
Received 15 June 2020; revised 6 October 2020 and 8 December 2020; accepted 30 December 2020. Date of publication 21 January 2021;

date of current version 12 February 2021.

Digital Object Identifier 10.1109/OJITS.2021.3053337

Semi-Automatic Framework for Traffic
Landmark Annotation

WON HEE LEE, KYUNGBOO JUNG, CHULWOO KANG, AND HYUN SUNG CHANG (Member, IEEE)
Multimedia Processing Laboratory, Samsung Advanced Institute of Technology, Suwon 16678, South Korea

CORRESPONDING AUTHOR: H. S. CHANG (e-mail: hyun.s.chang@samsung.com)

Data is available on-line at https://ieee-dataport.org/documents/sait-traffic-landmark-dataset.

ABSTRACT We present a semi-automatic annotation method to build a large dataset for traffic landmark

detection, where traffic landmarks include traffic signs, traffic lights as well as road markings. Labor-

intensive bounding box tagging is a huge challenge to generate a large dataset for detection algorithms. To

mitigate the labor, we adopt a high-definition (HD) map and a positioning system. We propose a process

to align the HD map and images semi-automatically. Through the registration, the annotations of the HD

map can be directly tagged onto traffic landmarks in the images. To make full use of the HD map for the

dataset generation, we annotate the traffic landmarks with reference points, following the way that they

are represented in the HD map, instead of the bounding boxes. The proposed semi-automatic method

speeds up the annotation by a factor of 3.19, as compared to the manual annotation. Our dataset consists

of about 150,000 images and includes about 470,000 annotated traffic landmarks. We train a deep neural

network on our dataset to detect the traffic landmarks, and its performance is evaluated using a novel

evaluation metric. Moreover, we show that the pretrained traffic landmark detection network is effective

in detecting traffic landmarks in other countries using the bounding box by fine-tuning.

INDEX TERMS Detection algorithms, image databases, image registration, intelligent vehicles, sensor

systems.

I. INTRODUCTION

TRAFFIC signs, traffic lights, and road markings, which

we collectively call traffic landmarks, have been widely

used in various traffic-related applications. For using such

traffic landmarks in vision-based applications, it is necessary

to know their locations and types in input images. Thus, var-

ious algorithms have been studied to detect traffic signs [1],

[2], [3], traffic lights [4], [5], [6], and road markings [7]. To

train and test detection algorithms, image datasets annotated

with bounding boxes and class labels of objects are required.

Several traffic-related datasets for detection algorithms are

publicly available. The German traffic-sign detection bench-

mark (GTSDB) dataset [2] has been widely used in traffic

sign detection studies. The GTSDB dataset consists of 600

training images and 300 evaluation images annotated with

bounding boxes and class labels of 43 types of German traf-

fic signs. The LISA traffic sign dataset [8] is another widely

used dataset. It is designed for U.S. traffic sign detection

The review of this article was arranged by Associate Editor Jiwon Kim.

and consists of more images than GTSDB. The LISA dataset

contains 6,610 images annotated with class labels of 49 types

of traffic signs and their bounding boxes. The Bosch small

traffic lights dataset [6] is a dataset widely used in traffic

light detection research. This dataset consists of 5,093 train-

ing images and 8,334 test images. These numbers are similar

to those of the LISA dataset. The four categories of the traf-

fic light signal and the bounding box indicating the location

of the traffic light are annotated. Recently, Lee et al. [9] have
built a dataset for lane and road marking benchmark which

consists of 20,000 images. The lanes and road markings are

annotated with pixel masks because it is difficult to indicate

their locations using the bounding boxes.

With recent developments in deep learning, vision-based

object detection algorithms have been greatly improved by

adopting neural networks with a large number of param-

eters [10], [11]. To prevent overfitting and improve the

generalization of the neural network to new data, train-

ing data should be collected such that their distribution is

close enough to the real data distribution. Unfortunately,
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the datasets mentioned above contain an insufficient num-

ber of images to train a deep neural network, because

time-consuming and labor-intensive bounding box tagging

task makes it difficult to generate a large dataset for detec-

tion algorithms. With the need for a large traffic dataset

for detection, Zhu et al. [12] created the Tsinghua-Tencent

100K dataset, which is a Chinese traffic sign dataset of

100,000 images annotated with class labels, bounding boxes,

and pixel masks. Although they created a large dataset, the

inevitable manual bounding box tagging remains a huge

challenge for generating larger datasets.

To solve this problem, we propose a semi-automatic anno-

tation framework to build traffic datasets. In this framework,

we first acquire and store image sequences and real-time

location data of the vehicle through real driving. The location

data are obtained from a positioning sensor that integrates

the Global Navigation Satellite System (GNSS) and the

Inertial Navigation System (INS). Next, we manually spec-

ify guide points in the acquired image which are used to

define a score function assessing the degree of alignment

between the image and the HD map. Then, the vehicle posi-

tion is corrected by optimizing the score function. Lastly,

the annotations of traffic landmarks are transferred from

the HD map to the aligned images. Our contributions are

as follows:

• We design a semi-automatic annotation framework to

facilitate the construction of a large traffic dataset

for detection. The dataset generated with our frame-

work includes about 150,000 images and annotations of

about 470,000 traffic landmarks such as traffic signs,

traffic lights, and road markings. Our dataset is primar-

ily targeted for localization based on traffic landmark

detection.

• We migrate a generic object detection network for

detecting reference points of traffic landmarks because

reference points are commonly used in HD maps as the

traffic landmark representation. We train the detection

network with our dataset and evaluate the results on the

datasets.

• We show that the traffic landmark detection network

trained on our dataset can be applied for detection of

traffic landmarks of various countries with bounding

boxes by finetuning on public traffic datasets.

This article is organized as follows. Section II gives a

brief overview of HD maps and studies on traffic landmark

detection. Our framework and procedure of dataset gener-

ation are described in Section III. Experimental results are

presented and discussed in Section IV. Finally, Section V

concludes our work.

II. RELATED WORK

In this section, we briefly introduce HD maps and their

reference points. Subsequently, deep learning-based traffic

landmark detection algorithms are reviewed.

A. HIGH-DEFINITION MAP AND REFERENCE POINTS

With the growing interest in autonomous driving, the need

of high precision localization is increasing. HD maps

are essential for high precision localization using vision

sensors. Commercial map providers, such as HERE [13]

and TomTom [14], produce HD maps annotated with 3D

geographic and semantic information on traffic landmarks

within an accuracy of 10 cm. As these map providers

expand the range of the maps in various countries, HD

maps are expected to be used in various studies on intel-

ligent vehicles. Ride-sharing platform companies such as

Lyft Level 5 [15] sometimes create their own HD maps for

localization of autonomous vehicles. Crowd-souring is also

widespread, utilizing in-vehicle diagnostic data or smart-

phone sensor data from many sources and generating HD

maps at low cost [16], [17], [18], [19]. Along with the above

individual efforts to create HD maps, there are also activi-

ties that emphasize the standardization of HD maps [20]. In

South Korea, the National Geographic Information Institute

(NGII) [21] builds HD maps with accuracy comparable to

that of the HD maps provided by HERE and TomTom.

An HD map is created by processing data from a mobile

mapping system equipped with LiDAR, GNSS, INS, and

camera sensors [22], [23]. The mobile mapping system gen-

erates a geographic 3D point cloud by integrating local 3D

point cloud data acquired from the LiDAR and geographic

position and attitude of the system from the GNSS and INS.

Referring to the camera images, the geographic 3D positions

of traffic landmarks are stored in the HD map along with

the semantic information. As it is difficult to store all 3D

points of the HD map components because of the capac-

ity problems, only a small number of representative points,

referred to as reference points throughout this article, are

stored. For polygonal components such as a crosswalk, the

reference points are the points that constitute the polygon.

Linear components such as lane markings and curbs use

the center points of the line segments as reference points.

Pointwise components, such as traffic lights and traffic signs,

usually have their center points as reference points. Note that

in the NGII HD map used in our experiments, a road mark-

ing is stored in the form of a point rather than a polygon,

and its reference point is located at the lower right corner

(for example, see Fig. 5(b)).

The proposed semi-automatic annotation framework

inevitably relies on the HD maps containing the 3D location

and semantic information of traffic landmarks as well as of

lane lines. Accordingly, the applicability of this method is

limited, but it is expected to grow rapidly as HD maps are

widely built and deployed around the world.

B. TRAFFIC LANDMARK DETECTION

Detection algorithms of traffic signs, traffic lights, road

markings, or lanes, which are installed along the road, are

essential elements of advanced driver assistance systems and

autonomous driving systems. Recently, various algorithms
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relying on deep learning have been developed. Zhu et al. [12]
applied a convolutional neural network (CNN) to traffic

sign detection. For a robust deep learning-based algorithm,

they created a Chinese traffic sign dataset (Tsinghua-Tencent

100K) containing 100,000 images and confirmed its effec-

tiveness. Another CNN-based method [24] was proposed

to identify traffic sign locations using a fully convolutional

network and to classify traffic sign types using a CNN.

Their experiments were performed on the Swedish Traffic

Signs dataset. Arcos-García et al. [25] applied various object

detection algorithms to traffic sign detection with various

deep networks for feature extraction, and they compared

the results using the GTSDB. Qian et al. [26] proposed a

fast-RCNN-based road marking detection system, which was

trained and tested on their own road marking dataset of the

U.K. Kim et al. [27] proposed a two-step method to find

traffic light candidates based on a deep neural network and to

detect false traffic lights using a point-based reward system.

The U.S. traffic light dataset was collected for training and

evaluation of the proposed method.

Because traffic environments are different in different

countries, the datasets are also different. Thus, the learning-

based methods introduced above are bound to depend on

the datasets used for their training. Direct application of a

method trained on one country’s dataset to another is diffi-

cult. To alleviate this difficulty, we investigate whether the

knowledge of large traffic datasets collected in one coun-

try is also effective in detecting traffic landmarks in other

countries.

III. DATASET GENERATION

To generate a dataset, data acquisition and annotation should

be performed. In the data acquisition process, data from

several sensors are acquired simultaneously. In the annotation

process, the HD map and images are semi-automatically

aligned. Our dataset consists of 155,197 images and 468,651

instances. The dataset is published and publicly available at

IEEE Dataport [28].

A. SENSOR DESCRIPTION AND DATA COLLECTION

A dataset for traffic landmark detection contains localization

data and image data. For localization data acquisition, a high-

accuracy GNSS/INS integrated system is utilized. For image

data acquisition, commercial-level image sensors are used.

Detailed specifications of the sensors are provided below.

• Novatel SPAN-CPT RTK GNSS/INS Positioning System:
6 axis, sampling rate: 100 Hz, location accuracy: 0.01 m,

velocity accuracy: 0.02 m/s, attitude accuracy:

0.05◦ (pitch/roll), 0.1◦ (azimuth angle).

• OnSemi AR0134 CMOS Sensor: 1/3′′, 1.2 Megapixels

(1280×960), global shutter, 54 fps, focal length: 6 mm.

OnSemi MT9M024 CMOS sensor. 1/3′′, 0.9 Megapixels

(1280 × 720), electronoic rolling shutter, 60 fps, focal

length: 6mm.

The camera is mounted on the windshield in the front

direction, and the localization sensor, GNSS/INS integrated

system, is located on the floor under the driver’s seat. Camera

calibration for intrinsic parameters and calibration for extrin-

sic parameters between the camera and the positioning sensor

are performed prior to the data acquisition. We assume that

the camera and the positioning sensor are fixed on the rigid

frame.

Our dataset was collected in an urban area of Seoul and

suburban areas of Suwon, Hwaseong, Yongin, and Seongnam

in South Korea at different times of the day. Images taken in

the morning or evening included a large number of saturated

areas due to exposure to direct sunlight. Most images taken

under the low light condition of the late evening were low-

contrast. The images taken at noon included the reflection of

the windshield due to strong sunlight. These various elements

contribute to the development of a robust detection algorithm

because they can be encountered in a real test environment.

B. SEMI-AUTOMATIC ANNOTATION

Annotation is the main difficulty in constructing a traffic

dataset for detection because annotating images with bound-

ing boxes and class types is labor-intensive. To reduce the

manual labeling effort, we suggest using an HD map for

annotation, as HD maps contain geo-locations and class

types of traffic landmarks that can be used for localiza-

tion. Specifically, once an image has been obtained from

the region where the HD map exists, class types and their

image coordinate position can be tagged by projecting the

3D geolocation of traffic landmarks in the HD map onto

the images using the precise location. As precise localiza-

tion is difficult, we obtain the location and attitude of the

vehicle from the positioning system synchronized with the

camera. Although the accuracy of the positioning system is

centimeter-level, the projected traffic landmarks and lanes

are misaligned due to the dynamic positioning error and the

calibration error of the coordinate systems of the position-

ing system and camera. For example, when the HD map

is projected onto the image using the position and attitude

directly obtained by the positioning system, the projected

positions of the traffic landmarks and lanes are misaligned

with those in the image, as shown in Fig. 1(a). Therefore,

registration between the HD map and the image is important

when creating the dataset.

Since it is difficult to automatically align HD maps and

images with high accuracy, human intervention is involved

in the registration process illustrated in Fig. 2. There are

two manual interventions involved in the registration process.

One intervention is to specify where the linewise components

of the map are to be located in the image by selecting

multiple guide points. The other intervention is to pair the

misaligned pointwise components with their actual positions.

Manual interventions need not be thorough, so it is allowed

to skip some landmarks especially if they are occluded and

thus are not visible in the image. Examples of selected points

and pairs are illustrated by blue crosses and magenta arrows

in Figs. 1(b) and 1(d). Note that the different process for two

types of components is due to the ambiguity in specifying
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FIGURE 1. Visualization of the proposed annotation procedure. The HD map is initially misaligned with the image, It , in (a). For the semi-automatic registration, guide points

for linewise components are designated as (b) and misaligned pointwise components are paired with their actual positions as (d). The score functions of the linewise and the

pointwise components are visualized using heatmaps in (c) and (e), respectively. By applying the optimized position correction parameter, the HD map is transformed to be

aligned with the image as shown in (f). The same parameter can be applied to the following frames, e.g., It+17�t in (g). When the frame is out of alignment, e.g., It+23�t , a new

registration procedure is performed, as shown in (h) and (i).

the correspondence points of the linewise components. In

order to align the HD map with the image using the manual

selections, we define a score function to maximize in terms

of 6-DOF pose correction parameters.

To formulate the score function, we start by defining

mathematical notations. Let w be a four-dimensional vector

comprising the 3D coordinate (x, y, z) of an HD map com-

ponent, represented in the camera coordinate system, and

1, i.e., w =
[

x; y; z; 1
]

. We use superscript L for linewise

component (wL) and superscript P for pointwise component

(wP) to distinguish between the two types, and use subscripts

whenever we specifically denote individual samples (wL
i or

w
P
i ). Note that the camera geolocation is required to obtain

w
L and w

P in camera coordinates.

A pose correcting transformation is typically represented

by T = [R | t], where R and t denote a 3D rotation matrix

and a translation vector. Although R is a 3×3 matrix, it must

belong to the special orthogonal group, only having three

degrees of freedom. Generally, it should be decomposable

into

R =

⎡

⎣

cz −sz 0

sz cz 0

0 0 1

⎤

⎦

︸ ︷︷ ︸

=Rz

⎡

⎣

1 0 0

0 cx −sx
0 sx cx

⎤

⎦

︸ ︷︷ ︸

=Rx

⎡

⎣

cy 0 sy
0 1 0

−sy 0 cy

⎤

⎦

︸ ︷︷ ︸

=Ry

,

(1)
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FIGURE 2. Procedure of the proposed semi-automatic registration. The HD map

components, wL and wP, are projected onto the image, It , using the current pose

correcting transformation, Tt . If aligned, the parameter is stored for the next frame.

Otherwise, manual intervention to specify the actual positions of the HD map

components is conducted. Through the optimization, a new correcting transformation

is estimated.

where cv = cos(θv), sv = sin(θv), for v = x, y, z. We call

θz, θx, θy Tait-Bryan angles [29] or roll, pitch, yaw in the

respective order.

Then, given the camera intrinsic matrix K, the HD map

component w is projected onto the pixel u = �(KTw) in

the image, where � is the perspective projection function,

i.e., � : (x, y, z) �→ (x/z, y/z). The intrinsic matrix K is

usually represented by

K =

⎡

⎣

fx k px
0 fy py
0 0 1

⎤

⎦. (2)

Here, fx and fy are focal lengths, k is the skew parameter,

and px and py represent the principal point. These parameters

are independent of T and can be calibrated in advance.

We are now ready to formulate the score function. Let us

denote the manually designated guide points by x
L
i and x

P
i .

For pointwise components, uPi and x
P
i have an explicit one-to-

one correspondence between the two, and the score function

should increase as uPi becomes close to x
P
i . This is basically

the same as what the conventional 3D-2D point registration

does. However, this strategy does not hold for linewise com-

ponents with which such correspondence is unavailable. The

score function should be designed to increase if uLi matches

any of x
L
j and not to be penalized excessively even if it

founds no match. Keeping this in mind, we write the score

function as

s(T) =
∑

i

∑

j

e
−

∥
∥
∥u

L
i −x

L
j

∥
∥
∥

2

/2σ 2

2πσ 2n
− α

∑

i

∥
∥u

P
i − x

P
i

∥
∥,

subject to u
L
i = �

(

KTw
L
i

)

, uPi = �
(

KTw
P
i

)

. (3)

Here, n is the number of the user-designated guide points

for the linewise components (xLj ). The values of σ and α

are set to 51 and 1, respectively.

The score function in (3) has the form of Gaussian mix-

ture with respect to u
L
i and the negative Euclidean distance

with respect to u
P
i , as illustrated by heatmaps in Figs. 1(c)

and 1(e). Unlike the conventional 3D-2D point registration,

the reason for including the linewise components in reg-

istration is to maintain the correct pose for every frame

and to ultimately reduce our manual intervention. Driving

scenes often have fewer pointwise components than required

by the conventional 3D-2D point registration algorithm (e.g.,

perspective-n-point solution [30]). In contrast, linewise com-

ponents are almost everywhere and help to successfully

perform the registration even in situations where the number

of pointwise components is scarce.

We convert (3) into an unconstrained problem by replacing

u
L
i , u

P
i in s(T) with �(KTw

L
i ) and �(KTw

P
i ), respec-

tively, i.e.,

s(T) =
∑

i

∑

j

e
−

∥
∥
∥�

(

KTw
L
i −x

L
j

∥
∥
∥

2

/2σ 2

2πσ 2n

− α
∑

i

∥
∥�

(

KTw
P
i

)

− x
P
i

∥
∥. (4)

Recall that matrix T is parameterized by θx, θy, θz and t =

(tx, ty, tz). To maximize (4) with respect to these six scalar

variables, we use fminsearch, a built-in MATLABTM

function which is based on the Nelder-Mead search algo-

rithm [31]. Also known as downhill simplex method, the

Nelder-Mead method is a heuristic but very popular method

for multi-dimensional unconstrained optimization. Because

it is based on direct comparison between function values, it

is gradient-free and often applied to nonlinear optimization

problems for which derivatives may not be known. In our

case, the Nelder-Mead algorithm maintains a 6D polytope

with seven vertices, with each vertex corresponding to a

candidate solution, and iteratively updates the polytope by

replacing the worst vertex with a new one. The new can-

didate solution is usually obtained by reflecting the worst

vertex through the centroid of the others and occasionally

by contracting the worst vertex toward the centroid (in case

that reflection turns out to make no improvement). If nei-

ther of these replacement schemes works well, the algorithm

shrinks the polytope in all directions, pulling it around the

best point. The Nelder-Mead method is very efficient, while

it possibly converges to a non-stationary point. Interested

readers can refer to [32] for more details and analysis on

the algorithm.

As a result of the optimization, we obtain T with which

the HD map becomes aligned with the entire image as

shown in Fig. 1(f). The alignment is maintained even when

the correction parameter is applied to the following frames.

Therefore, we apply the same correction parameters to the

subsequent frames until the alignment is maintained, as
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shown in Fig. 1(g), and then a new human intervention and

optimization process are performed at the frame that is out

of alignment like in Fig. 1(h).

Although the HD map and the images are exactly aligned,

the traffic landmark dataset contains outliers because a dis-

crepancy may occur between the map information and the

images. For example, the image and the map information

may be different owing to the occlusion caused by the front

vehicle or the roadside trees when acquiring the image.

Back-facing traffic signs are also outliers because their cat-

egories cannot be predicted by the image. In addition, the

traffic structure at the time of the map creation can dif-

fer from that during the image acquisition. To deal with

these outliers, we simply select and tag them as such.

A similar procedure used for aligning the map and the

image is also utilized here. Outliers are tagged only in

one frame with human intervention, and then the tagged

outliers are propagated to subsequent frames until there is

a change.

Note that using the optimized position correction param-

eters, all information contained in the HD maps can be

converted into datasets. For example, not only lanes, curbs,

stop lines, etc., but also pedestrian crossings and median

strips can be converted into datasets. In addition to the

information contained in the HD map, data generated by pro-

cessing the HD map information, such as vanishing points,

can also be created in the dataset. Furthermore, by aligning

the overall instances in the image with the HD map, the

variance of annotation position errors can be reduced, as

compared to the manual annotation, and reliable annotation

results can be consistently obtained.

C. DATASET STATISTICS

Our traffic landmark dataset consists of 155,197 images

taken in various places in South Korea. The video frame

rate is about 8 frames per second. As we collected images

using two different image sensors, there are two types of

image sizes: 1280 × 720 and 1280 × 960. Only the traffic

landmarks located within 80 m from where the image is cap-

tured are used for annotation. Annotated classes are six traffic

landmark types: warning sign, prohibition sign, mandatory

sign, supplementary sign, traffic light, and road marking.

Although the classes in our dataset are divided into major

categories according to the shape of the traffic landmark, a

class can be further subdivided using the subclasses stored

in the HD map. For example, traffic light subclass can be

horizontal light, vertical light, pedestrian light, etc. The sub-

categorization costs nothing if and only if it is confined to

the subclasses defined in the HD map. Any other subclasses,

e.g., dynamic status of traffic light such as “red-on traffic

light,” would require additional annotation. The number of

instances for each class is listed in Table 1. The images are

taken in various regions, but a data imbalance between the

traffic light class and the other classes is observed. Although

there is the data imbalance, the number of instances of the

minority class is more than 10,000. Therefore, it seems to

TABLE 1. Number of instances for each class in the traffic landmark dataset.

be sufficient for the application to machine learning-based

algorithms.

IV. EXPERIMENTAL RESULTS

In this section, we compare the effectiveness of our semi-

automatic annotation method and the manual annotation. We

also attempt to learn a traffic landmark detector with our

dataset. Because our dataset uses reference points as the

landmark representation, we modify the single shot multibox

detector (SSD) [10] to regress the location of the reference

point as well as the class of each landmark. Subsequently, we

perform various experiments to evaluate the detector trained

on our dataset. Details for training the detection network are

provided, and the metric for evaluating the performance of

the reference point detection is discussed. Then, the detection

results are analyzed on our dataset. In addition, we finetune

the network pretrained on our dataset to various public traffic

datasets and compare the results with those obtained using

the network pretrained on common object detection datasets.

A. EFFECTIVENESS OF SEMI-AUTOMATIC ANNOTATION

To examine the effectiveness of the proposed semi-automatic

annotation, over the manual annotation of the reference

points, the number of clicks per frame and the cumula-

tive time required to annotate 1,000 frames are compared.

The manual annotation requires clicks to locate reference

points and assign their class labels. Meanwhile, the semi-

automatic annotation requires clicks for the registration. The

class labels are directly assigned from the HD map annota-

tions. In Fig. 3, in the case of the manual annotation, multiple

clicks are required in a majority of frames. The numbers of

clicks are proportional to the numbers of traffic landmarks in

the frames. As can be seen in the cumulative annotation time

graph, the annotation time increases rapidly in frames with

a large number of traffic landmarks. In contrast, the semi-

automatic annotation does not require clicks in a majority of

frames, and requires a relatively large number of clicks only

in misaligned frames. In the semi-automatic annotation, the

average number of clicks per frame is 1.83, which is signif-

icantly lower than 10.68 required for the manual annotation.

The speed-up factor in the annotation time is 3.19, as com-

pared to the manual annotation of the reference points. In
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FIGURE 3. Our semi-automatic annotation versus manual annotation. The number

of clicks and the cumulative time required to annotate 1,000 frames are compared. Our

semi-automatic annotation requires only 1.83 clicks on average, which is considerably

lower than 10.68 clicks in the manual annotation. The annotation speed-up factor is

3.19.
TABLE 2. Average distance and mean average precision results evaluated on our

datasets.

the case of bounding box annotation, a significantly higher

speed-up factor is expected.

B. TRAINING TRAFFIC LANDMARK REFERENCE POINT

DETECTION

Traffic landmarks are often detected in the form of a bound-

ing box [5], [6], [7], [33], or they sometimes can be detected

in the form of a grid-level mask [9]. In contrast, the traf-

fic landmarks in the HD map are represented in the form

of a reference point. Since the reference points are mainly

used for HD map-based localization [34], it is beneficial

to directly detect traffic landmarks in the form of reference

point. Otherwise, additional post-processing is required to

find the image coordinate corresponding to the reference

point of the detected landmark [35].

To detect the reference points, we modify the single shot

multibox detector (SSD) [10], which is often used for object

detection. Unlike the SSD which regresses the center position

and size of bounding boxes, our detector localizes traffic

landmarks only with the coordinate of the reference points.

Moreover, we do not apply the multibox of the original

method because various sizes and shapes of the bounding

box are not required for detection of the reference points.

In addition, we change the base network to MobileNet [36]

for efficiency.

In the training, we use an RMSProp [37] optimizer with

an initial learning rate of 0.0005 and weight decay of 0.0005.

We train our network over 800k iterations where the learning

rate decreases every 200k iterations by a factor of 2. We

used a batch size of 64. To accommodate a large batch, we

FIGURE 4. Precision-recall curves of each class. The overall performance of

detecting classes is similar, except for the supplementary sign class. The detector

performance tends to degrade because the supplementary signs do not have a

common pattern unlike other signs.

FIGURE 5. Qualitative results of the traffic landmark reference point detection.

Warning, prohibition, mandatory, and supplementary signs, traffic light, and road

marking are marked with yellow, magenta, cyan, blue, green, and red circles,

respectively. Ground truth landmarks are marked with crosses. Note that the reference

point of road marking is the bottom right corner of the marking. Our detector

successfully localizes the reference points of the traffic landmarks of various scales,

in different directions, and under different lighting conditions.

reduce the size of the input images. Rescaling is usually

performed in training general object detectors. However, as

traffic landmarks, such as traffic lights and traffic signs,

occupy small areas in the images, the image information of

a majority of traffic landmarks will be lost after rescaling.

For this reason, cropped images centered on traffic landmarks

with random displacement were used for the training.

C. EVALUATION METRICS FOR REFERENCE POINT

DETECTION

The most commonly used metrics for measuring the

performance of an object detector are the mean intersection

over union (mIoU) and the mean average precision (mAP).
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FIGURE 6. Qualitative results on GTSDB varying pretrained dataset. Mandatory, prohibition, danger, and other signs are marked with cyan, magenta, yellow, and blue

bounding boxes, respectively. Although the network pretrained on our dataset detects traffic landmarks with reference points, it is more effective than the network pretrained on

VOC0712 finetuned to detect German traffic signs using bounding boxes.

The IoU between the ground truth bounding box and the

detected bounding box measures the location accuracy of the

detected box. As no bounding box is estimated in reference

point detection, its performance cannot be measured using

the IoU metric. Instead, it is appropriate to use the average

distance (AD) between the ground truth reference point and

the predicted reference point as a new evaluation metric.

AD =
1

N

∑

i

∥
∥
∥
∥
x
i
D − x

ĵ
GT

∥
∥
∥
∥

2

(5)

The average distance is applied to the pair of a detected

landmark and the nearest ground truth landmark whose class

label is the same as the detected one. Following the same

analogy with the IoU metric, if the distance is above a

predefined threshold, the detected landmark is considered

not to correspond to a ground truth landmark. The threshold

is set to 32 in the experiments. The advantage of AD is

that it is directly related to the localization error that can

be expected when using the detected reference points for

localization.

The mAP metric [38] evaluates the overall performance

of the object detector. To calculate the mAP, the precision

at each recall level should be obtained and then averaged

for each class. The precision is the ratio of the total num-

ber of true predictions to the total number of predictions.

Determining whether the prediction is true or false depends

on the IoU threshold. As the IoU cannot be defined in the

reference point detection, the IoU threshold is replaced with

the predefined threshold of distance. The mAP determined

by the distance threshold, th, is denoted by mAPdist<th.

Although many traffic landmark detectors exist, it is diffi-

cult to perform a comparison with them, because they mostly

detect landmarks with bounding boxes rather than reference

points, and are optimized for the traffic data of different

countries. Moreover, an integrated Korean dataset of traffic

signs, traffic lights, and road markings is not available. For

this reason, we evaluate our reference point detector on our

dataset.

D. EVALUATION OF REFERENCE POINT DETECTION

The results of AD and mAPdist<32 are shown in Table 2,

and the precision-recall curve for each class is shown in

Fig. 4. Compared to other classes, the supplementary sign

class has noticeably lower AP. This seems to be because

supplementary traffic signs do not have a common pattern,

unlike other classes. Fig. 5 shows the qualitative results of

our reference point detector. Fig. 5(a) shows that the cen-

ter points of various traffic signs and traffic lights are well

detected. In particular, in the right part of the image, traffic

signs and traffic lights that do not face forward are detected,

and in the left part, traffic lights in the opposite lane are

also detected. Interestingly, the back of the traffic sign in

the opposite lane is not detected because the class cannot

be determined. In Fig. 5(b), traffic signs, traffic lights, and

8 VOLUME 2, 2021



FIGURE 7. Qualitative results on LISA varying pretrained dataset. Mandatory, prohibitory, and warning signs are marked with cyan, magenta, and yellow bounding boxes,

respectively. The network pretrained on our dataset can be finetuned to detect U.S. traffic signs. It is more effective in the detection of small traffic signs, as compared to other

detectors.

road markings are detected with similar performance. In par-

ticular, the lower right corners of the road markings, which

are their reference points, are accurately detected. The ref-

erence points of these road markings are difficult to detect

using bounding boxes. In the case of road marking on the

far right, the reference point is located outside the bound-

ary of the image and is not detected. Our dataset includes

images acquired in the evening when the illumination is low,

so traffic landmarks in low-illumination images can be also

detected, as shown in Fig. 5(c). Our traffic landmark detec-

tor sometimes fails to detect distant traffic landmarks, as

shown in Fig. 5(d). This is not because the size of the land-

marks is small, but because some landmarks are missing in

the non-maximum suppression process when several land-

marks are adjacent. The traffic lights located in the distance

in Fig. 5(d) have similar sizes, but only some of them are

detected.

E. BOUNDING BOX DETECTION

Although our deep neural network was optimized to detect

Korean traffic landmarks using reference points, we can

finetune our network to detect traffic landmarks of other

countries using bounding boxes. To verify the effectiveness

TABLE 3. Evaluation on GTSDB varying pretrained datasets.

of our dataset, we finetune the pretrained networks on the

datasets for common object detection, such as VOC0712 [38]

and the MS COCO [39], to detect traffic landmarks of pub-

lic datasets and compare the results with ours. For a fair

comparison, the results are compared by differentiating only

the pretrained dataset, whereas the network structure and

detection algorithm are MobileNet and SSD, respectively.
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TABLE 4. Evaluation on LISA varying pretrained datasets.

FIGURE 8. Extension to bounding box annotation. In the left figure, bounding boxes

of traffic landmarks are manually annotated. The 3D locations of corner points of the

bounding boxes can be obtained based on the aligned HD map. The 3D bounding

boxes can be propagated to the following frames as an example is shown in the right

figure.

The GTSDB [2] and LISA [8] datasets are used for traffic

sign detection. Traffic signs in GTSDB are classified into

four categories: mandatory, prohibitory, danger, and other.

As both the Korean and German traffic signs are based on

the Vienna convention traffic rules [40], traffic signs from

both countries include common features. Accordingly, the

network pretrained on our dataset is expected to be more

effective. As shown in Table 3, when using a network

pretrained on our dataset, higher mAP can be achieved

than using other datasets. This confirms that our dataset

is more suitable for extracting common features of traf-

fic landmarks than datasets for common object detection.

Qualitative results are compared in Fig. 6. As shown in

the top row, when using our dataset, the position accu-

racy of the bounding box and the overall performance of

traffic sign detection are both improved. As the dataset

includes images of traffic landmarks of various scales,

signs of various sizes in the middle low can be suc-

cessfully detected. However, some signs are not detected,

when several small signs are adjacent, as shown in the

bottom row.

Unlike GTSDB dataset, the U.S. traffic signs of the

LISA dataset are not standardized by the Vienna conven-

tion. Although performance gaps with other datasets were

reduced, the highest mAP is obtained when using our

datasets in Table 4. As the LISA dataset has more images

than the GTSDB dataset, the detection performance of all

networks finetuned to the LISA dataset is high, but when

using our dataset, small traffic signs are detected with better

accuracy, as shown in Fig. 7.

V. CONCLUSION AND FUTURE WORK

In this article, we suggested a novel semi-automatic anno-

tation framework for dataset generation to reduce laborious

manual annotation. Using the annotation framework, we were

able to speed up the annotation process, and thereby build

a large traffic dataset. By training a deep neural network

on the generated dataset, we successfully detected reference

points of traffic landmarks and evaluated its effectiveness.

In addition, we showed that our reference point detection

network can be used for detection of traffic landmarks of

different countries using bounding boxes.

There is room for extending our framework to direct

bounding box tagging. To probe the feasibility, we man-

ually annotate bounding boxes for one frame, compute the

3D locations of the bounding boxes based on the aligned

reference points, propagate the 3D locations of the bound-

ing boxes in time, and project them onto the image plane at

each frame, finally producing the 2D bounding box annota-

tion. As shown in Fig. 8, this simple procedure works well

for traffic lights and traffic signs, but was not quite suitable

for road markings which are sensitive to severe perspective

transformations. Making the semi-automatic bounding box

annotation versatile for serious perspective transformations

is not straightforward, and we leave it as future work.

We also plan to develop a good way of including

a neural network in the loop of semi-automatic annota-

tion. This may involve reinforcement learning of a neural

network (or fine-tuning of a pretrained one) with sequential

reward/supervision from the human annotator. When prop-

erly trained, the neural network is expected to start providing

very accurate results, which further reduces the need for

human intervention as time elapses. In that way, a lot of man-

ual labor can be greatly assisted by computers. Furthermore,

we plan to collect more data under harsh conditions such as

nighttime, rainy weather, etc.
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