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Abstract

Primarily used for metabolic engineering and synthetic biology, genome-scale metabolic modeling shows tremendous
potential as a tool for fundamental research and curation of metabolism. Through a novel integration of flux balance
analysis and genetic algorithms, a strategy to curate metabolic networks and facilitate identification of metabolic pathways
that may not be directly inferable solely from genome annotation was developed. Specifically, metabolites involved in
unknown reactions can be determined, and potentially erroneous pathways can be identified. The procedure developed
allows for new fundamental insight into metabolism, as well as acting as a semi-automated curation methodology for
genome-scale metabolic modeling. To validate the methodology, a genome-scale metabolic model for the bacterium
Mycoplasma gallisepticum was created. Several reactions not predicted by the genome annotation were postulated and
validated via the literature. The model predicted an average growth rate of 0.35860.12h{1, closely matching the

experimentally determined growth rate of M. gallisepticum of 0.24460.03h{1. This work presents a powerful algorithm for
facilitating the identification and curation of previously known and new metabolic pathways, as well as presenting the first
genome-scale reconstruction of M. gallisepticum.
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Introduction

The ability to determine a relationship between an organism’s

genome and its molecular physiology quantitatively, based upon

current understanding of metabolism and molecular biology,

continues to improve at a dramatic pace. Establishment of a

quantitative model allows for the compact and integrated analysis

of complex metabolic networks and their associated and often non-

intuitive behavior. Genome-scale metabolic modeling in particular

has been used in a number of venues in the biotechnological and

biomedical arenas [1–19].

Genome-scale metabolic modeling facilitates a deep under-

standing of metabolism of microorganisms. Modeling is also a tool

to elucidate missed information and recognize errors in new and

existing models of metabolic networks. As was pointed out by

Thiele et al. [20], the quality of a modeled metabolic network

depends on the available information and the procedure used for

the reconstruction. Additionally, the reconstruction process has

several challenges associated with it. For example, the use of

incomplete or inaccurate genome annotation will result in an

incomplete model description. The presence of some reactions in

the model may be missing due to lack of knowledge regarding the

function of specific proteins [21]. Furthermore, the interactions

among enzymes and the reactions they catalyze may be quite

complex. For instance, one reaction may be catalyzed by many

different enzymes (isoenzymes). Conversely, one enzyme may

catalyze several different reactions [22,23]. Moreover, adequate

information regarding the localization of metabolites within the

cell may not be known. In other cases, the directionality of a

reaction may need to be elucidated [24]. Finally, the information

regarding the biomass composition and the energy requirements of

the organism may not be known. As a result, these data have to be
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determined from experiments and/or they must be estimated from

what is known about closely related species [25–27]. Despite this

effort, it still may not be possible to generate results comparable

with experimental findings due to undiscovered errors or missing

information.

Metabolic network modeling is an iterative process that starts

with the generation of a genome-scale reconstruction of metab-

olism utilizing all current annotations and literature information.

Next, curation of the draft reconstruction is carried out manually

by an expert, and the computational model is generated. Finally, a

comparison of the in silico results relative to the experimental

information is assessed. The iterative process stops when the results

from the model are nearly the same as the experimental results. In

the future, as more information becomes available, the model may

be updated in order to fill all the possible gaps and achieve better

results [20,22,26]. Most genome annotations are carried out using

automated techniques, many of which rely on pairwise similarity

scoring of predicted proteins to those in databases [26,28–30].

Such a process is imperfect, as the ability to reliably annotate a

given protein with a specific function can be greatly impacted by

sequence divergence, lack of reliable functional knowledge, or

annotation for sequence matches. This currently results in genome

annotations that may not accurately or completely reflect the

organism’s metabolic functions. The use of metabolic network

modeling provides an additional and powerful methodology to

help compensate for these gaps in knowledge, leading to a more

accurate reconstruction of an organism’s metabolism.

The model curation process improves the draft reconstruction

by identifying and filling the gaps present in the network,

removing reactions that are not likely present in the organism,

and enforcing overall consistency across the network. Some

computational strategies for identifying missing reactions and

filling the gaps have been developed previously, such as GapFind

[29], GapFill [29], the Pathway Tools Hole Filler [31], the

‘‘metabolic expression placement’’ [32,33], MetaFlux [34], Model

SEED [35]. GapFind is an optimization-based procedure to

identify missing reactions in the network. Gaps can be filled with

GapFill by adjusting the existing metabolic network through

reversing the directionality of existing reactions; adding transport

reactions between compartments; adding exchange fluxes; or by

adding a minimum number of reactions from a reference database

[36]. MetaFlux is part of the Pathway Tools software for

generating FBA models. It uses a multiple gap filling approach

based on a mixed integer linear programing (MILP) to suggest

reactions to be added from the MetaCyc database, identify

biomass metabolites which are required but can not be produced,

and choose nutrient and secretion fluxes to be added to the model

from a ‘‘try set’’ defined by the user. Model SEED is a web-based

resource for the creation of new metabolic models. After a

preliminary reconstruction model is created in Model SEED, an

auto-completion step is performed by using an MILP algorithm

that identifies the minimal set of reactions from the SEED reaction

database that must be added to fill the gaps present in the network.

However, all these approaches are dependent upon an existing

reference database of information to resolve these curation issues.

Here a new algorithm for facilitating curation of models is

presented. The approach integrates a genetic algorithm (GA) with

flux balance analysis. The novelty and strength of this GA/Flux

Balance Analysis (GAFBA) strategy lies in its ability to both aid in

fundamental studies of metabolism and to facilitate curation of

genome-scale metabolic networks, rather than functioning solely

as a predictive tool. Furthermore, the strategy is independent of a

reference database, allowing the researcher to investigate other

avenues of curation. However, this approach does not preclude the

use of existing databases as one of those sources of information.

Rather it provides increased flexibility in evaluating the system of

interest. As the quality of curation increases, the evolved model

can be used as a predictive tool, but that is a secondary

contribution of this approach.

The premise of the GAFBA method is based upon the

observation that the optimization of an initial genome-scale

metabolic model often results in no feasible solution when

experimental information is incorporated. This result usually

indicates that some of the constraints cannot be satisfied. The

GAFBA method identifies the mass balanced constraints that may

be relaxed to solve the FBA optimization problem. If relaxing a

selected constraint allows the problem to be solved, it is likely that

the associated metabolite was participating in a metabolic reaction

that, due to lack of information during the reconstruction process,

was not taken into account in the model. As a result, the

metabolite and the potential reactions it may participate in should

be reviewed. The approach developed here employs a genetic

algorithm to identify the minimum number of constraints that

could be relaxed in order to achieve a feasible solution to the FBA

optimization problem.

To develop and evaluate this strategy, Mycoplasma gallisepticum

was chosen as the model organism. The choice of M. gallisepticum

for the validation of the GAFBA methodology was driven by our

expertise with the organism and the organism’s importance to the

poultry industry. M. gallisepticum causes chronic respiratory disease

in chickens and infectious sinusitis in turkeys [37]. The disease can

be easily propagated by direct or indirect means. M. gallisepticum

has been a concern to the poultry industry because of the resultant

increase in chick and poult mortality, reduced egg production, and

increased costs related to medication, prevention and control

programs. For example, in 1994, the layer industry alone lost

between $118 and $150 million in the United States [38]. A better

understanding of M. gallisepticum biology, including virulence,

genomics, and metabolic processes has the potential to allow for

the development and improvement of the vaccines and control

strategies for this disease.

Author Summary

Flux balance analysis (FBA) is a powerful approach for
genome-scale metabolic modeling. It provides metabolic
engineers with a tool for manipulating, predicting, and
optimizing metabolism for biotechnological and biomed-
ical purposes. However, we posit that it can also be used as
tool for fundamental research in understanding and
curating metabolic networks. Specifically, by using a
genetic algorithm integrated with FBA, we developed a
curation approach to identify missing reactions, incom-
plete reactions, and erroneous reactions. Additionally, it
was possible to take advantage of the ensemble informa-
tion from the genetic algorithm to identify the most critical
reactions for curation. We tested our strategy using
Mycoplasma gallisepticum as our model organism. Using
the genome annotation as the basis, the preliminary
genome-scale metabolic model consisted of 446 metab-
olites involved in 380 reactions. Carrying out our analysis,
we found over 80 incorrect reactions and 16 missing
reactions. Based upon the guidance of the algorithm, we
were able to curate and resolve all discrepancies. The
model predicted an average bacterial growth rate of
0.35860.12 h21 compared to the experimentally observed
0.24460.03 h21. Thus, our approach facilitated the cura-
tion of a genome-scale metabolic network and generated
a high quality metabolic model.

Automated Curation with FBA

PLOS Computational Biology | www.ploscompbiol.org 2 September 2013 | Volume 9 | Issue 9 | e1003208



In this work, the metabolic network of M. gallisepticum was

developed by using the organism’s annotated genome sequence,

compiling existing enzymatic data, employing genome-scale

bioinformatics-driven homology searches, referencing the metab-

olism of other closely related Mycoplasma strains, generating a

comprehensive biomass equation, and finally analyzing how all the

metabolites in the system interacted with each using GAFBA

algorithm.

Results

Hybrid Genetic Algorithm/Flux Balance Analysis (GAFBA)
The hybrid Genetic Algorithm/Flux Balance Analysis Algo-

rithm (GAFBA) algorithm embeds the Flux Balance Analysis

(FBA) optimization problem within a genetic algorithm to identify

problematic metabolic constraints and is schematically depicted in

Figure 1. The optimization problem was resolved through a

hierarchical approach, with the minimization of the number of

relaxed constraints being given primary importance. The pool of

models that had the same number of constraints relaxed were then

further discriminated against by determining which individual

models had the highest growth rate values, a frequently used

objective function for FBA [39–42]. After each simulation, a list of

problematic metabolites, where ‘‘problematic metabolites’’ refer to

metabolites on which mass balance constraints were forced to be

relaxed, was generated to help to elucidate potential errors or

missing information. Based on these data, it was possible to decide

the best manner by which to fill in the missing information if

possible. A revised version of the mechanisms to solve gaps

previously presented by Maranas’ group was applied [29]. The

options were: 1) change the directionality of a reaction, 2) add an

exchange flux for the metabolite, 3) add a transport or intracellular

reaction, 4) remove a reaction or metabolite from the model, or 5)

no change. Examples for each case are presented in the

supplementary file Text S1. The option chosen was based on

experimental data, literature data or information from related

organisms.

The initial genome-scale metabolic model was based upon an

updated annotation of the M. gallisepticum genome [43]. Using the

Pathway tools software platform [44], a Pathway Genome

Database was constructed that accounted for all metabolic

pathways as determined from the genome annotation.

The GA started with the random generation of an initial

population of data structures referred to as ‘‘chromosomes’’ per

the GA parlance [45,46]. Each chromosome represented a

potential metabolic model of the microorganism. The chromo-

somes were binary encoded where each of the genes represented a

mass balance constraint. If the mass balance constraint for a

metabolite was relaxed, the gene was assigned a value of zero. If it

was enforced, the gene was assigned a value of one. The number

of mass balance constraints that were relaxed in the initial

population was determined randomly. The population was then

Figure 1. Flowchart for GAFBA algorithm. A schematic depiction of the GAFBA algorithm used to determine the genome-scale metabolic model
for M. galliscepticum.
doi:10.1371/journal.pcbi.1003208.g001

Automated Curation with FBA
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allowed to evolve using the genetic operations of reproduction,

crossover, and mutation in order to achieve a fitter population and

ultimately an accurate metabolic model. The objective function for

GAFBA was to minimize the number of mass balance constraints

relaxed. However, it was subject to the constraint that the FBA

model return a feasible solution.

A list of the problematic metabolites was generated upon

completion of the run. Problematic metabolites were defined as

those that were unable to fulfill the mass balance under the given

conditions; manual review of each of the metabolites, as well as

some of the upstream and/or downstream metabolites in the

associated pathway was required. The analysis of the metabolites

upstream and/or downstream in the pathway helped to determine

if the problem could be corrected by adjusting the mass balance of

a closely connected metabolite instead of the problematic

metabolite directly. For example, it is possible that one of the

downstream reactions responsible for consuming the problematic

metabolite is blocked because the reaction is producing a dead end

metabolite. Thus, it is necessary to adjust the mass balance of the

dead end metabolite and not the mass balance of the so-called

problematic metabolite. An example of an upstream issue is when

a reaction responsible for producing the problematic metabolite

has no flux due to the lack of a reactant. Under such conditions,

the mass balance for the reactant has to be adjusted rather than

the mass balance of the initially identified ‘‘problematic’’

metabolite.

After updating the model, a new simulation was started. If a

metabolite was added or removed, a new initial population was

generated randomly and evolution was allowed to proceed. If no

metabolite was added or removed, GAFBA could either be

continued from where it left off using the final population from the

previous run as the seed population, or an entirely new population

could be generated. The evolutionary process was then re-started.

The ultimate termination criterion was when none of the mass

balances constraints needed to be relaxed.

Initial reconstruction of the M. gallisepticum metabolic
model

The first step in the reconstruction of a genome-scale metabolic

model of M. gallisepticum was to analyze the published annotation

of Strain R Clone 2 [43] using the Pathway Tools Pathologic

automated metabolic network generation platform [47]. Pathway

Tools Pathologic compiled reactions associated with Enzyme

Commission (EC) numbers and enzymes listed in the annotation

[44]. Next, an in-depth literature review focusing on previously

elucidated enzymatic activity was performed. Reactions shown to

be active in M. gallisepticum were subsequently added. Reactions

shown to be inactive were removed. Once the pool of published

enzymatic data had been exhausted, the Pathway Tools Hole

Filler was used to generate a list of gene candidates to potentially

fill gaps in various metabolic pathways.

Any candidate reaction from Pathway Hole Filler with a

probability assignment over 0.9 was selected for further evaluation.

Selected candidates were evaluated by a curator based on a

number of criteria. First, presence or absence of a candidate

reaction’s associated pathway in evolutionarily related species such

as Mycoplasma genitalium, Mycoplasma pneumoniae, and other members

of the Mycoplasma family was taken into account. Moreover, it

considered was whether or not the products of a given pathway

were known to be present in the cell biomass, utilized by another

pathway, or secreted from the cell. Reactions whose products were

not utilized or secreted were considered unlikely to be present.

Additionally, candidate reactions experimentally proven to be

absent in Mycoplasma gallisepticum metabolism were removed.

A total of 23 reactions were added due to supporting

experimental data and are listed in Table 1. Five total reactions,

shown in Table 2, were added based on BLASTP homology

results, and 12 high confidence reactions were added due to results

of the Pathway Hole Filler analysis and are shown in Table 3. Two

reactions catalyzed by annotated enzymes were found in previous

studies not to be present in M. gallisepticum. These reactions were

subsequently removed and are listed in Table 4. Taking these

modifications into account, the initial model consisted of 446

metabolites involved in 380 reactions.

Refinement of the initial reconstruction
FBA of the initial M. gallisepticum model resulted in no feasible

solution. Thus, the model was analyzed using GAFBA to identify

reaction holes, unproduced but necessary biomass components,

and metabolites with no membrane transporter or degradation

pathway. The biomass equation was meticulously investigated. A

large number of citations were accumulated for many metabolites

that were known to be biosynthesized by M. gallispeticum but were

not accounted for based on the genome annotation. For example,

phosphatidylcholine, cardiolipin, and sphingomylin are all phos-

pholipids known to have working biosynthesis pathways in M.

gallispeticum because of previously conducted fatty acid radioactive

labeling assays [48]. Nevertheless, there are a number of reactions

necessary to biosynthesize these components that are absent in M.

gallispeticum. Therefore, logical reactions were assigned to complete

these biosynthesis pathways, usually by referencing similar

pathways in other Mycoplasma genomes. However, it is critical to

note that the rationale for including these pathways was to

complete the model. It does not constitute proof of existence of

that pathway. That being said, the requirement of such pathways

for the model does open up interesting experimental questions and

new hypotheses.

The GAFBA algorithm also revealed a number of metabolites

that were not degraded and could not be transported out of the

cell. A total of 16 reactions were added based on the results of the

first GAFBA run. A list of all of these added reactions, along with a

brief description of the rationale for the addition and all relevant

citations are shown in Table 5.

Despite application of the changes shown in Table 5, the

modeled and experimental mass balances remained inconsistent.

Using GAFBA, additional changes were needed in order to fulfill

the mass balance and additional runs continued to require

refinement of the model. The remaining modifications are

presented in the Table 6 with the details described below.

Through use of GAFBA, it was found that the mass balance on

the charged tRNA’s and uncharged tRNA’s could not be enforced

under the given metabolic description. The discrepancy was due to

uncharged tRNA’s being converted to charged tRNA’s by the

tRNA’s ligase reactions but participating in no other reactions.

This ultimately resulted in the depletion of uncharged tRNAs if the

mass balance was enforced without modification. To rectify this

imbalance, another reaction was added representing a recycling

process to convert the charged tRNA’s to uncharged tRNA’s and

complete the cycle. These reactions were added to the biomass

equation. This was similar to the approach taken for M. genitalium

model iPS189 [49], which also includes charged and uncharged

tRNA molecules in the biomass equation.

Because the growth medium used experimentally was unde-

fined, many of the necessary exchange fluxes for the model could

not be explicitly resolved. The decision to add an exchange flux to

the model was based on experimental information and on the

composition of defined media for relative species, such as M.

Automated Curation with FBA
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genitalium [49] and M. laidlawii [50]. All added exchange fluxes are

listed in Table 6.

Sufficient experimental data was unavailable to directly

calculate the value for the growth associated maintenance

(GAM) and non-growth associated maintenance (NGAM) for M.

gallisepticum. Thus, the GAM of M. pneumonia [51] was added to the

biomass equation, and the value for NGAM was taken from the

M. genitalium iPS189 model [49].

The reaction catalyzed by the enzyme formate dehydrogenase

(E.C. 1.2.1.2) was added to the model in order to complete the

mass balance on formate. This reaction is present in other

Mycoplasmas [51], and based on the GAFBA results. It was

hypothesized that this reaction was also part of M. gallisepticum

metabolic network.

Another problematic metabolite identified by GAFBA that was

hindering the successful simulation of the metabolic network was

choline. The M. gallisepticum model required choline for the

production of phosphatidyl choline, which was ultimately neces-

sary for biomass. However, although the reaction for consumption

of choline was present, no choline was predicted to enter the cell.

The transport reaction for choline, represented by flux V21 in

Figure 2, was coupled with sodium ion transport based on the

reconstruction. When choline was transported from the extracel-

lular space to the cytosol, it co-transported a sodium ion. The issue

Table 2. Summary of reactions added based on BLASTP analysis.

Enzyme name EC # M. gal Locus Organism Locus Forward E value Reverse E Value Citation

1,2 diacylglycerol 3-B-galactosyltransferase 2.4.1.46 MGA_0001 M. pneumonaie mpn483 3.E-15 7E-13 [119,120]

Galactolipid galactosyltransferase 2.4.1.184 MGA_0001 M. pneumonaie mpn483 3.E-15 7.E-13 [119,120]

Phosphoglycerate kinase (dGTP) 2.7.2.3 MGA_1187 M. pneumonaie mpn429 1.E-128 1.E-128 [51,121]

Phosphoglycerate kinase (GTP) 2.7.2.10 MGA_1187 M. pneumonaie mpn429 1.E-128 1.E-128 [51,121]

Phosphopentomutase 5.4.2.7 MGA_0358 M. pneumonaie mpn066 6.E-120 7.E-120 [51]

Listed here are M. gallisepticum genes found by forward and reverse BLASTP [58,59] searches to be significantly similar to genes in related mycoplasmas that catalyze
the corresponding listed reactions. These reactions were added to the model. All EC numbers were determined via Pathway Tools v14.
doi:10.1371/journal.pcbi.1003208.t002

Table 1. Summary of reactions added to the metabolic model based on experimental data in the literature.

Enzyme Name EC # Associated Gene Citation

HMG-CoA Synthase 2.3.3.10 ? [105]

CoA transphorase 2.8.3.8 ? [105]

Membrane DNAases and RNaases None ? [106]

Succinyl CoA: Acetoacetate CoA-transferase 2.8.3.5 ? [105]

HMG-CoA Reductase 1.1.1.34 ? [105]

Malate synthase 2.3.3.9 ? [107]

Pyruvate Carboxylase 6.4.1.1 ? [107]

AMP phosphatase 3.1.3.5 ? [108,109]

GMP phosphatase 3.1.3.5 ? [108–110]

dAMP 3.1.3.5 ? [111]

Adenylosuccinate synthetase 6.3.4.4 ? [112]

Adenylosuccinate lyase 4.3.2.2 ? [112]

Deoxyadenosine kinase (ATP-dependent) 2.7.1.76 MGA_0174, MGA_0175 [110]

Deoxyguanosine kinase (ATP-dependent) 2.7.1.133 MGA_0174, MGA_0175 [110]

Deoxycytidine deaminase 3.5.4.14 MGA_0361 [31,113]

Uridine phosphorylase 2.4.2.3 ? [31,109,113]

Deoxyuridine phosphorylase 2.4.2.23 ? [109]

Uracil phosphorylase None MGA_0362 [31,109]

Malate dehydrogenase 1.1.1.37 MGA_0746 [107,114,115]

Ribose-5-phosphate isomerase 5.3.1.6 MGA_0886 [110,116]

Asparate aminotransferase 2.6.1.1 ? [117]

Serine hydroxymethyltransferase None MGA_1146 [118]

Phospholipase A1 3.1.1.32 ? [100]

Enzyme names normally catalyzing reactions described in the literature and corresponding E.C. assignments are listed. All EC numbers were determined via Pathway
Tools v14. M. gallisepticum genes potentially associated with these activities are noted, and enzymes/activities lacking gene associations of confidence are indicated
with question marks.
doi:10.1371/journal.pcbi.1003208.t001

Automated Curation with FBA
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was that the sodium ion in the cytosol was not used in any other

reaction. To avoid accumulation of unused sodium in the cell, the

model predicted that transport reaction (V21) would be zero. A

possible solution for this issue was to add a reaction that used

sodium ions. In reviewing the literature, it was found that sodium

is used for volume regulation in Mycoplasma [52–57] via

translocation from the cytosol to the extracellular environment

by a Na-ATPase (E.C. 3.6.3.7). Searching the M. gallisepticum

proteome for Na-ATPase using BLASTP [58,59] and the

Aspergillus fumigatus Af293 sodium P-type ATPase (GenBank

Accession no. XP_751881.1) as probe, the best match (82%

percentage coverage, score of 306, and E-producing value of 5.E-

91) was identified at locus NP_853020.2, the previously annotated

cation transported ATPase MGA_1061.

The mass balance for dCTP was also required to be

unconstrained based on GAFBA. It was initially predicted that

more dCTP was produced from dCDP than was consumed by the

biomass reaction. dCDP was produced from CDP coupled with

reduced thioredoxin and oxidized NrdH glutaredoxin-like protein.

When the metabolic networks of these metabolites were checked,

the thioredoxin reductase reaction (E.C. 1.8.1.9) was found to be

reversed [60]. Correcting E.C. 1.8.1.9 directionality resolved the

dCTP problem.

The last two metabolites for which the mass balance constraints

were relaxed were 2-phospho-4-{cytidine 59-diphospho}-2-C-

methyl-D-erythritol and nicotinamide adenine dinucleotide

(NAD+).

2-phospho-4-{cytidine 59-diphospho}-2-C-methyl-D-erythritol

is a metabolite in the methylerythitol phosphate pathway (MEP).

It is used for the production of isopentenyl diphosphate (IPP) and

dimethylallyl diphosphate (DMAPP), the two precursors of

isoprenoid. For many years, it was assumed that all organisms

produced IPP from acetyl-CoA through the mevalonic acid

pathway (MVA), and then IPP was isomerized to DMAPP [61–

63]. However, an alternative pathway was reported for the

production of the building blocks of isoprenoid in bacteria and

plants [64–67]. Although studied in a variety of mycoplasmas,

results regarding the presence or even partial presence of the MEP

pathway have yet to be resolved. Some labs have reported not

finding any of the genes encoding for the MEP pathway [68–70],

while other labs found that mycoplasmas have portions of the

MEP pathway [63], including M. penetrans [71] and M. gallisepticum

[72]. The MEP pathway in the M. gallisepticum model ended in the

production of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate

(HMB-PP), a dead-end metabolite in the model. No gene was

associated to the reaction HMB-PP reductase (E.C. 1.17.1.2)

responsible for converting HMB-PP to IPP. Two questions that

remain are whether M. gallisepticum has a complete MEP pathway

and what is the purpose of the HMB-PP metabolite.

Table 3. Reactions added based on Pathway Tools analysis.

Gene Annotated Gene Function New HF Gene Function Hole EC#
Ptools HF
Probability Additional Citation/Rationale

MGA_0008 Putative Glycerol-3-phosphate acyltransferase Glycerol-3-phosphate O-
acyltransferase

2.3.1.15 0.98 Needed for glycerol incorporation for
phospholipid biosynthesis

MGA_0161 Dihydrolipoamide dehydrogenase (E3)
component of PDH complex

Glycine Decarboxylase None 1.00 Folate interconversion

MGA_0161 Dihydrolipoamide dehydrogenase (E3)
component of PDH complex

NAD(P)(+) Transhydrogenase
(B-specific)

1.6.1.1 0.99 Needed for NADP charging

MGA_0181 Fatty acid/phospholipid synthesis
protein Plsx

Acyl-Phosphate Synthase None 0.99 Needed to provide an acyl carrier
protein for lipid metabolism

MGA_0291 Inorganic polyphosphate/ATP-NAD kinase NADH Kinase 2.7.1.86 0.96 Needed for NADH metabolism

MGA_0364 Purine nucleoside phosphorylase deoD-type Deoxyinosine phosphatase None 0.99 [109]

MGA_0594 Glutamyl-tRNA synthetase (Glutamate—tRNA
ligase) (GluRS)

Glutamine tRNA ligase 6.1.1.18 1.00 Necessary tRNA charging pathway

MGA_0594 Glutamyl-tRNA synthetase (Glutamate—tRNA
ligase) (GluRS)

Glutamine tRNA ligase None 0.92 Necessary to the glutaminyl-tRNA
charging pathway

MGA_0596 Bifunctional protein folD Methylenetetrahydrofolate
dehydrogenase (NAD+)

1.5.1.15 1.00 Homology to Escherichia coli’s FolD
which catalyzes this reaction

MGA_0833 Acetyl-CoA hydrolase Acetate CoA transferase 2.8.3.8 0.98 [105]

MGA_0950 Guanosine polyphosphate
pyrophosphohydrolases/synthetase

GTP-pyrophosphokinase 2.7.6.5 1.00 Needed for ppGpp Biosynthesis

MGA_1065 Asparaginyl-tRNA synthetase Asparate tRNA ligase 6.1.1.- 1.00 Needed for L-asparginyl tRNA charging
pathway

This table shows the genes, previously annotated functions, newly annotated functions, reaction EC numbers, and HF probability and the rationale for why they were
added. All EC numbers were determined via Pathway Tools v14. It should be noted that the functionalities listed here are in addition to the original functionality of the
given gene.
doi:10.1371/journal.pcbi.1003208.t003

Table 4. Reactions removed based on experimental studies.

Removed due to experimental evidence

Enzyme name EC # Associated gene Citation

Deoxyribose-5-phosphate aldolase 4.1.2.4 MGA_0363 [116]

dUTPase 3.6.1.23 MGA_0994 [111,122]

Here the reactions and associated enzymes that were shown to be absent in M.
gallisepticum based on previous experimental studies and therefore not
incorporated into the model are listed.
doi:10.1371/journal.pcbi.1003208.t004
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The second constraint that required relaxing was that of the

NAD+ mass balance. NAD+ is recovered by passing the electrons

from NADH to oxygen and lactate but these mechanisms are

insufficient to recover NAD+ in the model. Thus a reaction to

synthesize NAD+ was required. M. gallispeticum had a partial

NAD+ salvage pathway. The partial pathway starts with the

conversion of nicotinate to nicotinate mononucleotide catalyzed

by the enzyme nicotinate phosphoribosyltransferase (E.C.

2.4.2.11). Then nicotinate mononucleotide is converted to

nicotinate adenine dinucleotide through the reaction catalyzed

by nicotinate-nucleotide adenyltransferase (E.C. 2.7.7.18). Next

nicotinate adenine dinucleotide is converted to NAD+ by NAD+
synthethase (E.C. 6.3.5.1), but no gene was found for this enzyme

in M. gallisepticum. Interestingly, M. pneumonia uses reaction NAD+
synthetase to synthesize NAD+, but blasting this gene against M.

gallisepticum shows no close homology. One more option was that

NAD+ was taken from the media, but no literature evidence was

found about the requirements of NAD+ [73]. Instead, the media

composition of M. genitalium [49] and M. laidlawii [50] had

nicotinate, the starting component of the partial NAD salvage

pathway. Based on the observation that M. gallisepticum had two

reactions of the partial pathway and the requirement of the

starting component in other relatives, it was hypothesized that

NAD+ synthetase reaction was present in M. gallisepticum.

However, more experimental and computational work is clearly

required to validate this theory.

Interestingly, when the NAD+ synthetase reaction was added to

the model, it was possible to enforce all the mass balance

constraints in the model. The mass balance of 2-phospho-4-

{cytidine 59-diphospho}-2-C-methyl-D-erythritol was consistent

after adding NAD+ synthethase because the MEP pathway no

longer had any flux going through it.

Final model
The final model was obtained after 40 runs of GAFBA with

each run consisting of 2,000 generations. Figure 3 shows the results

for each of the simulations and the corresponding values of growth

rate, and Figure 4 shows the number of mass balance constraints

that were relaxed. The best model, represented by simulation 40,

was able to close all the mass balances constraints and had a

growth rate value of 0.35860.12 h21 compared with the

experimental value of 0.24460.03 h21. The final M. gallisepticum

model accounted for 441 metabolites and 395 reactions. The

model had 234 intracellular reactions; 86 transport reactions for

the transfer of metabolites between the extracellular space and the

cytosolic compartment; and 73 exchange reactions that allowed

the uptake or secretion of metabolites either to or from the system

boundary. A complete description of the model is provided in an

Excel format in supplementary file Data S1 and in SBML format

in the supplementary file Data S2. A copy of the source code for

the model is provided in the supplementary file Data S3. The

model may be run using the open source GNU Linear

Programming Kit (http://www.gnu.org/software/glpk/).

Comparison of M. gallisepticum model and M. genitalium
iPS189 model

To provide a better context for M.gallisepticum model, it is

compared to iPS189 of M.genitalium [49]. A summary of the

comparison is provided in Table 7.

Table 5. Initial model modifications.

Enzyme Name EC #
Needed Product/Un-degraded
Metabolite Rationale Citation

Pyruvate kinase 2.7.4.6 DNA Needed for DNA synthesis. 7 reactions total of this EC# added. [121]

Phosphatidate phosphatase 3.1.3.4 A phosphotidyl-choline Needed to synthesize a lipid experimentally proven to be
biosynthesized

[48]

Phosphatidylglycerophosphatase 3.1.3.27 Cardiolipin Needed to synthesize a lipid experimentally proven to be
biosynthesized

[48]

Unnamed 2.7.8.- Cardiolipin Needed to synthesize a lipid experimentally proven to be
biosynthesized

[48]

Chlorinephosphate
cytidylytransferase

2.7.7.15 A phosphotidyl-choline Needed to synthesize a lipid experimentally proven to be
biosynthesized

[48]

Diacylglycerol
chlorinephosphotransferase

2.7.8.2 A phophotidyl-choline Needed to synthesize a lipid experimentally proven to be
biosynthesized

[48]

Sphingomyelin Synthase 2.7.8.27 A sphingomyelin Needed to synthesize a lipid experimentally proven to be
biosynthesized

[48,100]

PNPase 3.1.3.7 Adenosine 39,59-biphosphate Biphosphate, the byproduct of the acyl carrier protein charging
reaction necessary for fatty acid utilization

[48,123,124]

Fatty acid acyl group creator 6.2.1.20 Acyl-fatty acid Needed for fatty acid assimilation [48,123,124]

Maltose phosphorylase 2.4.1.8 B-D-glucose-6-phosphate Needed for maltose degradation [125]

Serine hydromethyltranferase None 5-methyl-tetrahydrofolate Tetrahydrofolate [118]

Pyridoxamine kinase 2.7.1.35 Pyridozyl 59-phosphate Needed for vitamin B6 production [51]

Fructose-1-phosphate kinase 2.7.1.89 Fructose-1,6-biphosphate Fructose degradation essential [125]

Thiamine kinase 2.7.1.89 Thiamine diphosphate From thiamine [51]

Thiamine-monophosphate kinase 2.7.4.16 Thiamine diphosphate Needed to complete vitamin b1 biosynthesis from thiamine [51]

Adenosylhomocysteinase 3.3.1.1 S-adenosyl-L-homocysteine Needed to degrade the S-adenosyl-L-homocysteine formed
from tRNA methylation

none

The first set of changes made to the preliminary model based on GAFBA results are provided. Rationale and relevant citations are listed for each.
doi:10.1371/journal.pcbi.1003208.t005
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The M. gallisepticum model was larger than M. genitalium, as was

expected since genome size of M.genitalium is 0.58 Mb compare to

1.01 Mb of M.gallisepticum. The genome of M. gallisepticum had 817

genes that encoded for 763 proteins [74]; in contrast, M.genitalium

had 524 genes that codified for 475 proteins [75]. The G+C

content of M.gallisepticum is 31.5%, while the G+C content of M.

genitalium is 32% [74].

The M.genitalium model had 46 fewer reactions than the

M.gallisepticum model. However, it turns out that iPS189 model

had more exchange fluxes. The additional exchange fluxes in the

M. genitalium model were required to account for exchange of

amino acids as a combination of dipeptides; M.gallisepticum, only

had fluxes for amino acid exchange as monopeptides. The

exchange of dipeptides in M. gallisepticum model was represented

as a general reaction (trans-rxn7tv-3945) due to lack of informa-

tion about specificity of this transporter.

Additionally, the M.gallisepticum model had 86 more metabolites

than iPS189 model. These metabolites were mainly located in the

cytosol space and included lipids. The iPS189 model did not have

fully specified lipids in the biomass reaction or the associated lipid

reactions. The M. gallisepticum model included cardiolipin, sphingo-

myelin, phosphatidylcholine, cholesterol, etc; and a set of reaction

related with lipid metabolism such as phosphatidate phosphatase

(E.C.3.1.3.40); phosphatidylglycerophosphatase (E.C.3.1.3.27);

diacylglycerol chlorinephosphotransferase (E.C. 2.7.8.2); sphingo-

myelin synthase (E.C. 2.78.27); etc.

M. gallisepticum model created with Model SEED
The RAST annotation server [76] was used to develop an

annotated genome for SEED. Then Model SEED [77] was used to

generate a preliminary reconstruction for M. gallisepticum model via

the web-based resource (http://iris.kbase.us). During this process,

Model SEED created a biomass reaction; the media chosen was a

defined media already present in Model SEED. After, running the

auto-completion tool of Model SEED, a growth rate of 2.02 h{1

was predicted, the model had 358 reactions and 389 metabolites.

When the M. gallisepticum model from SEED was constrained to

the experimentally measured glucose uptake rate and lactate

production rate, the model predicted no growth. It was not

possible to use the model optimization tools of Model SEED as

they were not available on the website at that time. As a result, a

better fitting model incorporating the experimental growth data

could not be created. Instead, GAFBA was used to perform a

2,000 generation run, resulting in a growth rate value of 2.5 h21.

However, the mass balances constraints of acetaldehyde, and

dCMP had to be relaxed.

One more trial was done, using the M.gallisepticum model from

Model SEED and adding the biomass reaction and media

composition defined in this work without adding any of the lipid

metabolites and tRNA charged/uncharged, since the M.gallisepti-

cum model from Model SEED did not have them. The model

generated had 354 reactions and 391 metabolites. The glucose

uptake rate and lactate production rate were constrained to the

Table 6. Remaining changes made to model.

Metabolite compartment change reference

Charged tRNA’s cytosol added recycling rxn to biomass [51]

Uncharged tRNA’s cytosol added recycling rxn to biomass [51]

Oxygen cytosol added exchange flux Experimental conditions

Cytidine cytosol added exchange flux [50]

Hydrogen peroxide cytosol added exchange flux

Carbon dioxide cytosol added exchange flux

Chloride cytosol added exchange flux [50]

L-alpha-alanine cytosol added exchange flux [50]

L-cysteine cytosol added exchange flux [50]

L-threonine Cytosol added exchange flux [50]

L-glutamine Cytosol added exchange flux [126]

L-aspartate Cytosol added exchange flux [50]

Glycine Cytosol added exchange flux [50]

all the rest of amino acids Extracellular added exchange flux [50]

Ceramides Extracellular added exchange flux

Biomass Cytosol GAM was calculated and added to biomass equation [20]

Ribose-5-phosphate Cytosol changed the directonality of E.C. 5.3.1.6 KEGG [60]

Ribose-5-phosphate Cytosol changed the directonality of E.C. 5.1.3.1 KEGG [60]

Thymidine Cytosol changed the directonality of E.C. 2.4.2.4 KEGG [60]

Sodium ion Extracellular added exchange flux [50,127]

Formate Cytosol added E.C. 1.2.1.2 rxn [51]

a protein L-methionine cytosol remov general rxn RXN-8668

Choline Cytosol added E.C. 3.6.3.7 [57]

dCTP Cytosol Changed the direction of E.C. 1.8.1.9 KEGG [60]

NAD+ Cytosol Added E.C. 6.3.5.1 [49,50]

The cumulative changes from the second and succeeding rounds of analysis done with the GAFBA algorithm are presented.
doi:10.1371/journal.pcbi.1003208.t006
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experimental values, and again; no growth was predicted. GAFBA

was used to evaluate the potential gaps of Model SEED. A 2,000

generation run was performed and resulting in a growth rate of

1.32 h21, with 12 mass balance constraints being relaxed. These

results indicate that GAFBA may be used with Model SEED to

identify problematic metabolites.

Frequency of relaxed constraints
The frequency of metabolites requiring relaxation of their mass

balance constraint was determined for the best 20 models of the

population. The rationale for such an analysis was that it might

facilitate the identification of the most pathologic metabolites with

respect to achieving a feasible solution to the optimization

problem. The frequency analysis was done at simulation 3, 5,

17, 27, and the results are presented in Table 8. At simulation

number three, 23 metabolites were shared among the pool of best

20 chromosomes; the best model only has one more metabolite

dropped.

At simulation number five, 16 metabolites with relaxed mass

balance constraints were common in the pool of best 20

chromosomes. By reviewing the list of metabolites, it was observed

that nine metabolites were already dropped in simulation number

3, and four of them were charged/uncharged tRNAs. Thus, a

recycling reaction for the charged/uncharged metabolites was

added to the biomass equation.

Nine commons metabolites were found at simulation number

17 among the best 20 chromosomes. Six of them already appeared

in either simulation number 3 or 5. One of them was ribose-5-

phosphate, and by checking the metabolic pathway around this

metabolite, the directionality of two reactions Ribulp3epim-Rxn

(E.C. 5.1.3.1) and Rib5pisom-Rxn were changed to reversible

(E.C. 5.3.1.6).

Finally, at simulation number 27, five metabolites were present

in all the best 20 chromosomes, and four of them had previously

appeared in the preceding simulations analyzed. At this point, the

metabolites’ studied were sodium ion and L-phosphatidate. The

solution to the mass balance of sodium ion has already been

discussed. The other metabolite L-phosphatidate was also part of

the choline pathway. By adding the Na+ATPase reaction, the

choline pathway was activated and the mass balance constraint for

L-phosphatidate was closed.

Discussion

The goal of this work was to develop an approach which could

be used for the curation of metabolic networks and facilitate

fundamental understanding and discovery of metabolism. To test

this idea, a strategy was applied to the reconstruction of a genome-

scale metabolic network for M. gallisepticum. By using GAFBA, it

was possible to find gaps and inconsistencies present in the

network that went beyond genome annotation. It was generally

possible to fill these gaps based on the described heuristics and/or

searching through the literature. Even when the process was not

automated, time spent at the curation level was minimized because

problematic metabolites were identified allowing one to focus only

on the significant issues remaining.

An argument could be made for using optimization strategies

other than a genetic algorithm, such as a mixed integer linear

programming (MILP) approach, which MetaFlux, Model SEED,

and GapFill use. Although the MILP approach is a powerful one,

the GA method provides certain advantages such as scaling more

Figure 2. Choline subnetwork. The purple circle shows the unconstrained metabolite. The thin blue arrows are the standard fluxes, while the thick
blue arrows are the exchange fluxes. The orange arrow represents the proposed solution. The solid blue line is the plasma membrane and the dashed
blue line is the system boundary. The red circle is an abstraction of the biomass pool.
doi:10.1371/journal.pcbi.1003208.g002
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effectively for the study of large networks, and generating a

population of solutions that, as a whole, provide further insight

into the problem domain.

A factor in favor of MILP is that MILP would potentially be

faster than using GA. This is especially true for smaller models.

However, even when the GA running time is greater than MILP,

the computational time is not the rate-limiting step in the overall

curation process. Rather the manual portion of the curation, such

as the literature review and the assembly of the preliminary model,

consume the bulk of the time.

In general, a GA based method may be seen as unnecessary for

a small model such as the one developed in this work. However, it

is anticipated that in the future, systems to be analyzed will grow

significantly. Such growth may be due to organism complexity or

due to dealing with microbial consortia. Under such circumstanc-

es, it is expected that GAFBA will be comparable or faster than

MILP based methods since the computational complexity of GA

falls within a range of O(n‘1.5) to O(n‘2), where n is the number of

metabolites in the model [78]. In contrast, MILP computational

complexity grows exponentially with system size [79,80]. It should

be further pointed out that GA’s fall into the class of algorithms

known as ‘‘embarrassingly parallel.’’ Although the approach

presented does not currently take advantage of this feature, work

is currently underway to parallelize the algorithm. With the advent

of massively multi-core systems and especially GPU based

computing, it is anticipated that significant gains in speed may

be realized.

Another critical point and significant advantage regarding the

GAFBA algorithm is the ability to carry out a population

frequency analysis to better determine the most problematic

metabolites. By observing the most frequently occurring relaxed

constraints in that population, it was possible to identify candidate

metabolites that were likely the most problematic. These results

are extraordinarily valuable, as they provide the researcher with a

starting point regarding which metabolites are most likely causing

the model to fail.

Additionally, the GAFBA approach provides some important

advantages over existing curation strategies. The most significant

advantage is the possibility to identify problems without relying on

a database for reference. For example, MetaFlux requires

MetaCyc, Model SEED requires the SEED reaction database,

and GapFill requires a customized multi-organism database.

GAFBA provides flexibility by allowing identification and poten-

tial resolution of metabolic inconsistencies without requiring access

to any type of database. It is important to realize, however, that

GAFBA may be used in conjunction with the other approaches

described, as was illustrated earlier with Model SEED. Thus the

information from these databases is not lost. Rather, GAFBA may

be used to complement existing approaches or it may be used on

its own.

Figure 3. Predicted growth rate over the course of model evolution. 40 simulations were carried out for 2,000 generations each. The
columns represent the growth rate values. Result 41 is the average value of the experimentally measured M. gallisepticum growth rate. The dashed
line running the length of the graph also indicates the average experimentally measured growth rate and is shown as a reference to facilitate
comparison with the simulation results.
doi:10.1371/journal.pcbi.1003208.g003
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MetaFlux requests that the user set the values for the weights of

the objective function in the MILP objective function. This step

necessitates the proper understanding of the meaning of each

weight. The GAFBA methodology does not need the user to define

any weights. Thus, the set of metabolites to be studied will not

depend on values defined by the user. In addition, MetaFlux does

not have the ability to add reactions between compartments (e.g.

transport reaction), resulting in additional level of complexity for

curation purposes. GAFBA, however, does permit addition of

reactions between compartments. Interestingly, MetaFlux does not

give information about the metabolites that may be problematic;

instead it provides a set of reactions to add in order to resolve

metabolic inconsistencies. Conversely, GAFBA does not provide a

list of reactions to add, but rather points out problematic

metabolites that may be used to direct further research. These

complementary approaches suggest that some synergy may be

possible.

When comparing Model SEED with GAFBA, Model SEED

provides a significant advantage in that it generates a biomass

reaction and defined media for an organism. However, when the

M. gallisepticum model created by Model SEED was used with

the experimentally determined glucose and lactate constraints, the

model predicted no growth, suggesting that more curation was

needed. By applying GAFBA to the Model SEED generated

Figure 4. Metabolic constraints relaxed over the course of model evolution. 40 simulations were carried out for 2,000 generations each.
The columns represent the number of mass balances for which the constraints were relaxed.
doi:10.1371/journal.pcbi.1003208.g004

Table 7. Comparison of the Mycoplasma gentialium model
(iPS189) [49] and the model presented in this paper for
Mycoplasma gallisepticum.

Mycoplasma genitalium
(i PS189) Mycoplasma gallisepticum

Metabolites 276 362

Cytoplasmic 261 359

Extracellular 85 82

Reactions 349 395

Intracellular Rxn 178 234

Transport Rxn 84 86

Exchange Flux 87 73

doi:10.1371/journal.pcbi.1003208.t007
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model incorporating the experimental data, it was possible to

identify the two problematic metabolic constraints inhibiting the

viability of the model. This result serves to highlight GAFBA’s role

as a curation tool and its complementarity to existing model

development software available.

In general, GAFBA provides an alternative and complementary

method curation and modeling strategy to existing approaches.

GAFBA could help to improve the quality of the existing

metabolic networks and to generate new and more complete

networks. Furthermore, because the approach used by GAFBA is

complementary to existing approaches, it can be used after a

model is created with Model SEED or MetaFlux.

With respect to M. gallisepticum specifically, the new genome-

scale model generated using GAFBA replicated the experi-

mentally observed data well. It is likely that the predicted

growth rate was higher than the experimental value observed

because the NGAM value and the GAM used in the model

were based on the M. genitalium iPS189 model [49] and M.

pneumoniae [51]. Further experiments are required to determine

the appropriate NGAM value and GAM value for M.

gallispeticum.

The results of GAFBA have highlighted a number of pursuable

experimental avenues. For example, while GAFBA predicts the

presence of formate dehydrogenase, NAD+ synthethase and Na-

ATPase enzymes for M. gallisepticum, their presence still needs to be

experimentally verified. The elucidation of MEP pathway role in

M. gallispecticum metabolism may ultimately help to fundamental

metabolic understanding of the organism. It is also important to

determine if the MEP pathway is essential for the survival of M.

gallisepticum, since it will help to elucidate possible drug targets as

was recently illustrated in research for control of Mycobacterium

tuberculosis [81,82], Haemophilus influenzae [83], and in treatment

against malaria [84,85]

Materials and Methods

Genetic algorithm parameters
The genetic algorithm was implemented using an elite selection

strategy [46]. The population consisted of 30 chromosomes.

The crossover probability was set to 70%. The mutation

probability was set to 1%. The GAFBA algorithm was run

for 2,000 generations per simulation. The choice of 2,000

generations as the termination criteria was based on empirical

observation. It was found that by 2,000 generations, the system

generally reached a plateau, and no further changes in biomass

and constraints were observed. Each simulation took around seven

hours on a 3.33 GHz Intel Core 2 Duo CPU/4 GB workstation.

Thus the total time for the 40 simulations was approximately 12

days.

Flux balance analysis
The theory behind the development of FBA has been

extensively discussed in the literature [86–93]; however, for the

sake of completeness, a brief description is provided here.

Mathematically, FBA is represented by the mass balance for each

metabolite presented at the network under steady state conditions,

S:n~0 ð1Þ

S represents the stoichiometric matrix, while v represents the flux.

To reduce the number of allowable solutions to this system of

equations, a set of constraints is defined,

ajƒvjƒbj ð2Þ

aj and bj are the lower and upper bounds respectively of the j

fluxes. The bounds for the reversible reactions are {?ƒvjƒ?,

whereas for the irreversible reactions, they are 0ƒvjƒ?. Since

the media was undefined, the exchange fluxes had to be

determined from literature information of relative species

[49,50,94]. The boundaries for the exchange fluxes were defined

for metabolites in the media as {?ƒvjƒ?, and for secretion of

metabolites the following constraint was implemented: 0ƒvjƒ?
[49]. The lower boundary of the NGAM value was set to

8.4 mmol gDW{1h{1 based on the value for the M. genitalium

iPS189 model [49]. The upper and lower boundaries of the

glucose uptake rate and lactate secretion rate were set to the

experimentally determined values, which was 216.53 mmol

gDW{1h{1 for glucose and 10.29 mmol gDW{1h{1 for lactate.

The lower boundary value of the oxygen uptake rate was

constrained to 243 mmol gDW{1h{1to avoid reaction-looping

behavior [20,34].

Finally, the optimal metabolic flux distribution was determined

using the linear objective function,

Z~
XN

j~1

cjvj , ð3Þ

where Z represents the objective function to be maximized, which

in this case was the biomass equation for M. gallisepticum. The term

cj was a biologically determined coefficient that represented the

contribution of vj to the objective function Z.

Strains, culture conditions
A previously sequenced clonal isolate of M. gallisepticum Rlow,

Rlow Clone 2 (RLC2) [74] was used. The bacteria were grown in

Table 8. Result of the analysis of relaxed mass balances constraints for select simulations.

Simulation number

Number of shared relaxed
metabolic constraints in the
best 20 chromosomes

Number of relaxed metabolic
constraints in the best individual

Number of shared relaxed metabolic
constraints already present in a previous
simulation

3 23 24 NA

5 16 24 9

17 9 12 6

27 5 5 4

doi:10.1371/journal.pcbi.1003208.t008
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complete Hayflick’s medium [95] with an initial concentration

3.5 g/L glucose.

Determining dry cell weight and CFU/ml
The CFU/ml concentrations for all experiments were calculat-

ed using a previously determined correlation [96] between CFUs/

ml and the absorbance of cell culture at 620 nm. A correlation

between dry cell weight and absorbance was generated by directly

measuring the weight of dried cell pellet, volume of the

supernatant, and OD620 of the culture. To accomplish this,

500 ml of RLC2 was grown in Hayflick’s media [95] at 37uC to

mid-log phase. The absorbance of the culture was measured at

620 nm. The culture was then quickly chilled to 4uC. 30 ml of the

culture was placed in a 50 ml Falcon Tube and centrifuged at

15,0006g at 4uC for 15 mins. The supernatant was transferred to

a graduated cylinder for measurement without disturbing the

pellet, and another 30 ml of culture was added to the same tube

and centrifuged at the conditions mentioned above. This was

repeated until all 500 ml of culture had been centrifuged into one

large pellet. The pellet in the 50 ml centrifuge tube was dried for

two weeks at 37uC. The tube was then capped stored at 23uC for

two months. The dried flaking pellet was then scraped off and

measured using a scale accurate to the nearest mg. This protocol

was repeated for four different cell concentrations in mid-log phase

growth and one control using only medium.

Metabolism experimental design
100 ml aliquots of Hayflick’s media with 3.5 g/L of glucose in

250 ml plastic flat-bottom centrifuge tubes were inoculated with

mid-log cultures of RLC2 and incubated at 37uC. Sampling of

these vessels was initiated approximately 15–19 hours post-

inoculation, when the dry cell density in each vessel reached

46.89 mg/L (7.27e7 CFU/ml) and ended once the dry cell density

exceeded 125 mg/L. Samples of culture were taken at nearly one-

hour intervals over the aforementioned period during late log-

growth. This allowed for four to five individual sample points to be

taken during this late log-phase growth for each run. From these

samples, cell dry weight concentration, glucose concentration, and

lactate concentration were determined by the assays described

below. Seven runs were completed for RLC2. Three sets of runs

were performed on separate days. Each set included approxi-

mately three RLC2 runs.

Sampling and cell growth assay
106 CFUs of RLC2 (growing in late log-phase) was added to

100 ml of media in a 250 ml plastic flat bottom centrifuge tube.

This tube was incubated at 37uC while being shaken at 140 rpm

for 15–19 hrs. 1 ml samples from each flat bottom centrifuge tube

were then placed into 1.5 ml microfuge tubes. A 700 mL volume of

each sample was immediately centrifuged at 20,0006g for

15 minutes at 4uC in an Eppendorf 5417 microfuge using a

fixed-angle aerosol-tight rotor (FA-45-30-11) for 1.5–2.0 ml tubes.

The supernatant was transferred into new 1.5 ml microfuge

tubes and placed in a 280uC freezer for storage until further

analysis. The OD620 of the remaining 300 mL of each sample was

measured while the other 700 mL was being centrifuged. This

OD620 reading was used to determine the biomass concentration

using the experimentally determined correlation between cell dry

weight and OD620. This sampling process was repeated until the

dry cell density in each vessel reached 125 mg/L. At this point,

sampling ended and the remaining culture was allowed to grow

overnight and was checked 24 hours later for visible signs of

contamination. No contamination occurred.

Glucose and lactate assays
After two to five days of storage at 280uC, the 700 mL

supernatant samples were thawed and prepared for analysis using

a YSI 2700 SELECT single-channel Biochemistry Analyzer.

Supernatant samples were filtered with 13 mm GHP 0.2 micron

syringe filters (WAT097962) to remove any remaining cellular

debris. The supernatant samples were then placed in a 280uC
freezer for another 1–7 days.

To assay for lactate, the standard YSI 2700 SELECT protocol

for measuring L-lactate concentration using a L-lactate membrane

(part # 2329) was followed. Standard buffer (part # 2357) and L-

lactate calibration standard (part # 2776) were used. 25 mL of

sample was taken and analyzed for a 30 second period before

being flushed. Two readings were performed for each supernatant

sample. Six supernatant samples at a time were thawed, assayed,

and then refrozen to 280uC.

To assay for glucose, the standard YSI 2700 SELECT protocol

for measuring glucose concentration using a glucose membrane

(part # 2365) was followed. Standard buffer (part # 2357) and

glucose calibration standard (part # 2776) were used. 25 mL of

sample was taken and analyzed for a 30 second period before

flush. For each supernatant sample, three replicates were

performed and averaged. Six supernatant samples at a time were

thawed, assayed, and then refrozen to 280uC.

Dry weight measurement
The correlation between optical density and dry cell weight per

ml is shown in Table S1. Consistent readings were achieved for

four points within the range of optical densities covered by the

metabolism experiment.

Determination of biomass equation
The biomass equation was determined by incorporating all

available published information about the makeup of M.

gallisepticum and other similar mycoplasmas. The starting equation

was taken from a metabolic reconstruction of M. genitalium, one of

M. gallisepticum’s closest relatives [49]. Metabolites added in by the

GrowMatch portion of that reconstruction were discarded due to

lack of supporting evidence. Other cofactors not conducive with

Mycoplasma metabolism that did not possess any cited synthesis or

absorption pathways, such as Menaquinol 7, were modified or

removed. The relative ratios of the various components of DNA,

RNA, and amino acids reported in the M. genitalium reconstruction

were kept due to the similar GC content and large number of

shared proteins between the two organisms [97]. However, the

ratios between the major biochemical components, consisting of

DNA, RNA, amino acids, cofactors, ions, and lipids, were adjusted

to reflecting a previously reported chemical composition analysis

of M. gallisepticum [98].

The composition of the lipid fraction was calculated from

published data on the lipid fractions of M. gallisepticum and other

related Mycoplasmas. First, the ratios of the classes phospholipid,

sterol, and triglyceride were determined relative to each other

from previously published work [48,98]. Though recent studies

suggest that M. gallisepticum may possess a capsule, it has not been

directly shown that its capsule or M. gallisepticum itself contains

glycolipids [99]. Because of this uncertainty, and due to the small

amounts of carbohydrates found in M. gallisepticum’s chemical

composition relative to other related glycolipid possessing species,

glycolipids were not included in the biomass composition [98].

The ratios of the subclasses of sterol and phospholipid groups

relative to each other were then analyzed. First, sterols was analyzed.

The amount of cholesterol and cholesterol ester was calculated using

published ratios of cholesterol to cholesterol ester [48,100].
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Next, phospholipids were analyzed. The amount of sphingo-

myelin present in M. gallisepticum’s membrane was estimated from

previously reported values [48,100]. The percent of the phospho-

lipid fraction made up of phosphatidylcholine was estimated by

using a reported ratio between phosphatidylcholine and sphingo-

mylin in M. gallisepticum’s membrane along with the reported

sphingomyelin membrane fraction [48,100]. The phosphatidic

acid (1,2-diacylglycerol-3-phosphate) percent was estimated using

a lipid percent reported by Tourtellotte et al. The amount of

phosphatidic acid was decreased by 25% before incorporation into

the biomass equation due to an author statement suggesting the

value was higher than it should have been [48]. No conclusive

assays of the existence or membrane percent of phosphatidyleth-

anolamine have been published. Phosphatidyl-ethanolamine was

shown to be absent by a complement fixing antigen assay of the

membrane of Mycoplasma pneumoniae [101]. Because of the

similarity between these two organisms, it was assumed that M.

gallisepticum lacked this phospholipid as well. Tourtellotte et al.

reported that phosphatidylglycerol likely made up less than 10% of

the phospholipids. Since no definitive quantitative assay of

phosphatidyl-glycerol have been performed on M. gallisepticum or

any of its close relatives, the phospholipid percent of phosphatidyl-

glycerol was estimated from a published value in A. ladwaii [102].

Cardiolipin’s composition or existence in M. gallisepticum has yet to

be studied. However, cardiolipin has been shown to be present in

Mycoplasma pneumoniae’s membrane [103]. In a recent study, M.

pneumoniae was shown to have the metabolic reactions necessary to

biosynthesize cardiolipin from fatty acids and glycerol [51].

Cardiolipin is speculated to be the dominant phospholipid in

other more distantly related Mycoplasma such as M. mycoides and M.

hyopneumonaie [104]. Therefore, the remaining phospholipid

fraction was assumed to be comprised primarily of cardiolipin.

Supplementary information Table S2 summarizes the calculated

composition of the lipid fraction used in the biomass equation.

The average molecular weight of M. gallisepticum’s phospholip-

ids, sterols, and triglycerides R groups were by weighted averaging

the molecular weights of the constituent fatty acids (supplementary

information Table S3). The fatty acid compositions of each of the

three lipid types were taken from a previously reported study [48].

Using these R group molecular weight estimations, the full lipid

molecular weights were calculated using the chemical structures of

the major lipid components (information Table S4). Using these

molecular weights, the mmol/gDW values for each of the major

lipid components were calculated from the mass percents shown in

supplementary Table S2. The final biomass reaction is presented

in the Data S1 supplementary file.

Supporting Information

Data S1 A description of the FBA model for M.
gallisepticum in Excel format.
(XLS)

Data S2 A description of the FBA model for M.
gallisepticum in SBML format.
(TXT)

Data S3 The source code of the M. gallisepticum model
for use with GLPK.
(TXT)

Figure S1 Case 1. Change directionality of reactions.
The purple circle showed the dropped metabolite. The blue

arrows are the fluxes and the orange arrows are the proposed

solutions. The solid blue line is the plasma membrane and the

dashed blue line is the system boundary.

(TIFF)

Figure S2 Case 2. Add exchange flux. The purple circle

showed the dropped metabolite. The blue arrows are the

intracellular fluxes and the orange arrow is the proposed

solutions. The solid blue line is the plasma membrane and the

dashed blue line is the system boundary. The red circle

represents the Biomass pool.

(TIFF)

Figure S3 Case 3. Add reaction. (formate case). The purple

circle showed the dropped metabolite. The blue arrows are

the fluxes, the blue thick arrows are the exchange fluxes, and

the orange arrow is the proposed solutions. The solid blue

line is the plasma membrane and the dashed blue line is

the system boundary. The red circle represents the Biomass

pool.

(TIFF)

Table S1 OD/(g/cfu) correlation. Calculations of the g/cfu

conversion.

(DOCX)

Table S2 Lipid fraction estimation. Percent composition of

the lipid fraction of M. gallisepticum, the estimated molecular

weights, and the relevant references used to generate these

percentages.

(DOCX)

Table S3 Average fatty acid molecular weight. The

calculation of the average fatty acid molecular weight from the

fatty acid composition of Mycoplasma gallisepticum as reported by

Tourtelloute et al. [48].

(DOCX)

Table S4 Estimation of molecular weights for major
lipid components making up biomass. Using the chemical

structure, the molecular weights of each molecule, and the

estimated molecular weights of the R group, whose calculations

are shown in Table S3, the molecular weight of each major lipid

component was estimated.

(DOCX)

Text S1 Examples of methodologies for resolving
infeasible models.

(DOCX)
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