxivity change and the second term reflects the effects

of leakage. Linear least squares fitting is applied to com-

pute the weighting factors K1 and K2 over all the voxels.

Corrected relaxivity curves are obtained by only withhold-

ing the K1-term.

Axial diffusion-weighted images were acquired using

a fast single-shot gradient-echo echo-planar imaging

sequence with diffusion gradient b-values of 0, 500 and
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Table 1 Overview of the MR acquisition parameters for cMRI, PWI and DWI

TR [ms] TE [ms] TI [ms] voxel size [mm3] Field of view [mm2] Flip angle [°]

cMRI T1/T1C 1550 2.39 900 0.9×0.9×0.9 220 × 220 9

FLAIR 6000 421 2100 1.0×1.0×1.0 250 × 234.5 120

PWI 1000 29 – 1.8×1.8×1.8 230 × 230 90

DWI 5400 80 – 2.0×2.0×3.0 264 × 264 90

1000 s/mm2. The b500 and b1000 images were acquired

in 3 orthogonal directions. An affine coregistration was

applied to account for eddy currents. Apparent Diffusion

Coefficient (ADC) maps were derived from the 3 b-values

using weighted linear least squares fitting [37]:

β = (XTWX)−1XTWy (2)

where β is the diffusion model’s parameter vector, con-

taining the ADC value, X is the design matrix of all

diffusion gradients, and y is a vector containing the loga-

rithm of the signal intensities. W is a weighting matrix to

take into account the heteroscedasticity, i.e. the fact that

the lower signals in y have a higher variance, as a result of

the logarithmic transform:

W = diag(exp(2XβLLS)) (3)

where βLLS represents the initial estimate of β obtained

using standard linear least squares fitting. The raw b0

images were also added to the input dataset, serving as a

T2-weighted reference.

Six MRI features were obtained from the raw acquired

data after pre-processing: T1, T1C, FLAIR, rCBV, ADC

and b0. All MP-MRI features were coregistered and

resampled to the same spatial resolution of 1×1×3mm3.

cMRI data were skull-stripped and T1C served as a ref-

erence for rigid coregistration in SPM8 (Wellcome Trust

Centre for Neuroimaging, University College London),

using the normalized mutual information criterion [38]

and cubic B-spline interpolation for reslicing. Analyses

were performed on 10 axial slices located around the

tumor centre. Additional intensity-based features were

added to the feature set to include localized spatial infor-

mation. An in-plane local neighborhood of 3 × 3 and

5 × 5 voxels was used to calculate average intensity val-

ues that were assigned to the central voxel. These spatially

averaged intensity values were added for all MP-MRI fea-

tures. The averaged features were added in accordance

with a previous study, in which it was shown that their

inclusion significantly improved MRI-based brain tumor

segmentation [28]. The same finding was also confirmed

for the current study. Each feature’s full range was rescaled

linearly to [0–1]. A total of 18 MRI features was finally

obtained, making up the rows of the input matrix X.

Segmentation framework

Non-negativematrix factorization

NMF provides a rank-r approximation of a non-negative

input matrix X by the product of 2 non-negative factor

matrices,W and H :

X ≈ WH with X ∈ Rm×n
+ ,W ∈ Rm×r

+ and H ∈ Rr×n
+

(4)

with m being the number of input features and n the

number of data points in X. NMF reveals an additive

parts-based structure of the input data. It represents each

column of X by a weighted sum of the r columns ofW. As

we are dealing with image intensities, the non-negativity

constraint applies naturally. Each column of X corre-

sponds to one voxel’s MP-MRI feature set. Each column of

W represents a tissue-specific signature, i.e. an MP-MRI

feature vector corresponding to one pure tissue type. As

such, each voxel’s MP-MRI feature vector is approximated

as a weighted sum of (tissue-specific) source vectors. Each

column of H represents the weights of the tissue types

for one voxel. One row of H contains the abundances of

one particular tissue type over all the voxels, which can

be transformed back into the image space to obtain a tis-

sue abundance map. The following objective function is

considered for solving the NMF problem:

min
W ,H

f (W ,H) = min
W ,H

1

2

(

‖X − WH‖2F + λ‖(L + I)H‖1
)

(5)

The objective function consists of 2 terms. The first

termminimizes the difference between the input matrix X

and its factorization, WH, based on the Frobenius norm.

The second term is an L1-regularization term, which

consists of 2 components. The first component, LH, pro-

motes piece-wise smoothness on the tissue abundance

maps. L is a sparse n×n matrix, with each row contain-

ing a vectorized Laplacian kernel. As such, each row of L

applies a two-dimensional second order spatial derivative

to the corresponding voxel. An in-plane neighborhood

of 4 voxels is considered for the Laplacian kernel. Due

to the relatively low out-of-plane resolution of the MRI
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data, neighboring voxels in adjacent slices are not consid-

ered. The second component applies L1-regularization to

H directly, imposing sparseness to the abundance maps.

The above NMF formulation [39] is solved using the

structured data fusion framework [40] as implemented in

Tensorlab [41]. A transformation of variables is used to

convert the constrained optimization problem in Eq. 5

into an unconstrained problem, by squaring the entries

of the factor matrices. The Gauss-Newton algorithm with

dogleg trust region (GNDL) is used to solve the resulting

non-linear least-squares problem [42]. At each iteration

of the GNDL algorithm, a step is calculated by itera-

tively solving a linearized version of Eq. 5 using conjugate

gradients. A maximum number of 500 iterations and a

convergence tolerance of 10−6 for the relative difference of

two subsequent values of the objective function were used

as stopping criteria for the NMF analyses. The regulariza-

tion coefficient λ was empirically set to 0.1, after testing a

range of λ values and refining the search near λ = 0.1.

NMF initialization

As NMF poses a non-convex optimization problem, ini-

tialization of the factor matrices (W0 and H0) is required.

Careful initialization is important, as it might speed up

the convergence process and influence the final segmen-

tation result. The pathological tissue sources are initial-

ized based on voxel selection. The user is required to

select one or more voxels in each pathological region, i.e.

active tumor and, if present, necrosis and edema. For each

selected voxel, a candidate source vector is added to W0

as the averaged feature vector of the selected voxel and

its 4 in-plane neighboring voxels. For each pathological

tissue class, we then calculate the correlation coefficient

between the candidate source vectors as their inner vec-

tor product after normalization. The initial pathological

sources are obtained after merging candidate source vec-

tors with a correlation coefficient higher than 0.95 in W0

and replacing them by their average, thereby reducing

complexity of the NMF model.

As the normal brain tissue types (i.e. white matter, grey

matter, cerebro-spinal fluid and blood vessels) are still

highly abundant in the affected brain, an automated seed-

ing procedure is used to obtain their initial source vectors.

To cope with the variance within the tissue classes, 2

sources are assigned to each normal tissue type, leading

to a total of 8 normal tissue sources. We use the Succes-

sive projection algorithm (SPA) [43] to obtain an initial

estimate of the normal sources. SPA returns a subset of

voxels from the input matrix X with minimal collinearity

in feature space. All columns of X are first projected onto

the orthogonal subspace of the already initialized patho-

logical sources. A first normal seeding point is selected

as the voxel with the highest L2-norm in the orthogo-

nal subspace. All columns are then further projected onto

the orthogonal subspace of the added voxel, and the next

seeding point is selected as the point with the highest

L2-norm among these projected columns. The above pro-

cedure is repeated until 8 voxels (for initializing the 8

normal tissue sources) have been selected. Similarly to the

pathological sources, the normal sources are obtained as

the averaged feature vector of each selected voxel and its

4 in-plane neighboring voxels, assuming these to belong

to the same tissue type as the selected voxel. As SPA is

known to be sensitive to outliers [44], an additional FCM

procedure is applied, using the initial pathological sources

and the normal sources obtained from SPA to initialize

the cluster centroids. FCM alternatingly updates the clus-

ter centroids and the cluster membership values. As we

already obtained proper initialization of the pathological

tissue types through user input, the pathological cluster

centroids are forced to remain the same throughout the

FCM updating procedure. The final FCM centroids make

up the columns of W0. The columns of H0 are found by

applying non-negative least squares fitting to the corre-

sponding column of X and W0. To reduce computation

time, a downsampling factor of 2 was applied to the x-

and y-direction of each image slice. After NMF analy-

sis, the obtained tissue abundance maps were upsampled

again through linear interpolation. Performance was not

affected by this downsampling procedure.

Morphological post-processing

After NMF analysis, each voxel is assigned to the source

for which it has the highest abundance value. Voxels

that were assigned to different sources belonging to the

same pathological tissue class are merged to obtain a

preliminary tissue segmentation mask. A morphological

post-processing procedure, consisting of 2 steps is then

applied to the pathological segmentation masks to further

remove false positives, by exploiting the known location

of the user-selected voxels. Spatial consistency of the tis-

sue regions is assumed, therefore the segmentation masks

are analyzed in terms of (3D-)connected components.

For each selected pathological tissue type, only the con-

nected component closest to each user-defined voxel is

withheld in the corresponding tissue segmentation mask

(Step 1). As the user-defined voxels are not necessar-

ily selected close to the centre of the tissue region, the

distance between a selected voxel and a connected com-

ponent is defined as the minimal distance between the

selected voxel and any voxel from the connected compo-

nent. It is possible that the same connected component is

found for several or all user-selected voxels of the same

tissue class.

To avoid missing disjoint regions of a tumor compo-

nent for which no voxels were selected by the user, an

additional step is performed which assumes spatial con-

nectivity of the various pathological components (Step



Sauwen et al. BMCMedical Imaging  (2017) 17:29 Page 6 of 14

2). For instance, necrotic areas are always adjacent to

an active tumor region. Therefore, any connected com-

ponent of the preliminary necrosis mask which has a

common edge with any withheld active tumor component

is also included. Similarly, components of the preliminary

active tumor mask are also included if they have a com-

mon edge with any withheld necrotic component. The

same procedure is also applied to edema, by verifying

spatial adjacency to the active tumor region(s). Figure 1

illustrates the morphological post-processing procedure

for the necrotic tissue mask. One small necrotic compo-

nent is not withheld after Step 1, as the user didn’t click

in this region. However, it was still recovered in Step 2 by

verifying spatial connectivity with the active tumor mask.

Validation

Segmentation results of the pathological tissue regions

were compared against manual segmentation by an expe-

rienced radiologist. The Dice-score was used to quantify

the spatial alignment between semi-automated and man-

ual segmentation:

Dicetissue = 2 ×
Atissue,NMF ∩ Atissue,man

Atissue,NMF + Atissue,man
(6)

where Atissue,NMF is the area segmented by NMF and

Atissue,man the area manually segmented by the radiologist

for the same tissue type. Additionally, the Hausdorff dis-

tance was calculated for evaluating the distance between

segmentation boundaries. The Hausdorff distance is the

maximum distance of all points from one segmentation

mask to the corresponding nearest point of the other

segmentation mask:

Haustissue = max

(

sup
p∈Atissue,NMF

inf
t∈Atissue,man

d(p, t), sup
t∈Atissue,man

inf
p∈Atissue,NMF

d(t, p)

)

(7)

where sup and inf represent the supremum and infinum,

respectively. d(p, t) is a distance metric, for which the

Euclidean distance is commonly used. The Hausdorff dis-

tance is however susceptible to small outlying subregions

in either segmentation masks, as it considers the maxi-

mum surface distance. To overcome this limitation, we

considered a more robust version of the Hausdorff mea-

sure, reporting the 95-percentile instead of the maximum

surface distance. In analogy to previous work [14], Dice-

scores and Hausdorff distances are reported for active

tumor, the tumor core (active tumor + necrosis) and the

whole tumor (tumor core + edema). To verify robustness

of the semi-automated method to user input variabil-

ity, the NMF analysis was repeated 20 times per patient

with different selection of the seeding points. In each

run, an automatic random selection of 3 points was per-

formed in each pathological region, based on the manual

segmentation masks.

Besides NMF with spatial regularization and sparse-

ness (NMFspatial_sparse), additional NMF analyses were

performed to assess the added value of the regulariza-

tion term and the advanced MRI modalities: NMF with-

out regularization (NMFno_reg), NMF with only spatial

regularization (NMFspatial), NMF with spatial regulariza-

tion and sparseness but without the morphological post-

processing step (NMFno_postproc), and NMF with spatial

regularization and sparseness when only considering

Fig. 1 Illustration of morphological post-processing after initial semi-automated NMF based segmentation of necrosis a and active tumor c. Step 1:

false positives are removed by withholding only the connected components closest to the user-defined seeding points (marked by cursor arrows)

for necrosis (b) and for active tumor (d). Step 2: spatial adjacency of the connected components in the preliminary necrosis mask (green) to the

withheld active tumor mask (red) is verified in (e). The final necrosis mask is shown in yellow in (f)
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cMRI data (NMFcMRI). For the NMFcMRI analyses, rCBV

and ADC were omitted from the MP-MRI feature set but

b0 was withheld, acting as a surrogate for T2-weighted

MRI.

Results
Figure 2 gives an example of the regularized NMF results

and tissue segmentation for a GBM patient with a typical

ring-enhancing lesion. Some of the MP-MRI input maps

are shown on the first row. The NMF abundance maps

as well as the final segmentation masks are shown for the

pathological tissue types on the second row.

Figure 3 gives a comparison of the segmented patho-

logical regions for a GBM patient obtained from the dif-

ferent NMF analyses (NMFno_reg, NMFspatial, NMFcMRI

and NMFspatial_sparse) and manual segmentation. For the

active tumor region, spatial overlap with manual segmen-

tation is slightly lower for NMFspatial compared to the

other methods. On the other hand, the spatial regular-

ization term did allow NMFspatial to segment the entire

necrotic region, whereas the other methods missed a cen-

tral portion of the necrotic area. Segmentation of edema

is inferior for NMFcMRI, where the differentiation from

surrounding healthy brain structures was found difficult.

NMFspatial_sparse shows the least false positive regions for

necrosis and edema compared to the other methods.

Figure 4 shows the dispersion of the Dice-scores for

active tumor per patient over 20 runs. Sixteen out of 21

patients have a median Dice-score of at least 60%. Fifteen

patients have a lower quartile Dice-score of at least 50%.

Seventeen patients have an interquartile range not higher

than 15%. Seven patients had at least one run with a Dice-

score lower than 30%. A large spread in the Dice-scores

is seen for patient 6, who has a non-enhancing anaplastic

astrocytoma with focal areas of enhancing GBM. Variabil-

ity in the results was caused by the difficult differentiation

of non-enhancing tumor from edema. Patient 8 suffers

from a non-enhancing bifocal GBM, with only a small

enhancing area in the smaller lesion. Due to the random

selection of voxels in the active tumor region, in some

runs voxels were only selected from one of both lesions,

resulting in a failure to detect the other lesion. A large

dispersion in the Dice-scores is also found for patient 18,

exhibiting a heterogeneous and irregularly shaped GBM

with varying degrees of enhancement in the active tumor

region. Active tumor and necrosis were not well differ-

entiated in some runs, mainly due to ambiguous voxel

selection near the pathological tissue boundaries. The low

outlier scores for patient 10 are due to the difficult differ-

entiation of non-enhancing tumor from edema. The low

outlier score for patient 13 is explained by a suboptimal

and unrepresentative random voxel selection in the active

tumor region.

Boxplots for the tumor core are shown in Fig. 5. Eigh-

teen out of 21 patients have a median Dice-score higher

than 65%. For 17 patients, the lower quartile Dice-score

was at least 60%. The interquartile range was not higher

than 15% for 17 patients. Seven patients have at least one

run with a Dice-score lower than 40%. For 5 out of the 7

patients, these low Dice-scores were found to be outliers

(i.e. at a distance of more than 1.5 times the interquartile

range from the lower quartile value).

Figure 6 shows the boxplots for the whole tumor region.

A median Dice-score higher than 70% was found for 19

out of 21 patients. Eighteen patients have lower quartile

value higher than 60%. Five patients have at least one run

with a Dice-score lower than 45%. For 4 out of these 5

patients, such low values were found to be outliers.

Fig. 2 First row: coregistered MP-MRI maps of a GBM patient, left to right: T1C, FLAIR, rCBV, ADC. Second row, left to right: NMF abundance maps for

active tumor, necrosis and edema. The final segmentation masks are shown on the right for active tumor (red), necrosis (yellow) and edema (blue)
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Fig. 3 Comparison of the segmentation results of the pathological tissue regions obtained for a GBM patient using the different NMFmethodologies.

The left figure of each row shows the obtained segmentation for active tumor (purple), necrosis (red) and edema (yellow). The second to fourth figure

of each row show the individual segmentation for active tumor, necrosis and edema, respectively. The top row shows manual segmentation,

whereas the other rows show the overlap between the NMF (blue) and manual (green) segmentation result. Segmentation overlap is marked in cyan

Table 2 gives a comparison of themean Dice-scores over

all patients for the different NMF analyses. Overall, the

best performance is obtained withNMFspatial_sparse.When

considering only spatial regularization (NMFspatial), seg-

mentation results are mainly worse for the active tumor

region, where the Dice-scores are even lower than for

NMFno_reg. The spatial smoothing was found to be too

severe for several GBMs with a narrow ring-enhancing

active tumor compartment. Compared to NMFno_reg,

Dice-scores are higher with NMFspatial_sparse for active

tumor and the tumor core, with an increase of 2%

in most cases. The Dice-score for the whole tumor

region is 0 to 1% higher for NMFspatial_sparse com-

pared to NMFno_reg. NMFspatial_sparse does not show any

improvement compared toNMFcMRI for the active tumor

region. An increase in Dice-score of 1 to 2% is found

for the tumor core and an increase of 3 to 4% for the

whole tumor region. The lowest Dice-scores are found for

NMFno_postproc, with a decrease of 6 to 8% compared to

NMFspatial_sparse.

Table 3 reports the mean Hausdorff distances over all

the patients for the different NMF analyses. The low-

est Hausdorff distances are found for NMFspatial_sparse,

with mean values of 6.1 mm, 7.4 mm and 8.2 mm for

active tumor, the tumor core and the whole tumor region,

respectively. Comparable but slightly higher Hausdorff

distances are found forNMFno_reg andNMFspatial. Higher

Hausdorff distances are found for NMFcMRI, with mean
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Fig. 4 Boxplots showing the dispersion of the Dice-scores for active tumor. Boxplots show quartile ranges of the Dice-scores, ’+’ indicates outliers

values of 7.4 mm, 9.1 mm and 14.1 mm. Hausdorff dis-

tances increase considerably when morphological post-

processing is omitted: mean values of 26.6 mm, 29.3 mm

and 28.9 mm are found for NMFno_postproc.

Discussion
Comparison to other segmentation studies is sometimes

hampered by the fact that different segmentation met-

rics or a different definition of the pathological subregions

are being considered. We have quantified our results for

active tumor, the tumor core and the whole tumor region

using the Dice-score, in accordance with the Multimodal

Brain Tumor Segmentation (BRATS) challenge held at

the Medical Image Computing and Computer Assisted

Intervention (MICCAI) conference. Looking at the Dice-

scores reported for HGGs on the BRATS 2012 and 2013

datasets [14], it can be seen that our results are compet-

itive, even when looking at the mean of 25th percentile

values (see Table 2). For the whole tumor region, Dice-

scores are close to or even higher than 80%, which is

in the range of inter-observer variability [14]. We have

also applied semi-automated L1-regularizedNMF directly

to the BRATS 2013 Leaderboard dataset, allowing for a

direct comparison with state-of-the-art [45]. It was found

Fig. 5 Boxplots showing the dispersion of the Dice-scores for the tumor core. Boxplots show quartile ranges of the Dice-scores, ’+’ indicates outliers
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Fig. 6 Boxplots showing the dispersion of the Dice-scores for the whole tumor region. Boxplots show quartile ranges of the Dice-scores, ‘+’

indicates outliers

that our segmentation framework outperformed all other

methods in segmenting the active tumor region, and

was also competitive for the tumor core and the whole

tumor region. As the BRATS dataset only contains cMRI

data, comparison is most appropriate to the NMFcMRI

results. The inclusion of additional MRI modalities for

brain tumor segmentation has been commonly suggested

[2, 46] and initial studies have found improved segmen-

tation results with extended MP-MRI datasets [28, 47].

When including ADC and rCBV into the MRI feature

set, we found no advantage for the active tumor region,

but Dice-scores increased by 1 to 2% for the tumor core

and by 3 to 4% for the whole tumor region. These find-

ings are in accordance with [28], where inclusion of PWI

and DWI were found to be mainly advantageous for the

tumor core and the whole tumor region. Segmentation

performance was also assessed using the Hausdorff dis-

tance (see Table 3). As for the Dice-score, we obtained

mean Hausdorff distances which are competitive with the

best methods reported on the BRATS 2012 and 2013

datasets [14]. Another important consideration of any seg-

mentation algorithm is its computational cost. To reduce

computation time, we have applied downsampling to the

in-plane dimensions of the imaging data. A downsampling

factor of 2 was found not to affect segmentation perfor-

mance. In the case of isotropic imaging data, where the

out-of-plane resolution is as high as the in-plane resolu-

tion, downsampling could be applied to all 3 dimensions,

with no expected loss in segmentation performance.

Most of the unsupervised brain tumor segmentation

algorithms in literature incorporate prior knowledge in

the form of basic assumptions or heuristics, which often

limits their general applicability to a subset of gliomas

or to a particular set of MP-MRI data. Prior knowledge

in the form of user input is flexible, allowing to incor-

porate patient-specific information regarding appearance,

Table 2 Mean Dice-scores [%] for NMF without regularization, with spatial regularization, with spatial and sparse regularization but

without morphological post-processing, with spatial and sparse regularization on the cMRI data only, and with spatial and sparse

regularization on the full MP-MRI dataset

Active tumor [%] Tumor core [%] Whole tumor [%]

25th prcntile Mean 75th prcntile 25th prcntile Mean 75th prcntile 25th prcntile Mean 75th prcntile

NMFno_reg 58 63 72 66 72 79 76 80 84

NMFspatial 55 60 70 65 71 79 76 80 85

NMFno_postproc 54 59 67 62 68 73 71 73 77

NMFcMRI 60 65 74 67 72 79 73 77 82

NMFspatial_sparse 60 65 74 68 74 80 77 80 85

For each tissue class, the first column reports the mean of the 25th percentile Dice-score across all patients, the second column the mean of the mean Dice-score across all

patients and the third column the mean of the 75th percentile Dice-score
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Table 3 Mean Hausdorff distances [mm] for NMF without regularization, with spatial regularization, with spatial and sparse

regularization but without morphological post-processing, with spatial and sparse regularization on the cMRI data only, and with

spatial and sparse regularization on the full MP-MRI dataset

Active tumor [mm] Tumor core [mm] Whole tumor [mm]

25th prcntile Mean 75th prcntile 25th prcntile Mean 75th prcntile 25th prcntile Mean 75th prcntile

NMFno_reg 3.3 6.9 8.1 3.1 7.9 9.7 3.8 8.6 10.6

NMFspatial 3.7 7.1 8.2 3.2 7.9 9.5 3.3 8.4 10.4

NMFno_postproc 21.4 26.6 33.2 24.5 29.3 35.6 23.8 28.9 33.7

NMFcMRI 4.2 7.4 8.2 5.6 9.1 10.5 5.2 14.1 17.9

NMFspatial_sparse 2.7 6.1 6.7 2.7 7.4 9.2 3.1 8.2 10.1

For each tissue class, the first column reports the mean of the 25th percentile Hausdorff distance across all patients, the second column the mean of the mean Hausdorff

distance across all patients and the third column the mean of the 75th percentile Hausdorff distance

location and/or shape of the tumor. Using our semi-

automated framework, we were able to tackle the main

limitations of many unsupervised classification methods

like NMF. Most unsupervised algorithms require proper

initialization to come to a valid locally optimal solution.

Several studies cope with this by running the segmenta-

tion algorithm numerous times with a randomized ini-

tialization, then selecting the final solution based on a

predefined objective function [24, 28]. We are combining

user-defined voxel selection for initializing the patho-

logical sources with a sophisticated initialization of the

normal brain tissue sources based on SPA and FCM. As

SPA is sensitive to outliers, its output is fed into the FCM

algorithm, thereby providing a deterministic initialization

for FCM.

Due to the lack of labelled training data, automatic

assignment of a tissue label to each segmented region

is non-trivial for unsupervised methods. Several studies

do not explicitly propose an automated labelling strategy

[25, 27], while others assume specific characteristics of

the tumor compartments in specific MRI images (such

as e.g. contrast enhancement of active tumor) [22, 23].

In our proposed methodology, tissue labelling automati-

cally results from the voxel selection in the pathological

regions.

False positive regions were excluded from the patholog-

ical tissue masks by exploiting the spatial location of the

selected voxels in a morphological post-processing pro-

cedure. As the pathological tissue classes are assumed

to form spatially consistent regions, only the connected

component closest to each selected voxel is withheld

in the segmentation masks. Loss of tumor components

not selected by the user is avoided by assuming spatial

adjacency of the pathological regions. Mean Dice-scores

decreased by 6 to 8% when omitting the morpholog-

ical post-processing step after NMF with spatial regu-

larization and sparseness (Table 2, NMFno_postproc). Loss

in performance was more pronounced when consider-

ing the Hausdorff distance, with mean values being an

order of magnitude larger for NMFno_postproc than for

the other NMF analyses (Table 3). This indicates that

our semi-supervised approach allows for the removal of

false positive regions at considerable distance from the

actual tumor volume, by exploiting the spatial location

of the user-defined seeding points. Similar types of post-

processing have been proposed to enhance segmentation

results. Cordier et al. only withheld 1 or 2 connected

components for each tissue region based on their size,

assuming that the largest component(s) correspond to the

true tissue region [32]. Menze et al. exploit knowledge

about shape and location of the tumor based on an atlas

tissue prior to remove false positives [25]. Havaei et al.

initialize a k-nearest neighbors (kNN) classifier based on

voxel selection by the user [35]. They do not exploit the

spatial location of the selected voxels in a post-processing

step, but instead they add voxel coordinates to the feature

set of the kNN classifier.

Nowadays, a common approach to further improve seg-

mentation results is to model the spatial dependency

between the tissue labels of adjacent voxels, typically using

a Markov Random Field (MRF) [25, 35] or a Condi-

tional Random Field (CRF) [15, 17]. With MRF, a fixed

penalty term is added to the cost function when adja-

cent voxels have different labels. This penalty term is

also depending on the (dis)similarity of the feature vec-

tors when using CRF. To the authors’ knowledge, this

is the first study to consider spatially regularized NMF

for tumor segmentation. We have added a spatial reg-

ularization term with sparseness to the NMF objective

function. L1-regularization was used to promote piece-

wise smoothness of the abundance maps, allowing for

discontinuities at the tissue boundaries. Whereas MRF

and CRF are directly applied to the voxel labels, we applied

L1-regularization to the tissue abundance maps which

represent continuous variables. In some patients, subop-

timal segmentation results were found when using spatial

regularization only. This is reflected in the lower Dice-

scores for NMFspatial in the active tumor region and in

the tumor core region (Table 2). The original abundance

maps have a relatively low degree of sparseness, such that
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piece-wise spatial smoothness was not always restricted

to the true tissue boundaries. Results were improved by

combining spatial regularization with sparseness. This

kind of regularization resembles MRF more closely, since

MRF implies absolute sparseness of the tissue labels. Over

all patients, we found an increase in mean Dice-score by

2% for active tumor and for the tumor core when using

spatial regularization with sparseness (Table 2). For the

whole tumor region, an increase of 1% was found for

the 25th and 75th percentile Dice-scores and no increase

was found for the mean value. Similar improvements in

segmentation results have been reported in the literature

[17, 35].

As imaging characteristics vary considerably across

glioma subtypes and grades, supervised classification

methods require extensive training datasets with a uni-

form acquisition protocol. To increase specificity, sepa-

rate classifiers are usually built for low- and high-grade

gliomas [14]. Using training data from different patients

to segment a new test case requires careful calibration of

image intensities across different patients, which is non-

trivial in the presence of pathology. Our method uses

labelled data only from the patient under study. Fea-

ture vectors averaged over the local neighborhood of the

selected voxels are assumed to be approximative proto-

types of the pathological tissue regions to be segmented.

One of the main limitations of any semi-automated

segmentation algorithm is that they don’t provide repro-

ducible results. Robustness against user input variability

is therefore a key aspect. We have assessed user input

variability by repeatedly selecting random voxels in each

pathological region. Fairly robust segmentation results

were found for most patients (see Figs. 4, 5 and 6), but

a large spread in the Dice-scores and low outlier values

were found in several patients as well. In some cases sub-

optimal results could be explained by ambiguous voxel

selection near the tissue boundaries. Figure 7 illustrates

a case of suboptimal voxel selection for patient 1. One of

the necrotic voxels was selected at the edge of the man-

ually segmented necrotic region (red voxel in B, other

necrotic voxels were selected on other slices). This voxel

is located very near the active tumor region and does not

show the hypo-intense T1C signal which is characteristic

for necrosis. The resulting NMF segmentation is shown

in C for active tumor and in D for necrosis. The necrotic

voxel selected at the boundary results in an overestima-

tion of the necrotic region and an underestimation of the

tumor region. The low outlier Dice-score for patient 1 for

active tumor in Fig. 4 corresponds to this voxel selection.

Another patient had a bi-focal tumor, and in some runs

only one of both lesions was detected as no voxels were

selected in the other lesion. Random voxel selection from

the manually segmented tumor subregions might not be

entirely representative for the user input variability that is

to be be expected from trained radiologists. It might be

more effective to consider actual user input from various

experts in a future study. Valid segmentation results can

only be obtained when seeding points are selected in an

intelligible way. Spatially distributing the selected voxels

is one way of covering intra-tissue heterogeneity. Seed-

ing points should be selected in each lesion in order to

properly detect multi-focal tumors. Careful voxel selec-

tion is expected to further improve segmentation results

and reduce variability.

Fig. 7 Example of a bad segmentation result due to suboptimal voxel selection. A close-up of a GBM lesion on an axial T1C slice (a). The manually

segmented necrotic region is shown in yellow (b), the selected necrotic voxel is marked in red. Segmentation of the active tumor region (c) and

necrotic region (d) on several slices, blue indicates NMF segmentation, green indicates manual segmentation and cyan indicates overlap



Sauwen et al. BMCMedical Imaging  (2017) 17:29 Page 13 of 14

Conclusion
We have presented a semi-automated brain tumor seg-

mentation method, based on NMF with L1-regularization

to promote spatial consistency and sparseness of the tissue

abundance maps. The semi-automated framework was

applied to an MP-MRI dataset consisting of cMRI, PWI

and DWI. User-defined voxel selection is applied to ini-

tialize pathological sources of the NMF analysis, and to

exploit knowledge about the spatial location of the tumor

to remove false positives in a post-processing step. In this

way, we aimed at incorporating prior knowledge while

maintaining general applicability of our method to any

type of glioma and to any MP-MRI dataset. Sensitivity to

user input variability was explored through repeated anal-

yses with different voxel selection. Robust results were

found for most patients, although careful voxel selection is

mandatory to avoid sub-optimal segmentation. Based on

the reported mean Dice-scores and Hausdorff distances,

segmentation results are competitive with state-of-the-art

in literature.
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