
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Semi-automated schema integration with SASMINT

Unal, O.; Afsarmanesh, H.
DOI
10.1007/s10115-009-0217-z
Publication date
2010
Document Version
Final published version
Published in
Knowledge and Information Systems

Link to publication

Citation for published version (APA):
Unal, O., & Afsarmanesh, H. (2010). Semi-automated schema integration with SASMINT.
Knowledge and Information Systems, 23(1), 99-128. https://doi.org/10.1007/s10115-009-
0217-z

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:23 Aug 2022

https://doi.org/10.1007/s10115-009-0217-z
https://dare.uva.nl/personal/pure/en/publications/semiautomated-schema-integration-with-sasmint(5ab73e0c-1f22-40e7-9e06-fc475e8dc0fb).html
https://doi.org/10.1007/s10115-009-0217-z
https://doi.org/10.1007/s10115-009-0217-z

Knowl Inf Syst (2010) 23:99–128

DOI 10.1007/s10115-009-0217-z

REGULAR PAPER

Semi-automated schema integration with SASMINT

Ozgul Unal · Hamideh Afsarmanesh

Received: 4 August 2008 / Revised: 19 February 2009 / Accepted: 11 April 2009 /

Published online: 19 June 2009

© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The emergence of increasing number of collaborating organizations has made

clear the need for supporting interoperability infrastructures, enabling sharing and exchange

of data among organizations. Schema matching and schema integration are the crucial com-

ponents of the interoperability infrastructures, and their semi-automation to interrelate or

integrate heterogeneous and autonomous databases in collaborative networks is desired.

The Semi-Automatic Schema Matching and INTegration (SASMINT) System introduced

in this paper identifies and resolves several important syntactic, semantic, and structural

conflicts among schemas of relational databases to find their likely matches automatically.

Furthermore, after getting the user validation on the matched results, it proposes an inte-

grated schema. SASMINT uses a combination of a variety of metrics and algorithms from

the Natural Language Processing and Graph Theory domains for its schema matching. For

the schema integration, it utilizes a number of derivation rules defined in the scope of the

research work explained in this paper. Furthermore, a derivation language called SASMINT

Derivation Markup Language (SDML) is defined for capturing and formulating both the

results of matching and the integration that can be further used, for example for federated

query processing from independent databases. In summary, the paper focuses on addressing:

(1) conflicts among schemas that make automatic schema matching and integration difficult,

(2) the main components of the SASMINT approach and system, (3) in-depth exploration

of SDML, (4) heuristic rules designed and implemented as part of the schema integration

component of the SASMINT system, and (5) experimental evaluation of SASMINT.

Keywords Collaboration · Data sharing · Heterogeneity · Schema matching ·

Schema integration

O. Unal (B) · H. Afsarmanesh

Informatics Institute, University of Amsterdam,

Amsterdam, The Netherlands

e-mail: O.Unal@uva.nl

H. Afsarmanesh

e-mail: H.Afsarmanesh@uva.nl

123

100 O. Unal, H. Afsarmanesh

1 Introduction

The increase in the number of databases has entailed the management of related data in dif-

ferent formats across these databases. In order for organizations to use other organizations’

data for better decision-making and success, they need to understand the semantics and

retrieve from these other distributed and heterogeneous data sources. As a result, the need

for integrating or interconnecting these databases or enabling interoperability between them

has become apparent. This requirement has become clearer with the increasing demand for

collaboration among organizations.

More and more organizations understand the need to work together in order to better

achieve their common goals. As a result of this tendency towards collaboration, during the

recent years, information and communication technologies (ICT) have been focusing on how

to make the collaboration among organizations easier by providing some supporting tools.

In order to facilitate collaboration among organizations, one of the requirements that need to

be met is enabling transparent access to heterogeneous data shared by other organizations.

A variety of approaches have been defined in research aiming at database sharing and

integration, such as multidatabases and federated databases. There is however no single

definition for these approaches, rather different varieties of each are addressed in publica-

tions. In this paper, we use the following definitions: A multidatabase system is a distributed

database system, where databases can be either homogeneous or heterogeneous. Accord-

ing to the classification of Sheth et al. [58], there are two types of multidatabase systems:

non-federated and federated. Component database systems in a non-federated database sys-

tem are not autonomous. On the other hand, the components in a federated database system

preserve their autonomy while also sharing their data in a partial and controlled manner.

Federated databases are further categorized by Sheth et al. [58] as loosely coupled and tightly

coupled. In loosely coupled systems, there is no single global schema and the aim is to make

databases interoperable. On the other hand, in a tightly coupled system, there is a single global

schema or multiple federated schemas if it has multiple federations. For generating both the

global schema in a tightly coupled system and the federated schema(s) in a loosely coupled

system, schema integration is required.

Schema integration has been a fundamental issue in data sharing among distributed,

heterogeneous, and autonomous databases. With the increasing number of databases, inte-

gration problem has become more apparent. Schema integration aims at finding a unified

representation of schemas by merging them. In order to integrate schemas, syntactic, seman-

tic, and structural relationships among elements of these schemas need to be identified.

Schema integration has been the subject of intensive research in databases. Two types of

schema integration are defined: (1) View Integration, which is performed during the database

design process, for example at the conceptual design phase, and (2) Database Integration,

which produces the global schema of a number of databases [8]. Considering the goals of

our work, we focus on the database integration. Database integration has been an important

problem that needs to be tackled within the increasing number of distributed databases.

Research on schema integration has resulted in a number of methodologies. In Batini

et al. [8] several methodologies, including Batini and Lenzerini [7], Dayal and Hwang [17],

ElMasri et al. [20], Mannino and Effelsberg [43], Motro and Buneman [49], are described for

schema integration. In all of the cases, there is an assumption of full semantic and structural

knowledge available to the integrator. Furthermore, most of the methodologies do not aim

at developing semi-automated systems. However, since schema integration is a difficult and

complex task, there is a need to help users with this complicated task by providing some

semi-automatic mechanisms.

123

Semi-automated schema integration 101

A number of recent efforts focused on semi-automatic schema integration or merging,

including Chiticariu et al. [14], Melnik et al. [45], Pottinger and Bernstein [52,53], Saleem

et al. [56]. However, proposed solutions are not generic enough. Instead of generating a

comprehensive system and providing a complete solution, each work focuses on a specific

subject. It is most of the time assumed that correspondences among source schemas are

already given. Furthermore, it is not clear how to use the results of schema integration, for

example for query processing over the integrated schema.

The most challenging part of schema integration is the identification of correspondences

between elements of schemas from heterogeneous databases, which is referred to as schema

matching. Matching problem has been tackled in different domains besides schema match-

ing, such as matching media data [13]. Schema matching itself is identified as a fundamental

process in variety of areas. Besides schema integration, schema matching is required for

data warehousing, data integration, and peer-to-peer data management. Furthermore, schema

matching is also correlated with ontology matching. Ontology matching has been an active

research area especially with the increasing popularity of Semantic Web and peer-to-peer

networks. For example, Haase et al. [31] uses ontology matching for peer selection. A large

number of ontology matching systems have been proposed, as surveyed in Choi et al. [15],

Euzenat and Shvaiko [22], Kalfoglou and Schorlemmer [36].

Although large numbers of efforts have focused on providing access to distributed, auton-

omous, and heterogeneous databases, including the PEER system [1,59], the Mediator Envi-

rOnment for Multiple Information Sources project (MOMIS) [10], the InfoSleuth project [9],

the SIMS project [4], the Observer system [46], the Stanford-IBM Manager of Multiple Infor-

mation Sources (TSIMMIS) system [26], and the COntext INterchange (COIN) project [28],

they mostly lack the step of semi-automated schema matching and thus require a large amount

of manual work. Schema matching has been considered as a separate research problem and

its related challenges have been addressed by a number of research and development projects,

including Aumueller et al. [5], Do and Rahm [18], Giunchiglia et al. [27], Li and Clifton [39],

Li et al. [40], Madhavan et al. [41], Melnik et al. [44], Miller et al. [47], Wang et al. [64]. In

addition to these projects, there are several other efforts that consider some specific features

of schema matching. For example, Bernstein et al. [11], Embley et al. [21], Rahm et al. [54])

focused on matching large schemas or extensibility of the developed schema matching sys-

tem. Furthermore, the main goal of Doan et al. [19], Gal [24,25], Nottelmann and Straccia

[50] is to manage uncertainty in schema matching. Each of these efforts considers a different

aspect of uncertainty. For instance, Nottelmann and Straccia [50] proposes a probabilistic

framework, which combines the machine learning, information retrieval, and heuristic tech-

niques for learning a set of mapping rules. Uncertainty is an important subject especially

considering large amounts of semantics involved in schemas. However, there are still open

issues related to this subject, such as the need for adequate user interfaces, as addressed

in Magnani and Montesi [42]. Furthermore, since their main focus is on uncertainty, other

requirements of schema matching are not considered.

It is not reasonable to think of a fully automatic system for schema matching due to the

huge amount of semantics involved in designing schemas. Nevertheless, most of the previ-

ous schema matching systems have provided limited solutions. For example, only a narrow

set of matching algorithms are used by these systems. Although user interaction needs to

be considered as a fundamental subject, either a very primitive or no Graphical User Inter-

face (GUI) is provided. Furthermore, the past research has typically taken into account the

schema matching as a separate problem area and has not combined it with the needed schema

integration.

123

102 O. Unal, H. Afsarmanesh

In this respect, the Semi Automatic Schema Matching and INTegration (SASMINT)

approach and system [60–62] described in this paper is designed and implemented to enable

semi-automated matching of relational schemas by using a combination of metrics and algo-

rithms from Natural Language Processing (NLP) and Graph Theory. Furthermore, after the

schema matching is executed, SASMINT allows its user to modify and approve the results.

Once results are validated or corrected, the system then automatically performs the schema

integration, by utilizing the results of schema matching and applying a number of schema

derivation rules. The result of schema integration also requires user validation. Since it is

not possible to determine all kinds of schema conflicts automatically, SASMINT provides a

sophisticated GUI for modifying both the match and the integration results. All user interac-

tion with the system is handled by means of this GUI. Finally, results of schema matching

and integration are captured and formulated for persistent storage as the SASMINT Deri-

vation Markup Language (SDML) representation. Compared to previous work, addressed

above, there are several main contributions of SASMINT, which can be summarized as

follows:

• Extending existing schema matching approaches and elevating the accuracy of schema

matching: SASMINT extends the existing approaches for schema matching such that it

requires minimal user input and advances the level of results accuracy, by utilizing a large

set of metrics and algorithms from NLP and Graph theory and combining them with a

weighted sum.

• Enabling semi-automatic identification of suited weights for algorithms: It is important to

assign an appropriate weight to each NLP metric and algorithm used in schema matching,

bearing in mind that each metric is suitable for different types of strings. SASMINT pro-

vides the SAMPLER component to semi-automatically identify the appropriate weight

for each NLP metric or algorithm used in the system.

• Enabling semi-automatic schema integration: SASMINT interrelates schema matching

results directly with the schema integration. Heuristic rules are defined that run on the

results of the schema matching and generate the derivation formalism for an integrated

schema automatically. We assess this as a novel contribution, providing a strong compet-

itive edge for the research on the SASMINT system.

• Definition and incorporation of an XML-based language for enabling unambiguous inter-

pretation of schema match/integration results: Within the SASMINT system, we did

devise an XML-based derivation language, which we call as SDML, for capturing and

persisting schema match and integration results. The value of this language is addressed

in Sect. 4.1.

• Enabling user-friendly interaction by means of a GUI editor: It is not possible to automat-

ically extract all types of semantic and resolve all kinds of structural conflicts. Therefore,

a suitable user-friendly GUI editor is provided for supporting both modifications of the

results of schema matching and schema integration processes as well as their storage for

further use.

The rest of this paper is organized as follows: Section 2 addresses different types of schema

conflicts. Section 3 introduces the SASMINT system and addresses its main functionalities.

Section 4 describes the schema integration step of SASMINT. Section 5 gives some informa-

tion about the experimental evaluation of the SASMINT system and provides the results of

its comparison with the COMA++ system. Finally, Sect. 6 summarizes the main conclusions

of the paper and presents possible future improvements.

123

Semi-automated schema integration 103

2 Schema conflicts

Different types of conflicts or heterogeneities exist among databases, such as differences in

schemas and data models. SASMINT focuses on the schema conflicts, categorized here as

Linguistic and Structural. Linguistic (both syntactic and semantic) and Structural Conflicts

frequently occur in schemas and they need to be handled during the schema integration pro-

cess. Especially semantic and structural conflicts are difficult cases and thus challenging for

automatic schema integration. Since fully automated solution is not possible for these cases,

user intervention might be required for resolving these types of conflicts. Brief explanations

about different types of Linguistic and Structural conflicts follow below:

(1) Linguistic Conflicts: Also called as Naming Conflicts, these types of conflicts arise

from either syntactical or semantic discrepancies. Linguistic dictionaries can be used to

identify and resolve these differences. Different types of linguistic conflicts are listed

below:

• Syntactic: Syntactic conflicts correspond to differences in the formats of the names.

Examples include using stop words and special characters in the names.

• Semantic: Semantic conflicts are related to differences in the meaning of concepts.

Two main kinds of semantic conflicts are the homonyms and synonyms. Homonyms

occur when the same name is used for different concepts. It is difficult to identify

homonyms by an automatic integration system. Synonyms occur when different

names are used to refer to the same concept. Linguistic dictionaries containing the

synonymy relationships among concepts can help to identify the synonyms.

(2) Structural Conflicts: Structural conflicts arise as a result of using different modeling

constructs or integrity constraints. For example, the same concept might be represented

by different modeling constructs in different schemas (referred to as the type conflict),

or two or more entities might be related with different dependencies in different schemas

(referred to as the dependency conflict). Another example is using different keys for

the same concept in different schemas (referred to as the key conflict).

3 The SASMINT system

The SASMINT approach and its implementation, the SASMINT system, are proposed to

eliminate the limitations of the previous schema matching and integration systems. It enables

semi-automatic schema integration by using the results of schema matching for integration.

In addition to being used for integrating schemas for generating a federated or global schema,

SASMINT can also be used for generating mappings between a common schema and local

schemas of participating databases, making it applicable for different application cases in

different domains.

SASMINT achieves schema integration in two main steps: (1) Schema Matching: cor-

respondences between two schemas are identified by resolving syntactic, semantic, and

structural conflicts automatically and then the user is asked for the final validation, (2) Schema

Integration: schemas are integrated or merged by using the results of schema matching and

exploiting a number of integration rules. User validation is required on the results of schema

integration also.

Main flow of information in the SASMINT system is shown in Fig. 1. There are four main

activities in this flow: (1) Assigning weights to the metrics and algorithms and identifying the

123

104 O. Unal, H. Afsarmanesh

Load and
Translate

schemas

Match
Schemas

Linguistic

Match

Structural

Match Integrate
Schemas

Modified

Match

Results

Integration

rules

Recipient

Schema

Donor

Schema

or

JDBC
XML

Beans JDBC

JGraph&JGraphT

WordNet

Recipient

Schema
Donor

Schema Integrated

Schema

Assign Weights &
Identify Selection

Strategy

weights

Modified

integrated
schema

1

2

3

4

Fig. 1 Information flow in SASMINT

selection criteria, (2) Loading and translating schemas, (3) Matching Schemas, (4) Integrating

Schemas. Details of these activities are explained below.

3.1 Assigning weights and identifying the selection criteria

This activity corresponds to the Configuration step and has two main goals:

(1) Assignment of weights to all metrics and algorithms used in the schema matching:

As an improvement over previous schema matching approaches, which typically employ a

limited number of algorithms, both Linguistic and Structure Matching components of SAS-

MINT utilize a combination of different metrics and algorithms suitable for broad ranges

of schemas to find out good match candidates. For this purpose, a weighted sum of these

metrics and algorithms is calculated. By default, SASMINT assumes an equal weight distri-

bution. Alternatively, user can manually assign weights through the user interfaces provided

by SASMINT. Considering that it might be difficult to identify an appropriate weight for each

metric manually, the Sampler component of SASMINT can be used in order to automatically

calculate the appropriate weights for the Linguistic Matching metrics. In order for doing

this, the user is required to provide, through the GUI of Sampler, up to five syntactically

or semantically similar pairs depending on whether he wants to calculate the weights for

syntactic or semantic similarity metrics. Then, Sampler uses syntactic or semantic similarity

metrics to determine the similarity values that each metric produces. After finding out the

similarity values, Sampler computes the F-measure value for each metric to assess the quality

of the metric. Details about the F-measure are given in Sect. 5. This F-measure value is used

by Sampler in the following formula, in order to determine the weight of each metric [61]:

wm =
1

∑

F
∗ Fm

where
∑

F represents the sum of F-measure values resulted for all metrics used, and Fm

represents the F-measure value calculated for metric ‘m’. Higher F-measure value for a metric

(thus higher quality) means higher weight for that metric.

(2) Identifying the strategy for selecting the match results: In order to achieve this goal

of the configuration step, user input is required. User needs to provide a threshold value and

choose one of the strategies for selecting the match results: (a) selecting all matching pairs

123

Semi-automated schema integration 105

with similarity above the threshold (called as “select all above threshold”) and (b) selecting

the ones with the highest similarity value, if there is more than one element matching another

element (called as “select max above threshold”).

3.2 Loading and translating schemas

After assigning weights to the metrics and algorithms and identifying the selection strategy,

two schemas, called the recipient and donor respectively, are loaded by the user into SAS-

MINT by means of its GUI. Recipient schema is taken as the base schema in the integration

process. It can be loaded either from a database or from an XML file, which contains a pre-

viously generated integrated schema and the related derivation information. Format of this

file is described in the following paragraphs about the SDML. It is assumed that XML file

contains an SDML-based representation of an integrated schema, which is always loaded

as the recipient schema. On the other hand, donor schema can only be loaded from a data-

base. During the loading process, schemas described in the language of their database are

translated into a Directed Acyclic Graph (DAG) format. In other words, table and column

names as well as primary and foreign keys are represented in graphs for the recipient and

donor schemas. When a recipient schema is loaded from an XML file, only this information

is shown in the graph, not the derivation information. DAG is the common format for repre-

senting schemas. SASMINT uses JGraphT, a free Java graph library [34], to create the DAG.

When the two graphs, corresponding to donor and recipient schemas are generated, they

are displayed by means of the SASMINT GUI. A graph component, called JGraph and its

subcomponent, JGraph Layout are used for graph visualization and layout [35]. This activity

of SASMINT, responsible for loading schemas and translating them into the graph format is

called as Preparation.

3.3 Matching schemas

After loading and translating the recipient and donor schemas, user performs the ‘Match’

operation to identify the correspondences between these schemas. Schema Matching in SAS-

MINT considers syntactic, semantic, and structural differences among schemas, in order to

automatically identify likely matches between them. Schema matching starts with the pre-

processing activity. Pre-processing brings schemas into a common form, by applying the

following operations: (1) Elimination of stop words and special characters: Stop words, like

“of”, “the”, and “an” and special characters like “_” are replaced with a space. (2) Tokeni-

zation and Word Separation: Strings containing more than one word are split into words. A

change in the case or a space signifies a new token. (3) Abbreviation Expansion: Abbrevia-

tions are expanded. For this purpose, a list of well-known abbreviations is used and whenever

a word is found in this list, it is replaced with its long form. (4) Normalizing terms to a stan-

dard form using Lemmatization: By means of lemmatization, verb forms are reduced to the

infinitive and plural nouns are converted to their singular forms. WordNet, details of which

are given in the following paragraphs, is used for finding a lemma of a word. For example,

lemma of the word “scarves” is “scarf”.

After the pre-processing activity, which enables to resolve several syntactic conflicts, two

schemas are compared both Linguistically and Structurally. The result of schema matching

for a pair of elements (a, b) is calculated by the following formula:

sim(a, b) = wlinguistic ∗ smlinguistic (a, b) + wstructural ∗ smstructural(a, b)

123

106 O. Unal, H. Afsarmanesh

Inputs: S1in Graph Format, S2 in Graph Format

List_of_Nodes_S1 = getAllNodeNames (S1)

List_of_Nodes_S2 = getAllNodeNames (S2)

for each pair P(n1,n2) in List_of_Nodes_S1X List_of_Nodes_S2

preprocessed P’(n1,n2) = preprocess (P(n1,n2))

syn = SyntacticMatch(P’(n1,n2))

if (syn < threshold)

sem = SemanticMatch(P’(n1,n2))

endIf

else

LinguisticMatch = syn

break

endElse

if (sem > threshold)

LinguisticMatch = sem

endIf

else

LinguisticMatch = weight(syntactic) * syn+weight(semantic)*sem

endElse

endFor

Fig. 2 Pseudo code of linguistic matching

where smlinguistic (a, b) is the linguistic similarity of (a, b), winguistic is the weight of linguistic

matching, smstructural (a, b) is the structural similarity of (a, b), and wstructural is the weight

of structural matching.

3.3.1 Linguistic matching

Linguistic Matching in SASMINT considers only the names of schema elements and

compares the element name pairs from two schemas to resolve their syntactic and semantic

conflicts and calculate their similarities by using the metrics and algorithms from the NLP

domain. A pseudo code of linguistic matching is given in Fig. 2. Syntactic and semantic

similarity metrics used by SASMINT are listed below:

(a) Syntactic similarity: Among different metrics from NLP available for comparing two

strings syntactically, we have selected for SASMINT a number of well-known ones that are

suitable for different types of strings. Such metrics are also used in the Information Retrieval

(IR) domain for determining the document similarities, as addressed in Aygün [6], Wan [63].

Combining the results of syntactic similarity metrics using a weighted summation makes

SASMINT applicable for different domains, which typically consist of schema elements in

varying forms. This feature is necessary for achieving more accurate results. The metrics

utilized by SASMINT are as follow:

• Levenshtein Distance [38]: It is based on the idea of minimum number of modifications

required to change one string into another. This metric is string-based, which means that

it considers strings as single strings even if they contain more than one word.

• Monge and Elkan [48]: It is a string-based distance function using an affine gap model.

Monge–Elkan Distance allows for gaps of unmatched characters.

• Jaro [33]: It is a string-based metric intended for short strings and considers insertions,

deletions, and transpositions. It also takes into account typical spelling deviations.

• Term Frequency*Inverse Document Frequency (TF*IDF) [57]: It is a vector-based

approach from the information retrieval literature that assigns weights to terms. For each

123

Semi-automated schema integration 107

of the document to be compared, first a weighted term vector is composed. Then, the

similarity between the documents is computed as the cosine between their weighted term

vectors.

• Jaccard Similarity [32]: It is a token-based similarity metric, meaning that it splits strings

containing more than one word into tokens. It considers the number of shared words

between two strings being compared.

• Longest Common Substring (LCS): It calculates the longest run of characters that appear

in order inside both strings being compared.

(b) Semantic similarity: For comparing two strings semantically, different types of

path-based, information content, and gloss-based measures from the NLP domain were

examined in our study. However, we selected for SASMINT only path-based and gloss-

based measures, as information content measures require a corpus and the most well-known

corpuses are not available for free. Moreover, the choice of information content source can

have a high impact on the results that one gets from the information content-based measures,

making the selection of the most suitable corpus difficult.

Both path-based and gloss-based measures utilize WordNet. WordNet is a lexical dictio-

nary, partitioned into nouns, verbs, adjectives, and adverbs [23]. These are organized into

synonym sets. Synonym sets, also called as synsets, are interlinked by different relations,

such as hypernymy, hyponymy, antonymy, meronymy, and holonymy. A brief description of

each sense of a word, called as gloss, is also provided in WordNet.

As an example, consider the word “building”. WordNet contains four senses for this word

with the following gloss information: “a structure that has a roof and walls and stands more

or less permanently in one place”, “the act of constructing or building something”, “the

commercial activity involved in constructing buildings”, and “the occupants of a building”.

SASMINT’s semantic similarity measures benefit from the IS-A hierarchy and gloss infor-

mation provided by WordNet. Among the alternatives for the path-based and gloss-based

measures, we have chosen two widely known measures that are explained below:

• Path-based measure: SASMINT utilizes the measure of Wu and Palmer [65]. Like other

path-based measures, this measure calculates the shortest path between two concepts

being compared, in a hierarchy. Since in our application we deal with element names,

which are mainly nouns, and hypernymy/hyponymy (IS-A) is the dominant relationship

linking nouns, we only consider a hierarchy containing this relationship when identifying

semantic similarity of element names. In SASMINT, WordNet’s IS-A hierarchy is used

to identify the path between two concepts. For example, if “employee” and “person” are

compared using Wu and Palmer’s measure, their semantic similarity is found as 0.75,

when WordNet 2.0 is used.

• Gloss-based measure: The algorithm of Lesk [37] is used as the base for the gloss-based

measure. The gloss-based measure calculates the overlaps between the glosses of element

names. SASMINT uses the gloss information provided by WordNet. For example, when

“employee” and “person” are compared using the gloss-based measure, their similarity

is calculated as 0.14 in WordNet version 2.0.

3.3.2 Structural matching

After schema elements are compared linguistically, SASMINT considers the structural as-

pects of schemas in Structural Matching, which uses the result of linguistic matching. It is

based on the idea that if two elements have been found to be similar, their adjacent elements

(parent and child nodes) may also match. Structural matching benefits from a variety of

123

108 O. Unal, H. Afsarmanesh

graph similarity and matching algorithms from Graph Theory and Web searching, in order

to resolve structural conflicts. Graph similarity algorithm of Blondel et al. [12] and the struc-

ture matching algorithm of Similarity Flooding [44] are selected for structural matching in

SASMINT. The result of structural matching for a pair is the weighted sum of the results of

these two algorithms.

3.3.3 Result generation after schema matching

After schema matching in SASMINT has identified similarities between each pair of schema

elements from two schemas, results are displayed to the user. The user is required to make

any required modifications on the results, because not all the mappings can be identified

automatically by the system. After modifying and saving the results of matching, the user

continues with the Schema Integration. Schema integration utilizes the results of schema

matching and applies a number of heuristic rules to determine the integrated schema. The

proposed integrated schema also requires the user validation. Details of Schema Integration

in SASMINT are provided in the next section.

4 Schema integration with SASMINT

Schema integration is needed for generating both the federated schema in fully federated

databases and also an integrated schema from the schemas of local nodes. Two types of strat-

egies are mentioned in Batini et al. [8] for schema integration: binary and n-ary strategies.

Binary strategies allow the integration of two schemas at a time, while n-ary strategies can

integrate n schemas at a time. Because of the complexities of integrating n schemas at a time,

most of the approaches in the literature prefer a binary strategy.

SASMINT also follows a binary strategy for schema integration and facilitates integration

by providing some automatic means. It utilizes the results of schema matching. For every

two schemas, after saving the results of their validated matching, user has the option to gen-

erate an integrated schema. Schema integration is a difficult process because of the structural

and linguistic conflicts among schemas. Performing schema integration as automatically as

possible is a significant improvement over the existing schema integration approaches.

4.1 SASMINT derivation language

Several derivation constructs are defined in SASMINT for representing the integrated

schemas. These constructs are variations of the ones used by the PEER derivation language

[2].

Two main types of derivation constructs are defined in SASMINT for relational schemas:

(1) Table Derivation: consists of the derivations of type “Table Rename”, “Table Union”,

“Table Subtract”, and “Table Restrict”, (2) Column Derivation: comprise the derivations of

type “Column Rename”, “Column Union”, and “Column Extraction”. Table Rename, Table

Union, Column Rename, Column Union, and Column Extraction are the ones typically used

by automatic schema integration component of SASMINT.

Based on the derivation constructs, an XML-based derivation language is generated for

capturing and storing the results of both schema matching and schema integration. This lan-

guage is called as SDML. SDML has a format similar to other existing XML-based formats,

such as Graph eXchange Language (GXL) [30] and GraphML [29], but is extended to store

the results of both matching and integration. XML is chosen in SASMINT for representing

123

Semi-automated schema integration 109

Schema1

Table1

Column1

<?xml version="1.0" encoding="UTF-8"?>

<ns1:sgraph xmlns:ns1="http://namespaces.sasmint.org/2007/04/GraphModel">

<ns1:snode ns1:id=“urn:sasmint:schema:Schema1" ns1:name=“Schema1“

ns1:type=“SCHEMA">

</ns1:snode>

<ns1:snode ns1:id=“urn:sasmint:table:Schema1:Table1" ns1:name=“Table1“

ns1:schema=“Schema1” ns1:type=“TABLE">

</ns1:snode>

<ns1:snode ns1:id=“urn:sasmint:column:Schema1:Table1:Column1"

ns1:name=“Column1“ ns1:schema=“Schema1” ns1:table=“Table1”

ns1:type=“COLUMN">

</ns1:snode>

<ns1:sedge ns1:id="urn:sasmint:hastable:c55a2772-e985-4ca5-8a7a-2dcaa2a6c72c"

ns1:sourceNodeId="urn:sasmint:schema:Schema1"

ns1:targetNodeId="urn:sasmint:table:Schema1:Table1"

ns1:type="HASTABLE"/>

<ns1:sedge ns1:id="urn:sasmint:hastable:d3ac69d7-0caf-4d4c-89cd-b361d4fef635"

ns1:sourceNodeId="urn:sasmint:table:Schema1:Table1"

ns1:targetNodeId="urn:sasmint:table:Schema1:Table1:Column1"

ns1:type="HASCOLUMN"/>

</ns1:sgraph>

Fig. 3 Graph and its SDML representation of a simple schema

the integrated schema, as XML provides a flexible format for storing and exchanging graphs.

Furthermore, there is a wide range of tools for parsing and querying XML.

The value proposition of this particular contribution, SDML, is multi-faceted. First, the

persisted schema match/integration results enable the external systems/agents to unambig-

uously interpret/understand these results (these external systems/agents could consume this

information for implementing federated query processing, etc.). Second, this generic format

is understandable by the match/integration human agent in-the-loop. What this means is that

this human agent can easily modify the results. Finally, the structure of the derivation lan-

guage is designed to keep the derivation history (i.e. for an entity, the whole derivation tree

is kept). This feature enables incremental schema integration.

In Fig. 3, the graph and SDML representations of a simple schema are shown. The

root element of the SDML document is the sgraph element, which consists of two main

sub-elements: snode and sedge, as explained below:

• snode: represents a node in the graph and may contain the derivation constructs as

sub-elements. Examples for these derivation constructs are given in the coming

paragraphs. The snode element consists of the following attributes:

id is a unique value in the entire document.

name represents the name of the node, which is the same as the name of the schema,

table, or column that this node represents.

type indicates whether the element that this node represents is of type schema, table,

or column.

schema represents the name of the schema, which the element that this node represents

belongs to.

table represents the name of the table, which the element that this node represents be-

longs to. This attribute is optional. If the node is of type table or schema, corresponding

snode definition contains no table attribute.

refTable exists if this node represents a foreign key column and contains as the value

the id of the table that this node has a foreign key reference.

123

110 O. Unal, H. Afsarmanesh

• sedge represents an edge of the graph and if this is an edge connecting two similar nodes,

has a sub-element called similarity. The similarity sub-element contains the similarity

value. The sedge element consists of the following attributes:

id is a unique value in the entire document.

sourceNodeId identifies the id of the source node of the sedge element.

targetNodeId identifies the id of the target node of the sedge element.

type indicates the type of the edge. The value of the type attribute is HASTABLE if

the edge is from a schema node to a table node, HASCOLUMN if it is from a table

node to a column node, and SIMILARTO if it is an edge representing the similarity of

source and target.

Example given in Fig. 3 shows a graph and SDML representation of a simple schema.

The class diagram corresponding to the complete features of SDML is given in Fig. 4. As

shown in Fig. 4, sgraph contains one or more snode and zero or more sedge elements.

Each snode consists of zero or one derivation construct, including tableUnionDerivation,

tableRenameDerivation, tableSubtractDervation, tableRestrictDerivation, columnRename-

Derivation, columnUnionDerivation, and columnStringAdditionDerivation.

An example for each type of derivation is provided below. Only the related part of the

XML document is shown in the examples.

• Table Rename Derivation renames a table. It is used to specify that a table of the integrated

schema is derived from a table of either donor or recipient schema by giving it a new

name. An example is given below.

<graph:snode graph:id="urn:sasmint:table:INTEGRATED_1:student"

graph:name="student" graph:type="TABLE" graph:schema="INTEGRATED_1">

<graph:tableRenameDerivation>

<graph:derivationNode graph:name="student"

graph:id="urn:sasmint:table:targetsc:student" graph:schema="targetsc"/>

</ graph:tableRenameDerivation >

</graph:snode>

• Table Union Derivation is used to specify that a table in the integrated schema is the

union of two or more tables in the recipient and donor schemas.

<graph:snode graph:id="urn:sasmint:table:INTEGRATED_1:person"

graph:name="person" graph:type="TABLE" graph:schema="INTEGRATED_1">

<graph:tableUnionDerivation>

<graph:derivationNode graph:schema="sourcesc" graph:name="person"

graph:id="urn:sasmint:table:sourcesc:person" graph:type="TABLE" />

<graph:derivationNode graph:schema="targetsc" graph:name="contact"

graph:id="urn:sasmint:table:targetsc:contact" graph:type="TABLE"/>

</graph:tableUnionDerivation>

</graph:snode>

123

Semi-automated schema integration 111

F
ig

.
4

U
M

L
cl

as
s

d
ia

g
ra

m
o

f
S

D
M

L

123

112 O. Unal, H. Afsarmanesh

• Table Subtract Derivation is used to specify that a table in the integrated schema is

constructed by subtracting a table in the recipient or donor schema from another table in

the other schema.

<graph:snode graph:id="urn:sasmint:table:INTEGRATED_1:math_students"

graph:name="math_students" graph:type="TABLE"

graph:schema=" INTEGRATED_1">
<graph:tableSubtractDerivation>

<graph:derivationNode graph:schema="sourcesc " graph:name="students"

graph:id="urn:sasmint:table:sourcesc:students" graph:type="TABLE" />
<graph:derivationNode graph:schema="targetsc" graph:name="physics_students"

graph:id="urn:sasmint:table:targetsc:physics_students "

graph:type="TABLE"/>
</graph:tableSubtractDerivation>

</graph:snode>

• Table Restrict Derivation is used to specify that a table in the integrated schema is derived

from a table of either recipient or donor schema by applying a restriction.

<graph:snode graph:id="urn:sasmint:table:INTEGRATED_1:studentspassed"
graph:name="studentspassed" graph:type="TABLE"

graph:schema="INTEGRATED_1">

<graph:tableRestrictDerivation>
<graph:derivationNode graph:schema="targetsc" graph:type="TABLE"
graph:id="urn:sasmint:table:targetsc:students" graph:name="students" />

<graph:restrictionExpression graph:value="grade>60"/>

</graph:tableRestrictDerivation>
</graph:snode>

• Column Rename Derivation renames a column. It is used to specify that a column of the

integrated schema is derived from a column of either donor or recipient schema by giving

it a new name.

<graph:snode graph:id="urn:sasmint:column:INTEGRATED_1:person:contactid"

graph:name="contactid" graph:type="COLUMN"
graph:schema="INTEGRATED_1" graph:table="person">

<graph:columnRenameDerivation>
<graph:derivationNode graph:name="contactid" graph:table="contact"

graph:id="urn:sasmint:column:targetsc:contact:contactid"
graph:schema="targetsc"/>

</graph:columnRenameDerivation>
</graph:snode>

• Column Union Derivation is used to specify that a column in the integrated schema is the

union of two or more columns in the recipient and donor schemas.

<graph:snode graph:id="urn:sasmint:column:INTEGRATED_1:person:phone"

graph:name="phone" graph:type="COLUMN"
graph:schema="INTEGRATED_1" graph:table="person">

<graph:columnUnionDerivation>

<graph:derivationNode graph:name="phone" graph:table="person"
graph:id="urn:sasmint:column:sourcesc:person:phone"

graph:schema="sourcesc"/>

<graph:derivationNode graph:name="phoneno" graph:table="contact"

graph:id="urn:sasmint:column:targetsc:contact:phoneno"
graph:schema="targetsc"/>

</graph:columnRenameDerivation>

</graph:snode>

123

Semi-automated schema integration 113

• Currently, one type of Column Extraction Derivation is defined, called as “columnString-

AdditionDerivation”. It is used to specify that a column in one schema equals to the

concatenation of two or more columns in the other schema. An example for this case is

shown below.

<graph:snode graph:id="urn:sasmint:column:INTEGRATED_1:person:name"

graph:name="name" graph:type="COLUMN"

graph:schema="INTEGRATED_1" graph:table="person">

<graph:columnUnionDerivation>
<graph:derivationNode graph:name="name" graph:table="person"

graph:id="urn:sasmint:column:sourcesc:person:name"

graph:schema="sourcesc"/>
<graph:derivationNode graph:name="intname" graph:table="student"

graph:id="urn:sasmint:column:targetsc:student:intname"

graph:schema="targetsc"/>

<graph:derivationType

graph:refDerivationNode="urn:sasmint:column:targetsc:student:intname">
<graph:columnStringAdditionDerivation>

<graph:derivationNode graph:name="lname" graph:table="student"
graph:id="urn:sasmint:column:targetsc:student:lname"

graph:schema="targetsc"/>
<graph:derivationNode graph:name="fname" graph:table="student"

graph:id="urn:sasmint:column:targetsc:student:fname"

graph:schema="targetsc"/>
</ graph:columnStringAdditionDerivation>

</graph:derivationType>

</graph:columnUnionDerivation>

</graph:snode>

4.2 Schema integration rules

Schema matching in SASMINT results in different types of matches as listed in Table 1. In

order to automatically generate the integrated schema based on the results of schema match-

ing, a number of heuristic rules have been defined for SASMINT. These rules cover the cases

numbered as 1, 2, 3, 5, 7, 9, 10, 11, 12, 13, and 14 in Table 1. The remaining types of results

correspond to highly complex cases and automatic solution is not possible for them.

As mentioned before, two schemas to be matched and integrated are called as recipient

and donor, respectively. When deciding on which names to use for the column and tables of

the integrated schema, the names in the recipient schema are considered first, but depending

on the match case (for example, in the case of Column (n → 1) Column Y match), donor

names may also be used. Integration process starts with table matches and continues with

column matches. In other words, match pairs, one side of which is a table, are processed first.

Tables that do not exist in any match pairs as well as their non-matching columns are directly

added to the integrated schema. Therefore, all the tables in recipient and donor schemas are

processed before their columns. In total, 13 rules are defined, as explained below. These rules

are applied in this order. Some rules are similar, so details are provided here only for different

cases, because of the space considerations.

Rule 1: This rule applies when a match is identified between one table (Tr1) of the recip-

ient schema and m tables (Td1...dm) of the donor schema. Its algorithm is represented as

follows:

123

114 O. Unal, H. Afsarmanesh

Begin

Generate a new table node, , based on the table of the recipient schema and

add it to the integrated schema.

1iT 1rT

For each column of and each column of m tables, , which do not match 1rT dmdT ..1

anything

If it is a foreign key column and the table that this column refers to is already

covered in the derivation of a table T of the integrated schema, then add this

column to the integrated schema as the column of the newly generated table

and add a reference to the table T.

1iT

If it is not a foreign key column, then add the column to the integrated schema

as the column of the newly generated table, 1iT

Apply the Table Union Derivation (tableUnionDerivation) operator to specify that

the newly generated table, is the union of and . Include this

derivation in the integration result.

1iT 1rT dmdT ..1

Apply the Column Rename Derivation (columnRenameDerivation) to the columns

newly added to the integrated schema to specify that these columns of the integrated

schema are the renamed versions of the related columns of and .1rT dmdT ..1

End

Table 1 Match results

Match result Explanation Covered

1 Column X (1 → 1) Column Y Column X in the first schema matches Column Y in the second

schema

Yes

2 Column X (1 → n) Column Column X in the first schema matches n columns of the second

schema

Yes

3 Column X (1→ 1) Table A Column X in the first schema matches Table A in the second

schema

Yes

4 Column X (1 → n) Table Column X in the first schema matches n tables of the second

schema

No

5 Column (m → 1) Column Y n columns of the first schema match Column Y in the second

schema

Yes

6 Column (m → n) Column m columns of the first schema match n columns of the second

schema

No

7 Column (m → 1) Table B m columns of the first schema match Table B in the second

schema

Yes

8 Column (m → n) Table m columns of the first schema match n tables of the second

schema

No

9 Table A (1→ 1) Table B Table A in the first schema matches Table B in the second

schema

Yes

10 Table A (1→ n) Table Table A in the first schema matches n tables of the second

schema

Yes

11 Table A (1→ 1) Column Y Table A in the first schema matches Column Y in the second

schema

Yes

12 Table A (1→ n) Column Table A in the first schema matches n columns of the second

schema

Yes

13 Table (m → 1) Table B m tables of the first schema match Table B in the second schema Yes

14 Table (m→ n) Table m tables of the first schema match n tables of the second schema Yes

15 Table (m→ 1) Column Y m tables of the first schema match Column Y in the second

schema

No

16 Table (m→ n) Column m tables of the first schema match n columns of the second

schema

No

Rule 2: This rule applies when a match is identified between one table (Td1) of the donor

schema and m tables (Tr1...rm) of the recipient schema. The algorithm for this rule is similar

to the one for Rule 1, except that the new table node in the integrated schema is generated

based on the table Td1 of the donor schema.

123

Semi-automated schema integration 115

Rule 3: This rule applies when a match is identified between a table (Tr1) of the recipient

schema and a table (Td1) of the donor schema. Rule 3 is also similar to Rule 1, except that

only one table of the donor schema is considered here as opposed to the m tables in Rule 1.

Rule 4: This rule applies when a match is identified between m tables (Tr1...rm) of the recipient

schema and n tables (Td1...dn) of the donor schema. Its algorithm is similar to Rule 1, except

that instead of a single table of the recipient schema, m tables are considered here. For generat-

ing a new table node of the integrated schema, now we have m tables of the recipient schema,

but this new table is again generated based on one of these tables (randomly selected asTr1).

Furthermore, when applying the tableUnionDerivation and columnRenameDerivation,m

tables and their columns are taken into consideration, as opposed to the single recipient table

in Rule 1.

Rule 5: This rule applies to the tables that are not involved in any match pair. All such tables

and their columns that do not match anything are directly added to the integrated schema. Its

algorithm is represented as follows:

Begin

Identify all non-matching tables, and in recipient and donor schemas

respectively

rmrT ..1 dmdT ..1

For each and rmrT ..1 dmdT ..1

Generate a new table, and add it to the integrated schema ixT

For each column of and , which do not match anything rmrT ..1 dmdT ..1

If it is a foreign key column and the table that this column refers to is already

covered in the derivation of a table T of the integrated schema, then add this

column to the integrated schema as the column of the newly generated table

and add a reference to the table T.

ixT

If it is not a foreign key column, then add the column to the integrated schema

as the column of the newly generated table, ixT

Apply Table Rename Derivation (tableRenameDerivation) to specify that the newly

generated tables are the renamed versions of and . rmrT ..1 dmdT ..1

Apply the Column Rename Derivation (columnRenameDerivation) to the columns

newly added to the integrated schema, to specify that these columns of the integrated

schema are the renamed versions of the related columns of tables and

 of the recipient and donor schemas.

rmrT ..1

dmdT ..1

End

Rule 6: This rule applies when a match is identified between a table (Tr1) of the recipient

schema and m columns (Cd1...dm) of a table of the donor schema. Its algorithm is represented

as follows:

Begin

Generate a new table node, , based on the table of the recipient schema and

add it to the integrated schema.

1iT 1rT

For each column of the table of the recipient schema, which do not match

anything

1rT

Add the column to the integrated schema as the column of the newly

generated table, 1iT

For each column of table of the recipient schema, which is added to the

integrated schema in the previous step

1rT

Add Column Union Derivation (columnUnionDerivation) to specify that the

newly generated column of the integrated schema is the union of the this column

and m columns () of the donor schema dmdC ..1

Apply Table Rename Derivation (tableRenameDerivation) to specify that the newly

generated table is the renamed version of table .1rT

End

123

116 O. Unal, H. Afsarmanesh

Rule 7: This rule applies when a match is identified between a table (Tr1) of the recipient

schema and a column (Cd1) of a table of the donor schema. Its algorithm is similar to the

one for Rule 6, except that only one column of the donor schema is processed in this rule as

opposed to m columns in Rule 6.

Rule 8: This rule applies when a match is identified between a table (Td1) of the donor schema

and m columns (Cr1...rm) of a table of the recipient schema. The algorithm for this rule is very

similar to the algorithm for Rule 6. The only difference is that in this rule, a table of the donor

schema takes the place of the table of the recipient schema in Rule 6 and columns of a table

of the donor schema take the place of the columns of a table in the recipient schema in Rule 6.

Rule 9: This rule applies when a match is identified between a table (Td1) of the donor

schema and a column (Cr1) of a table of the recipient schema. Similar to the cases for Rules

6–8, the algorithm for Rule 9 is very much like the algorithm for Rule 7.

Rule 10: This rule applies to the columns of the tables that are not involved in any match pair.

Although such columns are processed in Rule 5 also, this rule is required in case there are any

columns of the tables that are unprocessed in Rule 5. Its algorithm is represented as follows:

Begin

For each column of and of recipient and donor schemas, which do

not match anything and not processed before

rmrT ..1 dmdT ..1

Identify its original parent table in the integrated schema. Search all table

derivations to find out where this table exists and identify the related table

in the integrated schema

ixT

If it is a foreign key column and the table that this column refers to is already

covered in the derivation of a table T of the integrated schema, then add this

column to the integrated schema as the column of the table and add a

reference to the table T.

ixT

If it is not a foreign key column, then add the column to the integrated schema

as the column of table, ixT

End

Rule 11: This rule applies when a match is identified between a column (Cr1) of a table (Tr1)

in the recipient schema and m columns (Cd1...dm) of a table (Td1) of the donor schema. Its

algorithm is represented as follows:

Begin

Identify the parent table of the column in the integrated schema. Search

all table derivations to find out where this table exists and identify the related

table in the integrated schema.

1rT 1rC

1rT

1iT

Generate a new column based on the and add it to the integrated schema

as the column of .

1iC 1rC

1iT

Check whether is a foreign key column. If so, search all table derivations to

find out the table that this column refers to and identify the related table T in the

integrated schema. Add a reference to this table T from the newly generated

column, .

1rC

1iC

Check whether a derivation rule is specified by the user after schema matching, for

these m columns of the donor schema. dmdC ..1

If no rule is specified, apply Column Union Derivation (columnUnionDerivation)

to specify that the newly generated column is the union of and 1iC 1rC dmdC ..1

If Column String Addition Derivation (columnStringAdditionDerivation) is

defined, apply this integration rule to the columns to get an intermediary

column . Then, apply Column Union Derivation to specify that the newly

generated column is the union of and

dmdC ..1

1xC

1iC 1rC 1xC

End

123

Semi-automated schema integration 117

Fig. 5 Recipient and donor schemas in graph format

Rule 12: This rule applies when a match is identified between a column (Cd1) of a table

(Td1) in the donor schema and m columns (Cr1...rm) of a table (Tr1) of the recipient schema.

Its algorithm is similar to the one for Rule 11, except that in this rule a column in the

donor schema takes the place of the column of the recipient schema in Rule 11 and m

columns of the recipient schema take the place of the m columns of the donor schema in

Rule 11.

Rule 13: This rule applies when a match is identified between a column (Cr1) of a table (Tr1)

in the recipient schema and a column Cd1 of a table (Td1) of the donor schema. Its algorithm

is similar to the algorithm of Rule 11. The only difference that since in Rule 13 there is only

one column that matches Cr1, there is no need to define a derivation like Column String

Addition Derivation.

Derivations of type tableUnionDerivation, tableRenameDerivation, columnRenameDer-

ivation, columnUnionDerivation, and columnStringAdditionDerivation, shown in bold in the

algorithms above, are used in the automatic schema integration. Since it is difficult to auto-

matically decide on the need for using tableSubtractDerivation and tableRestrictDerivation

in the resulting integrated schema, these derivation types are not used in the algorithms. These

derivation types can be used by the user when modifying the resulting integrated schema

generated at the end of automatic schema integration.

After applying the rules, described above, an integrated schema is generated and the result

is shown in both graph and XML format. Since two schemas are integrated at a time, XML

file is expanded after each integration process with definitions of new nodes, edges, and

derivations. As an example, consider that the recipient and donor schemas, shown in Fig. 5,

are loaded into the SASMINT system. Assuming that the user validated schema matching is

the one shown in Fig. 6; SASMINT automatically produces the integrated schema, shown in

Fig. 7.

123

118 O. Unal, H. Afsarmanesh

Fig. 6 Result of schema matching after user validation

Fig. 7 Result of schema integration

123

Semi-automated schema integration 119

5 Experimental evaluation of SASMINT

In order to evaluate the schema matching and integration in the SASMINT system, we

carried out a number of experiments. Our main concern for the SASMINT system is the

effectiveness, which means how accurately the system can identify matching pairs and the

integrated schema automatically. Therefore, we only considered the quality measures in the

experiments, not the performance measures. Performance measures depend on the underly-

ing environment and technologies used, and thus it is difficult to obtain objective evaluations.

Furthermore, when performance is considered, it is not only related to how fast the system

works but also how much time the user spends to correct the results. When the system pro-

duces more accurate results, the user needs to spend less time and the overall performance

increases.

We used two types of quality measures in our experiments: (1) quality measures for schema

matching, and (2) quality measures for schema integration. Details of these measures are pro-

vided below.

As other schema matching evaluations do, we used the concepts of precision and recall

from the information retrieval field [16] for measuring the quality of schema matching.

Precision (P) and Recall (R) are computed as follows:

P =
x

x + z
and R =

x

x + y

where x is the number of correctly identified similar strings (i.e. true positives), z is the

number of strings found as similar, while actually they were not (i.e. false positives), and y

is the number of similar strings, which the system missed to identify (i.e. false negatives).

Although precision and recall measures are widely used for variety of evaluation pur-

poses, neither of them can accurately assess the match quality alone. Therefore, a measure

combining precision and recall is needed. F-measure [55] is one such a measure, combining

recall and precision as follows:

F =
2

1
P

+
1
R

Another measure, called as Overall, is proposed by Melnik et al. [44]. It is different from

F-measure in that overall takes into account the amount of work needed to add the relevant

mappings that have not been discovered (false negatives) and to remove those which are

incorrect but have been extracted by the matcher (false positives). Overall, also called as

accuracy, is defined by the following formula:

O = R ∗

(

2 −
1

P

)

Quality measures used for the assessment of schema integration in SASMINT benefit from the

ideas presented in Batini et al. [8]. These measures are called completeness and minimality,

as explained below:

(1) Completeness: Merged or integrated schema must cover concepts of all participating

schemas.

(2) Minimality: If the same concept is represented in more than one participating schemas,

integrated schema must contain only single representation of this concept. In other

words, redundancies must be eliminated.

123

120 O. Unal, H. Afsarmanesh

5.1 Experimental setup

We carried out experimental evaluation of schema matching using six pairs of relational test

schemas; from purchase order (PO), hotel (HOTEL), biology (SDB), and university domains

(UNIV-1, UNIV-2, UNIV-3). Hotel and SDB schemas are the modified versions of the ones

used for the evaluation tests of MAPONTO [3] and UNIV-3 is the one used in the tests of the

Similarity Flooding project. For the purpose of evaluating schema integration, three pairs of

schemas from the university domain (UNIV-1, UNIV-2, UNIV-3) were integrated.

We compared the schema matching component of SASMINT against one of the state of the

art schema matching systems, called COMA++ [5]. We used the COMA++ 2005 binary ver-

sion that was the most recent version available at the time of our evaluation tests. We selected

COMA++, because it was the most complete schema matching tool available at the time,

providing a library of variety of matching algorithms and a sophisticated GUI. SASMINT and

COMA++ are comparable as they both support matching of relational schemas and provide

similar functionalities.

Before starting the evaluation tasks, we inserted a number of abbreviations and their

expanded forms into the abbreviation lists of both systems. One important difference between

SASMINT and COMA++ is that SASMINT uses WordNet for semantic matching, whereas

COMA++ requires the user to add all synonyms in schema domains manually. Since WordNet

might not contain all semantic relationships among the concepts of schemas either, we did

not make any addition to the COMA++’s synonyms list, in order to make a fair comparison.

Combination of different metrics or algorithms was done in two systems as follows:

• SASMINT: We selected the default strategy for combining the metrics or algorithms,

which is the weighted sum of them with equal weights used for each metric or algorithm

(i.e. averaging). Although assigning appropriate weights for each match task would give

better results, we decided to use the default strategy in order to make a fair comparison

with COMA++.

• COMA++: We used the default matching strategy of COMA++, which is called as

COMA. The COMA matcher combines the name, path, leaves, parents, and siblings

matchers, by averaging them. In their tests, this combination was the winner and that is

why we selected it.

As for the selection of match results, we used two different approaches that we call as “select

all above threshold” and “select max above threshold”, as detailed below:

(1) Select All above Threshold: Selecting all match pairs that have the similarity above a

certain threshold value. We set the threshold as 0.5 in the experiments.

(2) Select Max above Threshold: Selecting the pairs with the maximum similarity. In

SASMINT, whenever there is more than one concept matching a concept of a schema,

the one with the higher similarity is selected as the matching candidate. If the difference

between the similarity values is smaller than 0.01, then all such matches are selected.

For clarity, if an element X has been found as similar to Y and Z with similarity values

of 0.6 and 0.7 respectively, then only (X, Z) pair is shown in the results as similar. For

the column-column matches, if there is a third element W that has been also found as

similar to X with the value of 0.7, but if the parent table of W is not similar to that of

X , while the parent table of Z is similar to that of X , then (X, Z) pair is selected as the

similar pair. However, if there is no parent table similarity, both (X, Z) and (X, W) are

selected as similar pairs. COMA++’s default selection strategy for the COMA matcher

works as follows: When there is more than one match to the same concept, the one with

123

Semi-automated schema integration 121

the higher similarity is selected if the difference between the similarity values is more

than 0.0080, if not, all of the highest similarity matches are selected.

Although we compared SASMINT with COMA++ for the purpose of schema matching, we

could not carry out functionality comparison for schema integration. COMA++ provides a

simple schema merging functionality, but it is limited and not comparable to SASMINT’s

schema integration. To the best of our knowledge, there is no other system supporting both

schema matching and schema integration. Therefore, we evaluated the integration compo-

nent of SASMINT alone. For this purpose, we used six schemas from the university domain

(UNIV-1, UNIV-2, UNIV-3).

5.2 Experimental evaluation

We carried out two types of experiments with SASMINT and COMA++: one using the “select

all above threshold” strategy and another one using the “select max above threshold” strategy.

We saw that for both systems, the results for the “select all above threshold” strategy were

worse than the results for the “select max above threshold” strategy. However, “select all

above threshold” strategy is important when there is a need to suggest multiple candidates

for each schema element and leave it to the user to identify the correct match among the

alternatives. Instead of proposing only one match candidate for each schema element, which

could be incorrect, the system suggests all possible match candidates, which makes it easier

for the user to determine the final match result. The results of our experiments are provided

below.

5.2.1 Evaluation of schema matching: using the “select all above threshold” strategy

When the precision measure is considered, the results were low for both systems. Low

precision was due to the fact that for element names containing similar tokens, although

the whole names were different, the final similarity result was usually above the threshold.

The systems interpreted all tokens equally, while some tokens had no or little effect in the

meaning. For example, “customer_contact” and “custCity” were identified as similar because

“customer” tag matched “cust” tag (using the abbreviation expansion, “cust” was expanded

as “customer”), but these names were actually not similar. Precision of SASMINT was on

the average 0.58, whereas that of COMA++ was 0.26. This result was because of the high

number of false positives identified by COMA++. In other words, COMA++ identified a

large number of irrelevant matches, which can be a bigger problem when schemas being

compared are large.

As for the recall measure, the result for COMA++ was on the average 0.92, whereas for

SASMINT it was 0.86. However, this happened at the expense of very low precision val-

ues for COMA++. In order to achieve just a bit higher recall values, COMA++ sacrificed

precision, resulting in very low precision values. This is because of the fact that there is

an inverse relationship between the precision and recall. SASMINT missed some correct

matches mostly due to low semantic similarity values it computed for some similar pairs,

such as (product, item) and (suite, room). Especially the gloss-based measure was not as suc-

cessful as we expected. Since the last version of WordNet (3.0) was not available yet for the

Windows operating system, we had to use the previous version (2.0) of WordNet. We think

that when the new version becomes ready, semantic similarity values for both path-based and

gloss-based measures will be more correct.

When F-measure is considered, the difference between SASMINT and COMA++ is

clearer, as shown in Fig. 8. This is due to the fact that F-measure is a combination of precision

123

122 O. Unal, H. Afsarmanesh

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PO HOTEL SDB UNIV-1 UNIV-2 UNIV-3

SASMINT COMA++

Fig. 8 Select all above threshold-results using F-measure

-8

-7

-6

-5

-4

-3

-2

-1

0

1

PO HOTEL SDB UNIV-1 UNIV-2 UNIV-3

SASMINT COMA++

Fig. 9 Select all above threshold-results using Overall

and recall and although recall values for COMA++ were a bit higher than those for SAS-

MINT, precision of SASMINT was much better than COMA++, which resulted in higher

F-measure values for SASMINT.

On the average, overall values for neither SASMINT nor COMA++ turned out to be high,

because of the wrongly identified and missed matches. However, since the number of false

positive matches for COMA++ was very high, it had very low overall values, requiring too

much manual intervention in order to remove these wrongly identified matches. Results based

on the overall measure are shown in Fig. 9.

5.2.2 Evaluation of schema matching: using the “select max above threshold” strategy

Compared to the “select all above threshold” strategy, precision of “select max above thresh-

old” strategy was very high for both systems. This was due to the fact that, in this second

strategy only the most relevant matches were selected. On the average, SASMINT achieved

the precision of 0.95, whereas the average precision of COMA++ was 0.93.

For SASMINT, recall values in the case of “select max above threshold” strategy were

either the same or a bit lower than the ones in the “select all above threshold” strategy. For

COMA++, recall was lower in the “select max above threshold” strategy for all schema pairs.

On the average, SASMINT had the recall value of 0.76, whereas for COMA++ it was 0.72.

As for the F-measure, SASMINT and COMA++ accomplished almost the same for some

test schemas, as shown in Fig. 10. However, for other schemas, SASMINT performed around

123

Semi-automated schema integration 123

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

PO HOTEL SDB UNIV-1 UNIV-2 UNIV-3

SASMINT COMA++

Fig. 10 Select max above threshold-results using F-measure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PO HOTEL SDB UNIV-1 UNIV-2 UNIV-3

SASMINT COMA++

Fig. 11 Select max above threshold-results using Overall

1.1 times better than COMA++. The average F-measure for SASMINT was 0.84, whereas

for COMA++, it was 0.80.

Situation for the overall measure was similar to F-measure. Average overall value for

SASMINT was 0.72, whereas for COMA++, it was 0.65. Complete results for the overall

measure are shown in Fig. 11.

5.2.3 Evaluation of schema integration

In order to evaluate the schema integration component of SASMINT, we used three schema

pairs (i.e. 6 schemas) from the university domain. We had SASMINT integrate two university

schemas at a time, incrementally generating the final integrated schema. Integration process

used the given matches (i.e. correct matches) between schemas. After each integration step,

we measured the completeness and minimality of the integrated schema generated. We saw

that SASMINT produced integrated schemas that were complete and on the average around

0.99 minimal.

5.3 Summary of the results

A brief summary of the experimental evaluation is given below:

• Unlike SASMINT, which uses WordNet’s IS-A hierarchy for identifying semantic

relationships between schema elements, COMA++ requires a list of synonyms. There-

fore, only synonymy relationship is considered and manual effort is required to update

this list with pairs of synonyms from the domain of schemas, which makes COMA++

domain dependent.

123

124 O. Unal, H. Afsarmanesh

• SASMINT and COMA++ both provide a library of matchers. SASMINT provides a

Sampler component, which helps the user to identify the appropriate weight for each lin-

guistic matching metric. On the other hand, COMA++ supports different alternatives for

combining, aggregating, and selecting match results from different metrics, which need

to be set manually. This feature makes it difficult for an inexperienced user to identify

the best combination.

• Representation of schemas through the GUIs is different in two systems. COMA++ does

not explicitly show foreign keys. Instead of showing the foreign key column, it displays

the table being pointed by the foreign key. However, in some cases this functionality does

not work as expected.

• SASMINT stores the results based on the SDML format. This allows the results to be used

for decomposition of queries to be sent to local schemas as well as for semi-automatically

generating an integrated schema of the recipient and donor schemas. COMA++ has an

internal repository for the results, but the user can not identify in which format the results

are stored and it is not clear how to use these results outside of the system.

• In order to compare the quality of schema matching in SASMINT and COMA++, we

carried out experiments based on two types of result selection strategies: (1) select all

above threshold and (2) select max above threshold. Two systems both performed better

in the second approach. When the first approach was used, results for COMA++ were

worse than those for SASMINT. For the second approach, the systems performed almost

the same for some schema pairs, for the remaining pairs SASMINT was better than

COMA++.

• Unlike schema matching, we could not compare the schema integration in SASMINT

with any other system, as explained previously. Schema integration tests with SASMINT

produced promising results. Generated integrated schemas were complete and on the

average around 0.99 minimal.

To sum up, experimental evaluation for the schema matching and schema integration com-

ponents of SASMINT produced promising results. During the experiments, we also verified

that in addition to the quality of matching and integration, another key feature of SASMINT

is the way that it persists the results. SASMINT’s XML-based SDML format allows the

results to be used for decomposition of queries to be sent to local schemas. Furthermore,

since it is in a format easily readable and understandable by the user, results can be modified

by the user without any difficulty.

6 Conclusion and future work

In this paper, we focus on an important challenge: semi-automatic schema matching and

schema integration, for enabling data sharing among collaborating organizations. We address

different types of linguistic and structural conflicts that need to be resolved when dealing

with this challenge. Then, we introduce the SASMINT System to support schema matching

and schema integration as automatically as possible. Unlike other approaches to database

interoperability, which use a limited number of metrics and algorithms, SASMINT uses

different types of metrics and algorithms for schema matching and thus generates more

accurate results. It also provides the Sampler component for semi-automatically identifying

the appropriate weight for each Linguistic Matching metric. The result of matching process

is ultimately displayed to the user who can validate, modify, and store the final mappings.

After that, SASMINT generates an integrated schema based on the validated match results

123

Semi-automated schema integration 125

and using a number of derivation rules. As another contribution, an XML-based derivation

language, called SDML, is defined to capture and persist the match and integration results.

In future work, we plan to support domain ontologies in addition to the use of WordNet.

Therefore, if there is ontology available for that domain, SASMINT will use this ontology in

order to identify semantic similarities, which will enable it to resolve more types of semantic

conflicts. This ontology may also be automatically extended with newly identified seman-

tic relationships. In this case, another important issue to consider is how to build ontologies

[51]. As another future work, Sampler will be further extended to utilize the machine learning

techniques. The “select all above threshold” strategy could be further extended to consider

uncertainty and provide support for probabilistic schema matching, based on the active work

in this field. Another future work could be creating a benchmark for schema matching and

integration. Currently, there is no benchmark available, which necessitates each work to

generate its own set of test schemas and do its own test for evaluation purposes. Therefore,

creation of such a benchmark would be valuable.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-

cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided

the original author(s) and source are credited.

References

1. Afsarmanesh H, Wiedijk M, Hertzberger LO et al (1996) Cooperation of CIM expert systems supported

by PEER. J Stud Inf Control 5(2):157–169

2. Afsarmanesh H, Wiedijk M, Tuijnman F et al (1994) The PEER information management language user

manual. Technical Report. Department of Computer Systems, University of Amsterdam

3. An Y, Mylopoulos J, Borgida A (2006) Building semantic mappings from databases to ontologies. In:

Twenty-First National Conference on Artificial Intelligence (AAAI-06) Nectar Track, Boston

4. Arens Y, Knoblock CA, Shen W-M (1996) Query reformulation for dynamic information integration. J

Intell Inf Syst 6(2/3):99–130

5. Aumueller D, Do HH, Massmann S et al (2005) Schema and ontology matching with COMA++. In: ACM

SIGMOD international conference on management of data. ACM, Baltimore, pp 906–908

6. Aygün RS (2008) S2S: structural-to-syntactic matching similar documents. Knowl Inf Syst 16(3):303–

329

7. Batini C, Lenzerini M (1984) A methodology for data schema integration in the entity relationship model.

IEEE Trans Softw Eng 10(6):650–664

8. Batini C, Lenzerini M, Navathe S (1986) A comparative analysis of methodologies for database schema

integration. ACM Comput Surv 18(4):323–364

9. Bayardo RJ, Bohrer W, Brice R et al (1997) InfoSleuth: agent-based semantic integration of information

in open and dynamic environments. In: ACM SIGMOD international conference on management of data.

ACM, Tucson, pp 195–206

10. Bergamaschi S, Castano S, Vimercati SDCD et al (1998) A semantic approach to information integra-

tion: the MOMIS project. In: Sesto Convegno della Associazione Italiana per l’Intelligenza Artificiale

(AI*IA98), Padova, Italy

11. Bernstein PA, Melnik S, Petropoulos M et al (2004) Industrial-strength schema matching. SIGMOD Rec

33(4):38–43

12. Blondel VD, Gajardo A, Heymans M et al (2004) A measure of similarity between graph vertices:

applications to synonym extraction and Web searching. SIAM Rev 46(4):647–666

13. Candan KS, Kim JW, Liu H et al (2006) Discovering mappings in hierarchical data from multiple sources

using the inherent structure. Knowl Inf Syst 10(2):185–210

14. Chiticariu L, Kolaitis PG, Popa L (2008) Interactive generation of integrated schemas. In: ACM SIGMOD

international conference on management of data. ACM, Vancouver, pp 833–846

15. Choi N, Song I-Y, Han H (2006) A survey on ontology mapping. SIGMOD Rec 35(3):34–41

16. Cleverdon CW, Keen EM (1966) Aslib–Cranfield research project. Technical Report. Cranfield Institute

of Technology, Cranfield

123

126 O. Unal, H. Afsarmanesh

17. Dayal U, Hwang H-Y (1982) View definition and generalization for database integration in multibase: a

system for heterogeneous distributed databases. In: Berkeley workshop, pp 203–238

18. Do HH, Rahm E (2002) COMA—a system for flexible combination of schema matching approaches.

In: International conference on very large databases (VLDB), VLDB Endowment. Hong Kong, China,

pp 610–621

19. Doan AH, Domingos P, Halevy A (2001) Reconciling schemas of disparate data sources—a machine-

learning approach. In: ACM SIGMOD international conference on management of data. ACM, Santa

Barbara, pp 509–520

20. ElMasri R, Larson J, Navathe SB (1987) Integration algorithms for federated databases and logical data-

base design. Technical Report. Honeywell Corporate Systems Development Division

21. Embley DW, Xu L, Ding Y (2004) Automatic direct and indirect schema mapping: experiences and

lessons learned. SIGMOD Rec 33(4):14–19

22. Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Heidelberg p 445

23. Fellbaum C (1998) An electronic lexical database. MIT press, Cambridge p 445

24. Gal A (2006) Managing uncertainty in schema matching with Top-K schema mappings. J Data Semant

Special Issue Emerg Semant 6:90–114

25. Gal A (2007) Why is schema matching tough and what can we do about it. SIGMOD Rec 35(4):2–5

26. Garcia-Molina H, Papakonstantinou Y, Quass D et al (1997) The TSIMMIS approach to mediation: data

models and languages. J Intell Inf Syst 8(2):117–132

27. Giunchiglia F, Yatskevich M, Shvaiko P (2007) Semantic matching: algorithms and implementation.

J Data Semant 9:1–38

28. Goh C, Bresson S, Madnich S et al (1999) Context interchange: new features and formalisms for the

intelligent integration of information. ACM Trans Inf Syst 17(3):270–293

29. GraphML (2008) http://graphml.graphdrawing.org/

30. GXL (2008) http://www.gupro.de/GXL/

31. Haase P, Siebes R, Harmelen Fv (2008) Expertise-based peer selection in peer-to-peer networks. Knowl

Inf Syst 15(1):75–107

32. Jaccard P (1912) The distribution of flora in the alpine zone. New Phytol 11(2):37–50

33. Jaro MA (1995) Probabilistic linkage of large public health data files. Stat Med 14:491–498

34. JGraph (2008) http://www.jgraph.com/

35. JGraphT (2008) http://jgrapht.sourceforge.net/

36. Kalfoglou Y, Schorlemmer M (2003) Ontology mapping: the state of the art. Knowl Eng Rev J 18(1):1–31

37. Lesk M (1986) Automatic sense disambiguation using machine readable dictionaries: how to tell a pine

code from an ice cream cone. In: 5th international conference on systems documentation. Toronto, Ontario,

Canada, pp 24–26

38. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Cybern

Control Theor 10(8):707–710

39. Li W, Clifton C (2000a) SEMINT: a tool for identifying attribute correspondence in heterogeneous dat-

abases using neural networks. J Data Knowl Eng 33(1):49–84

40. Li W, Clifton C, Liu SY (2000b) Using neural networks: implementation and experiences. Knowl Inf

Syst 2(1):73–96

41. Madhavan J, Bernstein PA, Rahm E (2001) Generic schema matching with cupid. In: International con-

ference on very large databases (VLDB). Morgan Kaufmann, San Francisco, pp 49–58

42. Magnani M, Montesi D (2007) Uncertainty in data integration: current approaches and open problems.

In: International VLDB workshop on management of uncertain data, pp 18–32

43. Mannino MV, Effelsberg W (1984) A methodology for global schema design. Technical Report, Computer

and Information Sciences Department, University of Florida

44. Melnik S, Garcia-Molina H, Rahm E (2002) Similarity flooding: a versatile graph matching algorithm

and its application to schema matching. In: International conference on data engineering. IEEE Computer

Society, San Jose, CA, USA, pp 117–128

45. Melnik S, Rahm E, Bernstein PA (2003) Rondo: a programming platform for generic model management.

In: ACM SIGMOD international conference on management of data, pp 193–204

46. Mena E, Illarramendi A, Kashyap V et al (2000) OBSERVER: an approach for query processing in global

information systems based on interoperation across pre-existing ontologies. Distrib Parallel Databases J

8(2):223–271

47. Miller RJ, Haas LM, Hernandez MA (2000) Schema mapping as query discovery. In: International con-

ference on very large databases (VLDB). Morgan Kaufmann, Cairo, pp 77–88

48. Monge AE, Elkan C (1996) The field matching problem: algorithms and applications. In: Second inter-

national conference on knowledge discovery and data mining. AAAI Press, Portland, pp 267–270

123

http://graphml.graphdrawing.org/
http://www.gupro.de/GXL/
http://www.jgraph.com/
http://jgrapht.sourceforge.net/

Semi-automated schema integration 127

49. Motro A, Buneman P (1981) Constructing superviews. In: ACM SIGMOD international conference on

management of data, ACM, Ann Arbor, pp 56–64

50. Nottelmann H, Straccia U (2007) Information retrieval and machine learning for probabilistic schema

matching. Inf Process Manage 43(3):552–576

51. Pinto HS, Martins JP (2004) Ontologies: how can they be built. Knowl Inf Syst 6(4):441–464

52. Pottinger R, Bernstein PA (2008) Schema merging and mapping creation for relational sources. In: Inter-

national conference on extending database technology (EDBT). ACM, Nantes, pp 73–84

53. Pottinger RA, Bernstein PA (2003) Merging models based on given correspondences. In: International

conference on very large databases (VLDB). Morgan Kaufmann, Berlin, pp 826–873

54. Rahm E, Do HH, Massmann S (2004) Matching large XML schemas. SIGMOD Rec 33(4):26–31

55. Rijsbergen CJV (1979) Information retrieval. Butterworth, London

56. Saleem K, Bellahsene Z, Hunt E (2008) PORSCHE: Performance ORiented SCHEma mediation. Inf Syst

33(7–8):637–657

57. Salton G, Yang CS (1973) On the specification of term values in automatic indexing. J Documentation

29:351–372

58. Sheth A, Larson J (1990) Federated database systems for managing distributed, heterogeneous, and auton-

omous databases. ACM Comput Surv 22(3):183–236

59. Tuijnman F, Afsarmanesh H (1993) Management of shared data in federated cooperative PEER environ-

ment. Int J Intell Cooperation Inf Syst 2(4):451–473

60. Unal O, Afsarmanesh H (2006a) Interoperability in collaborative network of biodiversity organizations.

In: 7th PRO-VE. Springer, Helsinki, pp 515–524

61. Unal O, Afsarmanesh H (2006b) SASMINT system for database interoperability in collaborative net-

works. In: OTM conferences, Lecture Notes in Computer Science. Springer, Montpellier, pp 91–108

62. Unal O, Afsarmanesh H (2006c) Using linguistic techniques for schema matching. In: International

conference on software and data technologies. INSTICC Press, Setubal, pp 115–120

63. Wan X (2008) Beyond topical similarity: a structural similarity measure for retrieving highly similar

documents. Knowl Inf Syst 15(1):55–73

64. Wang G, Goguen J, Nam Y et al (2004) Critical points for interactive schema matching. In: Sixth Asia

Pacific web conference. Lecture Notes in Computer Science, Springer, pp 654–664

65. Wu Z, Palmer M (1994) Verb semantics and lexical selection. In: 32nd annual meeting of the association

for computational linguistics. Association for Computational Linguistics, Las Cruces, pp 133–138

Author Biographies

Ozgul Unal received her Bachelors degree from the Department of

Computer Engineering at Middle East Technical University in Turkey

and a Masters degree from the Department of Information Systems

at the same university. Since September 2002, she is a PhD student

at the Computer Science Department of the Faculty of Science of the

University of Amsterdam, in the Netherlands. She has been involved

in several European and Dutch national research projects, focusing on

the analysis, design and implementation of the Federated Information

Management Systems in the domain of Bio-Sciences. Her current re-

search areas include resolution of syntactic, semantic, and structural

heterogeneities among database schemas in order to support (semi-)

automatic schema matching and integration.

123

128 O. Unal, H. Afsarmanesh

Dr. Hamideh Afsarmanesh is an associate professor of Computer

Science at the University of Amsterdam in the Netherlands, where she

heads the COLNET group at the Informatics Institute. She obtained

her PhD from the University of Southern California (USC) in 1985.

Her current research focus and projects address Federated Cooperative

Databases and their automated schema integration, reference model-

ing and development of infrastructure/support tools for Virtual Organi-

zations/Virtual Laboratories/Virtual Communities, and delivering proof

of concepts applicable to domains such as Manufacturing, Tele-assis-

tance, and Overdiversity. She is a member of the editorial board of the

journals of IJITM, IJASM, IJMLO, and IJEA. She has been involved

in initiation/organization of the PRO-VE and BASYS conferences. She

has co-authored and co-edited more than 15 books, and published more

than 150 articles. She is the chair of general assembly in Society of

Collaborative Networks (SOCOLNET). She is the Dutch representative

at the IFIP TC5, and the chair of WG5.5.

123

	Semi-automated schema integration with SASMINT
	Abstract
	1 Introduction
	2 Schema conflicts
	3 The SASMINT system
	3.1 Assigning weights and identifying the selection criteria
	3.2 Loading and translating schemas
	3.3 Matching schemas
	3.3.1 Linguistic matching
	3.3.2 Structural matching
	3.3.3 Result generation after schema matching

	4 Schema integration with SASMINT
	4.1 SASMINT derivation language
	4.2 Schema integration rules

	5 Experimental evaluation of SASMINT
	5.1 Experimental setup
	5.2 Experimental evaluation
	5.2.1 Evaluation of schema matching: using the ``select all above threshold'' strategy
	5.2.2 Evaluation of schema matching: using the ``select max above threshold'' strategy
	5.2.3 Evaluation of schema integration

	5.3 Summary of the results

	6 Conclusion and future work
	References

