
 
Linköping Studies in Science and Technology 

Dissertation No. 1244 

Semi-automatic Ontology Construction  

based on Patterns 

by 

Eva Blomqvist 

Department of Computer and Information Science 

Linköpings universitet 

SE-581 83 Linköping, Sweden 

Linköping 2009 



  

Copyright © 2009 Eva Blomqvist 

Cover photograph by Stefan Nylander 

ISBN  978-91-7393-683-5  

ISSN 0345-7524  

Printed by LiU-Tryck, Linköping 2009 

 



To Charles,

who always believed that anything is possible.

Hope you found all the answers.





Abstract

This thesis aims to improve the ontology engineering process, by providing

better semi-automatic support for constructing ontologies and introducing

knowledge reuse through ontology patterns. The thesis introduces a ty-

pology of patterns, a general framework of pattern-based semi-automatic

ontology construction called OntoCase, and provides a set of methods to

solve some specific tasks within this framework. Experimental results indi-

cate some benefits and drawbacks of both ontology patterns, in general, and

semi-automatic ontology engineering using patterns, the OntoCase frame-

work, in particular.

The general setting of this thesis is the field of information logistics,

which focuses on how to provide the right information at the right moment

in time to the right person or organisation, sent through the right medium.

The thesis focuses on constructing enterprise ontologies to be used for struc-

turing and retrieving information related to a certain enterprise. This means

that the ontologies are quite ’light weight’ in terms of logical complexity and

expressiveness.

Applying ontology content design patterns within semi-automatic ontol-

ogy construction, i.e. ontology learning, is a novel approach. The main con-

tributions of this thesis are a typology of patterns together with a pattern

catalogue, an overall framework for semi-automatic pattern-based ontol-

ogy construction, specific methods for solving partial problems within this

framework, and evaluation results showing the characteristics of ontologies

constructed semi-automatically based on patterns. Results show that it is

possible to improve the results of typical existing ontology learning methods

by selecting and reusing patterns. OntoCase is able to introduce a general

top-structure to the ontologies, and by exploiting background knowledge,

the ontology is given a richer structure than when patterns are not applied.





Acknowledgements

This research was financed by, and conducted at, Jönköping University,

through a cooperation agreement with the Department of Computer and In-

formation Science at Linköping University. The initial stage of the research

was conducted within the project Semantic Structuring of Components for

Model-based Software Engineering of Dependable Systems (SEMCO) based

on a grant from the Swedish KK-foundation (grant no. 2003/0241). Other

parts of the project were conducted within the Media Information Logistics

(MediaILog) project based on a grant from the foundation Carl-Olof och

Jenz Hamrins Stiftelse. During the final stage some experiments were also

conducted in the context of the project Lifecycle Support for Networked

Ontologies (NeOn), funded by the European Commission’s Sixth Frame-

work Programme (through grant no. IST-2005-027595), due to an insti-

tutional cooperation project, Development and Evolution of Ontologies in

Networked Organizations (DEON), financed by The Swedish Foundation

for International Cooperation in Research and Higher Education (STINT).

My supervisors deserve my deepest thanks for providing ideas, feedback

and encouragement. The main supervisor was Kurt Sandkuhl at the In-

formation Engineering group of Jönköping University, and the secondary

supervisor was Henrik Eriksson at the Human Centered Systems group of

Linköping University. Very special thanks to my third supervisor Ralf-D.

Kutsche, at the DIMA group of TU Berlin, for always wanting to discuss

research issues and providing new perspectives. I also owe a great deal

to all my co-workers at Jönköping University, especially at the Computer

and Electrical Engineering department and the Centre for Evolving IT in

Networked Organisations (CenIT). Special thanks to my ’office-mate’ An-

nika Öhgren for sharing every-day concerns, and to Andreas Billig, now

back at Frauhofer ISST in Berlin, for interesting discussions and great

(brain)storming.



During the past years a number of people have, in different ways, con-

tributed to the success of this thesis. Thanks to Fabio Ciravegna at the Uni-

versity of Sheffield for getting me back on track when I was lost. Thanks to

Aldo Gangemi and Valentina Presutti, at the STLab of CNR in Rome, for

providing insight into ontology patterns. Also, thanks to Johanna Völker,

at the AIFB of the University of Karlsruhe, and Claudio Baldassarre, at

the Food and Agriculture Organisation (FAO) in Rome, for assisting with

the final evaluations, and to all students and colleagues who contributed to

this work. Particular thanks to Ludovic Jean-Louis, who provided an early

implementation of the method.

Last but not least, thanks to all my family and friends who have put up

with me during these five years when I spent more time in my office than

anywhere else. Thanks to my mother for all support, and to my father who

will always be with me in spirit. Stefan, thanks for not giving up on me!

Eva Blomqvist

Rome, February 2009



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Ontology application case example - SEMCO . . . . 4

1.1.3 Ontology engineering . . . . . . . . . . . . . . . . . . 6

1.2 Motivation and problem . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Manual methods for ontology engineering . . . . . . . 9

1.2.2 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Semi-automatic ontology construction . . . . . . . . . 11

1.2.4 Research questions . . . . . . . . . . . . . . . . . . . 15

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Published papers . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Organisation of the thesis . . . . . . . . . . . . . . . . . . . 23

2 Knowledge representation through ontologies 25

2.1 Knowledge representation in ILOG . . . . . . . . . . . . . . 26

2.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Data, information and knowledge . . . . . . . . . . . 28

2.2.2 The semiotic triangle . . . . . . . . . . . . . . . . . . 29

2.2.3 Linguistic terms, resources and methods . . . . . . . 30

2.2.4 The concept of ontology . . . . . . . . . . . . . . . . 31

2.3 Ontology engineering . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 Manual ontology construction . . . . . . . . . . . . . 43

2.3.2 Ontology learning . . . . . . . . . . . . . . . . . . . . 45

2.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.1 Manual ontology construction summary . . . . . . . . 61

i



2.4.2 Ontology learning summary . . . . . . . . . . . . . . 61

3 Patterns and knowledge reuse 63

3.1 Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.1 Ontology reuse . . . . . . . . . . . . . . . . . . . . . 66

3.2 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 What is a pattern? . . . . . . . . . . . . . . . . . . . 79

3.2.2 Patterns in different fields . . . . . . . . . . . . . . . 83

3.2.3 Ontology patterns . . . . . . . . . . . . . . . . . . . . 94

3.3 Case-based reasoning . . . . . . . . . . . . . . . . . . . . . . 98

3.3.1 Benefits of CBR and when to use it . . . . . . . . . . 98

3.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4.1 Ontology reuse summary . . . . . . . . . . . . . . . . 99

3.4.2 Ontology pattern summary . . . . . . . . . . . . . . 101

4 Method and evaluation strategies 103

4.1 Research methods . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.1 Experimentation in computer science . . . . . . . . . 105

4.1.2 A broader perspective on research method . . . . . . 107

4.2 Evaluation methods . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.1 Research evaluation . . . . . . . . . . . . . . . . . . . 111

4.2.2 Result evaluation . . . . . . . . . . . . . . . . . . . . 114

4.3 Description of the research process . . . . . . . . . . . . . . 126

4.3.1 First iteration . . . . . . . . . . . . . . . . . . . . . . 127

4.3.2 Second iteration . . . . . . . . . . . . . . . . . . . . . 133

5 Ontology patterns 139

5.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.1 Extraction and purpose . . . . . . . . . . . . . . . . 142

5.1.2 Structure and content . . . . . . . . . . . . . . . . . 144

5.1.3 Abstraction and granularity . . . . . . . . . . . . . . 145

5.2 Typology of ontology patterns . . . . . . . . . . . . . . . . . 146

5.2.1 Ontology application patterns . . . . . . . . . . . . . 146

5.2.2 Ontology architecture patterns . . . . . . . . . . . . . 147

5.2.3 Ontology design patterns . . . . . . . . . . . . . . . . 149

5.2.4 Syntactic ontology patterns . . . . . . . . . . . . . . 151

5.2.5 Summary of typology levels . . . . . . . . . . . . . . 152

5.3 Ontology content design patterns . . . . . . . . . . . . . . . 154

5.3.1 Pattern representation . . . . . . . . . . . . . . . . . 155



5.3.2 Constructing patterns . . . . . . . . . . . . . . . . . 156

5.3.3 Pattern catalogue . . . . . . . . . . . . . . . . . . . . 159

5.3.4 Are patterns really useful? . . . . . . . . . . . . . . . 161

6 Initial method, industry evaluation and experiences 173

6.1 Initial method . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.1.1 Pattern matching and selection . . . . . . . . . . . . 174

6.1.2 Ontology composition . . . . . . . . . . . . . . . . . 176

6.2 Experiment - SEMCO . . . . . . . . . . . . . . . . . . . . . 177

6.2.1 Semi-automatic ontology construction . . . . . . . . . 178

6.2.2 Manual ontology construction . . . . . . . . . . . . . 180

6.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 183

6.2.4 Analysis and practical consequences in the project . . 190

7 Semi-automatic pattern-based ontology construction 199

7.1 OntoCase overview . . . . . . . . . . . . . . . . . . . . . . . 199

7.1.1 Semi-automatic ontology construction and CBR . . . 200

7.1.2 The OntoCase framework . . . . . . . . . . . . . . . 203

7.1.3 Pattern base . . . . . . . . . . . . . . . . . . . . . . . 205

7.2 Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.2.1 Text processing for ontology learning . . . . . . . . . 208

7.2.2 Retrieval steps . . . . . . . . . . . . . . . . . . . . . 210

7.3 Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.4 Future work - revise and retain . . . . . . . . . . . . . . . . 217

7.5 Pattern ranking . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.5.1 Concept coverage . . . . . . . . . . . . . . . . . . . . 219

7.5.2 Relation coverage . . . . . . . . . . . . . . . . . . . . 221

7.5.3 Utility measures . . . . . . . . . . . . . . . . . . . . . 222

7.5.4 Rank calculation . . . . . . . . . . . . . . . . . . . . 224

7.5.5 Pattern selection . . . . . . . . . . . . . . . . . . . . 224

7.5.6 Ranking experiment . . . . . . . . . . . . . . . . . . 225

7.6 Notes on the OntoCase implementation . . . . . . . . . . . . 230

7.7 A small example . . . . . . . . . . . . . . . . . . . . . . . . 232

7.7.1 Ontology construction . . . . . . . . . . . . . . . . . 232

7.7.2 Result and analysis . . . . . . . . . . . . . . . . . . . 233

8 Evaluation of OntoCase 237

8.1 Extended pattern catalogue . . . . . . . . . . . . . . . . . . 238

8.2 SEMCO revisited . . . . . . . . . . . . . . . . . . . . . . . . 239



8.2.1 Ontology construction . . . . . . . . . . . . . . . . . 239

8.2.2 Evaluation setup . . . . . . . . . . . . . . . . . . . . 241

8.2.3 Evaluation results and analysis . . . . . . . . . . . . 241

8.2.4 Summary and discussion . . . . . . . . . . . . . . . . 250

8.3 JIBSNet - the JIBS enterprise ontology . . . . . . . . . . . . 251

8.3.1 Ontology construction . . . . . . . . . . . . . . . . . 252

8.3.2 Evaluation setup . . . . . . . . . . . . . . . . . . . . 252

8.3.3 Evaluation results and analysis . . . . . . . . . . . . 254

8.3.4 Summary and discussion . . . . . . . . . . . . . . . . 265

8.4 FAO - agricultural ontologies . . . . . . . . . . . . . . . . . . 265

8.4.1 Ontology construction . . . . . . . . . . . . . . . . . 267

8.4.2 Evaluation setup . . . . . . . . . . . . . . . . . . . . 269

8.4.3 Evaluation results and analysis . . . . . . . . . . . . 270

8.4.4 Summary and discussion . . . . . . . . . . . . . . . . 276

9 Discussion and future work 277

9.1 Research evaluation . . . . . . . . . . . . . . . . . . . . . . . 277

9.1.1 Significance . . . . . . . . . . . . . . . . . . . . . . . 278

9.1.2 Internal validity . . . . . . . . . . . . . . . . . . . . . 279

9.1.3 External validity . . . . . . . . . . . . . . . . . . . . 281

9.1.4 Objectivity and reliability . . . . . . . . . . . . . . . 282

9.2 Ontology patterns . . . . . . . . . . . . . . . . . . . . . . . . 284

9.2.1 Benefits of ontology patterns . . . . . . . . . . . . . . 284

9.2.2 Pattern construction . . . . . . . . . . . . . . . . . . 287

9.2.3 Ontology content design patterns . . . . . . . . . . . 288

9.2.4 Ontology architecture patterns . . . . . . . . . . . . . 289

9.3 OntoCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

9.3.1 Pattern retrieval . . . . . . . . . . . . . . . . . . . . 290

9.3.2 Pattern reuse . . . . . . . . . . . . . . . . . . . . . . 292

9.3.3 Ontology revision . . . . . . . . . . . . . . . . . . . . 293

9.4 Summary of future work . . . . . . . . . . . . . . . . . . . . 294

10 Conclusions 295

Bibliography 299

A Ontology metamodel 323

B Pattern catalogues 329



CONTENTS v

List of Figures 343

List of Tables 346





Chapter 1

Introduction

Ontologies are a means of formally expressing the semantics of some set

of concepts. To be able to process the meaning of symbols and not only

the syntactic structures of a language has been a goal of computer sci-

ence research almost since the emergence of computers. Most researchers

have surrendered to the complexity of the problem and have abandoned

the idea of formally representing all collected and humanly understandable

knowledge. Instead, focus is on specific tools, methods and approaches to

solving restricted versions of this problem. An example of this is expressing

the meaning of the terminology used within a certain domain or a certain

enterprise, with the intention of solving some well-specified task within a

community or a specific software system.

A severe problem that many companies experience today is information

overload. Information is easily available in electronic formats, so instead

of not being able to access information, the problem is more commonly

finding the right information when you need it in a vast sea of enormous

amounts of information, and combining pieces of information to form the

answer to a specific question. This is true both for internal and external

information, for example in a study presented by Öhgren and Sandkuhl [152]

a set of companies were asked about their use and need for information.

As many as 69% of the small and medium-sized companies replied that

they generally received too much information, only 4% perceived a lack of

information. As many as 16% of the respondents spent more than one hour

each day searching for the right information to solve their work tasks, and

33% spent between 30 minutes and one hour on such a search. Finding

solutions and support related to these problems is the general research aim

1



2 CHAPTER 1. INTRODUCTION

of the information logistics (ILOG) field, thus focusing on how to provide

the right information at the right moment in time to the right person or

organisation sent through the right medium. This problem has been defined

and further described by, for example, Sandkuhl [170].

When trying to provide solutions to the ILOG problem, ontologies can

assist in several ways. Ontologies may be used as a means of describing

the content of the information as such. This thesis mainly focuses on on-

tologies for describing information content, specifically enterprise ontologies

that describe the information related to a certain enterprise and needed for

the enterprise’s internal processes. A key issue for an enterprise that wishes

to apply an ILOG system or method is then to construct an accurate and

up-to-date ontology that describes their organisation and information con-

tent. Constructing ontologies has classically been a purely manual task,

performed by knowledge engineers in close cooperation with domain ex-

perts.

This knowledge acquisition task is difficult and involves many problems,

this is why it is sometimes denoted the ’knowledge acquisition bottleneck’ ,

as named by Feigenbaum [60]. This task is described as a bottleneck since it

is very resource and time-consuming to elicit knowledge from experts, and

experts often have a hard time expressing their knowledge explicitly, and

some knowledge might not even be possible to express formally, so called

tacit knowledge as defined by Polanyi [160] and later explained by Gourlay

[86]. Thereby, constructing an enterprise ontology might seem to be an

impossible task. However, the key is to restrict the problem and focus on

a specific task for the ontology and tailor it to this task, not attempting to

cover all aspects and views of the domain, in this case the enterprise.

Even within the limits of this problem, it is difficult to manually con-

struct ontologies. It demands resources, is time consuming and error prone

unless both domain experts and ontology engineers involved have long expe-

rience and hands-on knowledge of similar problems. Developments during

the last decade attempt to change this, primarily the focus has been on more

well-specified manual methods, better tools to support the process, and in-

troducing reuse into ontology engineering. In connection with introducing

new and better tools, the field of semi-automatic ontology construction has

emerged, also called ontology learning (OL). The field attempts to provide

a set of semi-automatic tools that will aid the ontology engineer in con-

structing an ontology by extracting as much information automatically as

possible and then proposing this to the user, as a starting point for building

the ontology manually, or as part of an iterative refinement.



1.1. BACKGROUND 3

The rest of this thesis focuses on methods to improve existing semi-

automatic methods, specifically by processing the results of existing OL

methods, algorithms and tools in order to further assist the ontology engi-

neer in building better ontologies. The focus is on introducing knowledge

reuse into semi-automatic ontology construction and using this on top of ex-

isting OL approaches. Some techniques used are ontology patterns, pattern

matching and ranking, pattern specialisation and composition, combined

with an overall method framework inspired by case-based reasoning as a

reuse methodology.

1.1 Background

This section presents some history and background that set the stage for

the discussion on research focus, open issues and research questions in sec-

tion 1.2. First the ontology concept is introduced and subsequently other

relevant notions are explained, together with some background on the ontol-

ogy engineering process and existing methods. Our research is introduced

through an application case example, in the form of an industry project

scenario.

1.1.1 Ontologies

The notion of ontology is old and stems from philosophy, but ironically

there is still a debate on what is actually meant by the term ontology. Sowa

[182] describes the notion of ontology as follows: ”[...] it is the study of

existence, of all the kinds of entities - abstract and concrete - that make up

the world. It supplies the predicates of predicate calculus and the labels that

fill the boxes and circles of conceptual graphs.” In this sense different kinds

of logics are the means, the tools, that are used to describe things but that

which is actually described and how it is described is the actual ontology.

Another common definition of ontology comes from Gruber [87] where

an ontology is described as an ”explicit specification of a conceptualization”.

The definition by Gruber was later developed further by Studer et al. [191]

who state that ”an ontology is a formal, explicit specification of a shared

conceptualisation”. This means that an ontology should be formally rep-

resented, for example in a logical language, definitions should be explicitly

stated and the conceptualisation it represents should be shared within some

group of people or agents within a domain. The ontology provides a vocab-

ulary for describing and reasoning about the concrete instances of a domain.



4 CHAPTER 1. INTRODUCTION

Ontologies can be used for many different purposes, as described by

McGuinness [129]; to provide a controlled vocabulary, to customise and

personalise search possibilities, to provide a structure from which to extend

content, to perform word sense disambiguation, to provide interoperability

support, and other similar tasks. Ontologies can also be used in a variety

of applications, ranging from autonomous agents to web portals, corporate

intranets or, as in our case, ILOG systems. This variety influences the

features needed in an ontology, for example sometimes a simple taxonomy

might be sufficient for providing a controlled vocabulary, but in other cases

more advanced features, such as general axioms representing business rules

are needed to enhance reasoning capabilities.

A term commonly used in ILOG is enterprise ontology. Uschold et al.

[207] have developed and described a top-level enterprise ontology, including

many basic concepts that concern enterprises and their activities. This

ontology, however, cannot be used as such for our purposes, since we deal

with describing the information present, or needed, for the enterprise in

question. The enterprise ontology of Uschold et al. [207] does not contain

information about the specific terminology of the domain of the enterprise,

and only general concepts of products, services and processes. This thesis

focuses on enterprise ontology construction for specific applications within

enterprises. This means that enterprise ontologies should be tailored to

their intended applications. An enterprise ontology would typically contain

parts describing different aspects of the organisation, such as products and

their features and functions, processes, organisational context, and other

aspects relevant to the intended task.

1.1.2 Ontology application case example - SEMCO

The research project SEMCO (Semantic structuring of components for

model-based software engineering of dependable systems) was run by the

Information Engineering research group at Jönköping University between

2004 and 2007. SEMCO aimed at introducing semantic technologies into

the development process of software-intensive electronic systems in order to

improve efficiency in managing variants and versions of software artefacts.

The project included two industrial partners active in the automotive indus-

try domain and one research institute. One concrete application scenario

was to structure and annotate all documents produced throughout the de-

velopment process, to maintain connections between initial requirements

and their respective influence on specifications, and to store parts of these



1.1. BACKGROUND 5

documents in a domain repository for future matching, retrieval and reuse.

For this task it was concluded that ontologies could highly improve the

structuring and retrieval of existing information, compared to existing sys-

tems and classic information retrieval (IR) technologies, as well as improve

matching and analysis of new incoming information.

The scope of the experiment connected to this thesis was to develop

a selected part of the enterprise ontology for one of the SEMCO industry

project partners, a developer and manufacturer of complex products within

the automotive supplier industry. The purpose of the ontology was more

specifically to support capturing relations between development processes,

organisation structures, product structures, and artefacts within the soft-

ware development process. The ontology was initially limited to describing

the requirements engineering process, requirements and specifications that

pertain to products and parts, organisational concepts and project arte-

facts, thus not covering the complete development process within the first

proof of concept study.

To apply the ontology in practice an application for artefact manage-

ment had to be developed. Within the artefact manager tool the enterprise

application ontology is used to define and store metadata and attributes of

an artefact, as well as a storing a link to the artefact itself. The enterprise

application ontology provides the attributes and the metadata structure,

and artefacts can then be attached to it as instances, and they can be

connected to instantiated attributes. When artefacts are stored in this way

they can be searched, retrieved, and compared using their connection to the

enterprise ontology. The ArtifactManager, described in a paper by Billig

and Sandkuhl [19], was developed as a plug-in for the ontology development

environment Protégé∗.

A second scenario of the project was integrating feature models and

enterprise ontologies by including a feature metamodel in the enterprise

ontology, with the aim of using the ontology to identify similar requirements

and product features in future projects. The features could be related to

organisational elements in order to track responsibilities and expertise. The

long term goal was to support generation of internal requirements directly

from detected features in source documents, i.e. customer requirements, and

the enterprise ontology and its feature model, based on semantic similarities

between source documents and stored requirements of previous projects.

This scenario would require some additions to the current version of the

∗http://protege.stanford.edu/



6 CHAPTER 1. INTRODUCTION

enterprise ontology, as noted by Thörn et al. [202], and an application

supporting this scenario has still not been developed but is proposed in

future extensions of the SEMCO project.

1.1.3 Ontology engineering

Ontology engineering is a continuous process incorporating the complete

life-cycle of an ontology; everything from the description of its intended ap-

plication, requirements engineering, ontology construction, ontology reuse,

to deploying the ontology in the application, maintaining, and evolving it.

An important part of ontology engineering is the actual development of the

ontology, the main focus of the thesis, but the development is strongly con-

nected to the specification of the intended application, requirements engi-

neering both for the application and the ontology, and other related tasks.

When building an ontology-based application, the ontology development

can be divided into a set of activities, for example as done by Fernandéz et

al. [63] in the METHONTOLOGY methodology. They propose activities

such as planning, specification, conceptualisation, formalisation, integra-

tion, implementation, evaluation, documentation, and maintenance of the

ontology.

Whether applying a top-down, bottom-up or middle-out approach when

developing an ontology there are several levels of abstraction that need to be

considered. Just as a software system has an overall architecture, a detailed

design, and a set of program code realising the design, an ontology needs

to be structured and designed on several levels. A set of questions briefly

summarise the problem areas on different abstraction levels that need to be

addressed in order to build an ontology:

1. What is the purpose of the ontology? How is it to be applied in a

software system?

2. What parts are to form the ontology? How should the architecture of

the ontology be formed?

3. What should the ontology contain? What concepts, relations, and

axioms?

4. How should the ontology be represented syntactically?

The questions range from considering the complete ontology on a high level,

number 1, via what it should actually contain and how to arrange its parts,



1.1. BACKGROUND 7

to the very detailed level, number 4, of how to represent the individual

concepts and relations syntactically. The first set of questions pertains to

the requirements and the interface of the ontology, what operations it is

to support and what information it is to provide. The second set of ques-

tions concerns the overall architecture of the ontology, what parts are to

be included and how they should be arranged in order to solve the over-

all problem. The third set of questions addresses the detailed design and

content of the ontology and finally, the fourth set of questions deals with

implementation details.

Ontology development has classically been considered a manual pro-

cess. When constructing ontologies for relatively static systems, where the

environment and requirements do not change frequently, this might be a

perfectly justified effort in order to achieve the best ontology possible for

the case at hand. Such efforts were common in the 80’s and 90’s, when

for example constructing knowledge bases for expert systems, and more re-

cently for other kinds of applications in the field of artificial intelligence

(AI), such as robotics or guidance systems for unmanned vehicles. On the

other hand, the kind of ontologies discussed in this thesis are concerned

with a highly uncertain and highly changeable context, i.e. an enterprise.

Such a context would render the manual construction process a continuous

and tedious effort, constantly requiring a high amount of resources to keep

the ontology up-to-date.

When considering enterprises we can intuitively note that different peo-

ple and groups may have different viewpoints and opinions of the reality

to be modelled. There might, for example be a top-level management view

of an organisational unit, but members of the unit might have a different,

sometimes even conflicting, view of what the unit really does or consists of.

Such a conflicting view of reality is an additional complexity when modelling

reality. Enterprises also have to adapt to the fast changes of the market and

in the environment, and to internal changes in the enterprise itself. An even

more agile perspective must be taken if the ontologies are to be used on the

web, where the change rate is even faster and the application environment

is truly global. Due to these circumstances, recent development method-

ologies for constructing ontologies incorporate the complete life-cycle of the

ontologies as an iterative evolution and maintenance process, also integrated

with software maintenance and organisational evolution.

In addition to developments in manual ontology engineering, many semi-

automatic approaches have emerged. The category of semi-automatic ap-

proaches can cover everything from simple ontology development tools, that



8 CHAPTER 1. INTRODUCTION

provide a graphical interface for ontology development instead of requiring

the user to input the ontology elements expressed in the representation

language, to complete tool-sets providing algorithms for extracting logical

formulae from, for example text input. The semi-automatic approaches that

exist may be considered as a starting point for manual ontology engineering

or a refinement step integrated into a manual process, and not primarily as

a separate process that ’compete’ with manual methods.

In this thesis we let semi-automatic ontology construction denote the

approaches that focus on automating as much as possible of the ontology

construction process, thereby excluding ontology engineering tools that pro-

vide only basic support for the manual design of ontologies. The problem

of supporting semi-automatic ontology construction can be divided into a

set of activities and their sub-tasks as illustrated in Figure 1.1.

Detect 

alignment

Axiom 

schemata extr.

Semi-automatic ontology construction

Problem analysis

Requirements

Finding input

Input processing

Import

Pre-processing

Element extraction

Term extr.

Synonym

extr.

Concept 

extr.
Taxonomy 

extr.

Relation 

extr.

Relation 

hierarchy extr.

Axiom 

extr.

Ontology composition

Resolve 

conflicts

Asess 

relevance

Remove and 

restructure

Add missing 

information

Add 

background 

knowledge

Adjust level of 

abstraction

Merging

Pruning

Refinement

Evaluation

Evaluation during 

construction

Input 

evaluation
Result 

evaluation

Post-processing

User 

interaction

Cleaning

Enrichment

Manual 

ontology

refinement

Figure 1.1: Semi-automatic ontology construction and its activities.

Sometimes semi-automatic ontology engineering is denoted ontology learn-

ing (OL). OL research aims to develop algorithms that extract ontological

elements from different kinds of input, i.e. ’learning’ since many approaches

apply some kind of machine learning (ML), and semi-automatically compose

an ontology from those elements. According to Maedche [123] and Cimiano

[34] the field of OL is composed of a set of methods and algorithms through



1.2. MOTIVATION AND PROBLEM 9

which elements of differing expressiveness can be extracted from the input,

often a text corpus, and included in the proposed ontology, or presented

to the user for validation. This includes term extraction, synonym identifi-

cation, concept formation, taxonomy induction, relation extraction, axiom

extraction, and other methods. Most OL systems that exist today rely

heavily on techniques from natural language processing (NLP) and compu-

tational linguistics for pre-processing a text corpus, and techniques from,

for example text mining for extracting different elements from the text, in-

cluding different kinds of relevance or confidence calculations, representing

the confidence with which the elements suggested to the user have been

correctly extracted. In this thesis OL will be used in a broad sense, as a

synonym to semi-automatic ontology construction.

Another direction within the ontology engineering field that has received

a lot of attention recently is knowledge reuse, and more specifically the use of

ontology patterns. Reuse has been suggested for knowledge engineering for

several decades, but it is not until recently the notion of ontology patterns

has been adopted on a broader scale. Patterns have been applied in other

areas, such as software engineering, where patterns are commonly carefully

engineered templates that represent a consensus view of how to solve a

specific problem. The templates have to be sufficiently general and abstract

in order to be reusable in many cases, and they usually have to represent

some notion of best practices. Patterns can then be used as templates,

or even partial solutions, from which a designer can bootstrap a solution

to the current problem. The underlying intuition is to be able to build

better ontologies by basing new solutions on ’old’ and well-proven solutions.

Patterns are also commonly believed to give general guidance, to point out

common problems, and improve communication between developers.

1.2 Motivation and problem

This section describes the current problems and open issues in the field of

ontology engineering that motivate our research and lead to the formulation

of our research questions.

1.2.1 Manual methods for ontology engineering

Whenever ontologies are constructed, the same knowledge acquisition bot-

tleneck occurs as it has in all knowledge acquisition efforts since the emer-

gence of knowledge-based systems and ontologies. It is resource and time-



10 CHAPTER 1. INTRODUCTION

consuming to construct ontologies, and both the ontology engineers and

domain experts involved need to be highly skilled and preferably have knowl-

edge about each others’ perspectives on the problem. For some applications

this might be worth the cost, i.e. investing a lot of time and effort in con-

structing a ’perfect’ ontology, but in many cases this is not feasible. The

benefits of having a knowledge-based, or ontology-based, application have to

be balanced against the effort of constructing and maintaining the ontology

in question.

Although ontologies have been built since the early days of AI, such on-

tologies were not common in ’standard’ software systems. Currently more

and more semantic applications emerge, and what started out as researchers

building ’toy’ ontologies has now become a movement that is about to re-

alise the vision of the Semantic Web. The direction of much computer

science research is to build better and better applications that solve new

problems or solve problems better. Today however, normal web users and

software developers want to build ontologies, at the same time the applica-

tions are more complex than just a few years ago. This is especially true

in the Semantic Web context, where the entire web is the application area

of ontology-based systems, and issues such as scalability and efficiency put

higher requirements also on the ontologies. The size of the ontologies to be

built can also be a problem. In response to this, distributed development

methodologies, modularisation and decoupling of components, as well as

methods for assisting the users in the most repetitive and time-consuming

tasks of ontology engineering have emerged.

Even more crucial is the issue of ontology maintenance and evolution.

In a majority of cases, the world around the application, i.e. the basis for

and the context of the ontology, is not stable, it is constantly changing and

evolving. To benefit from an ontology-based application, the ontology must

change at the same rate as the environment. If the change rate is relatively

slow then manual evolution and change tracking of the ontology might be

a reasonable option, but in highly agile environments where changes occur

often and are not always easy to detect and track, purely manual methods

are probably not sufficient.

1.2.2 Patterns

Whether or not there are any actual benefits of using patterns, i.e. reuse,

guidance, communication, and other benefits as mentioned earlier, is not

clearly established. To what extent benefits actually exist when using pat-



1.2. MOTIVATION AND PROBLEM 11

terns has been an ongoing dispute in the software engineering field, as for

example discussed by Menzies [132], Beck et al. [15], Dearden et al. [47] and

Prechelt et al. [162]. The benefits of pattern usage have not yet been sci-

entifically proven in ontology engineering, although such experiments have

recently been proposed. Open issues are consequently to show that benefits

of using patterns exist, and how the use of patterns affects the resulting

ontologies and the process of constructing them.

Patterns are currently developed and used more or less ad-hoc in the

ontology engineering field. In software engineering, patterns are common

practice and are taught in most universities, consequently there are conven-

tions for what is considered a pattern, how it is best described, and how

it can be used. It remains for ontology engineering to develop methods to

elicit, describe, use and maintain patterns. Some description templates have

been proposed, but there is still no consensus on such templates. Neither

is it clear what kinds of patterns actually exist and for what purposes they

can be used. There is no accepted terminology on how to refer to different

kinds of patterns and what the patterns describe.

1.2.3 Semi-automatic ontology construction

Semi-automatic ontology construction is still a relatively new field. The

term ontology learning (OL) was coined at the beginning of this decade,

although similar efforts can be traced back to the early days of AI, and

some of the specific techniques used have been common practise in, for ex-

ample NLP and information retrieval (IR) for several decades. So far semi-

automatic ontology construction has largely dealt with element extraction,

and approaches have mostly focused on adapting and utilising techniques

from, for example NLP, computational linguistics, machine learning and

text mining in order to assist users when constructing ontologies. This has

resulted in quite a diverse set of methods and tools, many of which are col-

lections of algorithms rather than actual ontology engineering tools, suitable

for an end-user.

There are many approaches to term extraction for OL, based on previous

research in NLP and term relevance measures in, for example IR. There

are also different approaches for synonym detection, but there is much less

research on actually forming concepts. Even the definition of what a concept

is is not always clear. The concept formation, and especially the labelling,

is commonly either left up to the ontology engineer or terms are treated as

concepts and added to the ontology directly, based on term extraction from



12 CHAPTER 1. INTRODUCTION

text. Quite a few methods for relation extraction have been proposed, both

taxonomical and other binary relations, but there is usually no assistance

for structuring these relations, e.g. putting them on the appropriate level in

the taxonomical hierarchy. Some approaches have been proposed in the past

few years for extracting specific kinds of axioms and transforming restricted

sets of natural language expressions into logical languages directly. Even

though many of the approaches to OL originate in other areas and have

been around for many years, they remain subject to research. The quality

of the ontologies constructed by means of semi-automatic methods is far

from perfect. Without the input and correction of an ontology engineer the

ontologies are not directly usable, in many cases. One important issue is

improving the quality of results, the ontology quality, of OL systems.

Another major open issue of current OL is using input other than a set

of natural language texts, and combining ’clues’ from many different sources

when constructing an ontology semi-automatically. Many approaches have

attempted to use different kinds of background knowledge in addition to

the input text corpus, such as using the WordNet dictionary or the web as

sources of knowledge. However, the intended scope, the level of detail and

intended application of the ontology to be constructed is seldom explicitly

taken into account in a semi-automatic construction process. Usually it is

assumed that the user, the ontology engineer, will provide this background

knowledge of the goal and intended usage of the ontology, but this might

not be an easy task.

The question of what actually helps an ontology engineer is also a largely

unexplored field, which in turn is somewhat related to human-computer

interaction (HCI). Which methods really help? Does it help to get a list of

500 terms that are deemed important for the domain by the system, even

if there is no additional explanation or assistance? Probably not, since the

user in such a case still has to find the definitions of the terms in the domain

in order to form concepts to put in the ontology. To develop useful user

interfaces, also for existing methods, integrating the algorithms and then

determining what actually helps an ontology engineer seems to be a very

important issue for the future. One step in the right direction would be

to strive for more transparent methods and algorithms, to let the user see

what is going on. Today most OL systems do not provide any explanations

to the user, for example explaining why a certain term is proposed as a

concept label or why a relation was extracted and what in the text corpus

this is based on.



1.2. MOTIVATION AND PROBLEM 13

Open issues in semi-automatic ontology construction

When combining the description of the general semi-automatic ontology

construction problem and the open issues described above we can construct

a map of the area, that visualises the subproblems and the unexplored areas

of the field. A hierarchical division of the problem can be seen in Figure

1.2. The first problem concerns how to determine the requirements that

can be used semi-automatically, and to find the appropriate input for the

process. Whereas requirements have at least been treated in the case of

manual ontology engineering, finding the appropriate input for the semi-

automatic process is a largely untouched problem. Once the input has been

found it needs to be imported and processed, in the case of text corpus

input or existing ontologies, these problems have well-established solutions.

The core OL problem of element extraction is not solved in general, but

some of its constituents, such as term extraction, are well understood while

others, such as general axiom extraction, remain largely untouched.

Concept 

extr.

Detect 

alignment

Axiom 

schemata extr.

Semi-automatic ontology construction

Problem analysis

Requirements

Finding input

Input processing

Import

Pre-processing

Element extraction

Term extr.

Synonym 

extr.

Taxonomy 

extr.

Relation 

extr.

Relation 

hierarchy extr.

Axiom 

extr.

Ontology composition

Resolve

conflicts

Asess 

relevance

Remove and 

restructure

Add missing 

information

Add

background 

knowledge

Adjust level of 

abstraction

Merging

Pruning

Refinement

Evaluation

Evaluation during 

construction

Input 

evaluation
Result 

evaluation

Post-processing

User 

interaction

Cleaning

Enrichment

Manual 

ontology

refinement

Well-established 

approaches exist

A set of different approaches 

have been proposed

Very few approaches 

have been proposed

Figure 1.2: The unexplored areas of OL.

Ontology composition involves taking the results from the element ex-

traction step and combining them into an ontology. During this process



14 CHAPTER 1. INTRODUCTION

pieces must be fitted together, and parts may have to be pruned or refined.

Fitting the pieces together is similar to the problem of ontology matching

and merging, and consequently there exist some approaches, even though

conflict resolution is not very well researched. Pruning involves a relevance

assessment of the parts to be included, and restructuring of the ontology if

something is removed. Approaches have been proposed in this area for semi-

automatic ontology construction, especially relevance measures of the indi-

vidual ’elements’ extracted are usually included in existing OL approaches.

Refinement involves, for example detecting missing pieces that are essential

to include, detecting missing background information, and adjusting the

abstraction level of the hierarchy. There are approaches for refinement that

attempt to use external knowledge sources, such as information extracted

from the web, to enrich the ontology.

Evaluations can be performed during the complete process of semi-

automatic ontology construction. Generally, evaluations can be divided

into those that address the preliminaries of the process, the input and re-

quirements for example, those that address intermediate results during the

process, and those that evaluate the resulting ontology. There exist ontology

evaluation approaches, but not many are tailored to semi-automatic ontol-

ogy construction and very few can be performed automatically. Usually a

step of post-processing is needed after the ontology has been constructed,

either to correct detected problems, to refine the ontology further or to add

missing information. Cleaning involves repairing problems discovered in

evaluations, e.g. resolving inconsistencies, and enrichment involves adding

missing parts. So far few approaches include semi-automatic ways to clean

the ontology, while for enrichment many of the same techniques as for ele-

ment extraction can be used.

A semi-automatically constructed ontology can be used as input to a

manual ontology engineering process, and this can be seen as the post-

processing of the ontology, or the complete set of semi-automatic methods

can be part of an iterative manual methodology. Finally, the semi-automatic

construction process needs to interact with the user throughout the process,

since it is not completely automated. Interfaces have been proposed, but so

far few have been evaluated or studied to determine the appropriateness of

such interfaces for specific users and specific semi-automatic approaches.



1.2. MOTIVATION AND PROBLEM 15

1.2.4 Research questions

The area of ontology patterns is in need of some structure. One can imagine

patterns for different purposes as mentioned in the discussion of ontology en-

gineering in section 1.1.3, it is important to theoretically analyse what kinds

of patterns exist, or should be developed, and how these can help in the de-

velopment process. Apart from studying ontology patterns, in general, the

overall long-term goal of this research is to reduce the effort and time re-

quired to construct enterprise application ontologies for ILOG-applications

through further automation of the ontology construction process and bet-

ter assistance for the ontology developer. This means solving the complete

semi-automatic ontology construction problem, as described in the last sec-

tion, for the specific case of enterprise ontologies for ILOG applications,

which is of course not possible in one thesis.

As a starting point, we have chosen to focus on the more specific prob-

lem of ontology composition, how to use the results from element extraction

algorithms to construct an ontology. Within that problem, our main focus

is on merging the results and refining them, only indirectly do we address

the pruning problem in the sense that it slightly overlaps with the refine-

ment and merging problems. With this focus in mind we pose three research

questions to be answered in this thesis. The questions address ontology pat-

terns as such, using ontology patterns in combination with semi-automatic

approaches, and set the focus on increased quality of the output ontology.

Research questions:

• What kinds of ontology patterns can be differentiated?

• How can ontology design patterns be used in semi-automatic ontology

construction?

• How does ontology design pattern-usage in the ontology composition

step affect the quality of the resulting ontologies?

The first question implies the theoretical study of the origin and back-

ground of the notion of patterns and what this means in the field of ontology

engineering. There exist certain pattern approaches already, but the field

lacks an overall structure and focus. Different categories of patterns need to

be motivated, defined, characterised, and described. The second question

entails the study of how certain types of ontology engineering design pat-

terns can be exploited in semi-automatic ontology construction in order to

improve current OL approaches. Many algorithms have been proposed that



16 CHAPTER 1. INTRODUCTION

address specific parts of the semi-automatic ontology construction problem,

but how an overall framework incorporating patterns can be formed needs

to be examined. Finally, the third question addresses how the ontologies

constructed using a pattern-based approach to ontology composition are

affected in terms of quality. The goal is to produce ontologies of higher

quality, but it remains to be defined what we mean by quality and then to

study how the patterns affect this notion of quality.

1.3 Contributions

A general contribution of this research is to connect two traditions in on-

tology engineering, the ontology learning tradition and the more manually

focused ontology pattern community. This connection has not been made

before, on the level of ontology design patterns, only on lower abstraction

levels, such as syntactic patterns. The area of ontology patterns remains

quite unstructured and only very recently have general definitions and de-

scriptions of different kinds of patterns been proposed. One major contri-

bution is the different categories of patterns presented in chapter 5, their

structure and definitions, as well as a thorough ’state of the art’ overview of

patterns, as presented in chapter 3. The general theoretical comparison of

semi-automatic ontology engineering and case-based reasoning (CBR), in-

cluding the proposed general OntoCase framework, as illustrated in Figure

1.3, that is inspired by the CBR methodology, is a considerable theoretical

contribution. The OntoCase framework consists of four phases; retrieve,

reuse, revise and retain. In the retrieval phase the input is processed and

used to select appropriate patterns. These patterns are then reused in the

next phase to construct the ontology. In the revision phase the ontology is

to be extended and revised, and finally new pattern candidates are to be

discovered in the retain phase.

The more technical contributions of this thesis are the methods for

matching, selecting and composing patterns based on the input from exist-

ing OL systems. These methods are part of the general OntoCase framework

proposed as illustrated in Figure 1.3. The overall framework is an impor-

tant contribution in itself, and the first two phases, retrieve and reuse, have

been studied in detail and implemented. A set of matching criteria have

been introduced and a ranking scheme has been implemented and tested

for ranking patterns with respect to extracted terms and binary relations.

The ranking scheme accounts for the rich structure of the extracted input



1.3. CONTRIBUTIONS 17

Input

Pattern base

Retrieved 

ratterns

Initial 

ontology

Revised

ontology

Pattern 

candidates

Pattern
retrieval

Pattern
reuse

Ontology
refinement

Retain
patterns

OntoCase

Figure 1.3: The OntoCase framework.

and the inherent differences in the abstraction level between patterns and

extracted elements. The selection method is flexible and provides parame-

ters that can be tuned by the user if desired. The pattern composition step

utilises the matching results from the selection step, and the elements orig-

inally extracted from the input are also used to compose patterns through

a set of heuristics.

A pattern catalogue has been developed during the process of testing and

evaluating the OntoCase method. This is a catalogue of domain-specific

patterns, suitable for product development companies, which contributes

to the collected set of patterns within the ontology patterns community.

Another contribution is the experience gleaned from the evaluation and

comparison of a manual and a semi-automatic method using the first version

of the OntoCase method. This has not been done extensively previously,



18 CHAPTER 1. INTRODUCTION

other than using a manually engineered ontology as a ’gold standard’. In our

case the manually engineered ontology was not used as a ’gold standard’

but was evaluated on its own and the benefits and shortcomings of both

ontologies were then analysed together.

1.4 Delimitations

The thesis takes a specific perspective on ontologies, focusing specifically

on enterprise ontologies intended to support ILOG systems within enter-

prises. This means that the ontologies considered are focussed mainly on

describing the company in question and the information available, or to

some extent the information demands of the company. This focus does not

include ontologies that technically describe the information sources in the

enterprise or externally, and neither does it include only top-level ontolo-

gies, such as the top level enterprise ontology mentioned in section 1.1.1.

Ontologies for information structuring and retrieval purposes are generally

quite ’light weight’ with respect to logical complexity and expressiveness,

thereby general axiom extraction and matching is not considered in this

thesis.

The method presented for constructing such ontologies, called Onto-

Case, consists of four phases. In this thesis only the first two phases of the

method, retrieve and reuse, have been implemented and tested in detail.

The implementation is of a proof of concept nature whereby little consid-

eration has been given to time and space complexity and the efficiency of

the implementation. Assumptions, with respect to complexity, are explic-

itly mentioned in the descriptions where they are made. The first phase

includes the use of existing OL systems, and consequently the OntoCase

approach should not be considered as a new OL approach, but as building

on top of existing OL methods. OntoCase assumes the presence of a pattern

catalogue and the manual selection and input of a text corpus, or an initial

seed ontology, to initiate the process. Only ontology design patterns are

currently used in the method and included in the catalogue. Details of the

final two phases of OntoCase are beyond the scope of this thesis.

The initial evaluation of the first attempted method was done in only

one industry case and compared to the results of a specific manual method,

although several different methods for evaluation were used. This evalua-

tion was mainly used to develop new criteria for the second version of the

OntoCase method, and not to evaluate the precise quality of the results of



1.5. PUBLISHED PAPERS 19

the method. The second set of evaluations deal with the two first phases of

the second version of OntoCase, and have been conducted more thoroughly

using several different cases. One imitation was that only a few domains

were used, and the method was not compared to all existing OL methods

or manual methods. In line with the research questions this thesis focuses

on output quality and not on process improvements, such as saving time

and reducing user effort.

1.5 Published papers

The following peer reviewed conference and journal papers, as well as one

technical report, were published previously and contain many of the results

presented in this thesis. The publications are presented below and main

contributions are noted, as well as the specific contribution by the author

of this thesis if several authors wrote the paper.

• Blomqvist, E.: State of the Art: Patterns in Ontology Engineering.

Technical Report 04:8, Jönköping University, November 2004.

– Contribution: A thorough state of the art presenting exist-

ing research on both patterns in general, ontology patterns, and

semi-automatic ontology construction. The report analyses the

weak spots in existing research and notes a set of open research

questions and issues. This report served as a basis for chapters

2 and 3.

• Blomqvist E., Sandkuhl K.: Patterns in Ontology Engineering Clas-

sification of Ontology Patterns. In: Proceedings of the 7th Interna-

tional Conference on Enterprise Information Systems, Miami, USA,

May 2005.

– Contribution: The paper proposes a framework for classifying

ontology patterns, mainly based on experience and related re-

search on software patterns. Five levels of ontology patterns are

proposed based on abstraction and granularity of the patterns.

– Contribution of the author: The analysis of different kinds of

patterns and the development of the five levels were done by the

author of this thesis. The results have been further developed,

but the paper forms the basis of chapter 5.



20 CHAPTER 1. INTRODUCTION

• Blomqvist, E.: Fully Automatic Construction of Enterprise Ontologies

Using Design Patterns: Initial Method and First Experiences. In:

Proceedings of OTM 2005 Conferences, Ontologies, DataBases, and

Applications of Semantics (ODBASE), Agia Napa, Cyprus, Oct 31-

Nov 4, 2005.

– Contribution: The paper presents a thorough analysis of open

problems in semi-automatic ontology construction and proposes

an initial method for pattern usage in semi-automatic ontology

construction. The implementation tests some naive algorithms

for pattern matching and selection. The description of the initial

semi-automatic method in chapter 6 is based on this paper.

• Blomqvist E. and Öhgren A.: Constructing an Enterprise Ontology

for an Automotive Supplier. In: Proceedings of the 12th IFAC Sym-

posium on Information Control Problems in Manufacturing, Saint-

Etienne, France, May 2006.

– Contribution: The paper describes a specific industry case as

part of a research project, where an enterprise ontology was con-

structed in two different ways in parallel. The paper presents the

results of this experiment and discusses the methods used.

– Contribution of the author: The semi-automatic ontology

construction was conducted by the author of this thesis, who also

contributed to the evaluation of the ontologies. This experiment

is described in chapter 6.

• Blomqvist E., Öhgren A. and Sandkuhl K.: Ontology Construction in

an Enterprise context: Comparing and Evaluating two Approaches.

In: Proceedings of 8th International Conference on Enterprise Infor-

mation Systems, Paphos, Cyprus, May 2006.

– Contribution: This paper describes an industry case where an

enterprise ontology was constructed and evaluated for a com-

pany in the automotive supplier domain. The ontology develop-

ment was done in two different ways in parallel using one manual

method and one semi-automatic method. The paper focuses on

the evaluation and comparison of the two ontologies.

– Contribution of the author: The semi-automatic ontology

construction was conducted by the author of this thesis, together



1.5. PUBLISHED PAPERS 21

with the main part of the evaluations. This paper forms the basis

for the experimental results of the initial semi-automatic method

described in chapter 6.

• Blomqvist E.: Semi-automatic Ontology Engineering using Patterns.

In: Proceedings of the ISWC07 Doctoral Consortium, Busan, Korea,

November 11-15, 2007.

– Contribution: The paper proposes the overall OntoCase frame-

work and ideas for realising the four phases. This paper has

contributed to chapter 7.

• Blomqvist E.: OntoCase - A Pattern-based Ontology Construction

Approach. In: Proccedings of OTM 2007: ODBASE - The 6th In-

ternational Conference on Ontologies, DataBases, and Applications of

Semantics, Vilamoura, Algarve, Portugal, November 25-30, 2007.

– Contribution: The paper details the proposed OntoCase frame-

work and proposes methods for solving problems in the retrieval

and reuse phases, as well as outlines the future work potential of

the final two phases. Some experiments on existing OL methods

are presented. Chapter 7 is partly based on results presented in

this paper.

• Blomqvist E., Öhgren A. and Sandkuhl K.: Comparing and Evaluat-

ing Ontology Construction in an Enterprise Context. In: Enterprise

Information Systems - 8th International Conference, ICEIS 2006, Pa-

phos, Cyprus, May 23-27, 2006, Revised Selected Papers. Lecture

Notes in Business Information Processing, Manolopoulos, Y.; Filipe,

J.; Constantopoulos, P.; Cordeiro, J. (Eds.), Vol. 3, 2008.

– Contribution: This is an invited paper, an extended version of

the publication at ICEIS2006. The paper extends the previous

publication by discussing the final evaluation of the combined on-

tology resulting from the research project and some applications

of the ontology. The main focus of the paper is on the evaluation

of the ontologies and experience gleaned from those evaluations.

– Contribution of the author: Apart from previous contribu-

tions to the original paper, the author of this thesis participated

in the evaluations of the final ontology and contributed to the

analysis of future applications of the ontology. This paper con-

tributed to chapter 6.



22 CHAPTER 1. INTRODUCTION

• Blomqvist E. and Öhgren A.: Constructing an enterprise ontology

for an automotive supplier. In: Engineering Applications of Artificial

Intelligence, Vol 21, Issue 3, pp 386-397, Elsevier Ltd., 2008.

– Contribution: This is an invited journal paper based on the

publication at the 12th IFAC Symposium on Information Con-

trol Problems in Manufacturing 2006. The paper extends the

previous publication by discussing the combination of the two

ontologies, the final evaluation of the combined ontology, and

some applications of the ontology within the research project.

– Contribution of the author: Apart from the already pub-

lished semi-automatic ontology development and evaluation, the

combination of the ontologies was done jointly by the two authors

of the paper and additionally the author of this thesis contributed

to the descriptions of future applications of the ontology. This

paper has contributed mainly to chapter 6.

• Blomqvist E.: Pattern Ranking for Semi-automatic Ontology Con-

struction. In: Proccedings of SAC’08: Track on Semantic Web and

Applications (SWA), Fortaleza, Ceará, Brazil, March 16-20, 2008.

– Contribution: The paper presents the details of a ranking

scheme for pattern ranking and selection within OntoCase. The

method is tested on an example dataset and important features

of the ranking scheme are noted, such as the possibility to match

general pattern concepts to specific extracted terms. The paper

has contributed to chapter 7.

• Blomqvist E.: Case-based Reasoning for Ontology Engineering. In:

Proceedings of the 10th Scandinavian Conference on Artificial Intel-

ligence, Stockholm, Sweden, May 26-28, 2008.

– Contribution: This publication mainly consists of a theoretical

analysis that compares semi-automatic ontology construction to

Case-based Reasoning. Similarities to existing approaches are

analysed and the suitability of CBR for ontology engineering is

assessed. The paper has mainly contributed to chapters 3 and 7.

The following papers were coauthored by the author of this thesis during

the research leading to the thesis. Some are related to ontology patterns



1.6. ORGANISATION OF THE THESIS 23

and the development of OntoCase, but are not presented in detail in this

thesis, while others are only remotely related.

• Blomqvist E., Levashova T., Öhgren A., Sandkuhl K., Smirnov A.:

Formation of Enterprise Networks for Collaborative Engineering. In:

Post-conference proceedings of 3. Intl. Workshop on Collaborative

Engineering, Sopron, Hungary, April 2005.

• Blomqvist E., Levashova T., Öhgren A., Sandkuhl K., Smirnov A.,

Tarassov V.: Configuration of Dynamic SME Supply Chains Based

on Ontologies. Accepted at 2nd International Conference on Indus-

trial Applications of Holonic and Multi-Agent Systems. Copenhagen,

Denmark, August 2005.

• Thörn C., Eriksson Ö., Blomqvist E. and Sandkuhl K.: Potentials

and Limits of Graph-Algorithms for Discovering Ontology Patterns.

In: Proceedings of the International Conference on Intelligent Agents,

Web Technology and Internet Commerce - IAWTIC’2005, Wien, Aus-

tria, November 2005.

• Albertsen T. and Blomqvist E.: Describing Ontology Applications.

In: Proceedings of the 4th European Semantic Web Conference (ESWC07),

Innsbruck, Austria, June 3-7 2007.

• Billig A., Blomqvist E. and Lin F.: Semantic Matching based on En-

terprise Ontologies. In: Proccedings of OTM 2007: ODBASE - The

6th International Conference on Ontologies, DataBases, and Applica-

tions of Semantics, Vilamoura, Algarve, Portugal, November 25-30,

2007.

• Ricklefs M. and Blomqvist E.: Ontology-based relevance assessment

- An evaluation of different semantic similarity measures. To appear

in: Proceedings of OTM 2008: ODBASE - The 7th International

Conference on Ontologies, DataBases, and Applications of Semantics,

Monterrey, Mexico, November 9-14, 2008.

1.6 Organisation of the thesis

The following two chapters provide a more detailed background to ontolo-

gies and ontology engineering. Together with the methods and approaches

that are closely related to our proposed approach, more general approaches



24 CHAPTER 1. INTRODUCTION

of knowledge reuse and patterns are presented as part of the background.

Chapter 4 describes the research process and method applied in this thesis.

Chapter 5 attempts to answer the first research question about the nature

and existence of ontology patterns, both based on the theoretical back-

ground in chapter 3 and on our own research efforts. Chapter 6 presents

the first version of the OntoCase method, and discusses the initial experi-

ments and evaluation leading to the improved version of OntoCase. Chapter

7 addresses the second research question by describing the current version

of OntoCase in detail, the proof of concept implementation, and the parts of

the method that belong to future work. Next, chapter 8 discusses the evalu-

ation of the approach and the results achieved, thereby addressing the third

research question. Finally, the thesis ends with the discussion in chapter 9

and a set of conclusions in chapter 10.



Chapter 2

Knowledge representation

through ontologies

Representing and formally reasoning about knowledge has been an active

field of study, and of much dispute, ever since Aristotle made the first large

scale attempt to represent and structure the world’s knowledge. He both

invented categories for structuring the knowledge and methods for reasoning

about the knowledge, thus he invented what we nowadays know as logic. In a

sense Aristotle thereby constructed the first formal ontology, by structuring

and categorising the fields of knowledge.

The term ontology originates in ancient Greek, where on, genitive ontos,

is a noun referring to the notion of ’being’ and logia, originally derived from

logos meaning ’word’, is the term for ’science’ or ’study’ [1]. Ontology can

thereby be interpreted as ’the study of being’, and throughout history the

term ontology has been used to denote the field of metaphysics devoted to

the study of the nature of being. In more recent times the term ontology has

additionally been adopted by the computer science field, and now commonly

denotes a formal structure that explicitly specifies the concepts existing

within some domain. In contrast to the original meaning, ontologies are

today used in a less prescriptive way. Ontologies in computer science do

not primarily deal with the true nature of reality, instead they are a means

of describing a domain.

Ontologies are used for many purposes, and can solve a wide range of

tasks. Recently the Semantic Web has emerged as a prime application

field for ontologies, and the popularity of the Semantic Web initiative has

25



26 CHAPTER 2. KNOWLEDGE REPRESENTATION

also resulted in an increased interest in ontologies. The Semantic Web was

first proposed by Berners-Lee et al. [16] in their article in the Scientific

American 2001. The Semantic Web is not a research field as such, but

rather a vision for the future of the current World Wide Web where all

resources are semantically described and can be accessed by artificial agents

in addition to human beings. This thesis does not focus on the Semantic

Web however, instead the main application field of interest is information

logistics (ILOG). Nevertheless, the fields are closely related, i.e. since ILOG

may also be realised in the form of web applications.

2.1 Knowledge representation in ILOG

The research presented in this thesis is part of the field of Information

Logistics (ILOG), addressing the information overload problem as discussed

in chapter 1. ILOG focuses on how to provide the right information at

the right moment in time to the right person or organisation sent through

the right medium, as described by Deiters et al. [48] and Sandkuhl [170].

ILOG research usually deals with three aspects; the content aspect, the

demand aspect and the distribution aspect. The aspects are illustrated in

Figure 2.1, as described by Sandkuhl [170]. The information demand can

be the demand of an organisation, of a role within the organisation, or of

an individual. This demand can tentatively be met by information present

in different forms and in different locations. However, in order for a system

to find and to process the meaning of the information content it needs

to be formally represented. The correct content, possibly a combination of

information content from different sources, then has to be distributed to the

person or organisation presenting the demand, in an appropriate format and

via an appropriate medium, to the correct place and at the correct time.

Knowledge representation, by the means of ontologies, can assist in sev-

eral ways when providing ILOG solutions. Ontologies that describe services

and distribution channel capabilities can assist when choosing an appro-

priate way of distributing a certain content, i.e. the distribution aspect.

Ontologies can also be used when formally describing the information de-

mand of a certain person, role, or organisation, which is related to the

demand aspect. Demand can change in different settings and is thus con-

text dependent. Ontologies can be used as a means for describing existing

content and the meaning of information, for matching it to demands and

distribution channels, or combining it with other pieces of information. In



2.1. KNOWLEDGE REPRESENTATION IN ILOG 27

Figure 2.1: The information logistics triangle, according to Sandkuhl [170].

this thesis we mainly focus on ontologies for describing information con-

tent, specifically enterprise ontologies describing the information related to

a certain enterprise, and needed for supporting its internal processes.

A key issue for an enterprise that wishes to apply an ILOG system or

method is to construct an accurate and up to date ontology, describing

the organisation and information content of the enterprise. Constructing

ontologies has classically been a purely manual task, performed by knowl-

edge engineers in close cooperation with domain experts. However, man-

ually constructing ontologies is a difficult task. It is resource-demanding,

time-consuming and error prone. The field of ontology learning (OL) has

emerged, providing a set of semi-automatic tools that aid the ontology en-

gineer when modelling an ontology. The goal is to automatically extract as

much information as possible, and propose the extracted elements to the

user as a starting point for building the ontology manually, or as a part

of an iterative semi-automatic refinement process. In our research we ad-

ditionally focus on introducing knowledge reuse into this process, through

utilising ontology patterns in OL.

The ontology patterns and the method for semi-automatic ontology con-

struction proposed later in this thesis is based on existing theories and

previous research in the field. This chapter first includes definitions and de-

scriptions of basic concepts, e.g. concepts related to information engineering

and ILOG, different kinds of ontologies, and ontology languages. Based on

these basic concepts, ontology engineering is presented in detail, specifi-

cally semi-automatic ontology construction, ontology learning, is discussed.

When presenting the OL field related approaches and methods are treated,

such as methods for ontology search, selection, matching, and integration.



28 CHAPTER 2. KNOWLEDGE REPRESENTATION

2.2 Basic concepts

This section defines and explains basic terms in order to introduce the reader

to our research viewpoint, and assist further reading.

2.2.1 Data, information and knowledge

The terms knowledge and information are used in numerous places in this

thesis, in the introductory chapter they were used without further expla-

nation. The distinction between knowledge and information is sometimes

not explicitly defined, and in some literature it is even completely ignored.

Commonly, the difference between data, information, and knowledge is de-

fined as an increasing level of interpretation and internalisation within some

agent.

The knowledge management (KM) community reserve the term knowl-

edge for information that has been internalised by a person, as summarised

by for example Tsoukas and Vladimirou [203] and Stacey [186]. This means

that the information has been put into a context, and has some impact on

that person’s thoughts, values, reasoning processes and actions. Data in

this sense is the raw information that can exist without any human involve-

ment, it can easily be represented, for example in a computer. To transform

data into information some human processing, i.e. reasoning, is required in

order to put the data into a context and give it meaning.

However, most researchers in technical fields state that information can

also be stored in some formal representation, e.g. in a computer, while

knowledge on the other hand is something that can only exist within a

human mind. A fourth level is sometimes proposed, denoted understanding

or wisdom. This level is more abstract and used to denote the state when

knowledge is truly internalised in a human mind and can be used for decision

making and reasoning, almost without effort.

Another tradition, originating from the field of artificial intelligence (AI),

has slightly different definitions of data, information and knowledge. The

term knowledge representation (KR) is commonly used in this tradition,

implying that knowledge can in fact be represented and stored outside a

human mind. In a paper from 1981 Allen Newell defines knowledge as

”whatever can be ascribed to an agent, such that its behaviour can be

computed according to the principle of rationality”[142]. This is similar to

the notion of knowledge as defined in KM, aside from the fact that in AI

also an artificial agent, not only a human, may hold and use knowledge.



2.2. BASIC CONCEPTS 29

In our research we adopt the view from the AI field, stating that both

data, information, and knowledge can be represented formally and processed

by artificial agents or software systems. Data is a set of symbols with no

inherent meaning, other than being symbols of some language. Information

is the interpretation of those symbols in some context, the data after it has

been processed. The number 30 is a data item, it consists of the two symbols

3 and 0. However, when that data item is found in the database field

interpreted by a system as the age of the persons stored in that table, it has

become information. The difference between information and knowledge is

more subtle, knowledge is information that is used for some purpose. In our

view the information represented in, or connected to, an ontology becomes

knowledge when the information is reasoned with and applied in a system

or application. The ontology in itself, without any surrounding context, is

a representation of information.

2.2.2 The semiotic triangle

The study of semiotics is closely related to the notion of ontology, since

semiotics is the study of signs and other carriers of meaning [2] and ontolo-

gies attempt to do exactly that, represent meaning. Semiotics is commonly

explained through a triangle of meaning. There are many variations of this

triangle in literature, but one of the most commonly used originate from a

book by Ogden and Richards [149]. An illustration of the triangle can be

seen in Figure 2.2. The triangle signifies the connection between an object

or abstract entity in reality, the referent, and a symbol that represents this

entity. The connection is indirect, via the thought, or reference, provided

by some interpreter, usually a human being.

The concepts and relations expressed through symbols of an ontology

representation language, usually a logical language, intend to represent

some, abstract or concrete, entities in the world. In order to interpret the

symbols, and ’make the connection’ between the symbols and real-world

entities and events, some reasoning mechanism is needed. In the case of

formal ontologies this process is provided by reasoning engines, and other

application software using the ontologies. The main challenge when engi-

neering ontologies is finding the correct representation symbols to represent

the meaning of the referred real-world entities. The semantic representation

has to be accurate, in order to later ’recreate’ the intended meaning. This

can be viewed as the main objective of ontology learning, to automate the

process of finding the correct symbols to represent a real-world entity.



30 CHAPTER 2. KNOWLEDGE REPRESENTATION

Figure 2.2: An illustration of the semiotic triangle.

2.2.3 Linguistic terms, resources and methods

References are made to concepts originating in natural language processing

(NLP), computational linguistics, and related fields throughout this thesis.

For instance the notions of word and term are used frequently. Words, as

described by for example Jurafsky and Martin [107], are the basic building

blocks of all natural languages, usually represented by clearly distinguish-

able syntactic entities, such as a sequence of letters written together and

separated from other words through spaces. A word conveys some meaning,

and can have a grammatical function in a sentence. A term can consist of

one or more words and is a lexical realisation of a concept, in the context

of OL explained by Cimiano [34]. A concept is an abstract notion that

only truly exists in the minds of human beings, but concepts can be mod-

elled and informally represented as, for example a set of terms, a definition

in natural language, i.e. an intensional definition, or a set of examples of

concept instantiations, i.e. an extensional definition.

Linguistic resources can be very useful in OL, as we shall see later. One

popular linguistic resource is the lexical database WordNet, as described by

Fellbaum et al. [5]. The terms present in WordNet are arranged in ’synsets’,

i.e. sets of term synonyms that are interchangeable in some context, which

can be seen as representing some concept. Synsets are related through a



2.2. BASIC CONCEPTS 31

number of different semantic relations. One of the most important being the

hypernym/hyponym relation, where a term x being a hypernym of another

term y is interpreted as y being ’a kind of’ x. Hypernym/hyponym relations

are present between all noun and verb synsets.

Further details of natural language processing can be found in reference

literature such as Jurafsky and Martin [107]. Some useful methods are

however interesting to mention, since these will be briefly discussed later in

this thesis. When parsing a text tokenization is one subtask. Tokenization

means to divide a string of characters into ’tokens’, e.g. words. When words

have been identified stemming can be applied, meaning that the word is

reduced from an inflicted form to the stem, e.g. both ’fisher’ and ’fishing’

would be reduced to the stem ’fish’. Stop-word removal is a technique to

discard irrelevant words from a text, based on a list of so called ’stop words’,

i.e. to remove common words such as ’the’, ’a’, and ’and’ that do not carry

any meaning in themselves.

2.2.4 The concept of ontology

The notion of ’ontology’ has a long history in philosophy as noted at the

beginning of this chapter. This thesis deals only with ontologies as defined

in the field of computer science. Even in this field there are numerous defi-

nitions of the term ontology∗ in the literature. Among the most commonly

used definitions we find:

1. ”An ontology is an explicit specification of a conceptualisation.” [87]

2. ”ontology: (sense 1) a logical theory which gives an explicit, partial

account of a conceptualization; (sense 2) synonym of conceptualiza-

tion.” [90]

3. ”An ontology is a formal, explicit specification of a shared conceptu-

alisation.” [191]

4. ”An ontology is a logical theory accounting for the intended meaning

of a formal vocabulary, i.e., its ontological commitment to a particu-

lar conceptualisation of the world. The intended models of a logical

∗A remark on the term ontology: Some researchers use the word with a capital O and
only in the singular form. This is the classical way of using the word, when referring to
Ontology as an area in philosophy. In this thesis ontologies will be discussed according to
the definitions above, and the word will be used with a lower case ’o’ and the appropriate
inflected form.



32 CHAPTER 2. KNOWLEDGE REPRESENTATION

language using such a vocabulary are constrained by its ontological

commitment. An ontology indirectly reflects this commitment by ap-

proximating these intended models.” [89]

The above definitions are only a brief selection of definitions proposed

by different researchers. The above definitions are expressed in natural lan-

guage but, in general, definitions range from very informal to precise and

mathematical. Mathematically formalised definitions have been proposed

by for example Maedche [123] and Cimiano [34]. Mathematical definitions

connect the general notion of ontology to a specific mathematical represen-

tation, and are thereby suited for direct use by ontology-based systems or

ontology engineering tools.

As we can note there is not one single definition of the concept ’ontology’.

Guarino and Giaretta [90] already in 1995 attempted to clarify the meaning

of the definitions existing at that time. Their proposal was the two senses

of ’ontology’ described in definition number two above. Their main concern

was with the notion of ’conceptualization’ included in Gruber’s definition

[87], number one above. Resulting in the relaxation of that definition to

Guarino and Giaretta’s ’sense 1’, since a conceptualization represented by

a logical theory will always be incomplete in some sense. While these defi-

nitions focus on general abstract notions, such as conceptualizations, other

definitions exist that are more concrete in nature, treating an ontology as

a logical theory and listing the basic elements that can constitute such a

theory. Some definitions, especially in the OL field, do not distinguish be-

tween concepts and their realisation as terms. Cimiano [34] separates these

two notions, the ontology and its ’lexicon’, i.e. the lexical realisations of the

concepts in the ontology.

From the set of existing definitions we derive that ontologies commonly

consist of concepts, relations, axioms, and other constraints. The aim is

to create a shared vocabulary. Ontologies usually contain a hierarchical

ordering of the concepts, denoted taxonomy or subsumption hierarchy. On-

tologies can be used to create a knowledge base through instantiating the

concepts of the ontology, sometimes the term ontology is used to also denote

this extended structure, i.e. ontology and instances. An ontology has to

be computer processable to be used in an application, thereby it has to be

represented using some formal representation language.

An ontology belongs to a specific domain of knowledge. The scope

of the ontology concentrates on definitions of a certain domain, although

sometimes the domain can be very broad. The domain can be an indus-



2.2. BASIC CONCEPTS 33

try domain, an enterprise, a research field, or any other restricted set of

knowledge, whether abstract, concrete or even imagined. An ontology is

usually constructed with a certain task in mind, this task focus restricts

the content and structure of the ontology. An ontology can, for example,

be used with a reasoning engine to classify instances, check consistency of

facts, or answer queries. On the other hand there can be different kinds of

tasks, where complex reasoning is not the main focus, such as annotating

information, or acting as a user interface for structured document browsing.

The nature or the task imposes requirements on the content and structure

of the ontology.

In this thesis we will not restrict ourselves to a specific ontology rep-

resentation language or a mathematical definition of the ontology concept.

The general definition of an ontology as explained by Studer et al. [191],

shown in Definition 1, will be used. It is an extension of the definition by

Gruber [87] and conforms to the ’first sense’ of the ontology concept as

explained by Guarino and Giaretta [90].

Definition 1. An ontology is a formal, explicit specification of a shared

conceptualisation.

We view the ontology as a formally represented version of such an explicit

specification, requiring it to be represented in some computer processable

manner. The shared conceptualisation the ontology represents is not a

complete conceptualisation of the world, as noted by Guarino and Giaretta

[90], but it is restricted to the necessary definitions in order to solve some

specific task.

An ontology can be seen as a set of logical formulae, logical axioms, but

in this thesis we choose to view an ontology on a more abstract level, having

a set of distinct types of elements from which it is built. In Appendix A a

meta-model of the notion of ontology is presented for explanation purposes.

The intention is to further clarify the terminology used in this thesis and

what elements are used in the OntoCase method, but the model is not

intended as a definition of the ontology concept. We suggest that the reader

informally views the ontologies treated in this thesis as graph structures,

where concepts are nodes and relations and restrictions are edges. This

is a suitable mental abstraction for the purpose of this thesis. How this

structure is actually represented or obtained depend on the representation

language used, however this is not treated in detail in the thesis.



34 CHAPTER 2. KNOWLEDGE REPRESENTATION

Ontology elements

The basic building blocks of an ontology are its concepts. Concepts are in

many formal languages defined extensionally, as a set of instances displaying

some common characteristics representing this concept. However, three

aspects of a concept are often discussed, according to Cimiano [34]:

• the extension,

• the intensional description,

• and the set of lexical realisations.

Informally a concept can be described in two ways; intensionally, by spec-

ifying properties that characterise the instances of the concept, or exten-

sionally, by explicitly listing its instances. The set of lexical realisations is

a set of terms that may be used to represent the concept, e.g. both the

terms ’packet’ and ’parcel’ may be used to represent the conceptual notion

of a package in some ontology. Sometimes a lexical realisation is also called

a label of the concept, the concept may thereby have a set of alternative

labels. The set of lexical realisations can intuitively be viewed as a set of

synonyms, although the exact definition of synonym is sometimes disputed

withing the field of linguistics. In this thesis we assume that a concept as a

minimum is represented by a non-empty set of lexical realisations, but can

additionally contain intensional descriptions and an extension, although our

proposed ontology construction method does not currently provide the last

two explicitly. The term ’class’ is often used as a synonym to ’concept’, e.g.

in the context of the OWL language. In this thesis the terms ’concept’ and

’class’ are used interchangeably.

Another basic element is the relation. A relation is an association that

exist between two or more concepts. In this thesis we will restrict ourselves

to binary relations, i.e. relations associating two concepts, since this is a

restriction posed by many ontology representation languages, also OWL as

we shall see later. A relation can be viewed as a tuple of concepts, but

usually this tuple is also associated with lexical realisations of the relation,

and possibly a set of ’rules’ determining the semantic interpretation of the

relation when it is used for reasoning. The specific type of relation usually

denoted subsumption or ’subclass of’ has several lexical realisations, such

as ’subsumtion’, ’subclass-of’ and ’is a’. This relation additionally has spe-

cific semantics. The relation is in most representation languages defined

as being transitive, but it may or may not allow multiple inheritance. For



2.2. BASIC CONCEPTS 35

specific types of relations, such as ’subclass of’, that are predefined in many

ontology representation languages these semantics are inherent in the lan-

guage, but user defined relations they need to be specified explicitly. In this

thesis relations are viewed as tuples, binary associations between concepts,

without specific semantics but with a, possibly empty, set of lexical realisa-

tions. In the implementation of the method, the specific semantics of the

’subclass of’ relations is used by the method, while other relations are not

further defined in terms of semantic interpretation. The term ’property’

is often used as a synonym to ’relation’, e.g. in the context of the OWL

language. In this thesis the terms are used interchangeably.

Additional axioms can be defined in ontologies, as additional definitions,

constraints and sometimes even rules, although rules are most often consid-

ered to be a layer of information on top of ontologies rather than included

in an ontology. The nature of such axioms depend on the type of logical

representation used. Since the focus of OntoCase at the moment is on con-

cepts and relations, detailed treatment of axioms are outside the scope of

this research. Restrictions creating ’anonymous’ classes in OWL are not

used in the pattern matching process at the moment, since the matching is

focused on lexical realisations of the concepts and relations.

Ontology representation

We choose to view ontologies on the abstraction level of concepts and rela-

tions and their lexical realisations as labelled nodes and arcs of a graph, for

most methods this thesis, rather than sets of logical formulae. Nevertheless,

ontologies, and patterns, need to be represented in some computer process-

able language. Many different logical formalisms exist for representing and

reasoning with ontologies, each one having its own benefits and drawbacks.

The choice of representation should, in general, be made based on the re-

quirements of the ontology, but additional factors such as standardisation

and tool availability can influence the decision. Two different traditions

have co-exist within the ontology, and Semantic Web, community. Some

researchers prefer frame-style logics, closely related to traditional informa-

tion modelling and object oriented formalisms, while others prefer to use

description logics (DL) based formalisms. Separate from these two tradi-

tions a number of more specific logical languages exist with in AI, for special

purpose ontologies, e.g. in robotics and other applications.

The Resource Description Framework† (RDF) is a W3C recommenda-

†http://www.w3.org/RDF/



36 CHAPTER 2. KNOWLEDGE REPRESENTATION

tion for modelling metadata about resources on the web. The RDF model

is based on triples consisting of a subject, a property, and an object. This

is how we can describe resources in RDF, through stating triples connect-

ing the resource to other resources or literals. URIs are used to identify

resources. RDF Schema‡ (RDFS) is an extension of RDF for defining vo-

cabularies, i.e. schemas, to be used by RDF models. Using RDFS we can

build a simple ontology, e.g. defining classes using rdfs:Class and a taxon-

omy of classes using rdfs:subClassOf. Both RDF and RDFS have, among

other notations, an XML syntax§ that also uses XML namespaces¶.

Since 2004 OWL‖ (Web Ontology Language) is a W3C recommendation

for representing ontologies on the web. Due to this, it has emerged as the

most popular choice of representation language also for non-web ontologies.

OWL is based on DL and is available in several versions, regarding expres-

sivity, where OWL-DL and OWL-lite are two such versions both supporting

useful reasoning services. For details of DL the reader is referred to the De-

scription Logic Handbook, edited by Baader et al. [139]. OWL-DL is the

more expressive of the two versions, however it is still computationally com-

plete and decidable. If the expressiveness is increased even more, allowing

for the full power of RDF(s), also called OWL-Full, there are no computa-

tional guarantees. OWL builds on RDF in the sense that it extends RDF,

but additionally restricts RDFS if one wishes to stay within OWL-DL, to

make use of the reasoners available for that language. As an alternative lan-

guage, based on the information modelling and object oriented traditions,

F-logic as described by Kiefer et al. [112] has been one of the more popular.

It is used as the basis for tools like OntoEdit and KAON mentioned later

in this thesis. Also the popular ontology editor Protégé uses a frame-based

format as its native format, although it additionally provides support for

OWL.

Figure 2.3 presents an example of two class definitions in OWL XML-

syntax∗∗. The first concept is the class ’Human’, including a comment

explaining the class in natural language. The class is a subclass of ’Animal’,

and disjoint with ’Fish’, meaning that no instance of this ontology can be

‡http://www.w3.org/TR/rdf-schema/
§http://www.w3.org/TR/rdf-syntax-grammar/
¶http://www.w3.org/TR/1999/REC-xml-names-19990114/
‖http://www.w3.org/2004/OWL/

∗∗The example intends to give a brief, and incomplete, introduction to the OWL
language and its XML syntax, but it is not essential for the general understanding of
this thesis. Interested readers, who are not familiar with XML or DL, are referred to the
more detailed literature referenced in this section.



2.2. BASIC CONCEPTS 37

both a human and a fish. The following subclass statement is actually a

restriction on the ’hasChild’ property, stating that for the class ’Human’ all

values of the ’hasChild’ relation has to have the type ’Human’. In this case

it is stated as a subclass restriction, but it could also have been modelled

as a definition of the class ’Human’, i.e. stated as an equivalent class. The

second class is the concept ’Gender’, defined as a nominal. The ’oneOf’

statement includes an enumeration of the instances that constitute this

class. The gender class is a subclass of owl:Thing, which is the top class

of all OWL ontologies. Currently the OWL language is being extended.

The new version of OWL, OWL 2, will contain features such as qualified

cardinality restrictions, chains of properties and disjoint properties. In this

thesis however, we have used the original OWL-DL language†† recommended

by the W3C.

<owl:Class rdf:ID=“Human">

<rdfs:comment>A concept for representing humans </rdfs:comment><rdfs:comment>A concept for representing humans.</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Animal"/> 

<owl:disjointWith rdf:resource="#Fish"/> 

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>

<owl:allValuesFrom rdf:resource="#Human"/><owl:allValuesFrom rdf:resource="#Human"/>

</owl:Restriction>

</rdfs:subClassOf> 

</owl:Class>

<owl:Class rdf:ID=“Gender">

l i l tCl<owl:equivalentClass>

<owl:Class>

<owl:oneOf rdf:parseType="Collection">

<rdf:Description rdf:ID="male"/>

<rdf:Description rdf:ID="female"/>

</owl:oneOf>

</owl:Class>

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>

Figure 2.3: An example of two class definitions in the OWL XML-syntax.

Both F-logic based languages and OWL have been used to represent

patterns and ontologies in this research. During the first iteration of the

research, as described in section 4.1.2, F-logic was used as representation

language, while during the second iteration OWL was selected instead. The

main reason was the level of adoption of OWL by the research community

††http://www.w3.org/TR/owl-features/



38 CHAPTER 2. KNOWLEDGE REPRESENTATION

and consequently the availability of methods, tools and patterns represented

in OWL. This has however given rise to some incompatibilities between some

evaluations and results presented in later chapters. The initial experiment

conducted within the SEMCO project used F-logic for pattern and ontology

representation, e.g. allowing to state relations with concepts as property

values. In later experiments those patterns had to be remodelled, when

using patterns and ontologies represented in OWL, since such constructs are

not within OWL-DL. An analysis of the consequences of this remodelling

has not been performed, but some effects are noted in chapter 8.

Ontology categories and applications

In the introduction to this chapter the Semantic Web was briefly mentioned.

The notion was introduced by Tim Berners Lee et al. in a nowadays famous

article in the Scientific American in 2001 [16]. The idea of the Semantic Web

is to introduce semantics into the links, documents and data on the web.

Everything can be identified by a URI, from people to documents and data

items. By having a schema to define the meaning and content of those

resources, and their interrelations, the Semantic Web provides a machine

interpretable version of the current web. Web ontologies are the means

to describe this semantics, whereby the engineering, mapping and usage

of ontologies has become important research topics. A discussion around

ontology-based ILOG applications was also presented at the beginning of

this chapter, but ontologies are used in many other fields than these partic-

ular application areas.

Ontologies can be used for many different purposes, such as the usage

areas proposed by McGuinnes [129]:

• Controlled vocabularies.

• Site organisation and navigation, e.g. browsing and customised search.

• Providing a structure from which to extend information content.

• Word sense disambiguation.

• Consistency checking, validation and verification.

• Completion and correction of insufficient information.

• Interoperability support.

• Configuration support.



2.2. BASIC CONCEPTS 39

Within the enterprise ILOG applications all these areas are relevant. A con-

trolled vocabulary can be used to ensure a consistent use of terminology,

e.g. providing a set of keywords for annotating information. Site organi-

sation is important for company intranets and search functions in internal

repositories. Checking consistency, verifying that information is correctly

entered, and that constraints are not violated, is also important tasks. Sup-

porting interoperability between information sources and personalisation of

information are also core tasks of ILOG systems.

Ontologies can be used in a variety of application domains, ranging from

autonomous agents to web portals, corporate intranets, and ILOG systems.

This variety influences the features needed in an ontology. Sometimes a

taxonomy might be enough, providing a controlled vocabulary, but in other

cases more advanced features, such as restrictions and general axioms rep-

resenting business rules, are needed to enhance reasoning capabilities. A

study describing ontologies at different levels of complexity is presented by

van Heijst et al. [208]. The levels are denoted terminological ontologies,

information ontologies and knowledge modelling ontologies. Terminological

ontologies deal with structuring terminology, information ontologies deal

with the structure and format of information, such as documents, databases

and web pages, and knowledge modelling ontologies deal with more complex

tasks related to knowledge management.

Ontologies can be classified from yet another point of view, their level or

generality as described by Guarino [89] in Figure 2.4. Top-level ontologies

describe general concepts like space and time, which are most often inde-

pendent of domains and specific tasks. These ontologies can be shared by

large communities. Domain ontologies describe the vocabulary of a specific

domain and are usually specialisations of top-level ontologies. Task ontolo-

gies in turn describe the vocabulary of a generic task or activity and may

also be specialisations of top-level ontologies. Finally, application ontologies

are a specialisation of domain ontologies, adapted for specific application

tasks.

This thesis focuses on enterprise ontologies, mainly used in ILOG sys-

tems, which for example can mean providing a structure for content or

supporting interoperability and access to knowledge sources. The focus is

on application ontologies, tailored for specific applications within an enter-

prise, where the domain is governed by the enterprise in question. Uschold

et al. [207] developed a top-level enterprise ontology, including many ba-

sic concepts that concern enterprises and their activities. This ontology

however cannot be used as it is for our purposes, since we deal with de-



40 CHAPTER 2. KNOWLEDGE REPRESENTATION

Top-level Ontology

Task OntologyDomain Ontology

Application Ontology

Figure 2.4: Ontologies with respect to their level of generality. [89]

scribing the information present, or needed, for the enterprise in question.

The enterprise ontology by Uschold et al. [207] does not contain concepts

for specifying the terminology of different enterprise domains. Moreover, it

contains only abstract notions of products, services and processes.

Enterprise ontologies are, from our viewpoint, ontologies supporting en-

terprise applications, rather than ontologies describing general notions re-

lated to enterprises. Therefore enterprise ontologies are to be tailored to

their intended applications, but can additionally contain definitions of gen-

eral notions. An enterprise ontology for a product development enterprise

can, for example, contain parts describing different aspects such as prod-

ucts, functions and processes. Products is concerned with what the en-

terprise produces, whether actual physical products or services, and the

features, parts, and variants of those products. Functions, or functionali-

ties, are the problems that the products, and product parts, aim to solve

and descriptions how they solve them. In this way actual products can be

connected to the customer requirements and the functionalities requested in

both external and internal requirements. Processes connects the function-

alities and products to the organisation of the enterprise, describing how

the processes support the realisation of the requested functionalities into

products or services. There might also be processes not directly involved

in the development, such as marketing and management. Whether or not

these are part of the ontology is of course depending on the application. The

ontology can also contain parts concerning the internal organisation, people

and groups within the enterprise, and competencies of the organisation and

the individuals. Definition 2 presents the notion of enterprise ontology used

in this thesis.



2.3. ONTOLOGY ENGINEERING 41

Definition 2. An enterprise ontology is an ontology describing the domain,

or parts of the domain, of an enterprise. It is to be used in an enterprise

application aiming to solve a specific problem of that enterprise.

2.3 Ontology engineering

Ontology engineering is a complex process covering the complete life-cycle of

ontologies, from requirements engineering to usage and maintenance of the

ontologies. There is currently no consensus on precisely what activities are

part of this process, and how to refer to them, although efforts to structure

and unify the terminology of the field have been proposed, e.g. by Suaréz-

Figueroa and Gómez-Pérez [196].

The life-cycle of ontologies can be compared to the life-cycle of other

models or software artefacts. Suaréz-Figueroa and Gómez-Pérez [194] list a

set of possible life-cycle models suitable for ontology engineering, based on

the analogy to software engineering. According to their summary of related

work, most standards for software engineering define the software life-cycle

as containing a concept activity, a requirements activity, a design activity, an

implementation activity, a test activity, installation and checkout activities,

operation and maintenance activities, and, sometimes, a retirement activity.

A life-cycle model can be selected and used within an engineering project,

thus the above activities are mapped to the sequence and arrangement of

activities of such a model. Examples of life-cycle models in software en-

gineering are the spiral model and the waterfall model. Different mod-

els apply different strategies for performing the activities, e.g. the spiral

model is an iterative model while the waterfall model is a sequential model

performing all activities in sequence. Knowledge engineering models, and

more specifically ontology engineering models, are commonly based on sim-

ilar ideas or even adaptations of software engineering models as proposed

by Suaréz-Figueroa and Gómez-Pérez [194]. Although there exist ontology

development methodologies there is still a lack of mature and well-tested

life-cycle models.

The activities of the ontology development process can be divided into

three categories, as suggested by Gómez-Pérez et al. [85]; management

activities, development oriented activities, and support activities. Gómez-

Pérez et al. further suggest a division of these categories into sub-categories

and activities as follows:

• Management activities



42 CHAPTER 2. KNOWLEDGE REPRESENTATION

– Scheduling

– Control

– Quality assurance

• Development activities

– Pre-development

∗ Environment study

∗ Feasibility study

– Development

∗ Specification

∗ Conceptualisation

∗ Formalisation

∗ Implementation

– Post-development

∗ Maintenance

∗ (Re-)use

• Support activities

– Knowledge acquisition

– Integration

– Merging

– Alignment

– Evaluation

– Documentation

– Configuration management

Each support activity is carried out during a specific part of the complete

development process, but they are all essential to the development process.

Knowledge acquisition is performed to elicit all knowledge to be represented

in the ontology, this may be carried out both during pre-development stages,

during development, and during maintenance. Ontology integration, merg-

ing, and alignment activities are performed mainly during development,

when reusing ontologies or composing modules, but may also be part of the

post-development activities.



2.3. ONTOLOGY ENGINEERING 43

In this thesis the focus is mainly on the development activities, pre- and

post-development activities are not treated in detail. We focus on provid-

ing semi-automatic support for some of the activities during development.

Several of the support activities are also highly relevant, such as knowl-

edge acquisition, integration, and evaluation. We also remind the reader of

the abstraction levels, mentioned in chapter 1, that needs to be considered

when designing the ontology. Analogous to software systems an ontology

has its overall architecture, its detailed design and its implemented ’code’.

We repeat the questions from section 1.1.3 that summarise what needs to

be considered in order to build an ontology:

1. What is the purpose of the ontology? How is it to be applied in a

software system?

2. What parts are to form the ontology? How should the architecture of

the ontology be formed?

3. What should the ontology contain? What concepts, relations, and

axioms?

4. How should the ontology be represented syntactically?

The following sections focus on methods and tools for ontology devel-

opment and supporting activities, rather than the complete life-cycle of

ontologies.

2.3.1 Manual ontology construction

Today the ontology engineering process is mainly a manual process, often

using methods quite similar to software engineering methodologies. An on-

tology can be built completely from scratch, in a cumbersome process of

eliciting important concepts and finding generalisations, specialisations, re-

lations and axioms. Reviews of existing methods were presented by Jones et

al. [106], Fernandéz López [64], and Öhgren [150]. A more recent overview

can be found in a project deliverable by Suaréz-Figueroa et al. [193]. A

different approach is to build an ontology almost completely out of existing

knowledge sources, as suggested by Fikes and Farquhar [65], Levashova et

al. [120], and more recently Hepp and de Brujin [99]. Recent research tend

to agree that reengineering of existing sources is a key to successful ontology

engineering, whereby most recent method proposals incorporate both the



44 CHAPTER 2. KNOWLEDGE REPRESENTATION

above mentioned approaches, see for example the proposed methodology by

Suaréz-Figueroa and Gómez-Pérez [195].

Most methods incorporate some form of requirements analysis and spec-

ification steps at the beginning of the development. Requirements can

be represented as scenarios or be more similar to software requirements,

however a common way to semi-formally specify ontology requirements is

through a set of competency questions, as described by Gruninger and Fox

[88]. A competency question is an ’example question’, of the kind that

you need the ontology to be able to answer. Competency questions can be

expressed as informal natural language questions, or more formally repre-

sented in logic or as queries to be submitted to the ontology. An exam-

ple competency question for an ontology of university personnel could be:

’What are the courses taught by a certain professor?’

There are numerous tools available for designing and implementing on-

tologies, such as OntoEdit that has evolved into OntoStudio∗, Protégé† and

WebProtégé‡, SWOOP§, KAON¶ and more recent additions such as Top-

Braid Composer‖ and the NeOn toolkit∗∗. All these systems support manual

ontology engineering but do not give any substantial assistance to the on-

tology engineer, aside from a graphical user interface and the usual help

functions, see for example the survey of tools by Fensel and Gómez-Peréz

[61]. Only recently have plans for tools supporting different life-cycle mod-

els and development work flows been proposed, but no such tool is currently

available. A few research efforts have also proposed interfaces tailored to

novice users, such as the tools by Bernstein and Kaufmann [17] and Dim-

itrova et al. [51] that both focus on using a controlled subset of natural

language for ontology design and editing.

Another recent development is the focus on collaborative ontology edit-

ing, apart from pure multi-user and transaction support, i.e. discussing and

reaching consensus about modelling decisions and changes, annotating and

tracking modelling decisions and changes, proposing improvements, voting

and rating. An ontology of collaborative ontology design was proposed by

Gangemi et al. [79], as a formal metamodel of collaborative ontology design

that can be used to characterise methods and work-flows of ontology de-

∗http://www.ontoprise.de/en/home/products/ontostudio/
†http://protege.stanford.edu/
‡http://bmir-protege-dev1.stanford.edu/webprotege/
§http://code.google.com/p/swoop/
¶http://kaon.semanticweb.org/
‖http://www.topquadrant.com/topbraid/composer/index.html

∗∗http://www.neon-toolkit.org/



2.3. ONTOLOGY ENGINEERING 45

sign. Tool support for collaboration exist within the collaborative variant of

Protégé, described by Tudorache and Fridman Noy [204], and for ontology

editing over peer-to-peer networks, presented by Xexéo et al. [221]. Cicero

is a collaborative environment for tracking design rationale and support-

ing collaborative design that will be integrated into the NeOn toolkit, see

description by Dellschaft et al. [49].

2.3.2 Ontology learning

Semi-automatic ontology construction, or ontology learning (OL), has been

briefly explained previously. In this section we present in depth explana-

tions of the involved tasks and discuss existing systems. OL is a quite new

field in ontology research. Researchers and practitioners have realised that

building ontologies from scratch, and by hand, is too resource-demanding

and time-consuming. In most cases there are already different knowledge

sources that can be utilised in the ontology engineering process. Such exist-

ing knowledge sources can be documents, databases, taxonomies, web sites,

and other similar structures. The key question is how to extract the knowl-

edge encoded in these sources automatically, or at least semi-automatically,

and reformulate it into an ontology. Simperl et al. [181] have recently

proposed a methodology for applying OL within an ontology engineering

process, as described at the beginning of section 2.3, by specifying the pro-

cesses and activities that are specific when applying OL. Although the tasks

specified by Simperl et al. [181] cover the ones listed in section 1.1.3, the

tasks discussed in this thesis focuses on the technical problems of OL, while

Simperl et al. mainly focus on the organisational aspects.

OL research tries to develop algorithms to extract ontological elements

from different kinds of input, it is denoted ’learning’ since many approaches

apply some kind of machine learning (ML) techniques. According to Maed-

che [123] and Cimiano [34] the field of OL can be divided into a ’layer cake’

of methods and algorithms, see Figure 2.5, through which more and more

expressive elements can be extracted and included in the proposed ontology,

or presented to the user for validation. Our view, as presented in section

1.1.3, includes these layers as tasks for element extraction in the element

extraction step.

At the bottom of the layer cake is term extraction, synonym identi-

fication and concept formation, then follows taxonomy induction, general

relation extraction, relation hierarchy induction, and finally the top levels

concern axiom schemata and general axiom or rule induction. Most OL



46 CHAPTER 2. KNOWLEDGE REPRESENTATION

systems existing today rely heavily on techniques from natural language

processing (NLP) and computational linguistics for pre-processing a text

corpus, see overviews of methods by Maedche [123], Cimiano et al. [35] and

Cimiano [34]. Techniques from NLP, computational linguistics, and text

mining are used for extracting different elements from the text, including

relevance or confidence values representing the confidence with which the

elements suggested to the user have been correctly extracted. Most existing

techniques focus on natural language text or semi-structured text as input,

although re-engineering of different kinds of resources is now receiving an

increasing amount of interest from the research community. In this thesis

OL will be interpreted in a broad sense, as a synonym to semi-automatic on-

tology construction and the focus will be mainly on ontology learning from

text, although our focus is on the ontology composition rather then the text

processing and element extraction. The following section presents some ba-

sic techniques used for OL and then a short survey of existing methods and

systems is presented.

Terms

Synonyms

Concepts

Concept Hierarchy

General Relations

Relation Hierarchy

Axiom Schemata

General Axioms

Figure 2.5: The Ontology Learning layers.

Basic methods

Many of the semi-automatic approaches rely on basic techniques that have

been developed in other research fields. The techniques have often origi-

nated in data mining, text mining, NLP, computational linguistics, or ma-

chine learning. Some of the most important basic ideas are presented be-

low in brief. Standard NLP techniques like chunking, parsing, and part-of



2.3. ONTOLOGY ENGINEERING 47

speech tagging are excluded from this description. Such methods are con-

sidered outside the scope of this thesis, since the methods proposed later

in the thesis are not directly using such NLP techniques. These techniques

are often relevant prerequisites for the basic OL methods however, for de-

tails the reader is referred to reference literature in the NLP field, such as

Jurafsky and Martin [107].

Term extraction and concept formation

Most of the existing approaches use natural language texts as input and

start by extracting terms from these texts. The texts are parsed using a

natural language parser. Some approaches use domain specific texts while

others deal with general text corpora. Most commonly the methods start

by extracting terms according to their frequency of occurrence in the texts,

although this frequency count is usually modified to represent some notion

of ’relevance’. Some use algorithms, see for example Navigli et al. [141],

to filter out words that are common in all texts, thus not domain specific,

concepts that are only used in one single document and not in the whole

corpus, and terms that are simply not frequent enough. This is the clas-

sical TFIDF-measure (term frequency, inverse document frequency) from

Information Retrieval (IR), as explained by Baeza-Yates and Ribeiro-Neto

[10]. Another approach to term extraction is to use preexisting linguistic

patterns to extract terms that are part of important linguistic constructs,

see for example methods by Wu and Hsu [220].

An important part of term detection is discovering multi-word terms.

The most common way to assess the relevance of a multi-word term is the

method using the C/NC-value method developed by Frantzi et al. [71].

The C-value proposes a method to assess the ’termhood’ of a set of words

by studying both its frequency in the text, but also its occurrence as a

subset of of other candidate terms, the number of such occurrences, and

the length of the candidate term. The NC-value in addition incorporates

the term contexts, surrounding words, in the assessment. By using such

methods not only single word terms but compound terms can be extracted,

as candidate lexical realisations of concepts.

Synonym detection is the problem of clustering terms into sets of syn-

onyms. It is usually noted that true synonyms are very rare, most terms

differ slightly in meaning although they may be acceptably exchangeable in

a sentence. Such subtle differences are not usually considered in OL syn-

onym detection and when forming concepts, commonly terms are grouped



48 CHAPTER 2. KNOWLEDGE REPRESENTATION

with the intention of being used to represent a concept in a certain context,

rather than to represent a set of true synonyms. This is similar to how

synonyms are treated in for example WordNet [5] where terms are collected

in so called ’synsets’. A synset is a collection of terms that have a similar

meaning in a certain context. Until recently concept formation has been

mostly seen as the process of term clustering and synonym detection. Re-

cent approaches have however attempted to extract more complex concept

definitions from text. An example of such a method is the LExO method

suggested by Völker et al. [213] [212] where complex concept definitions and

restrictions are extracted from natural language definitions and descriptions

of terms, for example in sentences extracted from dictionaries.

Term classification and taxonomy extraction

A task that is addressed in many existing OL approaches is to extract a

taxonomy for the ontology, i.e. extract subsumption relations between the

formed concepts. There are several approaches to classifying terms, and

some can also be used to extract more arbitrary relations. One system

that attempts to classify words according to their context is SVETLAN,

described by Chalendar and Grau [46]. The input is texts automatically di-

vided into so called thematic units, i.e. different contexts. The sentences in

the texts are parsed and specific patterns of words are extracted, the nouns

in these sentence-parts are then aggregated into groups depending on their

use with the same verb and the thematic unit or group of thematic units

it belongs to. Gamallo et al. [72] use a similar method, where sentences

are parsed, syntactic dependencies extracted, which can then be translated

into semantic relations using predefined interpretation rules.

Another such system is Camille presented by Wiemer-Hastings et al.

[219], which attempts to learn the meaning of unknown verbs by looking at

how they are used and stating semantic constraints according to that. The

output is hypotheses of the verb-meanings. To further arrange terms into

a hierarchy an approach using a concept lattice is proposed by Sporleder

[183]. This approach takes a set of terms as input, together with attributes

and attribute values that are attached to the terms. The attributes have

possibly been automatically extracted from texts. The terms are arranged

in a hierarchy according to the attribute values, and the lattice is pruned to

minimise redundancy. This is somewhat similar to formal concept analysis,

described further below. Arranging concepts hierarchically can also be done

using clustering algorithms, e.g. as proposed by Faure and Nédellec [58].



2.3. ONTOLOGY ENGINEERING 49

Formal concept analysis (FCA) is another approach that has been used

in addition to the similarity and clustering techniques listed above, as for

example presented by Cimiano [34], Cimiano et al. [36], and Völker and

Rudolph [214]. In order to apply FCA for hierarchy induction the verbs

used in connection with the terms, representing the concepts, to be ordered

are collected as attributes of the term. Applying FCA on these attribute

vectors will construct a concept lattice, which is transformed to a concept

hierarchy, where the leaves are the terms and the intermediate nodes are

named by the verbs applicable to the terms below the node in the concept

hierarchy.

A very common approach to relation extraction is the used of lexico-

syntactic patterns. Such patterns were first proposed in 1992 by Hearst

[98], and are today usually referred to as ’Hearst-patterns’. They have

since then been used in numerous settings. An example of a Hearst-pattern

is NP0 such as {NP1, NP2, ...(and|or)}NPn, where NPi stands for an ar-

bitrary noun phrase. The pattern would for example, match the following

sentence; ’animals such as cats and dogs’. This particular pattern is a pat-

tern representing a subsumption relation, i.e. we can conclude that cats are

a kind of animal. Similar patterns could also be developed for other types of

relations, and even for domain specific relations. Another popular pattern,

or rather heuristic, is the commonly used so called ’head heuristic’, some-

times also denoted ’vertical relations heuristic’. This heuristic is very simple

but quite useful for OL. The basic idea is that modifiers are added to a word

in order to construct more specific terms, i.e. the term ’graduate student’

consists of the term ’student’ and the modifier ’graduate’. Using the head

heuristic we can derive that a ’graduate student’ is a kind of ’student’.

Co-occurrence theory and association rules

A problem that many approaches for semi-automatic ontology construction

struggle with is the extraction of arbitrary relations. One of the most used

approaches is to apply co-occurrence theory or association rule mining to

derive possible relations in an ontology. This has been discussed for example

by Srikant and Agrawal [184], Ding and Engels [53], Heyer et al. [101], and

Cherfi and Toussaint [33].

The basic idea of co-occurrence theory, sometimes called collocation the-

ory, is that if two concepts often occur ’near’ each other they probably have

some relationship. Some approaches, like Heyer et al.[101], only consider

co-occurrence in the same sentence but it could be extended to textual en-



50 CHAPTER 2. KNOWLEDGE REPRESENTATION

vironments in general, e.g. the same document. Association rules are an

extension of co-occurrence theory, when the co-occurrences are formulated

as rules. For example a rule can be that if a document contains the terms

t1, ..., ti then it also tends to contain the terms ti+1, ..., tn, see suggestions

by Cherfi and Toussaint [33]. Such rules can be used to extract additional

relations, while at the same time updating the rules themselves.

The main problem using co-occurrences is that the nature of the relation

is not clear, it is an arbitrary relation. Approaches have thereby been

proposed to find also suitable labels of such arbitrary relation, such as the

approach by Kavalec and Svatec [110]. They propose to look for verbs used

in connection with terms representing the two concepts in order to find the

correct relations that hold in that specific context.

Below a number of existing OL systems are briefly described, to give an

overview of the state of the art in the field.

SOAT

SOAT is an OL system proposed by Wu and Hsu [220]. Using templates of

part-of-speech tagged phrase structures, in Chinese, concepts and relations

are collected from texts. A text corpus from the domain is needed and a seed

word, for example the name of the domain. The output is a prototype of

the domain ontology, to be validated by an ontology engineer. Additionally,

the extraction rules might need to be updated during the process, and that

can only be done by the ontology engineer.

Four different relations between concepts are extracted; category, syn-

onym, attribute and event. The category hierarchy roughly corresponds to

a taxonomy. Event is the actions that can be associated with a concept,

Wu and Hsu [220] explain this by exemplifying that the concept ’car’ can be

driven, parked, raced, washed and repaired. The extraction algorithm takes

as input a parsed domain corpus with part-of-speech tags, and performs the

following steps:

1. Select a ’seed-word’ that forms a potential root set R, performed by

the user.

2. Begin the following recursive process:

a) Pick a keyword A as the root from R.



2.3. ONTOLOGY ENGINEERING 51

b) Find a new related keyword B by using the extraction rules and

add it to the domain ontology according to the rules.

c) If there are no more related keywords, remove A from R.

d) Put B into R.

e) Repeat steps 2(a)-2(d) until either R becomes empty or the num-

ber of nodes generated exceeds a predefined threshold.

Advantages of this approach according to the authors are that it is highly

automated and apparently very efficient [220]. Disadvantages are that it

requires heavy preparations and adaptations, in the form of constructing

correct extraction rules. The method is also quite static because it can only

extract predefined types of relations between concepts.

Text-To-Onto and Text2Onto

A fairly elaborate approach is the Text-To-Onto system developed at the

University of Karlsruhe by Maedche et al. [124] [127] [125] [123] [126]. Text-

To-Onto was further developed by Cimiano and Völker [37] and Cimiano

[34] and in its new version renamed to Text2Onto∗. The system is intended

to support both constructing ontologies and maintaining them. The idea is

to get better extraction results and to reduce the need for an experienced

ontology engineer by using several different extraction approaches and then

combining the results. The architecture of the original Text-To-Onto system

was based on the following parts:

1. Data import and processing

2. NLP System

3. Algorithm library

4. Result presentation

5. Ontology engineering environment

The idea of the data import and processing is to be able to use different

kinds of structured or unstructured data as input to the system. There

can be existing knowledge sources like databases, web pages, documents or

even already existing ontologies. All these sources are then pre-processed

and transformed into an appropriate form, possible structure information

∗http://ontoware.org/projects/text2onto



52 CHAPTER 2. KNOWLEDGE REPRESENTATION

is retrieved. Any resulting texts are then used as a text corpus for the

remainder of the process. The NLP step uses a shallow text parser. The

result from the parsing process is used in the third step, by the algorithms in

the algorithm library. For the task of ontology learning there were originally

two kinds of algorithms included in the Text-To-Onto library:

• Statistical and data mining algorithms

• Pattern-based algorithms

The first kind uses frequencies of words in the text to suggest possi-

bly important concepts and a hierarchical clustering algorithm to derive

the concept hierarchy. For extracting non-taxonomical relations a modi-

fied version of a standard association rule algorithm is used, the naming

of the relations has to be done manually. The second kind of algorithms

uses pre-defined lexico-syntactic patterns to extract both taxonomical and

non-taxonomical relations.

In the algorithm library component there are also algorithms used for

ontology maintenance, mainly ontology pruning and ontology refinement.

The pruning algorithm studies the frequency of concepts and relations in the

domain specific corpus compared to their frequencies in a generic corpus,

this in order to prune concepts and relations that are not domain specific.

This is mainly aimed at adapting more general ontologies to a specific do-

main. Ontology refinement is done similarly to ontology learning but is

also based on the assumption that unknown words often are used in the

same way as known words, so that a similarity measure can be applied to

determine how similar the two words are.

The result presentation step lets the user accept or discard the sugges-

tions that the system offers and also to name the arbitrary binary relations

found. On top of this the system uses an ontology engineering environ-

ment, in this case KAON, which lets the user manually edit the extracted

ontology.

The more recent version, called Text2Onto, adds several algorithms, such

as FCA-based hierarchy induction, specific methods and patterns for ex-

tracting part-of relations, and instance extraction. The main improvements

of Text2Onto compared to Text-To-Onto, apart from the added algorithms

in the library, is a revised architecture that focuses of change management

and result combination. The Text-To-Onto/Text2Onto approach is highly

flexible, and contains a rich library of algorithms, covering most state of the

art approaches in element extraction for OL.



2.3. ONTOLOGY ENGINEERING 53

OntoLearn

The OntoLearn system, presented by Navigli et al. [141], uses a different

approach. This method builds on the general linguistic ’ontology’ WordNet,

see Miller et al. [134] and Fellbaum et al. [5] for details, and the SemCor

knowledge base containing tagged sentences, to interpret terms found in the

extraction process. The resulting ontology is a refined part of WordNet.

The approach is more specialised towards language processing than for

example the previously described system, Text-To-Onto. The OntoLearn

architecture consists of three main phases:

1. Terminology extraction

2. Semantic interpretation

3. Creating a specialised view of WordNet

The system is part of a larger architecture, for editing, validating, and man-

aging ontologies. Input to the system could be anything that can be viewed

as natural language texts, for example web pages or ordinary documents.

The first phase uses shallow parsing techniques to extract possibly rel-

evant terminology, both in the form of single words and complex phrases,

from a text corpus. The frequency of the candidates in the domain corpus

are measured relatively to a corpus across several domains, this yields a

domain relevance score. A second measure is the domain consensus, which

measures in how many different documents the term or phrase occurs.

The second phase performs semantic interpretation, which in turn means

both semantic disambiguation and extraction of semantic relations. The se-

mantic disambiguation starts by arranging the sets of terms extracted into

small trees, according to string inclusion. Then, for every word in these

trees, a semantic net is created using the appropriate sense of the word,

a WordNet synset, and all relations concerning that concept in WordNet

are included, up to a certain distance in the graph. A gloss and a topic is

created for every word, using the WordNet concept definition and sentences

from the SemCor knowledge base. To connect all these semantic nets, pos-

sible intersections are investigated using predefined semantic patterns, and

taxonomic relations inferred using WordNet.

To extract semantic relations a predefined inventory of semantic rela-

tion types is used and by using inductive machine learning the appropriate

relations are associated with pairs of concepts. Inductive machine learn-

ing means that a learning set is manually tagged and then the inductive



54 CHAPTER 2. KNOWLEDGE REPRESENTATION

learner builds a tagging model. In the third phase the resulting forest of

concept trees is integrated, either with an existing domain ontology or with

WordNet, which is then pruned of irrelevant concepts.

This approach is specialised towards language applications and one of its

major drawbacks is that several resources need to be specified in advance,

like semantic patterns for connecting the semantic nets and the relation

types available for the non-taxonomic relations. Another drawback is that

it uses several quite specific pre-existing structures, such as SemCor. An

advantage is that it is highly automated, performs most tasks without any

user intervention and that glosses are generated for the concepts.

TextStorm ad Clouds

A similar application that also uses the lexical resource WordNet is the

TextStorm system presented by Oliveira et al. [153]. Another system,

Clouds, is also presented in the same paper, it is an extension of TextStorm

and constructs rules to evolve the ontology further through a dialogue with

the user. The TextStorm system parses and tags a text file, using WordNet,

and then extracts binary predicates from the text corpus. The predicates

symbolise relations between terms, extracted from sentences. The synsets

of WordNet are used to avoid extracting the same concept, denoted by a

different term, several times. The output of TextStorm is not an ontology

per se, but simply these predicates. It is the Clouds system that supports

the actual building of the ’concept map’, i.e. ontology, in cooperation with

the user. It uses a machine learning algorithm to pose questions to the user

and draw conclusions depending on the answer.

ASIUM

The ASIUM system, by Faure [59] and Faure and Nédellec [58], is a sys-

tem directed mainly at linguistic applications and the system uses linguistic

patterns and machine learning. The specific novelty of this approach when

it emerged was the conceptual clustering algorithm used to generate the

structure of the ontology. In addition to this system another system was

also suggested, the Mo’K workbench described by Bisson et al. [20], which

is a development and evaluation workbench for conceptual clustering algo-

rithms.

The method used in ASIUM can be divided into three steps, the final

two steps are performed repeatedly and in parallel:



2.3. ONTOLOGY ENGINEERING 55

1. Extraction of instantiated syntactic frames

2. Frame learning and clustering

3. Validation

The first step parses the text corpus used as input to the application, and

together with a special post-processing tool generates instantiated syntactic

frames. The instantiated syntactic frames are instances of common sentence

patterns consisting of certain combinations of verbs, prepositions, and head

words. In case of ambiguities all possible frames are stored, since validation

by the user is not done at this stage.

A learning algorithm is applied, using the basic assumption that ”words

occurring together after the same preposition and with the same verbs repre-

sent the same concept” [59]. Frame instances are extracted and new frames

are learned at the same time. A frequency measure is also used to deter-

mine what concepts are more reliable and more important than others. To

start the actual clustering step, base clusters are formed by putting together

head words found after the same verb and preposition. Different clustering

algorithms can then be applied, and different similarity measures for the

clustering algorithms can be used.

One of the suggested clustering algorithms is called ASIUM-Pyramid

and it is a bottom-up and breadth-first algorithm. The name comes from

a restriction to only generate ’pyramids’, i.e. trees where every node has

exactly two children or none at all. The distance measure is used to deter-

mine the pairwise distance between the basic clusters and two clusters are

aggregated if their similarity exceeds a given threshold. The user validates

all the generated clusters at each level, then the process is repeated until

no more clustering can be performed.

The weakness of this approach is that it is very much language depen-

dent. Another weakness is the output, which in this case is restricted to a

’pyramidal tree’, only consisting of a taxonomy. Advantages are that the

user validates each step in the process before the next step is performed,

instead of validating only the finished ontology. This may generate more

work for the user during the process but it might produce a better result.

Adaptiva

The Adaptiva system by Brewster et al. [25] is yet another system based

on linguistic patterns and machine learning, but with a more iterative and

cooperative approach than the previously described systems. Brewster et



56 CHAPTER 2. KNOWLEDGE REPRESENTATION

al. explicitly consider what the system is to be used for and who the users

are, and state that a user should be able to do three things:

1. Draft an ontology or select an existing one.

2. Validate sentences illustrating particular relations in the ontology.

3. Label a relation shown in an example sentence and recognise other

relations of the same kind.

The process of constructing an ontology is divided into two stages that

each consist of three steps:

1. Learning taxonomic relations

a) Bootstrapping

b) Pattern learning and user validation

c) Cleanup

2. Learning other relations

a) Bootstrapping

b) Pattern learning and user validation

c) Cleanup

The bootstrapping process involves selecting a text corpus and either

drafting or selecting a seed ontology, which in the second stage most likely is

the taxonomy from the first stage. The pattern learning starts by the system

using the seed ontology to present a set of example sentences to the user for

validation. The examples that are approved by the user are then used to

build generic patterns which in turn are used to extract new sentences from

the text corpus. These are again presented to the user for validation and so

on, until the user stops the process. The cleanup step is where the user can

edit the ontology directly, merge or divide concepts, relabel concepts and

relations and ask the learner to find all relations between two given nodes.

One of the stated advantages of this method is that the output is not

only an ontology but also a trained learning system for further developing

and evolving the ontology in the future, which is a good point. Another

advantage is the simplicity of user tasks, the user only has to have a vague

idea of what an ontology is, the rest is taken care of by the system. Dis-

advantages can be that the user has to identify what kind of relations the



2.3. ONTOLOGY ENGINEERING 57

example sentences represent, this may not be a trivial task, and that the

only relations that are extracted are those expressed within one sentence,

not between sentences.

SYNDIKATE

The SYNDIKATE system by Hahn and Romacker [94], also presented by

Hahn and Markó [92] [93], is more directed towards evolution and main-

tenance of ontologies, and other knowledge sources, than to construct an

ontology ’from scratch’. The system has several uses, not only ontology

construction, but grammar learning and other tasks in NLP.

The system builds on hypotheses and different quality measures to de-

termine the likeliness of those hypotheses. Texts are parsed and a parse

tree is generated. For each unknown concept in the tree a new hypothesis is

formed, using among other things the already existing part of the ontology.

Different quality labels are attached to the hypotheses. One is linguistic

quality, which is a measure of how well the hypothesis conforms to known

phrasal patterns and other structural properties. The conceptual quality in

turn, reflects the hypothesis’ conformity to the existing part of the ontology

and alternate concept hypotheses. Alternate hypotheses of the same un-

known term divides the set of all hypotheses into hypothesis spaces, which

represents different choices of alternate hypotheses.

The advantages of this approach, as stated by the authors [92], are that

no specific learning algorithm is needed since the learning is carried out by

a terminological reasoning system, and also that the method is entirely un-

supervised. This is also one of the few approaches that use a quality-based

learning which might reflect reality better than a system that attempts to

determine the only ’true’ solution. Possible drawbacks are that this ap-

proach could generate too many hypotheses so that the approach gets un-

manageable and the calculations involved become too resource-demanding.

From the papers it is also somewhat unclear what the actual output of the

system is and how that output can be used, for example a set of hypothesis

spaces might not be useful as basis for some applications, sometimes there

might be a need for deciding exactly what a concept means. The result may

be viewed more as a help for constructing an ontology.

OntoGen

OntoGen is yet another tool for OL. It is proposed by Fortuna et al. [67] [68].

This is tool to build ligth weight ontologies, called ’topic ontologies’ by the



58 CHAPTER 2. KNOWLEDGE REPRESENTATION

authors. The approach is highly interactive and the developers have focused

mainly on the user interface of the tool. The system extracts ’keywords’

from a text corpus and can apply several concept clustering algorithms for

supervised or unsupervised clustering of the topics to generate relations be-

tween topics. Interesting features are the customization and collaboration

features, i.e. users can choose to apply their own term weighting methods

instead of general TFIDF and work on several ontologies at once, in co-

operation with other users. Although this approach is quite interesting in

terms of its user interaction features, the ontologies produced are simple

and requires a lot of user intervention to generate.

LExO and RELExO

LexO and RELExO, together with a method for learning disjointness, are

as far as we are aware the only available OL systems that try to generate

expressive ontologies, rather than only terms and relations for light weight

ontologies. LExO takes as input a set of sentences, preferably similar to

dictionary definitions, and outputs their representation as OWL axioms.

The example given by Völker et al. [212] is the sentence ”A farmer is

a person who operates a farm”. The sentence is parsed by a dependency

parser, and the parse tree is translated into and XML-based format, whereby

a set of rules can be applied. The output is a DL expression, such as

Farmer ≡ Person ∩ ∃operate.Farm, i.e. a formal definition of the class

’Farmer’. RELExO adds to this method the possibility to use FCA relation

exploration to enrich the concepts added through the LExO method.

Hypotheses for disjointness axioms can be generated by applying a few

general heuristics. Völker et al. [212] propose three kinds of heuristics:

• Taxonomic overlap

• Semantic similarity

• Patterns

Taxonomic overlap can be investigated in the ontology structure itself, but

evidence can also be gathered from sources on the web and OL methods for

learning subsumption relations. Different semantic similarity measures can

be applied, and lexico-syntactic patterns used for natural language texts

can also discover indications of disjointness.

These methods are very promising, and certainly novel, but still quite

restricted at the moment. The input needed for generating concept defini-



2.3. ONTOLOGY ENGINEERING 59

tions is very specific. If definitions of all concepts already exist in natural

language, then it is also of great help for manual ontology engineering. It

is the lack of such definitions that is one of the main motivations of the OL

field in the first place. However, more general methods, such as the dis-

jointness extraction discussed above is, even at this early stage of research,

already very useful.

Boxer

Boxer represents the border between state of the art research in NLP and

OL. Boxer, as presented by Bos [23], is a system for deep semantic analysis

of natural language. Based on a grammar and background information,

such as a predefined set of roles represented by verbs, Boxer produces a

discourse representation of the input sentences. On an abstract level it

can be viewed as translating natural language into logical formulae, based

on some background knowledge of the language. This reflects the general

direction of NLP and computational linguistics, to focus more on deeper

semantic analysis as computing resources increase and better algorithms

emerge. Although this can be seen as the ideal OL approach, translating

natural language directly into logics, there are many problems with such

an approach. The method is highly dependent on the represented gram-

mar and the set of predefined roles that can be identified, and with which

the elements of the text are tagged. Nevertheless, the approach is worth

mentioning, because it is similar to approaches such as LExO presented ear-

lier, trying to generate rich and expressive structures directly from natural

language texts.

OntoLT

OntoLT is a plug-in for the ontology engineering environment Protégé, pre-

sented by Buitelaar et al. [29]. The plug-in is intended as a toolbox, or

middleware, between NLP systems and ontology editors. It supports the

definition of patterns for mapping between constructs in tagged text and

ontology elements. In this sense OntoLT is not a learning approach in it-

self, rather an environment allowing the user to define rules for extracting

ontological elements from linguistically pre-processed text. However, it is

often referred to an OL tool in literature and is thereby included here.



60 CHAPTER 2. KNOWLEDGE REPRESENTATION

Ontology enrichment

Above a set of ontology learning systems were presented, mainly based on

the idea to construct an ontology ’from scratch’. Ontology enrichment can

be viewed as a special case of ontology learning, with a specific precondi-

tion: an initial ontology needs to already be present. Some of the already

discussed OL systems could also be used for this purpose, these areas are

actually just two views of the same problem.

One specific ontology enrichment approach is proposed by Faatz and

Steinmetz [57] where new possible concepts and their place in the tax-

onomy are extracted from web documents. Using a distance measure to

determine how closely linked the concepts in the existing ontology are, the

method then tries to find new concepts that can be put into this hierarchy

using mathematical optimisation algorithms. A similar approach also using

a distance measure, but adding to that a word overlap measure, and an

information content measure, is described by Stevenson [187].

An additional form of ontology enrichment would be to add instances to

the ontology, so called ontology population. This is commonly viewed as a

task of OL, even though this construct a knowledge base rather than only

the ontology. Since our proposed approach is not related to ontology popu-

lation, and does not treat the instance level, we will not describe ontology

population further in this thesis.

2.4 Chapter summary

This chapter presented basic definitions of ontology and the parts that are

commonly viewed to constitute ontology elements. Ontologies can be used

as means for knowledge representation in semantic systems, such as on the

Semantic Web or within ILOG systems. Ontologies have a long history

as noted at the beginning of this chapter, and ontologies can be of many

different forms, but today ontologies are usually a formally represented set

of well-defined concepts and relations that are used to create a knowledge

base of facts. Different forms of reasoning can be applied on this knowledge

base in order to facilitate applications such as improved information retrieval

and structuring of enterprise information.



2.4. CHAPTER SUMMARY 61

2.4.1 Manual ontology construction summary

In order to benefit from such improvements the prerequisite is that an on-

tology of the domain, tailored to the specific application, is available. Many

ontology projects still construct ontologies more or less from scratch, or by

manually reengineering data from other non-ontological resources. Manual

methodologies for ontology development exist, and tools are available to

assist in the actual modelling process. Manually engineered ontologies can

be perfectly tailored to the task at hand, but in many cases it can be too

expensive and time-consuming to construct an ontology in this manner. For

tasks such as information retrieval, perhaps it is not always necessary to use

a perfect ontology, a mediocre ontology might still provide enough seman-

tics to improve application performance, or as put by Brewster et al. [24]:

”Good ontologies are the ones that serve their purpose. Complete ontologies

are probably more than what most knowledge services require to function

properly. The biggest impediment to ontology use is the cost of building

them, and deploying ’scruffy’ ontologies that are cheap to build and easy

to maintain might be a more practical and economical option.” Partly as a

response to such issues the field of ontology learning has emerged, aiming to

provide semi-automatic methods supporting different parts of the ontology

engineering process.

2.4.2 Ontology learning summary

Most existing OL approaches build on roughly the same foundations, in

NLP, data mining, and machine learning. Usually the approaches consider

terms and taxonomic relations in the extraction process, some consider ar-

bitrary relations, but very few consider more advanced tasks, such as rela-

tion naming or axiom extraction. The level of user involvement also differs

greatly, from almost completely automated to involving the user in each

step. This is a bit misleading though, because the completely automated

approaches are probably the ones most in need of evaluation and valida-

tion after the construction process is finished. Whether the user is involved

during the process or at the end, the important question is to what extent

a user is assisted in this task. User interfaces have not been prioritised in

most cases, and sometimes the results provided to the user can be very large

and unstructured, thus perhaps confusing the user rather than helping to

make sense of domain concepts. The lack of proper user interfaces is also

noted by Simperl et al. [181] in their use case study applying OL tools.



62 CHAPTER 2. KNOWLEDGE REPRESENTATION

A common characteristic of many of the approaches is that they mainly

extract single concepts and relations, only a few attempt to construct larger

parts of the ontology at once. Many of the approaches also consider the

concepts and relations one by one, mostly the user has to validate single

concepts and relations and not suggestions of ’ontology components’. From

a user perspective, evaluating single terms and, possibly unnamed, relations

is very difficult, while seeing a concepts or relation in a context gives much

more information to base a decision on. In light weight ontologies the labels

and surrounding relations are the only existing evidence of how to interpret

the semantics of a concept, thereby the relation structure is very important.

All OL methods based on text corpora also suffer from the inherent

problem that general background knowledge is not explicitly specified in

the texts, as explained by Brewster et al. [26]. Some general knowledge,

whether domain specific or more general, is always omitted and assumed to

be held by the reader. Brewster et al. [26] argue that transferring knowledge

through a text is most often a process of knowledge maintenance rather than

knowledge creation. Due to this fact, it is sometimes impossible to extract

all relevant knowledge to be represented in an ontology from a text corpus,

in such cases some more general background knowledge must be used in

addition to the texts. One such possible source of knowledge is ontology

patterns. Some of the OL systems presented use patterns in the element

extraction process but those patterns are mainly lexico-syntactic patterns

for extracting certain types of relations. None incorporate ontology content

patterns, which we will be our focus in the following chapters.



Chapter 3

Patterns and knowledge reuse

For providing solutions supporting ILOG, knowledge representation through

ontologies is a key issue. The challenge for an enterprise that wishes to ap-

ply an ILOG system or method is then to construct an accurate and up-to-

date ontology describing their organisation and information content. Con-

structing ontologies has classically been a purely manual task, performed

by knowledge engineers in cooperation with domain experts. In chapter 2

different approaches to automate the tasks in ontology development that

have emerged in the field of ontology learning (OL) were described. Our

research focuses on knowledge reuse through the introduction of ontology

patterns in OL. This chapter presents some background on reuse in general

and patterns in particular, and show how patterns aim to reduce the effort

to construct solutions and improve the solution quality. At the end of the

chapter, the case-based reasoning methodology is mentioned in brief, since

this has provided inspiration to the OntoCase method. To set the stage for

the presentation of related work this chapter first includes definitions and

descriptions of basic concepts, e.g. the general notion of pattern, patterns

in other areas, and the theoretical notion of reuse.

3.1 Reuse

Reuse is commonly agreed to be a way of improving the quality of your

work, in combination with reducing the complexity of the task and thereby

possibly also the time and effort needed to perform it. General discussions

about reuse have been published by Sutcliffe [199] and Buschmann et al.

63



64 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

[31]. One way to facilitate reuse is by using patterns, as described later in

this chapter, but there are many other aspects to reuse that are not very

often discussed theoretically. A thorough explanation of reuse mechanisms

is presented by Sutcliffe [199], where the author discusses the background

of reuse as a concept, why it is desirable, but also why it is a hard thing

to accomplish. The main obstacle that a reuse methodology has to over-

come is the lack of motivation among developers. Before the process has

been established, and reuse libraries and other facilities are in place, it will

require an increased effort from developers in order to establish the reuse

organisation. A strong motivation to share your ideas is needed, without

getting any immediate personal benefit from it.

Sutcliffe [199] describes the reuse process as divided into two steps: de-

sign for reuse and design by reuse. These are the two sides of the ’reuse

coin’, one cannot exist without the other. To facilitate ’design by reuse’

there must first be a well established ’design for reuse’ process. These two

processes can be illustrated as in Figure 3.1.

What to reuse is also an interesting question, because reuse can be ap-

plied on different levels. For example, reuse in software engineering can,

according to Sutcliffe [199], be done in at least three stages:

• Requirements reuse, e.g. reusable models of the domain or generic

models of the requirement specification.

• Design reuse, e.g. reusable models, data structures and algorithms.

• Software component reuse, e.g. reusable software classes and editable

source code.

Reuse can also be divided into categories by looking at what the de-

veloper knows of the reusable objects, again see the discussion by Sutcliffe

[199]. These categories are denoted black-box reuse, glass-box reuse and

white-box reuse. Black-box reuse reduces the task complexity and learning

burden of the developer, since the content of the ’black-box’ is not visible,

the developers only have to learn how to use its (hopefully) well-defined in-

terfaces. White-box reuse is the opposite, the whole interior of the module

is known to the developers and they can modify it at will.

Glass-box reuse lies somewhere in-between. The interior functions of

the object are visible but not possible to change. Although black-box reuse

is the most ideal case, with respect to the possible gain, it will obviously

not be possible in the case of knowledge reuse, such as reuse of ontologies.



3.1. REUSE 65

Users:

domain

experts

Acquire

knowledge

Component

library/

Knowledge

repository

Structure &

record

Index &

classify
Generalise &

design for

reuse

Review &

update

Design by reuse

Design for reuse

Users
Analyse

requirements

Component

library/

Knowledge

repository

Match

& retrieve

components

Understand

Apply

knowledge

Integrate &

test

Application

frameworks

Working

system

requirements

Components &

specifications

General design

Detailed

design

Figure 3.1: The reuse processes. [199]

As stated by Sutcliffe [199]: ”in order to reuse knowledge it has first to be

understood”, therefore knowledge reuse is always glass- or white-box reuse.

Reuse has been suggested within knowledge engineering for several decades,

but it is not until recently the notion of patterns has been adopted on

a broader scale. However, patterns have been used in many other ar-

eas throughout history, and in the engineering sciences at least for several

decades. Most likely the reader has some general idea of what a patterns is,

possibly resembling a template for solving some specific problem, whether

it is a design problem in software engineering or a modelling problem in

ontology engineering. Since the notion of patterns is central to this thesis

a separate section, section 3.2, is devoted to the notion of patterns in gen-



66 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

eral, and ontology patterns in particular. In the rest of this section we will

instead focus on the more general notion of reuse and summarise how reuse

has so far been incorporated in ontology engineering.

3.1.1 Ontology reuse

Reuse is commonly seen as a self-evident way of improving your work, both

because it means using existing and, hopefully, well-tested solutions and

because it generally is believed to shortens the development time and cost.

In ontology engineering there are mainly two different perspectives held by

researchers and ontology developers. The first states that ontologies are so

domain and application specific that almost nothing can ever be reused for

another application case. In this view integration of existing ontologies is

less relevant in the development methodology, see for example statements by

Sugumaran and Storey [197] and Uschold [206] that point in this direction.

The other extreme states that ontology engineering is almost impossible to

do ’from scratch’ and therefore the ontology development process is always

just a process of combining already existing parts of ontologies and other

knowledge sources. Statements by Fikes and Farquhar [65] and Levashova

et al. [120] point in this direction. Most researchers would place themselves

somewhere in the middle of this scale where the idea is to find existing

ontologies, or parts of ontologies, that might fit the application case and

then combine, adapt, and extend them seems feasible. Nevertheless, parts

of the ontology could also be built ’from scratch’ if needed.

The problems of ontology reuse are analogous to the problems of reuse

in software engineering presented by Sutcliffe [199]. For example, how does

one find the appropriate ontologies to reuse? Even with ontology libraries

and search engines present, described below, it can be hard to find appro-

priate candidates for reuse. How does one choose the right one, or the

appropriate parts from several different ontologies? How can these parts

be used, integrated or merged? On the representation language level, the

last question, of translation, integration, and merging, has been quite well

researched, and recently also approaches taking into account the semantic

level have emerged. However, the results produced by such methods are

usually uncertain and far from perfect. The rest of this section discusses

some different categories of approaches to ontology reuse more in depth.



3.1. REUSE 67

Generic components

The idea of using small pre-existing building blocks to compose an ontology,

or a knowledge base, is similar to the idea of using patterns, described in

later sections. In the area of ontology reuse so far there has been only a

few recent attempts in this direction. One idea, using a library of generic

concepts, for building ontologies, is presented by Barker et al. [13]. The

main idea is to construct a library of generic concepts to let a domain expert

choose among when building an ontology. Only those concepts that are not

specific to any domain, have a clear description, and can be unambiguously

represented by a single English language term should be considered for the

library, according to Barker et al. [13]. Another similar approach is the

DOGMA methodology and the tool DOGMA-MESS [118] for collaborative

ontology construction and evolution, based on a library of generic facts,

denoted lexons, that can be reused for constructing and evolving ontologies.

This idea is similar to the many attempts at creating general top-level

ontologies, such as the WordNet dictionary described by Miller et al. [134]

and Fellbaum et al.[5], CYC presented by Lenat [119], SUMO proposed by

Niles and Pease [143] and Pease et al. [157]. It is also similar to the attempts

involving semantic patterns for ontologies described further in later sections.

The main issue concerning these kinds of approaches is the balance between

reusability and usefulness. Very small and very generic components can be

highly reusable, but cannot represent a large amount of useful information

and can probably easily be constructed from scratch. On the other hand,

complex and highly useful components are less reusable.

Modularisation

The idea of modularisation has been fruitful for example in the software

engineering field, and can be viewed as a step towards component-based

reuse, compare to reuse of software components as discussed by Sutcliffe

[199]. Stuckenschmidt and Klein [190] propose a set of requirements that

should hold for ontology modules:

1. Loose coupling, which means that nothing can be assumed about dif-

ferent modules, they might have very little in common, neither con-

cepts nor representation language, and therefore as little interaction

as possible should be required between the modules.

2. Self-containment, which means that every module should be able to

exist and function, this could involve performing reasoning tasks or



68 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

query-answering, without any other module.

3. Integrity, which means that even though modules should be self-

contained they could depend on other modules so there should be

ways to check for, and adapt to, changes in order to ensure correct-

ness.

These three requirements are then implemented for DL ontologies, using

different techniques, by Stuckenschmidt and Klein [188]:

1. View-based mappings, which means that the different modules are

connected through conjunctive queries.

2. Interface compilation, which means that in order to provide self-

containment using the view-based mappings the result of the query is

computed off-line and added as axioms in the querying module, thus

enabling local reasoning.

3. Change detection and automated updates, which means that a record

of ontological changes, and their impact, is kept and also the depen-

dencies between modules so that changes can be propagated through

the system.

This results in a modular ontology built from self-contained ontology

modules where some concepts are internally defined in a module and other

concepts are determined using queries over other ontology modules. On

this ontology reasoning can be performed and there is also a system for

handling changes in the modules. The approach is very specific, and there

are no guidelines on how to decide what is a module and what should be

part of it. Neither is anything said about how to reuse modules in a new

ontology or how to find the appropriate module to reuse from a specific

ontology. Some more guidelines could be found in approaches such as the

one proposed by Schlicht and Stuckenschmidt [174], where some practical

and measurable criteria of how to form ’good’ modules are proposed.

Another modularisation approach is described by Rector [166], also con-

cerning ontologies represented in DL. The author proposes an extensive set

of rules on how to develop and represent an ontology to achieve explicit-

ness and modularity. The modules are distinguished by the notion that all

differentiating notions of the taxonomy of one module must be of the same

sort, e.g. functional or structural. Another requirement is that all modules

should only consist of a taxonomic tree structure, no multiple inheritance

is allowed within a module.



3.1. REUSE 69

More recently several language extensions for OWL have emerged to

additionally support modularisation and reasoning with modular ontologies.

A survey of such extensions was presented by Wang et al. [217]. An example

of such a language is P-OWL, proposed by Bao et al. [12]. P-OWL stands

for package-based OWL, where an ontology is divided into a set of packages,

i.e. modules, with well-defined interfaces. The language then supports

information hiding and reasoning over packages.

To summarise, there exist many approaches to modularisation, but mainly

focusing on how to represent modules and how to technically use them. Few

guidelines have been proposed on how to modularise an ontology, content-

wise, and how to actually reuse modules from modular ontologies. Similar

problems occur as for the general case of ontology reuse, e.g. how to find

appropriate modules, how to select the right ones, how to reuse and com-

bine them. The technical issues related to partitioning of an ontology, that

are addressed by current modularistation approaches, are certainly useful.

At least an ontology engineer is no longer left with only the possibility of

including a complete ontology through owl:import, when finding an inter-

esting part of an existing ontology. However, the availability of modules

and the technical possibility to combine and reasoning over them does not

solve the general reuse problem.

Finding and selecting reusable ontologies

Some approaches for ontology selection and adaptation were presented al-

ready early in the history of ontologies within computer science, such as

the KARO system proposed by Pirlein and Studer [159], which propose

methods for finding and adapting reusable parts in ontologies. The authors

define an ontology as a collection of general top-level categories with associ-

ated relations and assumptions. It is these assumptions about the ontologies

that renders the approach more or less irrelevant in today’s situation, where

most ontologies are also domain dependent, except for top-level ontologies.

Another similar paper is the one by Visser and Bench-Capon [209] which

aims to show that ontologies are highly reusable within one domain, but this

again assumes very high-level ontologies which are again not very relevant

to the scope of this thesis. Despite this, a few good general points are stated

by Pirlein and Studer [159], that also concur with the recommendations for

software engineering given by Sutcliffe [199]:

• To be able to reuse ontologies they have to be developed with reuse in mind,

so that for example modelling decisions and assumptions are made explicit.



70 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

• An appropriate knowledge processing environment must be present,

to be able to select parts of an ontology and to adapt them.

• The development process of ontologies must be structured in a way

so that reuse of ontologies can be incorporated in a well-defined way.

Classically reusable ontologies have bee stored in ontology repositories,

as proposed by Fikes and Farquhar [65], and there are still such repositories

being developed and maintained for certain domains. The BioPortal ontol-

ogy repository for biomedical ontologies described by Noy et al. [147] is one

example. Repositories usually provide browsing support and simple search

functions. However, most of the ontologies today are present on the web,

hence finding appropriate ontologies is today addressed mainly by ontology

search engines. Such search engines usually have simple search interfaces,

providing keyword search for concept identifiers and labels. The SQORE

approach by Ungrangsi et al. [205] additionally provides a ’query by exam-

ple’ interface using a small model as a search criteria. By using approaches

for ontology matching to search the web or an ontology library, selection

could be supported similarly to the match-making by Billig and Sandkuhl

[18], the conceptual graph matching of Zhong et al. [227], semantic match-

ing by Yeh et al. [223], or what is suggested in general terms by Sutcliffe

[199]. The Watson search engine by dAquin et al. [43] additionally provides

an interface for visualising the content of the retrieved ontologies in order to

ease the process of selection. Nevertheless, none of these approaches assist

in retrieving only relevant parts of an ontology, and there are inherent is-

sues in languages like OWL where imports are restricted to importing only

complete ontologies as mentioned previously.

Ontology search engines is an area growing fast, today the list of existing

search engines include OntoKhoj presented by Patel et al. [156], OntoSelect†

presented by Buitelaar et al. [27], Swoogle†† presented by Ding et al. [52],

OntoSearch and the subsequent ONTOSEARCH2‡‡ presented by Zhang et

al. [226] and Thomas et al. [200] respectively, Watson∗ presented by dAquin

et al. [43], and SQORE presented by Ungrangsi et al. [205]. However, it is

not enough to only find a set of possibly reusable ontologies, we also need to

select which one(s) to reuse. Similarly as when searching for documents on

the web we would expect some kind of guidance, which ontologies are most

†http://olp.dfki.de/ontoselect/
††http://swoogle.umbc.edu/
‡‡http://www.ontosearch.org/
∗http://watson.kmi.open.ac.uk/WatsonWUI/



3.1. REUSE 71

relevant to our query, i.e. the case at hand. All of the above mentioned

search engines provide an ordering of the search results, but usually there

is no detailed motivation for this ranking presented to the user.

An elaborate ranking scheme, called AktiveRank, is proposed by Alani

and Brewster [6]. Four measures are used; class matches, centrality, den-

sity and semantic similarity. The class match measure combines exact and

inexact string matching to match concept labels to search terms. The cen-

trality measure considers the matched concepts, from the previous step,

and produces a value showing how representative those concepts are within

the ontology based on their placement in the taxonomic hierarchy. The

intuition behind the measure is that the more central concepts are in the

taxonomy the more important and representative they are. The density

measure describes the degree of detail, e.g. the number of relations, in the

context of the matched concepts. The intuition behind this measure is that

the more ’dense’ the context, the description and definition, of a concept

the clearer is the semantics of the concept and the more useful the concept

would be to reuse. Finally, the semantic similarity measure is a measure of

the proximity, in terms of path lengths traversing the ontology relations, of

the matched concepts in the ontology. The intuition behind this measure

is that matches spread out through an ontology are less important than

matches clustered in one part.

A similar approach, used in the OntoSelect application, is proposed by

Buitelaar et al. [27]. In this case the ontologies are evaluated with respect

to three criteria; coverage, structure and connectedness. In this case the

aim is to select an ontology for document annotation, thereby the coverage

is measured with respect to the terms present in the document collection,

instead of a keyword query, and both concept and relation labels are con-

sidered. Structure is a class-to-property ratio where the intuition is that the

more properties the ontology contains the more ’advanced’, and thereby the

more useful it is. The connectedness measure tries to reflect the number

of other ontologies to which the current one is connected, mainly through

imports, and the reliability of those ontologies.

A recent overview of ontology selection was presented by Sabou et al.

[169] where ontology selection approaches were classified with respect to

three categories, i.e. approaches addressing ontology popularity, richness of

knowledge, and topic coverage of the ontologies. While approaches such as

OntoKhoj and Swoogle use algorithms similar to Google’s PageRank, i.e.

links between pages, for determining popularity, OntoSelect also utilises the

connections between ontologies, i.e. imports. An approach using an open



72 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

rating system for determining ontology popularity has been proposed by

Lewen et al. [121]. The knowledge richness is addressed in ranking schemes

such as AktiveRank and OntoSelect. Most approaches take into account

some kind of topic coverage, but usually this is a very simple coverage of

the search terms entered. More complex matching is however done in ap-

proaches such as SQORE, by Ungrangsi et al. [205], and ONTOSEARCH2,

by Thomas et al. [200], where the logical structures of both the query and

the retrieved ontologies are taken into account. Nevertheless, the open is-

sues identified by Sabou et al. [169] are still not completely covered by any

of the current methods. The main open issues are:

• Semantic evaluations

• Considering relations

• Combining knowledge sources

We can also note that there exist no, automatic or even semi-automatic,

methods for selecting ontology patterns, which is the main focus of our

method proposed later in this thesis. Our method mainly addresses the

first and second issue above as we shall see in later chapters.

Combining ontologies

When reusing existing resources, such as existing ontologies, a key task is

how to combine the resources. Methods and tools for matching, aligning,

merging, and integrating ontologies have been present during a number of

years, early surveys were presented by Fensel and Gómez-Peréz [61] and

Kalfoglou and Schorlemmer [109], Shvaiko and Euzenat [177], and a more

recent book by Euzenat and Shvaiko [56] also contains a comprehensive

summary of the field. When combining knowledge, mismatches can occur

either on the level of syntax and semantics of the representation languages,

i.e. language-level mismatches, or on the level of how something i modelled,

i.e. ontology-level mismatches.

Euzenat and Shvaiko [56] attempts at a terminological clarification, i.e.

explaining terms such as matching, alignment, mapping, merging, and in-

tegration. Ontology matching is according to Euzenat and Shvaiko [56] the

step initiating a merging or integration process, but can also be done by

itself to compare two ontologies or to reach an alignment. The aim match-

ing is to find a set of correspondences between the ontologies. A mapping

is a functional correspondence, as described by Kalfoglou and Schorlemmer



3.1. REUSE 73

[108] and Euzenat and Shvaiko [56]. Matching can also be the starting point

for ontology alignment, i.e. for developing an agreement between the differ-

ent ontologies but still keeping the original ontologies intact, or for finding

translation rules between the different ontologies, as described by Ichise et

al. [103], Mitra et al. [136], and Mena et al. [131].

Some studies, such as by Noy and Musen [146], Pinto and Martins [158],

Keet [111], and Klein [113], distinguish at least two different approaches for

combining ontologies. Either the aim is to combine two ontologies of the

same subject area (domain), in which case the process is called merging, or

the aim is to combine two ontologies from different subject areas (domains),

in which case it is named integration. In a merging process the source

ontologies are unified into a new ontology where it is difficult to determine

which parts have been taken from which source ontology, since the domain

is the same. Fusion is a term rarely used but can be seen as a specific way

to merge ontologies, where the individual concepts loose or change their

previous identity.

Ontology matching tools are commonly used in order to first match and

then reuse ontologies, examples of early tools are Chimaera, as described

by McGuinness [130], and PROMPT, as described by Noy and Musen [144]

[145]. These tools provide an interface supporting the user in finding over-

laps in ontologies and by suggesting how to integrate them. Nevertheless, it

is up to the ontology engineer to do the actual integration or merging. Also

different methodologies for manual alignment, merging, and integration, es-

pecially on the language level, exist since many years, e.g. approaches by

Russ et al. [168], Mihoubi et al. [133], and Pinto and Martins [158]. How-

ever, during the past few years the field of ontology matching has received

a great increase in research interest and an increasing number of proposed

approaches, especially for automating these processes.

One such system is GLUE that uses machine learning algorithms to

find the most probable matches for concepts in two ontologies, proposed by

Doan et al. [54]. The system uses several similarity measures and several

learning algorithms to perform the matching process. FCA-Merge is an-

other approach, presented by Stumme and Maedche [192]. The approach is

based on FCA and is, as the name states, aimed at merging ontologies not

only to find correspondences. The main idea is to use a concept lattice, to-

gether with instances of the concepts present in texts, for extracting formal

contexts for the ontologies, determining similarities and then assisting the

user in building a merged ontology. Another approach relying on FCA is

presented by Kokla and Kavouras [114]. IF-Map discussed by Kalfoglou and



74 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

Schorlemmer [108] is yet another approach, this time based on information-

flow theory, which generates a merged ontology with assistance from the

user. A similarly well-founded approach is described by Schorlemmer [175].

In a recent paper by Shvaiko and Euzenat [178] ten challenges in current

ontology matching research were discussed:

• Large-scale evaluation

• Performance

• Missing background-knowledge

• Uncertainty

• Selection and configuration

• User involvement

• Explanation

• Collaborative matching

• Alignment management

• Reasoning with alignments

These are challenges that have only partly been addressed so far, especially

by earlier systems such as the ones mentioned above. The issue of large-

scale evaluations has to some extent been addressed through the current

evaluation challenges and competitions, see below, but test data still need

to be increased in size, and the comparability of systems and tools need to

increase. This is also connected to performance, where matching genera-

tion time and space complexity need to be addressed, in order to arrive at

efficient automatic tools, e.g. for online web ontology matching. A hard

problem is the issue of missing background knowledge, i.e. knowledge not

explicitly represented within the ontology. Some systems utilise background

knowledge when matching, but usually this is domain and task independent

knowledge such as general thesauri or other linguistic resources.

Ontology matching is an uncertain task, and this uncertainty needs to

be represented and reasoned with. Automatic selection and configuration

of appropriate matching methods for a case at hand is also essential, as

well as guiding users during the matching process, or reducing the user

involvement all together. Another important issue from a user perspective



3.1. REUSE 75

is matching explanation, for the user to be able to evaluate correspondences

and trust the given alignment the reasoning behind it must be explained

by the system. Collaboration has also received an increased interest within

this field, and methods for collaboratively matching ontologies are needed.

Finally, alignments need to be managed and used, thus tool support is

needed also for this.

Since the introduction of the Ontology Alignment Evaluation Initiative∗

(OAEI) and the first alignment competition in 2004, numerous algorithms,

methods and tools have been proposed and tested through the initiative.

Only during the past two year’s competitions 23 different tools and algo-

rithms have participated. The initiative provides datasets for benchmarking

and during the yearly competition additional datasets from different do-

mains are provided. This initiative has partly emerged as a response to the

challenges listed above, and the shortcomings in earlier research approaches

and systems. Based on the results from the last competition we take four

representative examples of recent approaches that have performed well:

• ASMOV, presented by Jean-Mary and Kabuka [105].

• Lily, presented by Wang and Xu [216].

• RiMOM, presented by Zhang et al. [225].

• DSSim, presented by Nagy et al. [138].

ASMOV by Jean-Mary and Kabuka [105] can be run completely auto-

matically and it applies four different kinds of similarity measures that are

combined during the matching process; lexical similarity, internal and ex-

ternal concept structure, and instance similarity. For computing the lexical

similarity a thesaurus is used as background knowledge, and the structure

and formal definitions of the ontology, such as the taxonomy, other proper-

ties, and restrictions, are taken into account in the measures called internal

and external concept structure. The potential correspondences are pruned

through checking for inconsistencies and structural mismatches between the

ontologies.

Lily by Wang and Xu [216] also uses several different strategies in com-

bination, differentiating between sizes of ontologies in order to optimise the

method’s performance and between ontologies containing different amounts

of lexical information. The authors use a notion called semantic subgraphs

to represent the context of the elements of the ontologies, this is similar

∗http://oaei.ontologymatching.org/



76 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

in intention to the internal and external concept structure aspects used by

ASMOV. The web is used as background knowledge for semantically con-

necting the ontologies. Propagation of similarity values can be done through

a graph representation of the ontology. This method also includes a ’de-

bugging’ step, where correspondences are checked and corrected, as far as

possible using only automatic methods.

RiMOM by Zhang et al. [225] uses a multi-strategy approach just as the

previous two methods. In this case the method selection is based on three

measures; structure similarity, label similarity, and label meaning. The

structure similarity roughly assesses if the taxonomic structures are similar,

the label similarity counts identical terms in the ontologies, and the label

meaning measure counts the number of concept labels that are present in

WordNet. Based on these rough characteristics the rest of the process is

tailored to the ontologies at hand. The actual matching algorithms include

lexical matching of labels based on string matching or background knowl-

edge such as WordNet, graph-based structural measures studying paths in

the ontology graphs, and different combination and propagation strategies.

DSSim by Nagy et al. [138] is also a multi-strategy approach, applying

both syntactic and semantic matching methods to assess possible correspon-

dences. WordNet is used as background knowledge, to interpret the terms

present in each ontology. This method focuses specifically on the combina-

tion of the different measures, and how to handle the inherent uncertainty.

Matching methods are considered as agents with a certain expertise, and

methods for voting and belief combination are used to arrive at a plausible

conclusion regarding a correspondence.

Outside the scope of the OAEI challenges, additional methods have been

proposed for semi-automatic matching and for understanding the nature of

correpsondences. One such proposal is the use of correspondence patterns to

match ontologies proposed by Scharffe et al. [173]. Usually correspondences

are detected in the form of equality or subsumption, but these patterns

represent more complex correspondences. And example is when a concept

in one ontology can be mapped to a concept in another ontology with a

property restriction, i.e. Bordeaux wines are wines where the territory

property has to have the value Bordeaux, as exemplified by Scharffe et al.

[173]. The developed patterns are available in an online repository, but so

far such patterns are mainly used manually.

In summary, we can note that there exist numerous methods and tools

for ontology matching. However, most of them apply similar techniques.

Some type of syntactic and linguistic matching is commonly applied, to



3.1. REUSE 77

match concept and relations names, and sometimes additionally labels, com-

ments and other linguistic structures present. Some methods apply simple

string matching, while other methods include advanced features for detect-

ing abbreviations and dealing with compound terms. On the semantic level

background knowledge is commonly used, trying to interpret the meaning

of concepts and relations. Background knowledge may be general, such as

the linguistic knowledge incorporated in WordNet or information present

on the web, or it may be domain specific, such as biomedical thesauri. Se-

lection, configuration, and combination of different matching methods is a

key issue, as noted also by Shvaiko and Euzenat [178].

Our research focuses on matching between extracted ontological ele-

ments, produced by typical OL systems, and general ontology content de-

sign patterns. This is in fact a kind of ontology matching. However, we

have a very specific setting that lets us tailor our approach to this task. On

one hand we have the ontological elements extracted by an OL system, e.g.

terms and relations extracted from a text corpus. On the other hand we

have the small, self-contained and general ontology content design patterns,

i.e. small general ontologies containing only a few concepts and relations.

The set of extracted elements is in fact an ontology, although it is usually

light weight in terms of complexity, sparsely connected, and very ’flat’ in

terms of taxonomical depth. It is also uncertain, since it is extracted by

means of an automatic method. Many of the above mentioned approaches

rely on structural matching methods, using an environment of the concepts

and relations, to improve on lexical matching. This not always possible for

the kind of sparse and ’flat’ ontologies we are dealing with. At the same

time the input ontology is also uncertain, meaning that it is not certain that

the complete structure will be included in a resulting ontology, since it can

contain errors. Most existing matching approaches assume that the input

is reliable. The ontology content design patterns are in fact also ontologies.

In this case we are dealing with very general ontologies, i.e. containing

abstract concepts, and in contrast to the extracted input these ontologies

are reliable and well connected. The patterns are also quite small, so more

computationally expensive methods might be feasible to apply.

Ontology matching, as described above, commonly assumes some over-

lap between the ontologies, or at least that they are on a similar level of

abstraction. In our case we know that this is not the case, and we can use

this knowledge to develop a specific matching method that suits this case.

The method we propose is also tailored to the fact that on one side we have

quite small ontologies, the patterns, which increases the choice of algorithms



78 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

possible. The patterns are also available beforehand, in a catalogue, and

can be pre-processed, even manually if necessary. All these factors form

the explanation why we do not choose to reuse any single existing ontol-

ogy matching approach for OntoCase, but instead develop our own ranking

scheme. Nevertheless, our solution is heavily inspired by common methods

used in ontology matching.

3.2 Patterns

As mentioned in the introduction to this chapter, patterns are a specific case

of reuse. In this section we will study the notion of pattern more closely,

and we start by considering the term pattern and what it denotes. Patterns

may be regarded from several perspectives, two possible perspectives con-

sider ontology patterns as subject of pattern mining and recognition or as

engineered templates, respectively.

In the pattern recognition perspective patterns are recurring sets of en-

tities that can be found in some set of structures, e.g. recurring sets of

concepts and relations in ontologies. In this sense, there are no require-

ments on what a pattern may contain, its level of abstraction, or how it

may be structured or retrieved. On the other hand, in the patterns as tem-

plates perspective, patterns are commonly carefully engineered templates

that represent a consensus perspective on how to solve a specific problem.

The templates have to be sufficiently general and abstract in order to be

reusable in many cases and they have to represent some notion of best prac-

tices, i.e. a ’good’ or at least commonly accepted way to solve the problem.

In ontology engineering both kinds of perspectives are applied, and addi-

tionally hybrid perspectives are common. The pattern recognition perspec-

tive and different kinds of hybrids are for example used for OL, similarly as

in text and data mining, e.g. when discovering linguistic patterns for ex-

tracting ontological elements. The patterns as templates perspective is more

common in manual ontology engineering for guiding ontology design pro-

cesses, teaching novice ontology engineers best practices and communicating

between developers. Ontology patterns have been inspired by patterns in

other areas, such as software patterns and data model patterns, and thereby

there are many different kinds of patterns available for ontology engineering.

Patterns, in the template and best practices sense, aim to give benefits

in at least three ways, see the discussion by Menzies [132]:

• Reuse



3.2. PATTERNS 79

• Guidance

• Communication

Reuse benefits are provided by patterns that can be used as templates, or

even partial solutions, from which a designer can bootstrap a solution to

the current problem. The essence of the reuse benefit is to be able to build

better systems by basing the new solutions on old and ’well-proven’ solu-

tions. Guidance benefits can be provided by patterns that point at common

problems, and possibly suggest well-proven ways to solve those problems.

In this case the pattern provides hints for the developer, what are the im-

portant issues and what are the pitfalls, and can guide the development into

the right direction. The communication benefit occurs when patterns act

as a means for describing existing systems or solutions, and communicating

these to others. Communication benefits can occur as the introduction of a

common vocabulary between developers, but also by providing a structured

way to introduce best-practises to novice developers.

In addition to the three benefits described by Menzies [132] one can

imagine that the reuse benefit may introduce more beneficial things than

simply the increased quality. The development process might in some cases

become faster and easier to perform. Additionally, guidance might not only

come in the form of explicit guidance stated within the patterns themselves,

but can also be the presence of a set of patterns where the developer can

find inspiration when thinking about the problem and designing the new

system, or ontology. A drawback can be that such a pattern catalogue also

might restrict developers, especially developers with limited experience, and

prevent them from inventing new and innovative solutions on their own.

Although this introduction to patterns most likely has given the reader

an intuitive feeling of what we mean with the term pattern, the notion is

treated more in detail in the next section, also connecting the pattern idea

to its origin and relations to other fields.

3.2.1 What is a pattern?

Intuitively everyone has an idea of what a pattern is, it is something re-

occurring that can be recognised from one time to another and from one

application to another. This is something we all use in our daily lives and

in our profession as well. We seldom invent completely new solutions, since

problems often resemble other problems we have encountered before we



80 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

reuse parts of those solutions, we use old solutions as patterns. We also

recognise new patterns in our surroundings that can be useful.

More formalised patterns, that can be recognised and used by a whole

community of people and presented in text-books, have been used in sev-

eral fields, such as architecture, economics, and computer science. The

most renown patterns in computer science are probably software patterns.

Ideas for these patterns came from the architecture field already in the 70’s,

through the work of Christopher Alexander and his books on pattern lan-

guages in architecture; ”A Pattern Language” [9] and ”The Timeless Way

of Building” [8]. In his books Alexander proposed to start making implicit

knowledge of how to construct useful and esthetically appealing buildings

and towns explicit, and to store it as patterns for others to reuse.

This idea of making assumptions and experience explicit, in order to be

reusable by others, was transferred into the software field. The probably

most well-known book in the software pattern community is the book on

design patterns written by Gamma et al. in 1995 [73]. The patterns treated

describe common design solutions in object oriented software design. Gen-

erally, this kind of patterns can assist on the following issues according to

Buschmann et al. [31]:

• A pattern addresses a recurring design problem that arises in specific

design situations, and presents a solution to it.

• Patterns document existing, well-proven design experience.

• Patterns identify and specify abstractions that are above the level of

single classes and instances of components.

• Patterns provide a common vocabulary and understanding for design

principles.

• Patterns are a means of documenting software architectures.

• Patterns support the construction of software with defined properties.

• Patterns help you build complex and heterogeneous software architec-

tures.

• Patterns help you manage software complexity.

Although these statements refer to the software engineering community

they can easily be generalised to allow for patterns in almost any construc-

tion context. Buschmann et al. [31] also state that a pattern is made up



3.2. PATTERNS 81

of a context, when or where the pattern is useful or valid, a problem that

arises within that context, to which this pattern is connected, and finally

the proven solution that the pattern proposes for this problem. This has to

be presented in a formalised way so that the patterns can be communicated

to a community of people. Often the description template of software pat-

terns consists of a set of headings, as suggested both by Buschmann et al.

[31] and Gamma et al. [73]:

1. Pattern name

2. Also known as (other well-known names of the pattern)

3. Problem and motivation

4. Context and applicability

5. Intent, solution and consequences

6. Structure

7. Participants and dynamics (describing the different parts of the pat-

tern and their relations)

8. Implementation (guidelines for implementing the pattern)

9. Variants

10. Examples

11. Known uses

12. Related patterns

This template for describing a pattern could easily be adapted to many

other kinds of patterns, not only software patterns, and has also been used

for ontology patterns. The level of formality and how to express the different

parts in the list may vary, but the structure is usually similar, e.g. how to

illustrate the structure of a pattern may vary greatly between different kinds

of patterns while the heading is still part of all templates.

The previous discussion in this section deals with patterns used for con-

struction, for producing a solution to a design problem. Another kind of

pattern is the notion of a pattern as an observed regularity within some set

of objects, and that may be used to discover new instances of that regularity.

In the fields of pattern mining and recognition, computational linguistics,



82 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

and information extraction patterns are commonly identified through min-

ing large datasets. In this case it can be the patterns themselves that are

the product of the process, and what the patterns in turn can tell the re-

searcher about the object of study. A common example is the mining of

association rules, that has for example been used to discover relations is

shopping behaviour of people entering supermarkets. A possible associa-

tion rule would be that people who buy milk and bread also tend to buy

butter, and this discovered pattern can then be used by the supermarkets

to arrange their offerings in a more convenient way. We also saw examples

of the use of association rule mining in OL system in the last chapter.

Pattern mining has been used in ontology learning (OL), e.g. by Brew-

ster et al. [25] in order to automatically learn patterns, denoted rules as

above, for extracting ontological elements from text. Such patterns are re-

lated to the linguistic pattern first proposed by Hearst [98], that were men-

tioned in section 2.3. Hearst’s patterns are partial sentences with ’gaps’

where we can expect to find a filler in a text, and in this manner find ev-

idence of a certain relation between terms. A simplified version of one of

Hearst’s patterns for hyponym, comparable to subsumption, extraction is

”NP1 and other NP2”, where NP1 and NP2 are two noun phrases. If this

pattern is found in the text it can be concluded that NP2 is a hyponym

of NP1. For example the partial sentence ’dogs and other animals’ would

match this pattern, and we can agree that dogs are a kind of animals.

Although Hearst only proposed one specific kind of patterns, similar ap-

proaches are today widely used in for example OL, and further developed

such as by Brewster et al. [25] and Maedche [123].

As we have seen above there are two different views of patterns. The first

kind of patterns are general template-like structures encoding experiences

and best practices in order to provide a solution to a common problem,

while the second kind is concerned with regularities in some set of object,

regardless of any general problem or level of generality. When consider-

ing the ontology engineering field the first kind of patterns can readily be

adapted to fit ontologies and be used in the same way there. Modelling is

a hard problem and to encode modelling best practices seem like a obvious

solution. Also the second kind can be transferred to ontologies and has

already been used in OL.



3.2. PATTERNS 83

3.2.2 Patterns in different fields

Patterns have, as stated earlier, been adopted by many areas of computer

science and neighbouring sciences. In this section usage areas of patterns are

presented. Sometimes patterns are also grouped based on similar naming

although inherently different. The list is not complete but may be seen as

examples of pattern usage today.

Software patterns

The most well-known kind of patterns in computer science today are prob-

ably software patterns. Today, structured software development projects

using an object oriented paradigm but conducted without the use of some

kind of patterns are rare. Patterns are believed to vouch for reusability

of solutions, product quality, and management of the system complexity.

These patterns are often divided into different kinds, according to when in

the development process they are used and what level of abstraction, or

granularity, they operate on. The most common categories are:

• Analysis patterns, e.g. proposed by Fowler [69], Fernandez and Yuan

[62], and Kolp et al. [115].

• Architecture patterns, e.g. described by Shaw [176], Fowler [70],

Geyer-Schulz and Hahsler [83], and Buschmann et al. [31].

• Design patterns, e.g. proposed by Gamma et al. [73], Buschmann et

al. [31], and Björk et al.[21].

• Programming language idioms, e.g. described by Buschmann et al.

[31].

Analysis patterns are used at the very beginning of the software engi-

neering process. These patterns reflect issues such as conceptual structures

of business processes, e.g. for different business domains, and how to trans-

form these processes into software. One example of an analysis pattern is

the account pattern that can be used for bank accounts, but also for other

records where there is a need for keeping track of not only the current value

but also details of each change that affects this value, as explained by Fowler

[69]. The pattern could be illustrated using UML notation, see Figure 3.2,

where the entries record each change. Similar to Fowler’s analysis patterns

[69] are the ones suggested by Fernandez and Yuan [62].



84 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

Account

balance: Quantity

Constraint

{balance=sum

(entries.amount)}

Entry

amount: Quantity

whenCharged: Timepoint

whenBooked: Timepoint

1..1 0..*

Figure 3.2: The account pattern. [69]

At another level of granularity there are also analysis patterns describ-

ing the overall structure of organisations, since modelling the organisation

is often a task performed early in the analysis process. Such patterns are

described by Kolp et al. [115]. An example is the joint venture pattern that

represents the situation when several enterprises join together in order to

perform a specific task, which is coordinated by a joint management. An

illustration of this pattern can be seen in Figure 3.3 We choose to keep the

original notation used by Kolp et al. [115], which is based on the modelling

framework i∗ where actors are represented by circles, dependencies are rep-

resented by arrows and the ovals, clouds and hexagons represent the nature

of the dependencies.

Joint

Manager

Public

Interface

Partner 1

Partner n

Joint

Manager

Private

Interface

Figure 3.3: The joint venture pattern. [115]

Architecture patterns show overall structuring principles for software

systems, how to divide them into subsystems, the responsibilities of the

subsystems, and their relations, as described by Buschmann et al. [31].

Even though Geyer-Schulz and Hahsler [83] name their patterns analysis

patterns they present detailed descriptions of software architectures, similar

to those by Shaw [176], and can thereby be classified as software architecture

patterns. Architecture patterns are sometimes denoted architecture styles.

Although these terms may differ in meaning, a pattern might be expected

to be more detailed than a style, they are not differentiated in this thesis.



3.2. PATTERNS 85

An example of an architecture pattern is the layered architecture pattern,

as described by Shaw [176]. This pattern illustrates a type of architecture

suitable for systems that involve distinct services that can be classified hi-

erarchically, see Figure 3.4 using the informal notation also used by Shaw.

Usually the interaction between layers are procedure calls. The layers are

then further decomposed using other patterns.

Core

Level

Useful

Systems

Basic

Utility

Users

Figure 3.4: The layered architecture pattern. [176]

A slightly different kind of architecture patterns is presented by Fowler

[70]. These are not as high-level as the architectural patterns presented by

Shaw [176], but not as detailed as the design patterns of Gamma et al. [73]

either. They resemble more a further development of Fowler’s own analysis

patterns in [69] into reusable architectures. The patterns are specific for

building enterprise applications. An example of this kind of pattern is the

domain model pattern [70], used to insert a model of the domain into the

application in order to capture complex business logic. The overall structure

of the pattern can be expressed using UML, as seen in Figure 3.5.

When further developing the details of a system design patterns are

used. These are more detailed and low-level patterns that describe ways

to design the architectural components and their interactions, but they are

still independent of programming languages, as defined by Buschmann et al.

[31]. An example of a design pattern is the observer pattern. The observer

pattern can be used when changes need to be propagated to other objects in

a dynamic way, observers can be dynamically registered and unregistered.

The observer pattern can be illustrated using UML notation, as can be seen



86 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

Contract

recognizeRevenue(date)

calculateRecognitions

Complete

Recognition

Strategy

Product

calculateRecognitions(contract)

Recognition

Strategy

0..*

1..1

1..1

Figure 3.5: The domain model pattern. [70]

in Figure 3.6. There have also emerged design patterns specific to certain

software domains, such as the game design patterns developed by Björk et

al. [21], describing certain interactions common when designing computer

games.

Subject

Attach(Observer)

Detach(Observer)

Notify()

Observer

Update()

ConcreteSubject

GetState()

SetState()

subjectState

ConcreteObserver

Update()

observerState

Figure 3.6: The observer design pattern. [73]

Programming language idioms are language specific patterns describing

ways to implement certain aspects of components, or interactions between

them, using language specific features, as described by Buschmann et al.

[31]. An example, also found in [31], is an idiom for implementing the

singleton design pattern in C++. The purpose of the design pattern is to



3.2. PATTERNS 87

ensure that only one instance of a class exists at run-time, and the idiom

describes an appropriate way to solve this in the programming language

C++. The idiom is depicted in Figure 3.7 through a simplified variant of

the pattern description template mentioned previously in this chapter.

Name Singleton C++
Problem Implementation of the Singleton Design Pattern in C++
Solution Make the constructor private. Declare a static member

variable theInstance that refers to the single existing
instance of the class. Initialise this pointer to zero.
Define a public static member function getInstance() that
returns the value of theInstance. The first time getInstance()
is called it creates the single instance with new and assigns
its address to theInstance.

Example class Singleton {
static Singleton *theInstance ;
Singleton();
public:
static Singleton *getInstance() {

if (! theInstance)
theInstance = new Singleton;

return theInstance;
}

} ;
//...
Singleton* Singleton::theInstance = 0 ;

Figure 3.7: Singleton Idiom in C++ from Buschmann et al. [31].

Data model patterns

Data model patterns are somewhat similar to software patterns in the sense

that they represent an effort in standardising common and well-proven so-

lutions to help modellers be more effective and increase the quality of the

models. Data modelling can of course also be part of software engineering,

since a database can be a component of a software system, so these two

areas are strongly interconnected.

Data model patterns were first presented by Hay [97]. The author mo-

tivates his patterns with the usual arguments of better communication be-

tween modellers, reducing the complexity of the modelling task, increasing

the quality and reusability of the models. He also divides possible con-

ventions of modelling into three levels; syntactic conventions, positional

conventions and semantic conventions. Syntactic conventions are modelling

languages, like UML or other notations, positional conventions decide the

overall organisation of the symbols on a page and their interconnections,

and finally semantic conventions deal with grouping of entities according to

their meaning and how different business situations are perceived. It is the



88 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

authors intent that mainly the final category can benefit from the presented

data model patterns.

An example proposed by Hay [97] is a pattern for modelling the buying

and selling of products and services. A slightly simplified example of this

pattern, illustrated using UML, can be seen in Figure 3.8. Hay’s patterns

have also been further developed by for example Silverston [180] [179], who

additionally present categories of domain specific patterns.

Line Item

Quantity

Price

Extended value

Product Type

Description
Unit price

0..*

0..1

Service

Description
Unit price

0..*
0..1

Contract

Contract

number

Order date

Terms

Contract value

0..*

1..1

Party

0..*

0..1

Organization

Name

0..1

Person

First name

Last name

0..*

Figure 3.8: Products and services data model pattern. [97]

Semantic patterns

The term semantic pattern is not really an ’application area’ or research

field, but mainly a term to denote all patterns that aim to abstract from

a representation structure or language, to an abstract modelling language.

The word ’semantic’ is used to illustrate that these are patterns trying

to show the semantics of representation specific features. This is a very

broad definition, which would include almost anything, like programming

languages in general, because they abstract from hardware representation,

but let us restrict this term to denote those abstractions that have actually

been denoted patterns.

One example of such patterns is languages for abstraction. A high-level

language may try to abstract away the specifics of some representation lan-

guage, which can be a programming language, an ontology representation

language etc. There are of course a large number of examples of such ’se-

mantic patterns’ but this is actually one area where there has also existed

ontology patterns for quite some time, e.g. considered by Stuckenschmidt



3.2. PATTERNS 89

and Euzenat [189] and Staab et al. [185]. Staab et al. [185] name these

ontology patterns semantic patterns and in this way aim to abstract away

the specifics of ontology representation languages. Stuckenschmidt and Eu-

zenat [189] consider the additional problem of language expressiveness, the

ontology patterns are expressed in an abstract language that needs to be at

least as expressive as the ontology representation languages it is used with.

An example of a semantic pattern, described by Staab et al. [185], is the

locally inverse relation pattern. This pattern aims at capturing the idea of

restrictions on the inverse of relations, so they are only defined between cer-

tain concepts, i.e. restrictions on range and domain of the inverse relations.

This is natural in for example object-oriented modelling, because properties

and relations are defined locally in the object, but in ontology languages

such as RDF everything is defined globally and relations exist independently

of the concepts they belong to. In the notation of Staab et al. [185] this

pattern, or language primitive of the more abstract language, is written

LOCALINV ERSE(r1, c1, r2, c2), with r1, r2 denoting binary relations and

c1, c2 their ranges.

Scripts and frames

The notion of scripts was proposed by Schank and Abelson [172] as a part

of the early development in AI knowledge representation. However, scripts

were also a cognitive theory of how human memory works. A script is a

generalised prototypical situation, involving a set of primitive acts or events.

Schank [171] additionally used the idea of scripts to introduce methods for

interpreting and explaining new situations in terms of already encountered

situations, much like the associative capabilities of the human mind. Scripts

and primitive acts can be seen as a kind of patterns, representing typical

and recurring situations that can be used to interpret new and unknown

situations. The classical example of such a script, or pattern, is the restau-

rant script as exemplified by Schank and Abelson [172]. One scene of the

script is the actual eating of the food, which can be described in a slightly

simplified form as:

Scene 3: Eating

Cook TRANS food to waiter, waiter TRANS food to S, S INGEST food.

The primitive acts involved are the TRANS act, which is a transference

of an object from one actor to another, and the INGEST act, which is the



90 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

ingestion of the actual food. The authors defined a relatively small set of

primitive acts that could describe most common situations.

Frames, as proposed originally by Minsky [135], are similar to the scripts

discussed above, although less focused on cognition, memory, and natural

language and more on actual knowledge representation and usage by ma-

chines. Minsky defines a frame as data structure to store prototypical situa-

tions, with information about connections to related frames and procedural

information on how use the frame and what happens if the current situation

does not precisely match the frame. Minsky is usually attributed much of

the later developments within frame-based systems and frame-based logics,

that still survives as knowledge representation formalisms today. However,

these early ideas are very much related to patterns as we view them today.

The FrameNet project, originating in linguistics using the so called frame

semantics, is an ongoing effort to produce a complete set of semantic frames

representing typical usages of English words, as presented by Baker et al.

[11]. This research is not explicitly based on the type of frames and scripts

mentioned above, but the general idea is quite similar.

Knowledge patterns

The term knowledge pattern denotes different things depending on the com-

munity. In the business related parts of the knowledge management (KM)

community, a knowledge pattern can illustrate how to structure the man-

agement of knowledge within a company, by for example appointing teams

of knowledge leaders or harvesting knowledge from workers, as defined by

Davis [45].

In more technically oriented areas of KM, the term knowledge pattern

can denote patterns for building knowledge bases, as used by Clark et al.

[38], or reusable problem-solving methods, as used by Puppe [165]. Also

Motta and Zdrahal [137] proposed reusable problem-solving methods, al-

though they were not denoted patterns. The knowledge patterns of Clark

et al. [38] are quite specific and are closely related to semantic patterns,

rather than to knowledge-base architectures. An example of one part of

such a pattern can be seen in Figure 3.9, expressed using Prolog notation.

This part, or axiom, represents the concept of how free space in a container

can be calculated. The whole container pattern would contain more axioms

applicable to containers. The pattern can then be specialised, through a so

called morphism, to represent a specific kind of container, such as a hard

disk or a water bottle.



3.2. PATTERNS 91

free space(Container, F ) : −
isa(Container, container),
capacity(container, C),
occupied space(Container, O),

F is C − O.

Figure 3.9: The ’free space axiom’ in the container knowledge pattern. [38]

The knowledge patterns by Puppe [165] on the other hand lie some-

where between software architecture patterns and design patterns, but for

problem-solving methods instead of software. They can be described as

patterns used as common building blocks in problem-solving methods, and

they can be expressed in a similar way as software patterns. An example of

such a pattern is the heuristic decision tree pattern. The pattern consists of

two phases, first the selection of a problem area and then the investigation

of that area in order to find a solution. A UML diagram representing the

first phase of this pattern can bee seen in Figure 3.10.

Question

Answer type

Answer alternatives or

range

Annotation

activate-follow-
up(question)

rate(solution,category)

ask-question(self)

check-answer(self)

Problem area

Annotation

#Valuation

indicate(investigation)
suspect(solutions)

Entry investigation

activate-entry-

question(question)

follow-up-

questions(condition)

entry-questions

solutions(condition

,category)

Figure 3.10: The heuristic decision tree pattern. [165]

Another category of knowledge patterns has been proposed by Sutcliffe

[199]. In his book Sutcliffe describes a whole theory of reuse by patterns, or

as he calls it the domain theory object system model. This is a model for for-

malising reuse both at the engineering level but also at the knowledge level.

The theory includes object system models (OSMs) which are very similar

to for example analysis patterns in software engineering. The differences lie

mainly in the scope of the approaches, since Sutcliffe [199] presents a more

theoretically well-founded approach and also covers more aspects of reuse,

e.g. how to find, select and finally adapt and incorporate reusable parts.

The OSM library contains a hierarchy of patterns, with explanations

and illustrations, that aim to be somewhat full-covering mainly for business

applications. An example of an OSM is the object inventory OSM as illus-

trated using a UML diagram in Figure 3.11. The pattern can be used for



92 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

many different inventory-type application cases where resources are trans-

ferred, outbound to a customer or inbound to the owning company. The

pattern also models replenishment of resources from suppliers.

held-in

owned-by

transfer

request

resupply

request

Client

ask

Supplier

resupply

Supplier/

customer

give

Agent

act

Resource

move

Container

Figure 3.11: The object inventory OSM. [199]

Pattern mining and recognition

This kind of patterns mainly belong to the second category mentioned at

the beginning of this chapter, i.e. patterns that are the product of, and

not the means of, a process. There is a whole research field devoted to

this, often denoted the pattern mining and recognition field. To this field

could also be classified parts of the area of linguistic patterns. To find the

linguistic patterns, pattern recognition techniques can be used. This is also

true for some cases of programming language idioms and semantic patterns.

Just to remind the reader of the linguistic patterns described in brief

previously, linguistic patterns are language dependent patterns that repre-

sent the structure of the language. Different constructs in a grammar can

constitute such patterns. Linguistic patterns are used in parsers, transla-

tors, and also in systems for ontology learning as proposed by Wu and Hsu

[220], Maedche and Volz [127], Faure and Nédellec [59], Hahn and Markó

[92], Cimiano [34], and others. Faure and Nédellec [59] use linguistic pat-

terns such as: < verb > ((< preposition >|< function >) < headword >)

to extract so called instantiated syntactic frames. Such an extracted frame

could look as follows: < totravel >< subject >< Bart >< by >< boat >,

extracted from the sentence ’Bart travels by boat’. Previously, we described



3.2. PATTERNS 93

other kinds of linguistic patterns, such as the patterns proposed by Hearst

[98] for extracting subclass relations from text, and the more general OL

patterns by Brewster et al. [25].

The idea of the pattern recognition field is to find regularities, and

thereby patterns. Whether these patterns then are used for some other

purpose, e.g. comparison to other patterns, machine learning, text parsing,

or if the mere fact that they have been found is enough, is differing. One

application area for pattern recognition is computer vision. To take pic-

tures with a camera is easy but to make the computer ’understand’ what

is embedded in the pictures is hard. The researchers in this area try to

describe patterns of for example faces in general, or a specific person’s face,

and then use pattern recognition algorithms to correctly match this pattern

to the pictures where faces, or this particular face, appears.

Similarly there are researchers studying patterns in graphs. Many things

can be represented as graphs, for example web usage logs, web page struc-

tures, chemical compound structures and ontologies. To find patterns, or

re-occurring structures, in these graphs can give important information. In

the web usage logs, or usage logs on ordinary computers, patterns can show

frequent usage of the system, and possibly be used as a basis for intrusion

detection mechanisms in the network and computer security areas. Find-

ing frequent substructures in chemical compounds can mean finding toxic

substances or simply determining similarities of compounds.

Examples of such subgraph discovery algorithms has been described by

Inokuchi et al. [104], Kuramochi and Karypis [116], and Holder et al. [102].

There are also two kinds of algorithms, those that find frequent patterns in

a forest of smaller graphs and those that find re-occurring patterns in one

large graph. Other differences are the similarity measures used to decide

if a substructure resembles another one, the purpose and output of the

algorithm, this can be the discovered patterns or a compressed version of the

original graph where the patterns where used for the compression process.

A small experiment using such algorithms for pattern mining in ontology

graphs was conducted by Thörn et al. [201].

Ontologies can also be used for pattern recognition tasks, this is mainly

done in the information retrieval (IR) and information extraction (IE) areas.

IR is an area that has developed fast, along with the web developing as

a huge information source available around the world. Examples of IR

applications can be to automate search and customisation of content on the

web, and concepts such as semantic search has emerged. Semantic search

using pattern recognition and graph patterns, in addition to keywords, can



94 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

be found in work by for example Zhong et al. [227]. To perform semantic

search or other forms of advanced IR many different approaches have been

developed, i.e. graph-matching algorithms to find ’semantic matches’, such

as the approach of Billig and Sandkuhl [18] and Yeh et al. [223].

3.2.3 Ontology patterns

Ontologies were mentioned in a few places in connection with different kinds

of patterns above, but it is not until the last few years that ontology patterns

have received proper attention. Early research within the scope of this the-

sis was at the forefront of defining types of ontology patterns and developing

patterns for ontologies, as we shall see in coming chapters. Nevertheless,

today there exist a number of different kinds of ontology patterns. These

patterns have their origin mainly in the scripts, frames, knowledge patterns,

such as the approach by Clark et al. [38], and the semantic patterns pre-

sented above, and have in addition been inspired by software patterns, both

in naming and presentation.

Recently a typology of patterns was presented in a deliverable of the

NeOn project by Presutti et al. [164]. Note that this is still largely unpub-

lished research and presented at a later date than the typology that will

be described in chapter 5 of this thesis. Therefore the typology presented

in chapter 5 does not build on this parallel proposal, although the two ty-

pologies largely cover similar types of patterns. The deliverable is focussed

on what is called ontology design patterns, which in the terminology of this

thesis means ’patterns for ontology design’, where design denote the devel-

opment of an ontology. There is no direct correspondence to the notion of

design patterns in software engineering, that focusses on the design phase.

An ontology design pattern is by Presutti et al. defined as: ”An OP (On-

tologyDesignPattern) is a modeling solution to solve a recurrent ontology

design problem. It is an dul:InformationObject that dul:expresses a Design-

PatternSchema (or skin). Such schema can only be satisfied by DesignSo-

lutions. Design solutions provide the setting for oddata:OntologyElements

that play some ElementRole(s) from the schema.” Where ’dul’ and ’oddata’

are namespaces, ’dul’ being the DOLCE top-level ontology. An information

object is a piece of information encoded in some language, and a design

pattern schema is the description of an ontology design pattern. For details

on the definition see complementing definitions of Presutti et al. [164].

The typology can be illustrated as seen in Figure 3.12, using a UML no-

tation. The main categories of ontology design patterns are lexico-syntactic



3.2. PATTERNS 95

patterns, structural patterns, content patterns, presentation patterns, rea-

soning patterns, and correspondence patterns. The typology is extensive

and covers many areas of ontology engineering, but it is not clear if it actu-

ally aims at being complete. Neither do the authors provide any rationale

for choosing exactly these categories and the differentiating notions and

level of generality in the ’pattern taxonomy’ are mixed, and neither well

motivated nor well explained in the referred publication. The authors seem

to take a purely practical perspective and simply list every case where pat-

terns can be identified at present. Nevertheless, the categories cover many

interesting aspects of ontology engineering.

Lexico-syntactic patterns are patterns that connect language constructs,

mainly in natural language, to ontological constructs. Lexico-syntactic pat-

terns, such as the ones proposed by Hearst [98], was mentioned previously.

Presentation patterns include naming conventions an annotation schemas

for ontologies, and are to be seen as best practices how to present and

document ontologies and their elements. Reasoning patterns are common

ways of doing reasoning over ontologies, such as classification or normalisa-

tion as defined by Vrandecic and Sure [215]. Correspondence patterns can

be reengineering patterns or mapping patterns, where reengineering pat-

terns focus on correspondences between different formalisms for transform-

ing some source model, even a non-ontological model, into another ontology

representation. Mapping patterns on the other hand are related to the pos-

sible correspondences between two or more ontologies, as investigated by

Scharffe et al. [173].

Structural and content patterns are mainly addressing actual modelling

issues within ontologies, both on the logical language level and a more

abstract design level. Structural patterns deal with the logical structure of

the ontology, the expressiveness of the modelling language and issues related

to this, both on a local level, as for logical patterns, and a global level, for

architectural patterns concerning the structure of a complete ontology or

ontology module. To such logical patterns we could refer the semantic

patterns discussed previously in this chapter, as well as the OWL-specific

design patterns that solve specific expressiveness issues in OWL that were

developed by the W3C. An example of such patterns is the best-practice

for representing classes as property values, see the W3C website [3]. There

are also domain-specific logical patterns, such as presented by Reich et al.

[167] for the biomedical domain. These patterns aim to implement certain

logical functionalities of the ontologies, such as information encapsulation

and part-whole hierarchies.



96 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

��������	
�������
��

����
��� ����������� �
��������������

������
�������

�
���������
�
�������� ����
�����
��
�

�������� ������� ����������� �

����

����� ��������

������������

���������������

���
���

����

����� �
����������

Figure 3.12: The typology proposed by Presutti et al. [164].

Content patterns are related to structural patterns, because they also

restrict the structure of the model, but in addition they provide solutions

for modelling specific concepts. One might say that a structural pattern,

or at least a logical pattern, can be viewed as a logical template specifying

a certain logical structure, but with an empty signature, i.e. any concrete

concepts and relations may be used to realise the structure. A content pat-

tern on the other hand will additionally contain actual concepts an relations

that may be specialised when the pattern is used. Such patterns have been

proposed by Gangemi et al. [74], and further explained by Presutti and

Gangemi [163] and Gangemi and Presutti [81].

A content pattern is only guaranteed to be valid when specialising the

concepts and relations, not necessarily for generalisation. For example,

for a pattern containing the concepts ’project leader’ and ’project team’

connected through the ’leads’ relations the concepts can be generalised to

’leader’ and ’team’ and the relation is still valid, in this case even without

changing its label. Now, consider the case of the two concepts ’board’

and ’board member’ with the specific relation ’secretary of board’. When

generalising to ’group’ and ’group member’ there is no intuitive way of

generalising the secretary-relation to general groups. Specialising the board-

pattern we can arrive at an ontology containing ’company board’, ’company

board member’ and the ’secretary of the board’ relation is still valid.



3.2. PATTERNS 97

Figure 3.13: The agent role content pattern. [164].

An example of a content pattern is the agent role pattern that can be

viewed in Figure 3.13, using the UML notation of the ontology engineering

environment TopBraid Composer†. The pattern states that objects are

classified by their roles and that a role is a role of certain objects. This part

is actually the object role pattern, a more general content pattern that has

been specialised into the agent role pattern seen here, hence the namespace

prefix or: that illustrates the different namespace of the imported pattern.

In agent role the objects involved are agents, living or artificial. Patterns

can also overlap, whereas objects may appear in many patterns for different

purposes. This specific pattern has its origin in the DOLCE Ultra Light

top-level ontology but is represented as a self-contained ontology.

Presutti et al. [164] additionally propose a set of operations that may be

used on patterns, such as composition of patterns, cloning of elements, and

specialisation. The main idea is that the content patterns are imported, as

reusable building blocks implemented primarily in OWL, into the ontology

to be constructed, specialised, expanded and composed to fit the case at

hand.

†http://www.topquadrant.com/topbraid/composer/



98 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

3.3 Case-based reasoning

Case-based reasoning (CBR) is, according to Aamodt and Plaza [4], aiming

to use previous experiences to solve new problems. It is worth noting that

this is a similar idea compared to patterns, and it can also be viewed as

a specific reuse methodology, which is the reason for including it in this

chapter.

CBR is generally depicted as a cycle of four phases, i.e. retrieve, reuse,

revise and retain, all using the stored knowledge in the central case base.

In addition to the stored cases, experiences or partial solutions form pre-

viously solve problems, the case base might also contain general domain

knowledge. A specific branch of CBR is textual CBR (TCBR) that focuses

on approaches using natural language texts. Weber et al. [218] describe four

open research questions of this area, containing how to get from a textual

representation of a case to a structured representation, and how to auto-

mate approaches. As we shall see later in this thesis our approach has been

inspired by CBR and addresses similar research questions, in the setting of

semi-automatic enterprise ontology construction. Recent developments of

CBR also use ’soft’ computing, as noted by Pal and Shiu [155], in order to

simulate the human decision-making process.

A number of variations of case-based reasoning were noted by Aamodt

and Plaza [4]. A ’true’ case-based reasoning method is distinguished by the

complexity of the case structure and stored information, and also by the

ability to modify and adapt the retrieved solutions to a new situation. Al-

though an extensive literature search has been conducted, no approach using

CBR for ontology engineering has been found. Some related approaches can

be noted though, most similar seems to be the concept map extension and

knowledge acquisition techniques applied by Leake et al. [117] that uses

previously created concepts maps as past cases when constructing and ex-

tending new ones. That approach store complete concept maps as cases,

and does not use the notion of patterns.

3.3.1 Benefits of CBR and when to use it

A summary concerning some of the benefits and drawbacks of using case-

based reasoning is presented by Pal and Shiu [155]. Some of the benefits

listed are to reduce the load on knowledge acquisition tasks, learning from

the past, reasoning with incomplete, imprecise or insufficient information,

and reflecting human reasoning and means of explanation. Based on these



3.4. CHAPTER SUMMARY 99

benefits the authors suggest some guidelines as to help determining when

CBR is the right methodology to choose [155]. The guidelines are expressed

as 5 questions to ask when considering to use, or construct, a CBR-inspired

system:

1. Does the domain have an underlying model?

2. Are there exceptions and novel cases?

3. Do cases recur?

4. Is there significant benefit in adapting past solutions?

5. Are relevant previous cases obtainable?

If there is no clear underlying model that can be completely understood,

there are many exceptions to the rules that govern the domain, but similar

cases still reoccur, then the problem might be suitable for a CBR solution.

Additionally there must be past solutions available and it must be clear

that it is more beneficial to reuse these than to start over.

3.4 Chapter summary

In this chapter we have presented general notions of reuse and, in particular,

patterns. Patterns constitute a specific way of reusing encoded experience,

whether extracted from existing data or engineered from best practices. A

large amount of research exist concerning patterns in many different areas,

and patterns have also been proposed for knowledge representation and

ontologies. Below we summarise the two focus areas, ontology reuse and

ontology patterns.

3.4.1 Ontology reuse summary

Ontology repositories exist and are usually equipped with search and brows-

ing capabilities. Nevertheless, selection and reuse of large ontologies is not

straight forward. There exist ontology search engines and ranking schemes,

assisting the user in finding and selecting ontologies on the web. However,

it is still up to the user to formulate the correct query, to realise when some-

thing interesting has been found, to evaluate the details of the ontology to

be reused, and to adapt and reuse it.



100 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

Reuse of top-level ontologies, consisting primarily of general common-

sense knowledge, has been performed in many ontology engineering projects,

in such cases it usually remains to specialise an further develop the ontol-

ogy, adding domain-specific knowledge. When reusing more specific ontolo-

gies, documentation, metadata, and annotations are sometimes scarce or

none-existing, whereas the reuse task can be quite difficult. Assuming that

a set of suitable ontologies have been retrieved, there exist numerous ap-

proaches for matching, and aligning or merging such ontologies. However,

most approaches are focused on merging ontologies, rather than integrat-

ing ontologies of different coverage, and assume some overlap, or at least

close ’connection’ between the ontologies to be matched. Recent approaches

are often automated, to some extent, and produce reasonable results when

applied on typical matching tasks, such as the OAEI-datasets.

Modularisation of ontologies has already been adopted as a general ’good

practice’, at least by the research community. The past few years have

seen the emergence of several language extensions, and other approaches

to modularisation, including rules and guidelines on how to distinguish a

’good’ module and how to extract modules automatically. However, there is

a lack of guidance as to what content a module should or should not contain

and how to select and adapt modules at the time of reuse. Modularisation

provides a way of reusing manageable, and to a large extent, self-contained

’pieces’ of an ontology, still there are no specific guidelines how to find and

reuse modules, and there is a lack of tool support for such tasks.

The existing methods for finding, matching, selecting, and reusing on-

tologies are not really suited for small general patterns, although content

patterns can be represented and treated as small ontologies. Trying to find

a general content pattern through an ontology search engine a user would

have to search for quite general terms in order to find the pattern, while

ideally the user would be able to search for a specific term that he wishes to

model and still get the general pattern as a result. For example, a user that

wants to build an ontology about students and researchers that teach at a

university might search for terms such as ’student’, ’professor’ and ’teacher’.

A suitable pattern for modelling the roles of the people involved in this sce-

nario could be the agent role pattern mentioned previously, but that pattern

would not be retrieved by a standard search engine using those search terms.

A person reviewing the pattern easily realises that student, professor and

teacher are roles that people can take in different situations, at the uni-

veristy, and that people are a kind of agents. However, such matching is

usually not done by approaches for finding and selecting ontologies.



3.4. CHAPTER SUMMARY 101

On the other hand this is what ontology matching is focussing on. Most

approaches focus mainly on finding equivalences, but many approaches also

successfully propose subsumption relations between concepts of the different

ontologies. Ontology matching also takes into account the richer structure

of the ontologies involved, compared to the keywords used for search and

retrieval mentioned above. Ontology matching techniques are essential for

finding and retrieving content patterns, with respect to a ’query’ which is

in essence an ontology. However, none of the existing matching approaches

an tools are tailored to the specific case of pattern matching, i.e. matching

ontologies that are known to most often be of different size and different

levels of abstraction. Nevertheless, specific techniques for ontology matching

were reused when developing the details of the OntoCase method, as we shall

see later in this thesis. These are combined with a ranking scheme inspired

by the ontology search engines present today.

3.4.2 Ontology pattern summary

Most of the research on ontology patterns has developed during the last

couple of years. As far as we are aware only the approaches of semantic

patterns and patterns specific to biomedical ontologies were present at the

beginning of this decade. With the emergence of the Semantic Web, that

has brought ontologies into more or less common software practise, also the

ontology pattern development has caught speed. As an example it can be

mentioned that during the past year several new types of patterns have been

proposed in literature, and ontology engineering environments are starting

to provide support for modular and pattern-based ontology development.

However, ontology patterns is a field in its infancy. An online pattern

catalogue for content patterns has been launched‡, but so far it contains only

a few general content patterns, and the community is far from the rigour

of the software patterns community where conferences and workshops are

devoted entirely to developing and discussing software patterns and best

practices.

Currently, lexico-syntactic patterns are widely used in many areas, also

ontology engineering and specifically ontology learning. This is addition-

ally true for some of the structural patterns, e.g. logical patterns addressing

some specific language such as OWL or F-logic. These have for example

been widely used to provide graphical user interfaces to ontology engineer-

ing tools, where the user can for example edit logical axioms in graphical

‡http://www.ontologydesignpatterns.org



102 CHAPTER 3. PATTERNS AND KNOWLEDGE REUSE

manner. Content patterns and correspondence patterns have been proposed

and are now being developed in several research projects. With respect to

the rest of the ontology patterns discussed in this section, e.g. architecture

patterns, reengineering patterns, and presentation patterns, they seem to

be still on the level of ideas.

The current state could be described as a ’kick-start’ for the ontology

patterns community. Since the Semantic Web is now partly being realised,

and ontologies are widely used in this context, methods suited for non-

ontology engineers, such as web developers, for constructing ontologies are

needed. Patterns as encoded best practice might be one way of meeting

this need, although other methods and tools are also needed. However,

method and tool support for actually using the patterns are lacking, as well

as an agreement on their definitions, characteristics, types, purposes, and

benefits. The research presented in this thesis has grown along with this

rapid development of the ontology pattern community, and provides one

piece of the puzzle in order to put patterns into use and show their benefits

for real world cases. The main focus of the rest of the thesis is on what

was here denoted ontology content design patterns, and OntoCase aims to

provide some initial tool support for selecting and reusing such patterns.



Chapter 4

Method and evaluation strategies

Practically oriented research in computer science is often hard to charac-

terise in terms of research methodology. There are few formalised research

methodologies proposed for engineering-related approaches in computer sci-

ence. In the parts of computer science closely related to mathematics and

mathematical logics this may be a perfectly valid situation, since these dis-

ciplines inherently include high rigour and requirements to prove results

mathematically, whereby other methods may be superfluous. At the other

end of the scale, in fields of computer science more related to the social

sciences like business informatics and human computer interaction (HCI),

methods are more well-developed and firmly established, since these fields

rely on the study of human beings rather than artificial objects. In between

these two extremes there is however a gap. Engineering-style computer

science research is performed in many areas of computer science but nei-

ther the formal mathematical proofs nor the human centred social science

methods suffice in these cases.

In this chapter we first give a general philosophical overview of research

methodologies that are considered relevant for this work. This is then com-

pared to more social science-related methodologies, such as design research

in informatics, and from this comparison a general outline of the research

philosophy for this thesis is sketched. Subsequent sections present specific

techniques used for this research are presented, such as evaluation methods

for ontology evaluation, and finally the practical realisation of our research

is outlined.

103



104 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

4.1 Research methods

Traditionally, science has been about discovering some kind of ’truth’ about

the world, although the existence and nature of such ’truths’ have been

frequently debated, as for example discussed by Chalmers in his book on

research philosophy [32]. Although scientific results are something that

commonly is thought of as ’proven’ knowledge, the nature of the proof differs

greatly from one field to another. The nature of the problems studied differ

also between fields, what is considered a relevant and valid problem in one

field might not be accepted in another field.

As mentioned above, engineering-style computer science is usually not

able to completely prove results mathematically or logically. Such results

are mere proposals of solutions that are in some specific sense ’better’ than

previous ways to solve the problem, but they usually cannot be proven op-

timal. Sometimes the solution cannot even be proven to be a valid solution

by other means than to actually provide an example implementation, a so

called proof of concept implementation. The focus of such research is on

methods for showing that the proposed solution actually works and is bet-

ter than previous proposals. This means that the methodological focus is

not so much on the process of producing the solutions but on evaluating the

feasibility of the solution and establishing an amount of improvement com-

pared to previously proposed solutions. One way of showing improvement

is by conducting experiments.

In contrast, one could put such solutions in a larger perspective, for

example as tools to assist humans in solving a specific kind of problem. In

this case, methods from social sciences may be applicable. In this research

we have chosen to study the ontology construction process from a technical

perspective. Without, at this stage, considering the ontology engineer, the

’end user’, and user interaction as a factor in experiments and evaluations.

It is by no means our intention to diminish the importance of viewing the

user as an essential success factor, it is merely a matter of limiting the

research focus. Hence we do not include the development of a graphical

user interface for the proposed methods, or user studies of the method put

into a larger perspective. Due to this fact we will focus on research methods

related to engineering-style research and experimentation in the rest of this

chapter.



4.1. RESEARCH METHODS 105

4.1.1 Experimentation in computer science

What is often stated to differentiate development of ad-hoc solutions from

scientific research, and scientific results, is performing experiments. Ex-

periments can show characteristics of a proposed solution, or prove the

excellence of whatever has been developed. As discussed by Basili [14] both

deductive and inductive research paradigms exist. While the development

of a model followed by analytically proving that it is correct follows the de-

ductive paradigm, the proposal of a model and the subsequent provision of

sufficient evidence that the model is correct, e.g. through proof of concept

implementations and their evaluation, conforms to the inductive paradigm.

The conclusion that the method is correct and better than another method

is in this case induced from a set of evidence, but cannot be mathemati-

cally or logically proven. It is especially within this inductive paradigm that

carefully designed experiments are needed.

Basili [14] proposes that there is a difference between evolutionary ex-

periments and revolutionary experiments. Where evolutionary experiments

try to show that some solution is in some sense better than all the previous

ones, revolutionary experiments try to show that a completely new solu-

tion solves some previously unsolved problem. Zelkowitz and Wallace [224]

discuss different ways of experimenting, based on three main categories of

collecting data:

• Observation

• Historical collection

• Controlled experiment

The first category involves experiments such as case studies and field studies,

where the main data collection is done by observing the object of study

in a ’real world’ setting, generally with a minimum of interference by the

observer. Historical data collection is similar, but is instead based on data

already collected in some previous situation. Finally, controlled experiments

are what we usually denote by ’experiment’, where the setting and possibly

some of the variables studied are controlled by the researcher. Controlled

experiments are usually replicated in order to isolate different variables and

to achieve statistical validity.

Zelkowitz and Wallace [224] propose four (overlapping) kinds of con-

trolled experiments that can be applied in software engineering research:

• Replicated experiment



106 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

• Synthetic environment experiment

• Simulation

• Dynamic analysis

In replicated experiments the intention is to control all variables that can

affect the outcome and replicate the experiment so that the hypothesis can

be verified with statistical significance. If the object of study is complex and

contains many different variables, such experiments may be very costly to

perform, at least in a ’real world’ setting. A way to reduce this complexity

is to use a synthetic environment, where the experiment is instead set in a

smaller but artificial environment. More variables can then be controlled

by the researchers, and the focus put on the variables of study, but at the

expense of external validity and potential to generalise experiment results.

Simulations completely remove the natural setting and replace it with an

artificial model of reality. This reduces the complexity even more, but since

it is not clear how well such a simulation model reflects reality it introduces

even more uncertainty in the results. Finally, dynamic analysis studies focus

on some product of the object of study, for example the produced software

in the case of software engineering, and suggests performing analyses on this

in order to derive conclusions about the object of study, e.g. the software

engineering process.

For the research in this thesis the objects of study are a method for ontol-

ogy construction and the ontologies produced by such a method. Since the

method is not complete, in terms of covering the complete process, and the

implementation does not contain graphical user interfaces, the application

of the method in ’real world’ settings will not be possible. Consequently,

observational experimentation methods are ruled out, as well as historical

methods since this is a new method and has not yet been applied. Instead,

focus will be on controlled experiments, mainly replicated experiments in

synthetic environments. The focus will be on studying the outcome of the

method, the ontologies, rather than measuring variables of the process it-

self. Thereby, the experiments are related to dynamic analysis as explained

above, but the analysis is performed in a laboratory environment, since the

ontologies have not been used in any real-world applications, which means

that this is a combination with the so called synthetic environment category.



4.1. RESEARCH METHODS 107

4.1.2 A broader perspective on research method

During the 20th century debates arose in several design-oriented fields and

eventually brought many such fields into the realm of ’science’ and ’re-

search’, for example by introducing proper research methods. One such

example is architectural design, see for example the summary by Cross [41],

which was from the beginning considered as merely a craft and a subjec-

tive expression of the skill and inventiveness of the engineer. One research

method that proposes to use the approach of design research for informa-

tion technology research is the method described by March and Smith [128].

This method has been further developed for example in business informat-

ics, where a more recent method for design research has been proposed by

Hevner et al [100].

A general idea behind design science is to extend the frontier of science

by constructing (designing) and evaluating new and innovative artefacts.

The complete process of research can be seen as a cycle of two phases; pro-

ducing artefacts and then evaluating them. In addition to the design science

approach, March and Smith [128] describe the natural science approach of

also theorising and justifying the theories. An important part of design

science is the artefacts produced. Artefacts can be of four different kinds,

according to March and Smith [128]:

• Constructs, e.g. new concepts forming a new vocabulary.

• Models as propositions about constructs, e.g. new representations.

• Methods, e.g. a new algorithm or methodology.

• Instantiations, e.g. a prototype system.

In addition to a set of artefacts, Hevner et al. [100] describe a set

of guidelines that should be considered when conducting the two steps of

design science; building artefacts and evaluating them. The guidelines can

be summarised as follows:

1. The research should produce an artefact.

2. The artefact should be a solution to an important problem.

3. Evaluate utility, quality and efficacy of the artefact.

4. The artefact should provide a clear research contribution.

5. Apply rigorous methods in both design and evaluation phases.



108 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

6. Search for effective solutions without considering all possible solutions.

7. Present the research to both technology-oriented and non-technology

oriented audience.

The first two guidelines state the main focus of design science, to create an

artefact as an effective solution to some important problem. Since design

science is mainly used in business informatics research this is translated

into the requirement of solving some important business problem, existing

in real-world enterprises. For the research to be relevant and rigorous the

third guideline states that the artefact has to be properly evaluated. The

fourth guideline adds the aspect of novelty and innovation. The artefact

not only has to solve the important problem in a sufficient way, it also has

to contribute to the overall body of knowledge of the research area. The

following two guidelines are constraints on how the research is carried out.

Rigorous methods have to be used, both for constructing the artefact and for

evaluating it. The goal of design science is not to find the optimal solution

for the problem at hand, but merely to find one new and innovative solution

that fulfils the previously stated criteria. Finally, the research should be

communicated both to the research community and to external parties that

might benefit from it.

Despite the fact that this thesis does not apply design science as a whole,

some inspiration from the above framework proved useful. The intention of

our research is to produce all four kinds of artefacts. Examples of produced

constructs are the categories of ontology engineering patterns as a vocab-

ulary for discussing such patterns. Models and methods are the patterns

themselves and the OntoCase framework where they are used, and an in-

stantiation is produced as OntoCase is implemented as a proof of concept

implementation.

The guidelines presented above are only relevant to a certain extent, but

may very well act as a starting point for discussing the realisation of this

research. Guidelines 1, 4, and 6 were the major focus of the research, i.e.

to produce an artefact that solves the problem considered and provides a

clear contribution to the research community. Guidelines 3 and 5 were con-

sidered, but with main focus on the artefact evaluation and not the design

part. This means that no rigorous software development method was used

to produce the proof of concept implementation, but that the main effort

was instead focused on applying rigorous evaluations of the result. The com-

plete guideline 3 was not applied either, since our focus was on quality and

efficacy of the solution and not utility; neither the proposed method nor the



4.1. RESEARCH METHODS 109

ontologies were applied in any real-world setting outside research projects.

Guideline 7, considering communication, was only partially followed since

our focus was on the research community and not other interested parties.

Guideline 2 was not considered, since there is no proof as far as we are

aware that ontology engineering as a whole solves any important business

problem. We have not attempted to find such evidence, instead we rely on

the collected body of research in the field that shows the technical benefits

of ontology-based systems.

Evaluation

Evaluation is an important part of all research, but especially important in

design science. Since this kind of research does not propose a theory of the

nature of the world nor an optimal solution to the problem at hand, there is

great need to show that at least the solution proposed does in fact solve the

problem, it is actually useful, and the quality of the result is good enough.

If these requirements are not fulfilled any solution, however naive or low

quality, can be proposed as a research result. In addition, the evaluations

are usually seen as incrementally feeding the design process itself, so the

two phases (design and evaluation) are actually iterated throughout the

complete research project. In our case, two main iterations of the research

process were conducted, each including the design of a set of artefacts and

subsequent evaluation of the artefacts.

When evaluating artefacts Hevner et al. [100] list five kinds of methods

for evaluations:

• Observation

• Analysis

• Experimentation

• Testing

• Description

Observational evaluations include, for example case and field studies, where

the artefacts are put in their intended environment and the results are ob-

served and analysed. Analytical evaluations involve studying the properties

of the artefacts, such as complexity, performance, and fit to overall archi-

tecture. Experimentation involves simulations and controlled experiments,



110 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

where the artefacts are put to use, but in a constructed environment. Test-

ing intends to identify defects in the artefacts through functional or struc-

tural tests, trying to verify the functionality and the expected properties of

the artefact. Finally, the utility and efficacy of the artefact can be argued

through theoretical arguments based on existing research or constructed

scenarios.

To show the utility of the proposed solution observations seems most

appropriate, to put the artefact to use and analyse the results. This is

not always possible in a research setting and thereby experimental and de-

scriptive evaluations have to be used instead. In our research, the artefacts

have not been observed in real-world settings, but merely used in controlled

experiments and their utility established through informed arguments and

described scenarios.

Studying efficacy involves determining that the artefact actually achieves

the desired and intended effect, that it sufficiently solves the problem. Ob-

servations can be used to show this, and properties can be measured to

make sure the problem is sufficiently solved. Analytical methods can partly

establish the efficacy of the artefacts, together with experiments and test-

ing, to determine that the correct effects are achieved. As for the quality

of the artefacts, this is closely connected to efficacy, but in addition some

more testing can be used. We have applied mainly analytical methods and

experiments of different kinds, for example to determine the efficacy of the

pattern ranking algorithm.

In addition to evaluating the artefacts and the research results produced,

there can also be a need for evaluating the method used to arrive at those

results. As stated earlier, rigour is an important part of any design research,

but rigour must be evaluated, too. In order to evaluate the method used

to draw conclusions about the validity and applicability of the results the

guidelines of design research can be used as criteria, but to practically per-

form such an evaluation they need to be broken down further into more

specific questions and criteria.

Practical methodology

Actual practical process descriptions for carrying out research in computer

science and information technology are rare, but again we can find inspi-

ration in design science for business informatics. In this field, for example

Nunamaker and Chen [148] and Hasan [96] propose similar methodologies

for systems development as an information systems research method. The



4.2. EVALUATION METHODS 111

methodologies consist of five stages, while Nunamaker and Chen propose a

more linear process Hasan relaxes it and introduces iterations and overlap:

1. Construction of a conceptual framework.

2. Development of a system architecture.

3. Analysis and design of the system.

4. Building of the system.

5. Observation and evaluation of the system.

Using these five steps we note that the first four actually detail the

design phase of design research, while the fifth step is concerned with the

evaluation phase. In the first four phases, different artefacts are produced.

This general framework inspired the methodology that was applied as the

research process in this thesis, using two iterations. These iterations, and

the practical steps taken, are described in section 4.3.

4.2 Evaluation methods

The evaluation methods used when validating and testing the research re-

sults against the problems posed by the research questions is of great rele-

vance to the rigour of the research. Several different kinds of experiments

and evaluations have been conducted, and the general ideas of those eval-

uation methods are described below. We can identify two main evaluation

directions to deal with, the evaluation of the research itself, and the detailed

evaluations of the different artefacts that need to be performed in each iter-

ation of the research process. Below we first deal with some general notions

that can be used for evaluating the research process, and then we discuss

the detailed methods used for evaluating artefacts.

4.2.1 Research evaluation

To study the research performed and evaluate it as such, the set of evalua-

tion criteria suggested by Burstein and Gregor [30] is relevant. The intention

of evaluating the research as such is mainly to establish that the research

is relevant, has been conducted with sufficient rigour and provides a real

contribution to the field. Burstein and Gregor suggest five types of criteria

for evaluating research efforts:



112 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

1. Significance of the study

2. Internal validity

3. External validity

4. Objectivity and confirmability

5. Reliability and auditability

Below, each of these criteria will be treated and a set of questions listed,

which are slightly adapted versions of the questions proposed by Burstein

and Gregor [30]. These questions are revisited at the end of this thesis in

order to show the strengths and weaknesses of this research.

Significance is concerned with the relevance and the contribution of the

research, as well as the quality of the research results. For the research to be

significant it has to provide a better solution to the problem than whatever

existed beforehand in the research community, thereby also providing some

new knowledge to the research field. To determine the significance of our

research we pose the following questions:

• Who are the beneficiaries of these results and what relevance do these

research results have to the beneficiaries’ problems?

• What are the main research contributions of this research to the field?

• How is this solution better than previously proposed solutions to the

same kind of problems?

Internal validity is concerned with the evidence put forward to support

the research conclusions and the credibility of the arguments made. Credi-

bility is supported by things such as rigorous experiments and good causal

arguments that support the conclusions, but can be reduced if negative ev-

idence is ignored or reasoning is not explained in detail. Questions that

should be asked with respect to internal validity are:

• Does the method actually solve the problem? Completely or only

partly?

• Does the method meet all its requirements?

• Is the method compared to alternative methods, and are results from

such comparisons presented?



4.2. EVALUATION METHODS 113

• Is negative evidence sought for and presented?

• Does the evidence support the claims for the research results suffi-

ciently?

The notion of external validity is connected to the generalisability of the

results, in the sense that if the external validity is low then the results can

only be shown to hold for the specific cases tested. In order for research

results to be applicable to a larger class of problems the external validity

needs to be high. Questions to be asked to confirm external validity are:

• Is the method based on existing theories? Does it confirm and support

those theories?

• Are assumptions, personal opinions and biases clearly stated and anal-

ysed?

• Are the procedures and methods used clearly described?

• Are there limitations to the evidence collected thus suggesting limited

generalisability?

The final two criteria can actually be contained within the previous three

statements, but Burstein and Gregor [30] suggest treating them separately

due to their great importance for research quality. The research needs to

be as objective as possible and all biases and subjective assessments need

to be made explicit. It is also a characteristic of good research that it is

repeatable, or at least confirmable, by other researchers. This is closely

connected to reliability and auditability, in order to establish that things

have been done with reasonable care. Questions regarding the objectivity

and reliability are:

• Are the research questions clear?

• Are basic constructs and basic assumptions clearly specified?

• Are all methods, experiments and procedures described in detail?

• Is it clear what data is used for testing and experiments?

• Are all assumptions made explicit during the process?

• What biases do the persons and methods involved in the research

have?



114 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

• Is the status and role of the researcher explicitly described?

• What limitations are imposed by biases or subjectivity in the research

results and conclusions?

4.2.2 Result evaluation

The definitions, characteristics, and typology of ontology patterns were

mainly evaluated through peer review of papers where these notions have

been published, and by presentations at research seminars. To some extent

these theoretical results were also evaluated through analytical methods, by

checking for coverage and soundness of the definitions and classifications,

and by descriptive methods, analysing scenarios and motivating when to

use the different kinds of patterns. The implementation of the OntoCase

method was not evaluated as an artefact in itself, instead the quality of

the method is analysed based on the results produced, i.e. the produced

ontologies.

Ontology evaluation methods and measures were used for studying the

quality and characteristics of the output of the proposed OntoCase method.

Gangemi et al. [77] describe an overall framework intended to cover all as-

pects of ontology evaluation and selection criteria. The framework contains

a meta-ontology describing the elements that can be evaluated, and an on-

tology of ontology evaluation and selection methods. Gangemi et al. also

try to structure the area of ontology evaluation, and propose three levels of

evaluations based on a semiotic perspective, i.e. depending on the view of

the ontology. The three levels are denoted:

• Structural evaluations

• Functional evaluations

• Usability evaluations

If the ontology is considered as an information object, then structural eval-

uations can be applied based on the syntax and semantics of the ontology as

it is represented. Such evaluations take into account the syntactic structure

of the ontology but also the semantics, e.g. in the form of formal definitions.

However, at this level the ontology is considered as a syntactic unit, outside

of its intended context. If the ontology, on the other hand, is considered as

an information object and a language, i.e. the intended conceptualisation,

functional evaluations can be applied. Functional evaluations are connected



4.2. EVALUATION METHODS 115

to the purpose of the ontology and the context where it will be applied, e.g.

it is checked against requirements and intended tasks. Finally, the ontology

can be treated from a usability perspective, where the ontology is treated as

a semiotic object intended to carry some specific meaning. At this level eval-

uations concern understandability and reusability of the ontology, as well

as user satisfaction and efficiency and efficacy of the ontology application.

Hartmann et al. [95] provides another overview of the state of the art in

ontology evaluation. In addition to the above, they identify three different

stages of evaluation, namely evaluating an ontology in its pre-modelling

stage, its modelling stage, and after its release. The first stage involves

evaluating the information the ontology will be based on, the second stage

includes checking the ontology correctness while building it, and the final

stage involves comparing existing ontologies and monitoring ontologies in

use. These stages can be connected to the levels of evaluation suggested by

Gangemi et al. [77], since some types of evaluations can be performed in

only one stage of the ontology development life cycle while others may fit

several stages.

Evaluation methods for the pre-modelling stage include methods for as-

sessing relevance of text corpora and evaluation of ontology requirements.

Such methods are not methods for evaluating ontologies, but rather evalu-

ation methods that can be used to evaluate knowledge sources in the initial

stages of ontology development. Structural evaluations can be applied both

during and after ontology construction. Such methods include measures of

ontology characteristics, consistency checking, and structural evaluations of

the taxonomy. Functional evaluations are mainly performed after the ontol-

ogy is developed, and can involve comparisons to ’gold standards’, correct-

ness and suitability evaluations performed by domain experts, and testing

the ontology against the requirements. However, such evaluations can also

be used during construction, e.g. for testing modules of the ontology. Us-

ability evaluations can also be performed during and after construction,

although they are more common after the complete ontology is ready. Us-

ability evaluations include checking the understandability of the ontology,

evaluating annotations and comments, analysing how it is perceived by do-

main experts, and to evaluate how well the ontology actually performs in

the intended system.

Gangemi et al. [75] detail the categories and also propose general eval-

uation principles. In their framework the measures are grouped under 9

principles, representing sets of ontology characteristics:



116 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

• Cognitive ergonomics.

• Transparency, i.e. explicitness of organizing principles.

• Computational integrity and efficiency.

• Meta-level integrity.

• Flexibility, i.e. context-boundedness.

• Compliance to expertise.

• Compliance to procedures for extension, integration, adaptation etc.

• Generic accessibility, computational as well as commercial.

• Organizational fitness.

Cognitive ergonomics can be evaluated based on 8 parameters, where

four affect the principle positively and four negatively. Gangemi et al. claim

that depth, breadth, tangledness and the number of anonymous classes

all affect the cognitive ergonomics negatively if their values increase. On

the other hand, the class-property ratio, interfacing (user interface-related

annotations), presence of patterns, and number of annotations all increase

the cognitive ergonomics as their values increase. The intuition is that a less

complex ontology, with high number of properties, that is well annotated,

i.e. commented and explained, will be easy to understand and to use.

Transparency can be evaluated based on 9 parameters, that all increase

the transparency as their values increase. The parameters are, modular-

ity, axiom-class ratio, patterns, specific differences, partitioning, accuracy,

complexity, anonymous classes, modularity design. For a detailed account

of all parameters, see the report by Gangemi et al. [75]. The intuition

behind ’transparency’ is that the more formal definitions and axioms, the

more clear is the ontology in terms of is conceptualization, making all as-

sumptions explicit.

Generic accessibility is based on four parameters, accuracy, annotations,

modularity, and logical complexity. An increase in logical complexity will

generally reduce the accessibility, while the other three parameters work in

favour of accessibility. The intuition is that if the ontology is accurate with

respect to its requirements, contain annotations to explain any implicit as-

sumptions, and is modular, it will constitute and ontology which is easily

accessed and used. Organisational fitness is similar but focuses more on a



4.2. EVALUATION METHODS 117

particular organisation, and the coverage of that specific domain. Compli-

ance to expertise in turn means that the ontology is accurate with respect

to the expertise of one particular user.

In this thesis we assume that the input to our method is given, e.g.

the set of documents and the pattern base, whereby evaluations that are of

interest concern the ontology during and after its construction.

Structural measures

The idea of continuous evaluation within the ontology construction process

is quite natural. This is comparable to software engineering, where the code

modules are tested and validated during construction, before composing

the system and evaluating it as a whole at the end. For such tasks mostly

structural evaluations are proposed. In this section we give an overview of

some of the most common structural measures.

Structural methods can be used for evaluating the syntax and semantics

of ontologies during construction, as mentioned above. There are simple

methods that measure cohesion of ontology concepts and modules, such as

the measures proposed by Yao et al. [222]. The approach is simple but

provides an intuitive idea of how the ontology is organised, by computing

average values of, for example the number of taxonomic relations per con-

cept. Gangemi et al. [77] propose several such measures in their survey,

such as breadth, depth, tangledness, fan-outness, cycle ratio and density.

In line with these suggestions an ontology can also be characterised based

on simple statistics, such as size.

There are guidelines for manually assessing the correctness of the ontol-

ogy, in particular the taxonomy. One approach is described by Gómez-Pérez

[84] and Gómez-Pérez et al. [85], focussing on concept definitions and taxo-

nomic relations. The guidelines are quite brief, thus some expert knowledge

concerning ontology engineering is definitely needed in order to perform

the evaluation, but also domain and task knowledge is needed in order to

evaluate criteria such as completeness. The idea is to spot and correct com-

mon development errors, such as circularity in the taxonomy, or an instance

belonging to two disjoint concepts.

The main types of errors to be considered according to Gómez-Pérez

[84] are the following:

1. Inconsistency errors

• Circularity errors



118 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

• Partition errors

• Semantic inconsistency errors

2. Incompleteness errors

• Incomplete concept classifications

• Partition errors

3. Redundancy errors

• Grammatical redundancy errors

• Identical formal definitions of classes

• Identical formal definitions of instances

Circularity errors occur when a class is defined to be a subclass of itself, this

can either through a direct statement or through a chain of subclass state-

ments. A partitioning of a concept into subclasses can be disjoint and/or

complete, partitioning errors violate such constraints, e.g. a concept that is

a subclass of two classes in a disjoint partition. A semantic inconsistency

is an incorrectly classified concept in the taxonomy, such as the concept

’wheel’ being a subclass of ’car’. In this case the relation should have been

’part-of’. Incomplete concept classification means that some concepts in a

partition have been overlooked, and partitioning errors of the incomplete-

ness category involve the lack of an explicit disjoint or complete partition.

Grammatical redundancy errors occur when there are several definitions

with the same meaning included in the taxonomy, such as ’SUV’ being

both a direct subclass of ’vehicle’ but also a subclass of ’car’, which in turn

is a subclass of ’vehicle’. The final two errors occur when two classes or

instances have the same formal definition but differ in their naming.

Another structural approach is the OntoClean methodology, presented

by Guarino and Welty [91] and also described by Gómez-Pérez et al. [85].

The methodology aims at exposing inappropriate or inconsistent modelling

choices by using metaproperties to characterise the modelled knowledge.

Three properties are discussed; rigidity, identity, and unity, and these can

be used to evaluate whether or not subsumption has been misused in the

ontology. Rigidity, for example describes the philosophical notion of a prop-

erty being essential to an instance, such as the property of being a person,

which is true at all times for a specific instance, while the property of being

a student might change from true to false in the lifetime of an instance.

Identity is connected to the ability to distinguish instances from each other



4.2. EVALUATION METHODS 119

through identity criteria, and unity is related to the notion of being ’a

whole’. Using such properties, to characterise the modelled concepts, prob-

lems can be discovered in the ontology that might later lead inconsistencies

or to errors in reasoning services provided using the ontology.

Most manual ontology engineering methodologies also provide, more or

less detailed, guidelines to assist the ontology engineer. These are per-

haps not evaluation methods as such but can be seen as checklists, or best

practices, in order to produce a better ontology. Such guidelines may for

example include naming conventions for elements in the ontology and guide-

lines of module division and structuring of the taxonomy, e.g. specifying

consistent levels of detail. Such guidelines are part of most well-established

methodologies, as noted by Gómez-Pérez [85]. Recently researchers have

started to investigate how to use ontology patterns, which can be encoded

best practices, for evaluating ontologies. The idea has been proposed as

future work in some research literature, but so far no concrete method has

been published.

Functional and usability-measures

In continued analogy to software engineering, it is not only important to

evaluate the pieces during construction but also the ontology as a whole.

Although the structural techniques presented in the last section apply also

for post-development evaluation, functional and usability-measures comple-

ment them in order to evaluate additional aspect of the ontology. This is

both true for an ontology built from scratch as well as ontologies considered

to be reused or integrated into a current project, i.e. ontology selection.

An overview of ontology evaluation and selection methods was presented

by Sabou et al. [169], and a general discussion about ontology selection

is present in section 3.1.1. A method dealing with manually comparing

and selecting ontologies is the OntoMetric framework described by Lozano-

Tello and Gómez-Pérez [122]. The method uses a multilevel framework of

characteristics as a template for information on existing ontologies. Five

dimensions are used; content, language, methodology, cost, and tools. Each

dimension has a set of factors, which are in turn defined through a set of

characteristics. The evaluation results in an overall score of the suitability of

the ontology in a specific case. In order to tailor the method, a subset of the

dimensions and factors can be used depending on what is deemed important

in the specific project at hand, and the factors can also be ordered and given

different weights. To ease the evaluation of ontology concepts ’glosses’, i.e.



120 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

natural language explanations, can be generated, as described by Navigli

et al. [140], to let domain experts evaluate concepts without the aid of

ontology experts.

A similar approach, using quality factors and an ontology of knowledge

quality, is described by Supekar et al. [198]. Here the focus is more on

’objective quality’, while OntoMetric focuses on subjective usefulness and

selection based on the case at hand, and the stakeholders involved. Yet an-

other similar approach is presented by Davies et al. [44], where the authors

also suggest that the meta-models of the ontologies can be used to compare

them. Other possible comparison criteria could be metadata of the ontol-

ogy, such as author and construction date. If the ontology is constructed

by an authority in the field this might mean more when choosing among

ontologies than would some abstract measure of its correctness. In the po-

sition paper of Orbst et al. [154] the authors even suggest establishing an

ontology certification authority, but this is still a future vision. Approaches

such as the one by Lewen et al. [121], using open rating systems to rate

ontologies and propagate trust values can become useful in the future when

those systems are available and used by a broad community.

As previously mentioned, Gangemi et al. [77] [76] aim to unify all evalu-

ation frameworks by describing ontology evaluation in a formal way. Their

meta-ontologies provide a similar framework, as the ones mentioned above,

describing available evaluation methods and evaluation criteria. Such a for-

mal model can be used to select appropriate measure and decide what to

evaluate.

A good way of comparing and evaluating ontologies is of course to test

how well they perform on certain tasks. Such an approach is suggested by

Porzel and Malaka [161]. However, this approach is based on comparing

to a ’gold-standard’, which can be hard to develop and agree on. A ’gold

standard’ is an ontology that is considered correct and perfectly suited for

its task, a kind of standard for other ontologies to reach up to. With an

enterprise focus this is usually not a feasible approach, since there is not one

single correct way of modelling the enterprise, and to build a gold standard

that could apply to all enterprises is not feasible. As noted by Brewster et

al. [24] there are no standard tools for evaluating ontologies in specified task

environments. This means that, currently, ontologies cannot be compared

objectively based on task performance either.

Especially when evaluating ontologies constructed semi-automatically,

it can be interesting to analyse how well the ontology represents the input

data. Measures that compare the ontology to the content it is supposed



4.2. EVALUATION METHODS 121

to represent are discussed by Gangemi et al. [77], mainly as functional

measures evaluating how well an ontology represents the given domain.

Brewster et al. [24] motivate why classical information retrieval methods

and measures, such as precision and recall described by Baeza-Yates and

Ribeiro-Neto [10], cannot be used directly to evaluate ontologies or ontology

construction methodologies in general, although other authors in fact use

modified versions of these for special cases, such as Navigli et al. [140].

Instead, Brewster et al. [24] suggest an architecture for evaluating the fit

of an ontology to a certain corpus of texts. This is done by extracting

information, expanding the information and then matching it against the

ontology. Dellschaft and Staab [50] have also addressed the problem of

evaluating ontologies extracted from existing information, and they propose

a set of measures that can be used when there is a ’gold standard’ to which

the resulting ontologies can be compared.

Selected methods

Evaluation during construction would in our case mean evaluating the par-

tial results after the different steps of the method have been performed.

The method could also be run iteratively, refining the input and thresholds

for each iteration. In the first phase of the OntoCase method, the input

text corpus was processed using an existing OL system, selected as repre-

senting a typical state of the art OL system. This process has not been

evaluated separately, since an existing research prototype has been used

that has previously been evaluated by its developers. The first step to be

dealt with involves pattern matching, ranking, and selection. This step was

initially evaluated during its development, using a set of ’toy’ examples and

through a small experiment involving three expert ontology engineers man-

ually choosing patterns for a specific case at hand. The pattern reuse step,

including pattern specialisations and composition, has not been evaluated

separately. The main evaluations of the OntoCase method presented in this

thesis were experiments where OntoCase was run in one iteration, without

evaluating intermediate results, but then thoroughly evaluating the result-

ing ontologies. Hence, this section focuses on the selection of those ontology

evaluations methods.

Relevant evaluation principles were first studied. In this case cognitive

ergonomics, transparency, generic accessibility, and organisational fitness

were deemed most interesting. These principles are overlapping and in

some respects also conflicting, as we shall see below, but by considering



122 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

several principles we can achieve interesting results and illustrate some of

the trade-offs involved. When combining the set of parameters from the

selected principles, as proposed by Gangemi et al. [75], we get the following

list, where + stands for a positive influence and - for a negative one:

- depth + class-property ratio + interfacing
- breadth + axiom-class ratio + shared differ. notion
- tangledness + modularity + partitioning
- anonymous classes + patterns + user satisfaction

+ annotations + recall
+ accuracy

The logical complexity parameter was removed since it occurred both as

a positive an negative parameter. From the negative side we can conclude

that we are looking for small and simple ontologies that are straight-forward

to understand. However, in our case the depth of the input ontologies,

produced by other OL methods, were exceptionally low. This leads to the

conclusion that even though we agree with the general principles, in our

specific case we are actually trying to increase the average depth, since we

are trying to connect a lot of unconnected concepts.

The anonymous class parameter is connected to the axiom-class ratio,

and the partitioning parameter, all three consider the logical complexity of

the ontologies. Since we are working with quite light weight ontologies, and

the method proposed does not explicitly match and add any axioms, except

those already present in the input or in the pattern, these parameters are

not considered relevant for evaluating the specifics of this method. However,

some parts related to this was anyhow included as a functional evaluation

criteria in the SEMCO experiment as we shall see later. A similar reasoning

is applied to the annotation evaluation parameter. Annotations are in fact

included by OntoCase, but only by directly copying what is present in a

pattern, whether this is appropriate or not, thus measuring the amount of

annotations would be misleading.

Modularity and patterns are also closely linked, and in our case we

choose to focus only on patterns instead of general modularity. Patterns

aim at making ontologies more modular, but this is not a hypothesis we

will try to prove in this thesis. However, we are particularly evaluating a

method applying design patterns, whereby we would introduce a bias by

evaluating the presence of such patterns in the ontologies. Interfacing is

concerned with the ontology’s connection to user interface specifications,

which is clearly outside the scope of OntoCase. Also the shared differen-



4.2. EVALUATION METHODS 123

tiating notion parameter was eventually not considered, due to practical

problems of how to reliably measure such a value. In the end we are left

with a set of parameters covering some structural and functional aspects.

These were used as a guideline when selecting evaluation approaches and

measures.

All the evaluations presented in chapter 8 were conducted using the

results of the complete OntoCase implementation, i.e. the ontologies pro-

duced. After the first research iteration, the initial OntoCase method was

tested in the SEMCO project as described in chapter 6. Another ontology

was produced in parallel, using a manual methodology. The two ontolo-

gies were evaluated using several evaluation approaches, both intended for

ontology expert and domain expert review, to get a broader view of the

ontologies and indirectly also to evaluate the construction methods. The

manually constructed ontology was not used as a gold standard, since it was

also developed to test a specific development methodology and thereby it

was not suitable as a model for comparison. Instead, benefits and drawbacks

of both ontologies were concluded.

First, a general comparison of the ontologies was needed to get an idea

of differences and similarities and to cover basic structural parameters. This

comparison was done based on intuitive measures, such as number of con-

cepts, the average number of attributes per concept, the average number of

subclasses per concept, and the average number of associations per concept,

as for example suggested by Gangemi et al. [77]. Note that the ontologies

from this first experiment were represented n F-logic, hence the terminology

above, e.g. ’attributes’ and ’associations’. Also, the cohesion metrics from

Yao et al. [222] were used, since we felt that they complement the other

measures well. These metrics were: number of root classes, number of leaf

classes and average depth of inheritance tree.

We chose not to apply any formal measure of tangledness, but to evalu-

ate this by inspecting the ontology graphically. On the other hand, we were

missing some parameter dealing with structural correctness. To be more

complete evaluations were performed, by internal ontology experts from our

research group, using the two most well-known approaches for taxonomic

evaluation, presented by Gómez-Pérez [84] and Guarino and Welty [91]. In-

ternal ontology experts were used for these evaluations, mainly because of

their previous knowledge of the evaluation methods. Since we were eval-

uating both the ontologies and, indirectly, the methodologies for creating

them, the idea was that the errors discovered could give valuable indications

of advantages and disadvantages of each construction method.



124 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

Finally, to evaluate the functional parameters, i.e. the content of the

ontologies and their fit to the intended scope, a subset of the OntoMet-

ric framework suggested by Lozano-Tello and Gómez-Pérez [122] was used.

For our purpose, only the dimension content was deemed interesting, and

only one level of characteristics for each factor. Some characteristics were

not applicable to both ontologies and since the evaluation at this stage of

OntoCase’s development was mainly a comparison, these were left out of

the framework. Characteristics such as ’number of concepts’ and ’number

of relations’ covers the recall parameter, while ’essential concepts’ and ’es-

sential properties’ covers the accuracy aspect, and the overall evaluation

can be seen as a user satisfaction evaluation. The computation of the final

score was not performed, since the number of factors and characteristics

were low enough to give a general impression. Domain experts from the

company in question formed the evaluation team, but internal ontology ex-

perts prepared the material, assisted through the evaluation and collected

the results.

In our opinion the most desirable functional evaluation would have been

to apply the ontologies in their intended application context. This was how-

ever not possible, since the resulting application, i.e. the ArtifactManager,

was not introduced into the work processes of the industry partner. It was

a planned for a future extension of the project, together with the develop-

ment of additional applications, as explained in section 6.2.4. Automatic

gloss generation, as mentioned previously, could also be a future improve-

ment of the OntoMetric method, but at this time no such tool was available.

Finally, the reason for not using a data-drive approach, although specifically

suggested for OL methods, was to avoid introducing a bias in favour of the

semi-automatically constructed ontology. Since the semi-automatically con-

structed ontology was already based on textual information, comparing the

two ontologies to other documents of the same kind could give and ad-

vantage for the semi-automatically constructed ontology over the manually

constructed one.

For the evaluations after the second iteration of our research, the final

evaluations of OntoCase, the intention was to use the same methods as

for the initial evaluations in order to achieve comparable results. However,

some changes had to be made, both due to experiences from the first set

of evaluations and practical reasons, such as that domain experts from the

SEMCO-partner were no longer available because the runtime of the project

had expired. One such practical reason was the change in representation

language for the patterns and hence also for the constructed ontologies.



4.2. EVALUATION METHODS 125

Both the basic structural measure and the questions asked in the domain

expert evaluations had to be adapted, in order to fit the OWL language

terminology rather than F-logic. Another such practical restriction was the

size of some of the constructed ontologies. The ontologies of the SEMCO

experiment were quite small, a few hundred concepts at most, and therefore

it was reasonable to ask domain experts to consider teh complete ontology

and assess the amount of ’essential concepts’ or if the number of properties

was adequate. In some of the other evaluations the size of the ontology had

increased with a factor 10 compared to SEMCO, to a few thousand concepts.

Then it was no longer reasonable to assume that a domain expert, or even an

ontology engineer, could have the kind of overall knowledge of the ontology

to accurately answer such questions. With these motivations in mind we

briefly describe the set of evaluations that were performed for each dataset

in the final evaluations.

The first evaluation was conducted as a re-run of the SEMCO experi-

ment, imitating the setting as closely as possible. A similar set of structural

measures were collected, as for the initial SEMCO ontology. This time the

set contained the number of concepts, the number of root concepts, the

number of leaf concepts, the average depth of inheritance, the average num-

ber of related concepts, and the average number of subclasses. As before,

tangledness was only assessed and discussed informally. Next, both the

taxonomic evaluation and OntoClean were again applied. An indication of

the recall of the method, with respect tot the input ontology extracted by

an existing OL tool, was provided by a coverage calculated based on the

included terms and relations. Finally, the functional criteria were analysed

theoretically through discussing the domain expert evaluation performed in

the initial experiment, and the changes in the new version of the ontology.

The new version of the ontology was also compared to the final version of

the SEMCO ontology, which was a hand-crafted combination of the two

ontologies of from the initial evaluation.

The second evaluation, involving the JIBSNet ontology, was done in a

quite similar manner. First the basic structural characteristics were col-

lected, regarding the number of concepts, the number of non-taxonomic

properties, the number of root concepts, the number of leaf concepts, the

average depth of inheritance, the average number of related concepts, and

the average number of subclasses. The coverage over the input ontology was

again computed and discussed, and the structural evaluations considering

taxonomic relations were again applied. However, these evaluations and the

evaluations by domain experts from JIBS were performed on a randomly



126 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

selected set of concepts and properties, since the ontology was too large to

be evaluated completely. The domain expert evaluations were performed

by letting the experts assess the randomly selected subsets of concepts and

properties, and a criteria of agreement was applies, as suggested by Gangemi

et al. [75]. The number of correct and incorrect concepts and properties

were analysed to draw similar conclusions as from the domain expert eval-

uation in the SEMCO case, related to the accuracy and user satisfaction

parameters.

In the last evaluation the situation was slightly different, concerning the

agricultural ontologies of the FAO. In this case again no domain experts

were available at the moment of conducting the experiment, whereby the

accuracy and user satisfaction-related evaluations were performed by an

ontology engineer. This reduces the reliability of the results, but was con-

sidered a better option than to omit this part altogether. However, this also

had the effect that the taxonomic evaluations could not be performed with

enough accuracy, and thereby they were omitted. It was simply too hard

for a non domain-expert to assess, for example the rigidity of domain spe-

cific agricultural term. Assessing its relevance with respect to agriculture

could be performed using thesauri and other resources, but evaluating the

inherent properties was deemed to uncertain. In this case the evaluations

consisted of the collection of general structural measures as before, and as-

sessing the accuracy of a randomly selected set of concepts and properties.

In addition to this, a small experiment was also performed to investigate

the interplay between OntoCase and other OL methods. These ontologies

were evaluated together with the rest of the FAO ontologies, but also the

patterns that were included where assessed. Similarly to the assessments

made about concepts and properties, the patterns were tagged as correct or

incorrect to include in the ontology.

4.3 Description of the research process

Based on the above mentioned research methodology and evaluation strate-

gies, the research was carried out during five years at Jönköping University,

in cooperation with Linköping University. In practise this research was di-

vided into two iterations, both consisting of a set of steps inspired by the

process presented in section 4.1.2. Step 1 being construction of a concep-

tual framework, step 2 architecture development, step 3 analysis and design,

step 4 system building, and step 5 evaluation.



4.3. DESCRIPTION OF THE RESEARCH PROCESS 127

In addition to the general research methodology the research was guided

by a study process for PhD studies applied in the research group. The pro-

cess contained four phases, denoted orientation, conceptualisation, elabora-

tion and finalization. The PhD student was intended to find and elaborate

the research questions in the orientation phase by studying related literature

and current approaches in the area. The phase was concluded by writing a

state of the art report, also containing a discussion of open issues and the

proposed research questions. In the second phase, the core of the solution

was developed, i.e. the general framework of the solution and novel theoret-

ical concepts. In the third phase, the general framework was detailed and

all subproblems were resolved, if necessary new techniques had to be devel-

oped. In the finalization phase the work was finalised, evaluated, and the

thesis written. It was not possible to follow this model completely linearly

in this research, whereby some of the phases were revisited. In the first

iteration, the focus was on orientation and conceptualisation, and also par-

tially covered the third phase, elaboration. The second iteration revisited

the orientation and conceptualisation phases, but focused on elaboration

and finalization. The process and its approximate chronology can be seen

in Figure 4.1.

First iteration Second iteration

Finalization

Elaboration

Conceptualisation

Orientation Orientation

Step 1 Step 5Step 4Step 1 Step 3Step 2Step 4/5Step 3Step 2

2
0
0
3
-0

8

2
0
0
4
-0

6

2
0
0
5
-0

1

2
0
0
5
-0

7

2
0
0
6
-0

1

2
0
0
6
-1

0

2
0
0
7
-0

3

2
0
0
8
-0

1

2
0
0
8
-0

7

2
0
0
9
-0

2

Figure 4.1: The research process with an approximate time line.

4.3.1 First iteration

In the first iteration of the research the focus was mainly on finding open is-

sues, defining the problem and providing an initial solution proposal. Test-



128 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

ing the initial proposal would then guide the further development of the

proposed solution and point out possible improvements.

Literature study

The first iteration started with a thorough literature study and identifica-

tion of open issues and relevant real-world problems within the field. The

initial idea proposed as a subject for this thesis was to try to automate the

process of ontology construction using something similar to software de-

sign patterns, but tailored to ontologies. During the initial literature study,

mainly two directions were studied; patterns and ontology engineering. The

initial research idea led to the study of literature related to the following

notions:

• Ontology engineering

– Classical knowledge representation and reasoning.

– Origin and definition of the concept of ontology.

– Characteristics and usages of different kinds of ontologies.

– Knowledge acquisition and manual ontology engineering meth-

ods.

– Ontology learning methods and their origin.

– Ontology patterns.

• Reuse

– Theoretical foundations of reuse.

– Reuse methodologies.

– Software reuse.

– Knowledge and ontology reuse.

– Specific practical methods for ontology modularisation, search,

matching, and integration.

• Patterns

– Theoretical notions of patterns and the origin of software pat-

terns.

– Software patterns.

– Data model patterns.



4.3. DESCRIPTION OF THE RESEARCH PROCESS 129

– Knowledge engineering patterns.

– Experimental results of pattern usage.

– Pattern matching and selection.

Important lessons learnt at the beginning of the research were that ontolo-

gies have been around for quite a while, although not in the same form as

today, but mainly it is the terminology that has changed. For example dur-

ing the 80’s, knowledge bases were constructed to support expert systems

within AI. Some of those knowledge bases would with today’s vocabulary

be called ontologies. The changing vocabulary and different fields picking

up and exchanging ideas makes the study of previous literature difficult,

whereby the first task was to get an idea of the history of computer science

ontologies and the terminology used in this field.

Related fields using patterns and existing methods for ontology engi-

neering patterns were considered in the study of pattern research. Ontology

engineering was first considered in general but then the focus was put on

semi-automatic methods and reuse methodologies within ontology engineer-

ing. The literature study resulted in a ’state of the art’ report published

as a technical report at Jönköping University and a set of open issues that

should be further investigated. This also marked the end of the first part

of the orientation phase. The open issues listed at that point were:

• Semi-automatic ontology construction

– Extraction of more complex ontological elements, such as general

axioms.

– Named relation extraction.

– Composition of the ontology from the extracted parts.

– Adding background knowledge and refining the ontology.

• Ontology reuse

– Improved ontology matching, matching ’pieces’ of ontologies.

– Assistance for searching ontologies.

– Assistance for ontology selection.

– More generic modularization approaches.

– Ontology documentation and metadata.

• Patterns



130 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

– Higher level patterns for ontologies.

– Draw on (transfer) experiences from software patterns and data

model patterns to ontologies.

– Pattern usage, how to find, select, and reuse patterns.

A set of research questions were chosen from these open issues, as the

focus of the continued research effort. The initial questions implied studying

the nature of ontology patterns and how they could be developed and used,

as small building blocks, for improving current OL approaches.

Conceptual framework development

The construction of a conceptual framework (step 1) in the first iteration

initially focused on defining the nature of ontology patterns. Using the

software engineering field as an inspiration, and going back to the origin

of patterns, pattern categories on different levels of abstraction and gran-

ularity were defined. From software engineering it was clear that as the

field had progressed and systems became more and more complex patterns

on more abstract levels were needed. Analogous to this development we

predicted that ontology patterns, not only on the syntactic level, would be

desirable. Patterns corresponding to design and architecture patterns in

software engineering were consequently envisioned. From the literature on

ontology applications and categories of ontologies we could derive a need

for generic descriptions of the ontology as a whole. This would address the

issue of generic reference architectures for ontology applications and the

reuse of ontologies based on standard sets of requirements.

Initially five levels of patterns for ontologies were proposed; syntactic

patterns, semantic patterns, design patterns, architecture patterns and ap-

plication patterns. This would later prove to be a less appropriate division,

because the levels were divided based on different dimensions, abstraction

in some cases and granularity in others, but this was not changed until the

second iteration of the research process.

The development of the initial idea of how ontology patterns should

be used in semi-automatic ontology construction belongs to the conceptual

framework. Patterns here were seen as a way to add additional structure

and additional information to the elements that were, at that time, possible

to extract from a text corpora by OL systems. If the extracted elements

are seen as scattered pieces of information, the patterns should be seen as

the glue that put them together into something reasonable and useful to



4.3. DESCRIPTION OF THE RESEARCH PROCESS 131

the ontology developer. The idea was to focus on design and architecture

patterns, in order to try to connect single ontological elements into a struc-

ture, and to give the ontology an overall architecture. We chose to focus on

ontology design patterns in the form of small pieces of ontologies.

Architecture development

The development of a system architecture involved proposing the outline

of an initial method for using patterns in semi-automatic ontology con-

struction, and to set the requirements for that method. The existing OL

systems were taken as the basis on which to apply the pattern approach.

The systems were studied and then the assumption was made that what

could be extracted with reasonable reliability was a set of terms and a set

of unnamed binary relations. This was considered as the input requirement

for the development of the pattern-based approach. The process was then

divided into two steps; the matching of patterns to the extracted terms and

relations, and the composition of the ontology based on the matching re-

sults. Additionally the requirement was that apart from the input of texts

and patterns, and the setting of system variables, the process should be as

automated as possible.

Analysis and design

In a brief analysis and design phase the initial idea was detailed into steps,

and existing implementations possibly suitable for design pattern matching

and pattern composition were tested. The pattern matching phase included

the obvious steps of matching the extracted terms to the labels of the con-

cepts and the extracted relations to the relations of the patterns. The naive

method for term matching is to use simple string matching. More thought

was required for relation matching, but eventually it was assumed that if

a relation existed between two terms and there were reasonable matches

among the pattern concepts, then that relation might also be a match to

any relation between the pattern concepts. Matching scores were computed

for the patterns based on fractions of relations and concepts matched.

The ontology composition was based on the principle of including only

matched parts of the patterns and assuming pattern overlap wherever the

same concept label was used. Basically, this resulted in an approach for

combining a set of patterns, rather than combining the extracted elements.

Elements not matched were simply discarded, and matched terms were used

as synonyms of the pattern concepts. The output of the complete method



132 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

was an ontology, that was intended to act as a starting point from where

an ontology engineer could continue to build and extend it into a complete

enterprise ontology. The reasoning behind the analysis and design of the

method steps was to keep it simple, and first try existing approaches and

tools before developing new ones.

System building

The system was built by integrating existing components and tools in a

more or less ad-hoc fashion, in some cases still requiring manual input for-

matting. The most elaborate, and freely available, OL tool at that time

was selected to be used for the text processing. String matching tools were

used for the term to concept matching, and the ontology modelling environ-

ment connected to the OL tool was used for ontology composition. In this

step, the idea was to keep everything as simple as possible for the initial

experiments rather than trying to build an actual integrated system.

Evaluation

The method was tested and evaluated through a controlled experiment

within a research project (SEMCO) with an industrial partner. The evalu-

ation was performed as a comparison with a manually engineered ontology

for the same application case, with the intention of discovering the short-

comings of the naive method and identifying required improvements. The

evaluation was carefully set up, based on a literature study of available on-

tology evaluation methods and tools and the resources that were available

within the project. The focus was mostly on comparing the two ontolo-

gies and discovering their characteristics, and thereby characteristics of the

methods used to construct them, rather than evaluating the objective qual-

ity of the ontologies and methods. Thereby the evaluation methods were

selected based on getting as much useful information as possible to discover

the shortcomings of the initial approach.

The evaluations were conducted in cooperation with the ontology engi-

neer producing the manually constructed ontology, and evaluation judge-

ments had to be done in agreement, in order not to be biased towards any

one of the ontologies. The evaluations done in cooperation with employ-

ees at the participating company were done in several sessions, lead by the

two ontology developers. The people participating were product develop-

ers at the company in question, which turned out to be a suitable target

group since they were educated and familiar with modelling, and had a



4.3. DESCRIPTION OF THE RESEARCH PROCESS 133

good overview of what the company actually did and the kinds of prod-

ucts the company produced. The results from the evaluations provided a

list of drawbacks and benefits of each ontology, and construction method.

The list of drawbacks was used as a basis for suggesting improvements and

evolving the set of research questions, while the set of benefits acted as a

motivation for the initial idea and showed that the idea of pattern-based

semi-automatic ontology construction was truly feasible.

4.3.2 Second iteration

Based on the evaluation results the set of research questions was specialised

and slightly modified at the start of the second iteration. Using these new

research questions, and the set of suggested improvements, the process again

started with a literature study.

Literature study

In the second iteration a new, but considerably smaller literature study was

performed, for example concerning the methodology of case-based reasoning

(CBR). One of the issues discovered in the first iteration was the problem

of having enough patterns as input to the process. In the first iteration

the patterns were manually engineered, but one idea that arose was to be

able to extract patterns, or at least pattern candidates, automatically from

existing ontologies and to provide feedback to the patterns used. This idea

together with the need to put the proposed method into a larger framework

initiated the study of CBR. CBR seemed to be based on a high level idea

of reusing knowledge similar to our initial pattern-approach.

In addition to the study of the CBR methodology, the previous literature

study was updated with more recently published articles on for example OL.

This was partly an ongoing process throughout the research. Also more spe-

cific details were studied, such as methods for bridging the abstraction gap

between patterns and extracted terms, and existing methods for ontology

search and ranking, with the intention to use such methods for improving

the pattern selection step.

Conceptual framework development

The conceptual framework resulting from the first iteration was slightly

modified, to incorporate more aspects, for example both the abstraction and

granularity of the ontology patterns, and additional phases were added to



134 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

the proposed ontology construction process. The development of the pattern

classification framework was based on theoretical analyses of the pattern

categories and numerous discussions with both pattern experts and ontology

researchers. The idea was to develop a comprehensive framework that would

be easy to understand and help ontology engineers communicate around

patterns, and to cover the complete development process of the ontology

and any envisioned future problems. This resulted in merging of two of the

initially proposed abstraction levels, and the addition of several granularity

levels on each level of abstraction. The result was a more comprehensive

framework where the levels were divided based on a single matter of concern,

i.e. either abstraction or granularity.

The semi-automatic ontology construction method was extended to be-

come a complete framework for pattern-based ontology construction and

also to cover the life cycle of the patterns. An evaluation phase was deemed

necessary at an early stage, whereby this was added to the previous two

steps of the method, and additionally the extraction of patterns was incor-

porated into the method. When reading about CBR in the literature it was

discovered that this almost perfectly corresponded to the four phases of the

CBR cycle, on a high level. The techniques used might not have been the

same, but to view patterns as encoded experience and the use of patterns

as reusing past solutions was an easy connection to make. By making that

connection, the method suddenly had four phases, with predefined steps

and tasks that already approximately corresponded to what was proposed

in the first iteration, see Figure 4.2. The method was at this stage named

OntoCase, referring to ontologies and the connection to the CBR method-

ology. We decided however to only include the elaboration of the first two

phases in the scope of this thesis.

Architecture development

The architecture of the first two phases of OntoCase was then extended

and modified to improve the shortcomings found in the first iteration, and

new requirements were developed. The pattern catalogue was now seen as

a ’pattern base’ that might contain several different catalogues, and that

needed a structure in itself. The steps of the two phases were subsequently

detailed more as a collection of possible methods that could be selected by

the user of such a method, rather than as a linear ’pipeline’ process. The

basic steps remained the same, including pattern matching and selection,

and pattern composition when constructing the initial ontology.



4.3. DESCRIPTION OF THE RESEARCH PROCESS 135

Text corpus 

input

Pattern base 

(content design 

patterns)

Retrieved 

ratterns

Initial 

ontology

Revised

ontology

Pattern 

candidates

Pattern
retrieval

Pattern
reuse

Ontology
refinement

Retain
patterns

OntoCase

Existing OL 

tools

Figure 4.2: The OntoCase phases in focus.

Analysis and design

In the analysis and design step both improvement of previously designed

components as well as designing new parts were included. For example,

two more algorithms were added to the concept matching in the pattern

ranking, resulting in the ranking being based on both string matching, a

head heuristic, and the linguistic information of WordNet. These additions

were made based on the study of relevant existing research on ontology

search and ranking, but were also considerably modified in order to fit the

specific case of ontology design patterns.

System building

The considered parts of the method were then implemented as running re-

search prototype software. This time the approach was implemented as a



136 CHAPTER 4. METHOD AND EVALUATION STRATEGIES

whole, and not only as an integration of existing software. Existing software

was still used for the input processing, since it was beyond the scope of this

thesis to develop new OL methods for element extraction. The implemen-

tation was done based on the Jena ontology API, in order to conform to

the general policy on interoperability of software within the research group.

In addition, two different string matching libraries were tested, and some

more tests were run with respect to the choice of OL tool to integrate.

Thereby the second implementation was more thoroughly prepared, and

done in less of an ad-hoc fashion. Nevertheless, it should be considered

as an initial research prototype, e.g. lacking proper documentation and

installation support. Neither maintainability nor efficiency were priorities

when developing the system. Each part of the prototype was tested and

evaluated on small example cases during the implementation, in order to

discover problems and fine-tune the method.

Evaluation

The method was finally tested through a set of experiments, both a re-run of

the previous experiments from the first iteration and new experiments, and

method characteristics were assessed. The SEMCO evaluation case was re-

run in order to be able to identify differences and improvements compared

to the results of the first iteration. It was not possible to completely re-run

the evaluation however, since the experts at the project partner site were

no longer available. In addition to this experiment, an ontology was con-

structed for the Business School at Jönköping University, based on internal

documents. This was an easy to access case, where domain experts were

readily available to assist the evaluation. Nevertheless, it was not deemed

too ’internal’ since our research was conducted at the School of Engineering,

although at the same university.

The method was also tested on a set of ontologies that were not re-

ally enterprise ontologies, but rather more general domain ontologies. The

reason for doing this was the lack of a proper case involving an enterprise

ontology. For these cases some of the patterns were not suitable, but oth-

erwise the OntoCase approach is not, as a general framework, tailored to

only enterprise ontology construction. These experiments were considered

as very valuable in order to provide more evidence of the characteristics of

the proposed method, and to also show the range of applications that the

method might be used for.



4.3. DESCRIPTION OF THE RESEARCH PROCESS 137

Finalization

During both the first and second iteration, peer-reviewed research papers

were published at several conferences to communicate and validate the rel-

evance of the research with other researchers in the community, see section

1.5. The results were presented at both internal and external research semi-

nars, and at international conferences. Finally, this thesis was written based

on the results presented in the papers and the latest evaluation results, in

order to communicate the final results of the research to the ontology engi-

neering research community.





Chapter 5

Ontology patterns

As noted in chapter 3 patterns are used in many different areas of com-

puter science, both as construction templates and as indications of repeat-

ing events or structures within a set of objects. The term ontology pattern

can be intuitively interpreted in several ways, either it brings to mind re-

curring structures within ontologies, templates for constructing ontologies,

or even patterns of how several ontologies are connected or used.

This thesis focuses on patterns for engineering ontologies, i.e. patterns

that may assist an ontology engineer in the process of constructing an on-

tology. Such patterns may be recurring structures in actual ontologies or

engineered templates, but the intention is to assist the ontology engineering

process. Focus is also on patterns related to the construction of the actual

ontology, and not, for example on patterns for ontology engineering work

processes or documentation of ontologies. A range of ontology engineering

patterns are discussed and characterised in this chapter, with the intention

of structuring the area of ontology engineering patterns, hereinafter denoted

ontology patterns, and providing a comprehensive typology of patterns to

be used as a vocabulary for ontology engineers and researchers. After pre-

senting the complete typology, we focus more in depth on ontology design

patterns, and specifically content patterns solving specific design problems

in ontologies.

139



140 CHAPTER 5. ONTOLOGY PATTERNS

5.1 Characteristics

Reuse has been applied in knowledge engineering for several decades, but it

is not until recently the notion of patterns has been adopted on a broader

scale. We generally define the notion of ontology pattern as:

Definition 3. An ontology pattern is a set of ontological elements, struc-

tures or construction principles that intend to solve a specific engineering

problem and that recurs, either exactly replicated or in an adapted form,

within some set of ontologies, or is envisioned to recur within some future

set of ontologies.

Based on this definition a set of elements, structures or construction

principles have to exhibit the following in order to be a pattern:

• Provide a solution to a specific problem or category of problems (prob-

lem focus).

• Recur in existing solutions or envisioned solutions (reuse focus).

These are considered as necessary and sufficient conditions, whereas every

recurring solution to a problem may be denoted a pattern. One can also

take into account the notion of a ’good’ solution, a solution based on best

practices, as is common in the field of software engineering patterns, but this

is not a necessary condition for something to be a pattern. A pattern that

does not follow such best practices, but instead exhibits a common problem

or mistake is usually denoted an anti-pattern. An anti-pattern exhibits a

common pattern, which may both provide a possible solution to a specific

problem and may recur, but is a pattern that exhibits a ’bad example’ of

how not to solve a problem. The notion of anti-patterns will not be treated

further in this thesis.

The definition above encompasses all kinds of patterns, as described

further below, and captures the notion of a pattern being something recur-

ring, whether it has already been observed several times or is constructed so

that it will be reusable in future situations, and will thereby be recurring.

The definition also captures the abstract nature of a pattern, which implies

that a pattern may recur in many different forms; it may be adapted and

changed, but it is still an incarnation of the same pattern. This abstract

notion of ’adaptation’ makes the pattern definition not very usable as a

formal definition in practise, but it can be seen as a general description of

the intuition behind patterns. Adapting a pattern to solve the modelling



5.1. CHARACTERISTICS 141

problem at hand is denoted pattern instantiation, or in the case of ontology

design patterns also pattern reuse, since in this case we are actually reusing

pattern concepts and properties in the ontology. More specifically content

pattern reuse is commonly achieved through pattern specialisation. Pat-

tern instantiation might be a signature morphism, as we shall see later for

content design patterns, but might also include other types of adaptations.

The notion of ontology element was mentioned above. In this thesis we

will use the terms ontological element and ontological primitive interchange-

ably to denote the ’building blocks’ of ontologies, i.e. concepts, relations,

and axioms, as described in section 2.2.4. In this thesis we do not re-

strict ourselves to one specific ontology representation language, although

the OWL entity types can be regarded as ontological elements or primitives

in our sense, but we broaden this definition to include all language axioms

in the notion of ontological primitives. OWL entity types are, for example

data types, properties, individuals and classes. When combined with all

OWL axioms, this constitutes a list of the basic language building blocks,

which is what we denote with the terms ontological element and ontological

primitive.

This notion is also connected to the distinction between a model and

its representation. A model can exist in its own right, but in order to be

communicated, stored, or used it has to be represented using some repre-

sentation language. The language may be formal or informal, graphical or

textual, but all models existing outside the mind of a human being are rep-

resented through some kind of representation language or notation. In the

rest of this thesis we will distinguish between ontology modelling languages,

which are abstract logical languages, in turn possible to represent with a

graphical or textual syntax, for modelling ontologies. Such modelling lan-

guages are usually based on a foundation in logics, such as description logics

(DL) or F-logic, but the important distinction is that such languages can

then be syntactically represented in many different ways using a computer

processable representation language. For OWL such a formal computer

processable syntax is the OWL XML serialisation, and for RDF it can be

a triple notation. This distinction between a modelling language and its

computer processable representations is not further formalised here, it de-

pends on the perspective of the observer. The above description aim to

provide the intuition behind the notions, helping the reader to understand

the pattern definitions and descriptions provided later.

The general definition of ontology pattern given at the beginning of this

chapter accommodates many different kinds of patterns. Other patterns



142 CHAPTER 5. ONTOLOGY PATTERNS

concerning ontologies may be imaginable, but in this thesis we limit the

scope to patterns for ontology engineering, even more specifically the actual

ontology construction. Ontology patterns are described and characterised

below, with respect to three pairs of aspects:

• Extraction and purpose

• Structure and content

• Abstraction and granularity

5.1.1 Extraction and purpose

Patterns may be seen from at least two perspectives regarding their origin

and usage. Either patterns are purely experience-based, the pattern mining

and recognition perspective, or they are carefully designed and constructed,

the patterns as templates perspective. The two perspectives were mentioned

briefly in section 3.2. Sometimes the distinction between the perspectives

is not clear and sometimes overlapping, but the perspective implies some

important things concerning the nature of the patterns. The perspectives

have not been treated in detail in previous literature on ontology patterns.

From the experience-based perspective, patterns are recurring structures

that can be found in some set of solutions, for example recurring sets of

concepts and relations in ontologies. In this sense, there are no requirements

on what a pattern should contain, its level of abstraction, or how it is

structured or retrieved; it is simply a solution that solves some problem and

that occurs sufficiently often based on studying previous solutions. Whether

or not it is appropriate for ontology engineering, i.e. if it is a best practice

or an anti-pattern or something in-between, cannot be determined simply

by discovering it.

Patterns can thereby be mined and recognised in ontologies as well as in

all other types of structures, according to the experience-based perspective.

The process of mining patterns in ontologies would require a set of ontologies

to be available, criteria for what kind of patterns should be recognised, and

a threshold for a sufficient number of occurrences. Input to the process is

the set of ontologies, modifiers are the pattern criteria and the threshold,

and the output is the sets of recurring ontological primitives that constitute

the patterns. Depending on why this process is performed different criteria

may be set, for example we might only be looking for a ’connected’ set

of ontological primitives, where the ontology is viewed as a graph and the



5.1. CHARACTERISTICS 143

primitives constituting a pattern candidate need to form a connected graph,

in order to find a small area of the ontologies that recur in the ontologies

of the set. Additional criteria might be that the areas exhibit a ’strong

connection’ as defined in graph theory, see Cormen et al. [40] for details. A

harder problem would be to discover not only a set of elements, but more

general, abstract, construction principles or structures. Discovered, and

possibly generalised, patterns stored previously can be used to recognise new

occurrences of the patterns, hence the connection to pattern recognition.

In contrast, from the design perspective, i.e. the patterns as templates

perspective, patterns are carefully engineered templates that represent a

consensus how to best solve a specific problem. The templates have to be

sufficiently general and abstract in order to be reusable in many cases and

they usually represent some notion of best-practices, i.e. a ’good’ way to

solve a problem and not just any way to solve it. Or being an anti-pattern

the pattern can instead show the opposite, an example of how not to solve

a problem. From this perspective a pattern can in theory be constructed

entirely without evidence from actual solutions, only based on the opinions

of some community. Patterns are nevertheless usually based on previous

experience of the community involved, although perhaps not based on actual

solutions, and the belief that the pattern will be (re-)usable for constructing

future solutions.

From a hybrid perspective, patterns can be discovered, instead of com-

pletely manually engineered, generalised and modified manually, and then

used for engineering. Especially when automating an engineering task, the

hybrid perspective is commonly applied. Then patterns can be produced

semi-automatically, and subsequently matched and applied automatically.

The manual step is most often the generalisation of discovered patterns, and

sometimes additionally the pattern matching, although in this thesis we will

later propose methods for automating pattern matching and specialisation.

Patterns are usually represented and presented differently depending on

how they are extracted and used. Patterns automatically extracted and in-

tended for automatic pattern matching can be represented in the same rep-

resentation language as the ontologies themselves, thereby being ontologies,

logical vocabularies or XML-statements for instance. Whereas other more

abstract patterns might be represented using a description language, mod-

elling language, more suited to the level of abstraction of the pattern. The

usage of the patterns plays a crucial role for their representation. Patterns

intended for manual use can in some cases be sufficiently described using

an informal template and natural language texts, in order to inspire de-



144 CHAPTER 5. ONTOLOGY PATTERNS

velopers when producing new solutions. Patterns to be used automatically

however, have to be formally expressed in a machine processable notation

and template-based natural language descriptions may not be required at

all.

In ontology engineering both perspectives, including the hybrid ap-

proach, have been applied and described in literature. The pattern min-

ing and recognition perspective has been applied, for example for ontology

search and matching, when two or more ontologies are compared in order to

find overlapping areas. The hybrid perspective has been used in OL, when

discovering linguistic patterns for extracting ontological elements from text

and then proceeding to extract elements using the learnt patterns. The

patterns as templates view is more common in manual ontology engineer-

ing, where ontological design patterns have been used for guiding ontology

design processes, teaching novice ontology engineers good design principles,

and for facilitating communication between developers.

5.1.2 Structure and content

When discussing ontology patterns, whether extracted or manually con-

structed as mentioned above, there are two main kinds of patterns presented

in literature:

• Structural patterns

• Content patterns

For more background on these types of patterns and existing references to

them in literature, see section 3.2.3.

Structural patterns deal with the logical structure of the ontological ele-

ments, but not with the actual ontology represented by these. A structural

pattern is a logical vocabulary with an empty signature, i.e. no actual con-

cepts, relations or other axioms are actually present. In contrast content

patterns deal exactly with such ontological modelling solutions, and can

even be domain-specific, depending on their level of ontological abstraction

and intended use. Content patterns are thereby a specialisation of struc-

tural patterns, since content patterns both constrain the logical structure

of how the solution to the problem should be modelled, and in addition also

set requirements on the ontological content. Content patterns are instantia-

tions, and possibly combinations, of structural patterns where the signature

is no longer empty.



5.1. CHARACTERISTICS 145

Structural patterns can be instantiated by adding a signature, e.g. adding

actual concepts, to the pattern. A structural pattern can be instantiated

with any signature, although not all signatures would produce a ’correct’

ontology with respect to the domain at hand. To assist in solving such prob-

lems, i.e. to produce a reasonable ontology with respect to a domain, there

are some additional requirements on the instantiation of content patterns.

The instantiation of content patterns only allow morphisms that preserve

downward taxonomical ordering. The intuition behind this is that since

content patterns present a solution valid in some domain, although perhaps

very broad or general, this solution will also be valid in sub-domains, but

will not necessarily be generalizable to a broader domain or transferable to

another domain.

5.1.3 Abstraction and granularity

Additional important aspects when discussing ontology patterns are the

level of abstraction and granularity of the patterns, which has not so far been

treated in related literature. Granularity is concerned with the scope of the

pattern, e.g. treating some small part of an ontology or a complete ontology.

Whatever level of granularity is chosen, patterns need to be focused in order

to solve a specific problem, on a specific level of granularity. Granularity

can intuitively be seen as the level of detail, or the scope, of what is treated.

Either we may be interested in the details of some individual elements of

an ontology, a small part of an ontology or the structure and content of

the complete ontology. If we are presenting a pattern concerned with the

complete ontology we will probably not specify as many details as when

presenting a pattern concerned with only a single element of an ontology.

The level of granularity is closely related to the notion of abstraction

level of an ontology pattern. Abstraction is about hiding the details of

some structure in order to describe another aspect of the structure in a more

convenient manner, thereby ’abstracting’ from the details. An abstraction is

more than a change of granularity, because a change in abstraction implies

not only changing the scope and detail of the ’view’ as described above, but

also changing the perspective to view completely different aspects, possibly

also in a new form of representation. When moving up or down in terms of

abstraction the basic building blocks change, and the description language

may thereby be different to utilise different possibilities to describe features

and characteristics in order to emphasise other relevant aspects.



146 CHAPTER 5. ONTOLOGY PATTERNS

5.2 Typology of ontology patterns

Our research defines four levels of abstraction, including applicable levels

of granularity, which are described below. For an initial overview of the

granularity levels see previous discussion by Blomqvist [22].

5.2.1 Ontology application patterns

In section 2.3 four sets of questions were stated in order to summarise

considerations during the ontology engineering process. The first set of

questions was:

• What is the purpose of the ontology? How is it to be applied in a

software system?

The level of application patterns is intended to address exactly these types

of problems, concerned with the overall scope and purpose of the ontology.

Such patterns specify, for example what tasks the ontology, or ontologies,

should be able to perform and the nature of the interface(s).

Albertsen and Blomqvist [7] have defined an ontology application pattern

as follows:

Definition 4. An ontology application pattern is a software architecture

pattern describing a software system that utilises ontologies to create some

of its functionality. The pattern also describes properties of the ontology or

ontologies in the system, and the connection between the ontology and the

rest of the system.

In this case the abstraction level is the one of ontologies as components in

software systems, and the complete ontology is the smallest unit considered,

with respect to ontology engineering. Consequently there is only one level

of granularity possible, viewing the complete ontology as a unit. The focus

of this type of pattern is on how to use the ontology and the functionality

it is intended to provide. These patterns provide the connection to software

patterns, mainly software architecture patterns and reference architectures,

and thereby to the system that uses the ontology.

There are no restrictions on ontology application patterns when it comes

to how they are extracted or designed, or to structural or content issues.

Although quite uncommon in software architectures, such patterns could, in

theory, be automatically derived from actual systems, thereby conforming

to the pattern mining perspective. More commonly, software architecture



5.2. TYPOLOGY OF ONTOLOGY PATTERNS 147

patterns are quite abstract and carefully designed architecture styles that

provide a well-proven structure for a certain type of system, which conforms

with the patterns as templates perspective. Whether such patterns focus on

structure or content is a matter of how the ontologies are described within

the pattern. For the pattern to be structural there cannot be any restriction

on the content of the ontology, only the logical structure of its interface. In

contrast, if the ontology is required to expose an interface able to provide

specific information, possibly even connected to a domain, then the pattern

would have the character of a content pattern.

Ontology application patterns generally aim to describe generic ways

of using implemented ontologies, e.g. in terms of purpose, context, and

interfaces. The pattern prescribes the general requirements of the ontology

within the system, which can then be used by ontology engineers when

constructing it. This idea of abstracting the best practices of applying and

using an ontology, or several ontologies, within some context or application,

is an important issue. Many models and common practises exist, but are

not formalised as patterns. A generalisation of existing models could result

in initial application patterns for ontologies. Application level patterns are

dependent on the ontology usage area, and can also be domain dependent.

For a more detailed discussion about such patterns, and notes on how to

represent them, see the discussion by Albertsen and Blomqvist [7]. Ontology

application patterns are not treated further in this thesis.

5.2.2 Ontology architecture patterns

Again we return to section 2.3 where four sets of questions were stated in

order to summarise considerations during the ontology engineering process.

The second set of questions was:

• What parts are to form the ontology? How should the architecture of

the ontology be formed?

The level of architecture patterns is intended to address exactly this type of

problem, concerned with the overall organisation and possibly even content

of the ontology.

An ontology architecture pattern is defined as follows:

Definition 5. An ontology architecture pattern is a pattern describing the

overall structure of the ontology, possibly restricting the design patterns that

may be used to implement the ontology.



148 CHAPTER 5. ONTOLOGY PATTERNS

This means that an architecture pattern can be an abstract composition

of several structural and content patterns on the design level, but the main

intention is the description of an overall structure of the complete ontology

by restricting how it is composed, or defining what it should contain and

how. Note that on this level of abstraction, the details of the ontology are

hidden, the relations and concepts that are to be use are not considered, nor

how to model those in some language. At this level, the ontology can, for

example be considered as composed of ontology modules, or display other

architectural styles, but remains on an abstraction level above the logical

structure and detailed content of the ontology. At this level, the smallest

units can be modules or layers, for instance.

The intuition behind ontology architecture patterns is to describe a

generic way to design the overall structure of an ontology in order to fulfil

the goal of the ontology in question. Important questions when designing

ontologies are whether to divide the ontology into modules, views or layers or

use other construction principles. Note that such restrictions should most

likely be described in a designated ontology architecture description lan-

guage, which distinguishes patterns on the architecture level from ontology

design patterns treating the complete ontology, see the following sections.

Ontology architecture patterns can be of two different levels of granularity,

either treating the complete ontology or only some smaller part, i.e. perhaps

describing the architecture of one or several modules of the ontology.

An architecture pattern can be a structural architecture pattern, only

restricting the structure, while an architecture pattern specifying certain

modules with specific content is a content pattern, also addressing the con-

tent of the ontology. Concrete architectures could, in theory, be discovered

automatically from existing ontologies. These can then be generalised into

architecture patterns, or patterns may be engineered manually as templates

and guidelines. To discover architecture patterns automatically, methods

for analysing the overall structure of an ontology would be needed. Such

methods are not very common today but do exist, for example for dis-

covering modules within a certain ontology. Automatically discovering the

architecture of an ontology is an interesting future research area, although

challenging. Manually designed ontology architectures exist in many se-

mantic applications, but to the best of our knowledge these have not been

generalised to ontology architecture patterns.



5.2. TYPOLOGY OF ONTOLOGY PATTERNS 149

We define the notion of ontology reference architecture as follows:

Definition 6. An ontology reference architecture is a domain-specific on-

tology architecture pattern containing restrictions and requirements on both

the logical structure and the content of a complete ontology.

So far no such ontology reference architectures have been defined, but

this is considered an interesting future area of research, as well as studying

different possible architecture description languages for ontologies. Ontol-

ogy architecture patterns, and more specifically ontology reference architec-

tures, will be mentioned briefly in the context of the OntoCase approach in

this thesis, but only to point out the possible benefits of using such descrip-

tions, such patterns will not be treated in detail and are considered future

research topics.

5.2.3 Ontology design patterns

From section 2.3 we retrieve one of the four sets of questions that were

stated in order to summarise the ontology engineering process. The third

set of questions was:

• What should the ontology contain? What concepts, relations, and

axioms?

The level of design patterns is intended to address the type of problems

related to the actual content of the ontology and how it should be modelled.

Whether the complete ontology is considered all at once or if it is divided

into modules modelled independently is not the concern of this type of

patterns. However, how these parts are realised using ontological elements

such as concepts, relations and axioms is the focus of design patterns.

Ontology design patterns aim to describe a generic recurring construct

in ontologies that solves some specific modelling problem. We define an

ontology design pattern as follows:

Definition 7. An ontology design pattern is a set of ontological elements,

structures or construction principles that solve a clearly defined particular

modelling problem.

Ontology design patterns describe solutions on the abstraction level of

logical ontology modelling languages, whether graphical or formalised in

mathematical logics.



150 CHAPTER 5. ONTOLOGY PATTERNS

Such patterns exist on three levels of granularity, i.e. treating individual

logical elements, such as the definition of one concept, relation or axiom,

treating a smaller part of the ontology, such as one module or part of one

module combining several primitive elements, or treating the complete on-

tology, such as restricting the overall structure of the ontology on the logical

level. The latter is not to be confused with the architecture patterns previ-

ously described. On the abstraction level of architecture patterns the overall

structure, and possibly content, is in focus without discussing the logical

realisation of that structure on the modelling level. An ontology architec-

ture pattern can also be described using an abstract ontology architecture

description language, while on the design level the focus is on the logical

constructs of the ontology, although the patterns on the highest level of

granularity also do concern the complete ontology.

What is sometimes denoted a semantic pattern in literature, see chapter

3.2.3, is from our perspective a commonly used ontological element but in-

dependent of the representation language, and thereby an ontology design

pattern on the lowest level of granularity. The pieces that together build a

larger ontology design pattern, on a higher level of granularity, are usually

smaller ontology design patterns on a lower level of granularity. We can

think of an ontology design pattern on the lowest level of granularity as

a primitive, a building block, for constructing ontologies that cannot in-

tuitively be further divided into sub-parts. These kinds of patterns have

been commonly used in graphical interfaces of ontology engineering tools

where the users do not have to care about the realisation of the pattern in a

representation language but only choose to graphically construct concepts,

relations and axioms.

Design patterns can, in turn, be divided into structural design patterns

and content design patterns, depending on the restrictions they impose. A

structural design pattern is defined as follows:

Definition 8. A structural ontology design pattern is a logical vocabulary,

with an empty signature, that solves a specific modelling problem.

A content design pattern is defined as follows:

Definition 9. An ontology content design pattern is an instantiation of one

or several logical design patterns proposing a set of ontological elements, with

a non-empty signature, combined to solve a specific modelling problem.

Structural patterns can be discovered automatically but without consid-

ering the content aspects it may be very hard to restrict and make use of



5.2. TYPOLOGY OF ONTOLOGY PATTERNS 151

such patterns, many nonsense patterns are discovered, as noted by Thörn

et al. [201]. In contrast, content patterns might be very useful to discover

automatically, a kind of ’component mining’ for ontology reuse. Manu-

ally engineered structural and content patterns on the granularity level of

defining small parts of the ontology, solving a specific modelling issue, are

the ontology patterns most similar to software engineering design patterns.

Such pattern already exist today to some extent, as was described in chap-

ter 3.2.3, and content design patterns will be further explained in section

5.3. The ontology content design patterns on the granularity level of smaller

ontology parts are the main focus of the rest of this thesis. The patterns

are manually designed or re-engineered based on other constructs, such as

data model patterns, as we shall see later.

5.2.4 Syntactic ontology patterns

The final question listed in section 2.3 for summarising considerations during

the ontology engineering process was:

• How should the ontology be represented syntactically?

The level of syntactic patterns is intended to address this type of problem,

i.e. how the content of the ontology is to be represented. This can concern,

for example naming of concepts and properties, or the ontology itself, or

how the ontology elements and axioms are represented in some machine

processable language in order to be usable by some reasoning engine and in

a software system.

A syntactic pattern, strictly speaking, is a recurring combination of rep-

resentation symbols. This could, in theory, include all previously described

patterns on all levels of granularity and abstraction, depending on what is

read into the term ’representation symbols’, but the focus here is on syn-

tactic representation in a specific language notation mainly for automatic

processing by a computer. The distinction between what is a syntactic rep-

resentation and what is a more abstract modelling language, on the design

level for instance, might not always be completely clear since all languages

have a syntax.

In this thesis we treat natural language realisations of ontological ele-

ments and ontology representation languages intended for use by a com-

puter, e.g. for automatic reasoning, as syntactic representations. This

means that a syntactic pattern describes the realisation of, for example

a structural or content design pattern in a specific language notation, such



152 CHAPTER 5. ONTOLOGY PATTERNS

as the XML serialisation of OWL or RDF. We thereby define a syntactic

pattern as follows:

Definition 10. A syntactic ontology pattern is the realisation of other on-

tology patterns, or parts or combinations of ontology patterns, in a specific

representation language.

This definition adds an additional lowest level of granularity possible for

this type of pattern, where single strings and character combinations are

the core of the pattern.

Most ontology representation languages have their own common con-

structs, or in software engineering terms, their own language idioms. Such

idioms are syntactic patterns of that language. Other languages can be

possible, since ontologies can be translated into other representations, such

as natural language. Natural language is a very imprecise way to express

ontological elements, but the whole field of OL has focused on extracting

ontological elements from natural language texts. Lexico-syntactic patterns,

such as Hearst patterns described in chapter 2, are used for extracting onto-

logical features from sentences. These are examples of patterns from natural

language that correspond to the realisation of some structural or content

design pattern for ontologies. In this sense all such lexico-syntactic patterns

can be considered syntactic patterns for ontologies.

Syntactic patterns can be extracted or learnt automatically as in many

machine learning approaches that are currently applied to OL, or they may

be manually engineered. They can be used both automatically, for example

in OL, or manually as descriptions or templates, describing how to model

using a specific language. Patterns on this level are most often structural

patterns, only describing the structure of some feature without including

the actual concepts and relations in question, but in theory there can also

be content patterns. An example is a specialised Hearst pattern extracts

subclasses to a specific top-level concept. The syntactic ontology pattern

level also includes naming conventions, conventions for naming ontological

elements like concepts and XML namespaces. Such patterns can be consid-

ered as structural patterns, and are on the syntactic abstraction level.

5.2.5 Summary of typology levels

The abstraction levels above, and corresponding levels of granularity, of

ontology engineering patterns provide a framework for classifying and de-

scribing ontology engineering patterns; a pattern typology. The levels can



5.2. TYPOLOGY OF ONTOLOGY PATTERNS 153

Ontology 

Ontology 

Module

Ontology 

Module

Ontology 

Module

Abstraction Granularity Illustration of level 
Application 

pattern 

Complete 

ontology 

 

Ontology requirements and interface, possibly 

described in a software architecture description 

language. 
 

Architecture 

pattern 

Complete 

ontology 

 

Overall ontology organisation 

and parts, possibly described in 

an ontology architecture 

description language. 

 

 

 

Part of the 

ontology 

  

        Ontology Module 
An ontology part, e.g. module, and its over- 

all organisation, possibly described in an 

ontology architecture description language.  

Design  

pattern 

Complete 

ontology 

 

 

 

Restrictions on the modelling of the 

overall ontology, described through  

an ontology modelling language. 

Part of the 

ontology 

 

An ontology part solving a 

specific modelling problem, 

described through an ontology 

modelling language. 

Elements of the 

ontology 

 

Individual ontology element, described through an 

ontology modelling language. 

 

Syntactic 

pattern 

Complete 

ontology 

 

 

Pattern guiding the representation of a complete 

ontology in an ontology representation language. 

Part of the 

ontology 

 

Representation of  parts of  an ontology in  

an ontology representation language. 

 

Elements of the 

ontology 

 

Representation of individual element in 

an ontology representation language. 

 

Element 

representation 

  

Primitive patterns of the representation 

language itself. 
 

 

 

<owl:Class  rdf:about=""> 

   <rdfs:subClassOf  rdf:resource=""/> 

</owl:Class> 

<owl:Ontology ...>         

  ... </owl:Ontology> 

 

<owl:Class>…</...> 

<...> < >…< > </...> 

    

<owl:...>…</...> 

<owl:Class>     

       ...     </owl:class> 

   < >…< > 

<owl:ObjectProperty>  </...> 

<owl:Class  rdf:about=""> </owl:Class> 

Figure 5.1: Levels of abstraction and granularity of ontology patterns.

be summarised and illustrated as in Figure 5.1. Note that the illustrations

are informal and are included to give an intuitive idea of what a pattern

may contain. Several of the levels have yet no formal language for describing

patterns.



154 CHAPTER 5. ONTOLOGY PATTERNS

On the application pattern level only one level of granularity is possible,

the ontology, or ontologies, considered as one unit. The patterns on this

level focus on the interface of the ontology and the tasks it is intended to

perform, thereby closely related to the requirements of the ontology, but

also related to the software architecture where the ontology, or ontologies,

are to be used. On the architecture level, there are two levels of granularity

possible. Either the scope is the complete ontology and the smallest units

are, for example layers or modules of the ontology, or the scope is one

such part. Architecture patterns deal with overall structure, either of the

complete ontology or smaller parts, but the focus is on general organisation.

An architecture is the translation from requirements on the application level

to the parts that will realise those requirements, and how the parts will be

interconnected.

The design pattern level of abstraction has three possible levels of gran-

ularity, i.e. either the complete ontology is considered, the smaller parts

solving some specific problems, or each individual element. Design patterns

deal with the design of the ontology, i.e. the realisation of the require-

ments into an ontological model. As far as concerns the complete ontology,

this may be a restriction on the used relations, for example specifying the

exclusive use of ’subclass’-relations would mean constructing a taxonomy.

Patterns showing how smaller parts of the ontology can be realised are

restricted by a focus on some specific problem, and the granularity level

of single elements introduce a way of expressing ontological elements in a

manner independent of syntactical representation. Finally, syntactic pat-

terns are present on all levels of granularity, and focus on representation

specific idioms. The rest of this thesis will deal with patterns on the on-

tology design pattern level. The proposed OntoCase method mainly uses

ontology content design patterns on the granularity level where small pieces

of an ontology, for solving specific modelling problems, are described.

5.3 Ontology content design patterns

Within this thesis the main focus is on ontology content design patterns, and

the intention is to use such patterns for semi-automatic ontology construc-

tion. Of course, in order for such a method to be usable, sufficient patterns

must be present. Only very small catalogues of patterns actually exist today

and these patterns are quite abstract, in terms of the ontological concepts

within the patterns. This means that they are hard to use in an automatic

method. The existing patterns are also domain independent, hence they



5.3. ONTOLOGY CONTENT DESIGN PATTERNS 155

only introduce very general design solutions. Domain-specific pattern can

in addition provide some general reusable background knowledge valid in

the domain. Therefore we have extended this existing catalogue of patterns

with more domain-dependent patterns. Nevertheless, the patterns are still

reusable in many different cases. Below our initial efforts to construct such

patterns are described.

5.3.1 Pattern representation

We can imagine several different ways of representing and describing content

design patterns. As mentioned in chapter 3 patterns in software engineering

are commonly described in natural language, as a guideline in a book, i.e.

catalogue, of similar guidelines. A template is commonly used to describe

such patterns. Templates are ’tables’ with fixed headings where information

about the pattern is collected, such as name, addressed problem, proposed

solution, examples, consequences of usage. Such templates have also been

proposed for ontology patterns, as noted in section 3.2.3, and are usually

used for patterns presented to a community, e.g. on the web∗.

However, patterns used automatically, e.g. in ontology learning, are

rarely described in this way since they are intended mainly for use by a

software system. It is possible to develop a template suitable for these

kinds of patterns, but in many cases it is simply not necessary because the

patterns are not treated by humans. Instead focus could in such cases be

on computer processable meta-data about the patterns, but primary focus

is on the formal representation of the patterns themselves. Such patterns

are formally represented to be directly usable within an OL system, for

instance.

In our case we have taken the latter approach, even though the type

of patterns used, i.e. content design patterns, is commonly used manually.

Presenting the patterns with a template intended for human users is beyond

the scope of this thesis. The patterns developed and used here are intended

for automatic matching and thereby the most important thing is their for-

mal representation. In the first iteration of our research, as described in

section 4.3, the patterns used were represented as F-logic ontologies, while

in the second iteration they were translated into OWL, since the available

patterns that had emerged during this time were all in OWL. The pat-

terns are thereby expressed as small autonomous ontologies, with their own

∗Examples of a template can be seen at the ontology design pattern portal at
http://www.ontologydesignpatterns.org



156 CHAPTER 5. ONTOLOGY PATTERNS

namespaces. None of the patterns constructed during this research have any

formal dependencies, however the patterns used in the final evaluations as

described in section 8.1 sometimes import other patterns, and are thereby

less independent than the ones developed here.

5.3.2 Constructing patterns

Considering the current situation, when ontology content design patterns

are only now starting to appear but no sufficiently large catalogues are avail-

able, there are at least two different approaches for creating such patterns.

The first approach is to take a set of existing ontologies and derive patterns

from them, i.e. the pattern mining perspective, either done manually or

automatically. The other possibility is to develop criteria of ’good design’

and construct patterns that reflect these principles.

Unfortunately, deriving criteria for how to design ontologies is a difficult

task and requires deep knowledge and long experience of the field. This

indicates that such an approach is more suitable as a community approach,

where a community of experienced people try to agree on best practices.

Such an effort is underway, and a web portal for ontology content design

patterns has been opened†, where patterns can be proposed, reviewed and

finally accepted and added to the catalogue after scrutiny by the commu-

nity. The initial pattern proposals that are at this moment proposed in

the portal were in most cases extracted from a top level ontology, which

was used as a ’gold standard’ of good design. This option would in theory

be possible also in our case. However, our intent was to construct domain-

specific patterns, tailored to the kind of ontologies we focused on in projects

such as SEMCO, and to the best of our knowledge there is no commonly

accepted top-level ontology dealing with product development companies

and software development.

The first approach, which attempts to extract patterns from existing on-

tologies has so far not been tested on a large scale. Some minor experiments

were conducted in the context of our research by Thörn et al. [201], when

graph pattern algorithms were applied in an attempt to discover patterns

in ontologies based on a triple representation. The experiments resulted

in the conclusion that further research is necessary in order to tune such

algorithms if useful patterns are to be discovered. The main problem is that

graph algorithms do not generally take into account any kind of semantics of

the graph elements, thereby proposing a huge number of nonsense patterns.

†http://www.ontologydesignpatterns.org



5.3. ONTOLOGY CONTENT DESIGN PATTERNS 157

Although interesting patterns may be found among these, the noise ratio

is too large. Additionally, finding such ontologies pose a problem for our

specific focus on enterprise ontologies. Enterprise ontologies are so far quite

scarce, but more important most of them are proprietary to the enterprises

they describe.

Due to these issues we tried to find additional possibilities for pattern

construction. A natural idea, since we were conducting research on knowl-

edge reuse, was to reuse knowledge from other areas for pattern construc-

tion. Knowledge already accumulated in other areas can act as inspiration

or may even be directly transformed into ontology design patterns useful for

enterprise ontology construction. Many patterns in other areas of computer

science also describe some kind of knowledge about enterprises, although

they might have a different purpose than constructing ontologies. Our ap-

proach was to study patterns from other areas in order to develop initial

candidates for ontology patterns. For our first experiments in the area,

some sources of pattern-like constructs were chosen, among others sources

from data modelling, software engineering, knowledge and software reuse,

for example reuse of problem-solving methods.

One of the areas most similar to ontology engineering is the database

domain. Database schemas are modelled to describe a domain, with the

intent of storing data efficiently, but schemas share many properties with

ontologies. Schemas can even be considered to be ontologies, from which

to extend data instances. Such schemas may be particularly suitable when,

as in our case, the ontologies in focus are ontologies describing information

within enterprises. One major application area of databases is storing enter-

prise data. Based on this reasoning we intended to benefit from reusing this

knowledge, and our first attempt was to ’transform’ the knowledge stored

in data model patterns into ontology content design patterns. Some parts

of the data model patterns were left out for this initial experiment, such

as cardinality constraints. The aspects that were taken into consideration

and their chosen mappings to ontology elements are shown in table 5.1. A

frame-based logic was the formalism used, at that time, for our ontology

design patterns, which is based on quite similar foundations as the entity

relationship (ER) model underlying the data model patterns.

To illustrate this mapping Figure 5.2 shows a very simple data model

pattern that describes organisations of different types. The data model pat-

tern was proposed by Silverston [180]. The notation in the figure is the one

used by Silverston [180], where graphical inclusion is intended to denote a

subtype-supertype relation. This pattern was then translated into the on-



158 CHAPTER 5. ONTOLOGY PATTERNS

Table 5.1: Mappings between data models and ontologies.

Data Model Ontology

Entity Concept
Attribute Relation to ’attribute’-concept or literal
Subtypes/Supertypes Subsumption hierarchy
Relationships Relations
Mutually exclusive sets Disjoint concepts

tology content design pattern depicted in Figure 5.3, using the visualisation

capabilities of the ontology engineering workbench KAON‡.

ORGANISATION

* NAME

LEGAL ORGANISATION

o ID NUMBER

CORPORATION
GOVERNMENT

AGENCY

INFORMAL ORGANISATION

TEAM FAMILY
OTHER INFORMAL

ORGANISATION

Figure 5.2: Data model pattern describing organisations. [180]

Figure 5.3: Resulting ontology content design pattern.

‡http://kaon.semanticweb.org/



5.3. ONTOLOGY CONTENT DESIGN PATTERNS 159

Table 5.2: Chosen mappings between goal structures and ontologies.

Goal Structure Ontology

Node (goal or method) Concept
AND-relations Part-of relations
OR-relations Choice relation (related to

a new concept representing the
category of possible choices)

Iterations Part-of relations

Another source of patterns was the goal structures of the object system

models, presented by Sutcliffe [199]. These constructs can be considered as

representing processes within a company, consisting of a set of goals and

choices for how to accomplish them. Table 5.2 shows the mappings chosen

to adapt a goal structure for use as an ontology design pattern.

Since the naming of the concepts in the source areas might not be ad-

equate for ontologies, and ontologies aim at describing concepts and not

mainly terms, the resulting ontology design patterns were enriched with la-

bel synonyms. The synonyms used were manually selected from WordNet

synsets, as described in section 2.2.3. This gives the patterns a certain level

of abstraction, since the concepts are not represented by one single lexical

term, but actually a set of terms, as described in section 2.3 with respect

to ontology learning. At this stage only basic parts of the ontologies were

considered, for example only simple axioms were incorporated into the pat-

terns, such as disjointness of concepts. In future experiments more complex

axioms can be developed for the patterns, in order to make the resulting

ontology design patterns more useful and precise.

5.3.3 Pattern catalogue

The set of patterns constructed consisted of 26 patterns. In Table 5.3 the

patterns are listed, together with their sources. A list of the patterns with

more details of their content can be found in appendix B. The set of patterns

was constructed with a specific domain in mind, namely product develop-

ment companies. Some sources were general, but many of the patterns

are concerned with concepts such as product development, requirements

analysis and parties and processes of an enterprise. This makes the initial

catalogue somewhat domain-dependent, but not with respect to industry

domain, merely with respect to the type of enterprise.



160 CHAPTER 5. ONTOLOGY PATTERNS

Table 5.3: Patterns and their original sources.

Pattern name Source

Actions Analysis pattern [69]
Analysis and modelling Goal structure [199]
Communication event Data model [180]
DOLCE Descriptions and Situations Top-level ontology [80]
Employee and department Data model [180]
Engineering change Data model [179]
Information acquisition Goal structure [199]
Organisation Data model [180]
Parts Data model [179]
Party Data model [180]
Party relationships Data model [180]
Party roles Data model [180]
Person Data model [180]
Planning and scheduling Goal structure [199]
Positions Data model [180]
Product Analysis pattern [69]
Product associations Data model [180]
Product categories Data model [180]
Product features Data model [180]
Requirements Data model [180]
Requirements analysis Goal structure [199]
System Cognitive pattern taxonomy [82]
System analysis Cognitive pattern taxonomy [82]
System synthesis Cognitive pattern taxonomy [82]
Validate and test Goal structure [199]
Work effort Data model [180]

A majority of the patterns were constructed on the basis of the belief

that they would truly constitute ’good’ ontology design patterns, but a few

were included although it was beforehand doubtful they would constitute

very good patterns. This was in order not to presuppose any conclusions

of their usefulness, and instead later be able to validate or falsify this intu-

ition through experiments. It was considered unwise to restrict the pattern

sources to just one or two at this early stage. The source believed to be

most unreliable was the patterns adapted from software analysis patterns,

as described by Fowler [69], since these had a firm focus on software and

not on any kind of knowledge or information.

Later in this research, when the evaluations of the OntoCase method

were conducted this catalogue was extended with existing patterns from

the ODP portal §. The reason for not including those patterns in the initial

phase was that this portal did not exist at the time. The extended pattern

catalogue is described in section 8.1. Some example patterns can be viewed

in in appendix B.

§http://www.ontologydesignpatterns.org



5.3. ONTOLOGY CONTENT DESIGN PATTERNS 161

5.3.4 Are patterns really useful?

The question whether or not patterns are truly useful and provide all the

benefits that were proposed in section 3.2 is not easily answered. Even in

software engineering there were only a few attempts to experimentally prove

the benefits of patterns. Later in this thesis the content design patterns,

as described above, will be used semi-automatically and shown to provide

some benefits compared to existing OL methods. But what about content

patterns in general? Although not the main focus of this thesis some selected

results of a small study conducted within the context of the NeOn project¶

will be presented here. The intention was to provide at least some initial

evidence that ontology content design patterns are really worthwhile, in this

case used manually. More important for the scope of this thesis however, the

results point at some findings indicating that automatic support for pattern

retrieval and reuse is really needed. These results act as an additional

motivation for proposing a semi-automatic method, on top of the theoretical

motivation in section 1.2.4, where the research questions were formulated.

The complete study was presented in the report of Dzbor et al. [55]. In

this thesis only a small subset of the collected results are presented, i.e.

mainly those that are relevant to indicate the requirements for automatic

pattern-support.

Motivation and hypotheses

Before proposing a typology as the one presented above in this chapter the

first question any researcher should ask is, do we really need such patterns?

In chapter 3 three proposed benefits of patterns were taken from related

literature:

• Reuse

• Guidance

• Communication

Reuse benefits are described as the possibility to bootstrap solutions and

provide increased quality. Guidance benefits are concerned with patterns

acting as guidelines and inspiration, and patterns pointing out common

problems. Communication benefits mean that users can more easily refer

to specific problems and solutions by referring to patterns, and patterns can

¶http://www.neon-project.org



162 CHAPTER 5. ONTOLOGY PATTERNS

be part of documentation. Guidance and communication benefits are quite

obvious and intuitive. It is not more complex than the fact that proper

training and using a common language has benefits when designing any

kind of artefact. The reuse benefit is more controversial, even in software

engineering there is still an ongoing dispute whether or not systems are

really better, and if processes are really more efficient, when patterns are

used. At least the aspect of reducing development time has to the best of

our knowledge not yet been proven, and it is unclear if this aspect actually

exists.

Ontology design patterns have a different intent and usage than software

patterns. Since these patterns are often represented as reusable solutions,

rather than guidelines in a book, this would indicate that perhaps reuse

benefits can be achieved in the case of ontology patterns. On the other

hand to reuse pieces of solutions rather than reading about good practices

in a book also puts added requirements on tool support for doing so. This

was part of the focus of the study, and the main focus of the parts presented

in this thesis.

With this in mind the experiment conducted intended to show that from

a user perspective content design patterns are perceived to be beneficial. In

this case the ’users’ are users of the patterns, i.e. people designing ontolo-

gies. If possible we also intended to provide some evidence for an increase in

quality of the produced ontologies, and investigate other characteristics of

pattern-based design. The study was based on a set of hypotheses, among

these the following two hypotheses are treated here:

1. Ontology content design patterns are perceived as useful by ontology

designers when constructing ontologies.

2. The quality of the constructed ontologies is improved when using on-

tology content design patterns.

In addition, and more important for this thesis, problems were also collected

and suggestions for support that would be beneficial for ontology engineers

when reusing patterns were suggested.

Experiment setup

Ideally the design of such an experiment should have had one group using

patterns and a control group doing exactly the same tasks not using any

patterns. In reality this setup turned out to be too resource demanding,

and subsequently a reduced setting had to be adopted. In this setting the



5.3. ONTOLOGY CONTENT DESIGN PATTERNS 163

main idea was for the subjects to perform two modelling tasks, the first

one aiming to establish the level of modelling ability of the subjects before

introducing them to the notion of ontology patterns and the second one,

set in a different domain but containing similar modelling issues, aiming

to record the ability of the subjects with the assistance of the patterns.

Throughout the experiment the subjective opinions of the subjects were

collected through questionnaires, and the ontologies produced were stored

for later analysis.

The experiment was conducted in three separate settings, with a dif-

ferent amount of training of the participants in each setting. In total, the

experiment involved 45 subjects in two locations, divided over the three

settings. Before the experiment, all the subjects had to fill out a back-

ground questionnaire about their previous knowledge and prior experience

in ontology modelling.

The first setting was a PhD course conducted over four full days at the

University of Bologna, where ontology engineering and design was the ma-

jor topic. The subjects were mainly PhD students and junior researchers,

with limited background in ontology design, but reasonable knowledge of

modelling and with a high general level of motivation. In this setting the

first day was devoted to lectures and a simple exercise to introduce the

subjects to the OWL language and the modelling tool to be used, i.e. Top-

Braid Composer. The second day the subjects had more specific lectures

related to modelling in OWL, but without mentioning patterns, and in the

afternoon the first modelling task was solved during 2 hours. After com-

pleting the task the subjects filled out a first questionnaire recording their

experiences during the session.

The following day was spent teaching ontology design patterns, and in

order to practise the subjects had the opportunity to redo the task from the

day before, now using patterns from a catalogue‖. After this day a ques-

tionnaire captured their first impression of ontology content design patterns.

Finally, on the fourth day they were given a second task but the same pat-

tern catalogue as the day before. The new modelling problem was designed

to contain similar modelling issues as the second day, only set in another

domain, and they had the same time, 2 hours, to solve it. This final mod-

elling task was also concluded with a questionnaire. Ontologies from all the

tasks were collected and stored.

‖http://www.ontologydesignpatterns.org



164 CHAPTER 5. ONTOLOGY PATTERNS

The second setting was a special purpose setting for this experiment, not

set during any course or other teaching event. The subjects were researchers

and PhD students from two research groups at the School of Engineering,

Jönköping University. In this setting the previous experience of ontologies

and ontology design was slightly higher, but the incentive to learn was on

the other hand lower, since this was not a course selected by the subjects as

in Bologna. This setting was condensed into less than one day, consisting

of an initial lecture on the essentials of modelling with OWL, then the first

modelling task, which took only 1 hour, and subsequent questionnaire, a new

lecture on ontology content design patterns and then directly afterwards the

last modelling task, which also took 1 hour without the opportunity to first

practise the use of patterns, and the corresponding questionnaire.

The third setting was within a master’s course on Information Logistics

at Jönköping University. This setting was in terms of training and tasks

directly comparable to the first setting in Bologna, the only difference being

the experience level of the subjects and the fact that the lectures and tasks

were spread out over one month and not condensed into one week. The

backgrounds of the subjects were more diverse this time, and the experi-

ence level quite low. Most were master students who had only taken one

basic course in information modelling. The motivation to assist in the ex-

periment by answering questionnaires and producing high quality ontologies

was considerably lower than in the other two settings.

The modelling tasks were quite small, intended to be solvable within less

than two hours by a person reasonably familiar with modelling in OWL. The

domain of the first task was the music industry, containing concepts such as

musicians, bands, records, songs, albums and album reviews. The domain

of the second task was hospitals as a workplace, containing concepts such

as hospitals, nurses, unions, representatives, and locations. In both tasks

the subjects needed to model notions like time intervals and points in time,

n-ary relations connecting several concepts, and roles held by people at a

certain point in time.

The questionnaire results were summarised and collected into statistics

about subject backgrounds, reflections on the tasks, which indicated how the

subjects perceived the tasks and the patterns, and a collection of suggestions

and common problems noted by the subjects. The ontologies were then

analysed based on the notions of coverage, usability, common problems, and

pattern usage. Since the tasks were quite small they could be divided into

more or less ’atomic’ problems, solvable in different ways, but that needed to

be covered by the solutions. The coverage of the ontologies over the problem



5.3. ONTOLOGY CONTENT DESIGN PATTERNS 165

definition was then assessed by looking for solutions for each atomic problem

in each ontology. Usability in this case meant the understandability and

reusability of the ontologies, and was assessed by studying how well good

practices such as naming conventions, labelling and commenting, providing

formal definitions and inverse relations, were followed. Common problems

were identified based on collecting issues with respect to modelling choices,

that may create certain problems when the ontology is used, within the

ontologies. Pattern usage was registered by looking for instances of patterns

in the solutions, along with ’unintentional’ usage, i.e. when a pattern was

used in the first task even though patterns had not yet been presented. In

addition a set of common mistakes, and issues not considered to be errors

but rather ’bad practises’ were collected. In this thesis we only present a

selection of the results, for a complete account of the results with examples

and collected experiences please refer to the report by Dzbor et al. [55].

The first questionnaire enquired about the background of the subjects,

some differences between the groups were noted. In summary, the subjects

were mostly master students, PhD students and junior researchers. Most

had had some contact with the notion of ontologies, but only, for example

through a course they had taken, or by hearing about ontologies in a research

project. Only about 4 out of 45 subjects were more experienced in ontology

construction, i.e. they had been directly involved in ontology design and

research on ontologies. For the rest of the subjects the experience level was

more on the level of modelling in general, e.g. UML and ER-modelling,

and possibly having constructed some small light weight example ontology.

10 of the subjects had some previous knowledge of the tool used in the

experiment, and a majority had tried some ontology modelling tool at some

other time. Only one of the subjects had ever used ontology patterns before

this experiment, but none had used the kind of patterns tested in this study.

The two tasks were presented slightly differently, in order to ensure that

the second one would not be easier in itself, and thereby introduce a bias

in the study. Another reason was to compensate for the increased general

training in modelling ontologies that the subjects got during the course of

the experiment. Therefore, the first task was presented as a text, but al-

ready divided into short sentences that were convenient to model one by

one. The text consisted of several sentences and each modelling problem

was expressed very clearly and explicitly. In the second task, the complete

modelling problem was expressed in just one sentence, only implicitly con-

taining some of the modelling problems stated more straightforwardly in

the first exercise. No help for dividing the text into manageable pieces for



166 CHAPTER 5. ONTOLOGY PATTERNS

35
40
45
50

se
s

20
25
30
35

f 
re

sp
o

n
s

5
10
15

%
 o

f

First task

Second task

0

Strongly 

disagree

Disagree 

to some 

Neither 

agree nor 

Agree to 

some 

Strongly 

agreeg

extent

g

disagree extent

g

The modelling problem was easy to solve.

Figure 5.4: The perceived level of difficulty of the modelling problem.

modelling was given. According to the subjects’ own perception, the first

task might have been slightly easier to solve, see Figure 5.4. Although the

reasons for perceiving the problem as harder to solve may be different, we

felt that the attempt to leverage any bias in this way was successful.

Experiment result summary

During the course of the whole experiment most subjects stated that the

tasks were clear and easy to understand, the problem was relatively small in

size, the domain was familiar and the tool was reasonably easy to use. This

provided a good background for studying the mistakes that were nonetheless

made, how the tasks were solved and how the tasks were perceived by

the subjects. Even though the tasks were found to be clear and easy to

understand the general opinion was that the tasks were not so easy to solve,

and that for all the tasks problems were discovered, during modelling, that

resulted in the remodelling of some parts.

The patterns in themselves were received with mixed feelings by many

of the subjects. Table 5.5 shows two questions in the same diagram. The

first one was if the subjects felt that some of the patterns were obvious and

trivial, and we can see that this was the case for some patterns. The second

question was if some patterns provided useful solutions that the subject

had not thought of before looking at the pattern. In this case, too, we can

see that many of the subjects agreed. These results are a manifestation

of the constant pattern trade-off, between being very specific and useful or

being very general and highly reusable. A small and very general pattern

would probably be perceived as trivial, while a specific and complex pattern



5.3. ONTOLOGY CONTENT DESIGN PATTERNS 167

20
25
30
35
40
45
50

f�
re
sp
o
n
se
s

0
5

10
15
20

Strongly�

disagree

Disagree�

to�some�

extent

Neither�

agree�nor�

disagree

Agree�to�

some�

extent

Strongly�

agree

%
�o
f

Obvious�and�trivial�vs.�inspiration�and�new�ideas.

Trivial

Inspiration

Figure 5.5: Trivial and inspiring patterns.

40
45
50

e
s

20
25
30
35

f�
re
sp
o
n
se

0
5

10
15

%
�o

Second�task

Strongly�

disagree

Disagree�

to�some�

extent

Neither�

agree�nor�

disagree

Agree�to�

some�

extent

Strongly�

agree

g

In�general,�I�found�the�pattern�useful.

Figure 5.6: Overall perceived usefulness.

would be perceived useful if it solved a particularly difficult task the ontology

engineer had in mind, but it would not be widely reusable. When asked

directly most of the subjects agreed that the patterns were in fact useful,

as can be seen in Figure 5.6.

The next thing we wanted to determine was how and why the patterns

were useful. Three questions were then put to the subjects regarding in

what way the patterns had helped them. For the subjects doing the pattern

training exercise, redoing the first task, this question was posed after the

exercise. It was answered by the others after the second task. We can see

in the diagram in Figure 5.7 that there is a tendency towards the opinion

that tasks were easier and that they produced a better result when using

patterns, but there was no support for the task being completed faster.

Another question was posed, asking if they were satisfied with their results



168 CHAPTER 5. ONTOLOGY PATTERNS

35
40
45
50

se
s

15
20
25
30
35

o
f�
re
sp
o
n
s

Faster

0
5

10
15

%
�o

Easier

Better

Strongly�

disagree

Disagree�to�

some�

extent

Neither�

agree�nor�

disagree

Agree�to�

some�

extent

Strongly�

agree

g

The�patterns�made�me�solve�the�task�faster/easier/better.

Figure 5.7: Using patterns, was the task solved faster, easier and better?

40

50

n
se
s

20

30

o
f�
re
sp
o
n

0

10%
�o

First�task

Second�task

Strongly�

disagree

Disagree�

to�some�

extent

Neither�

agree�nor�

disagree

Agree�to�

some�

extent

Strongly�

agree

g

There�were�some�problems�I�did�not�manage�to�solve�

in�a�good�way�within�the�given�time�limit.

Figure 5.8: The extent of managing to solve problems within time limit.

after the maximum time given for the tasks, as seen in Figure 5.8. This also

supported the impression that in fact the subjects perceived themselves as

slower when using patterns.

To further study how the subjects perceived the whole process of be-

ing introduced to patterns a question was included which asked them to

compare the different tasks they had solved. The two groups that did the

complete set of exercises and tasks were asked to compare all four exercises,

where the two main tasks of this experiment were number two and number

four. The group doing only the experiment tasks, without the practise ses-

sions, was asked to compare their two tasks. The questions were formulated

so that they had to first select the task they had perceived as the easiest

to solve, and then pick the task where they believed that they had solved

the modelling problem most successfully, produced the ’best’ model. Fig-



5.3. ONTOLOGY CONTENT DESIGN PATTERNS 169

80

100

e
s

40

60
o
f�
re
sp
o
n
s

E i t t l

0

20%
�o Easiest�to�solve

Most�successful�model

The�first The�

second

The�third The�

fourth

Th i k l d h k i dThe�easiest�task�to�solve�and�the�task�perceived�

to�be�solved�most�successfully.

Figure 5.9: The easiest task and the ’best’ ontology.

80

100

60

80

re
sp
o
n
se
s

E i t t l

20

40

%
�o
f�
r Easiest�to�solve

Most�successful�model

0

The�first The�second

h i k l d h k i dThe�easiest�task�to�solve�and�the�task�perceived

to�be�solved�most�successfully.

Figure 5.10: The easiest task and the ’best’ ontology.

ure 5.9 and Figure 5.10 show the answers. We can conclude that there is

a big difference between the two groups. All of the subjects that received

minimal pattern training and went straight for the final task, without exer-

cising patterns, felt that the first task was easier and that they produced a

better result the first time. While the ones that received more training to

a high extent agreed that the best ontology was produced in the final task.

Nevertheless, the two groups did not perceive the same task as easiest, but

we could conclude from their answers that the hardest task was most likely

the one where they exercised the patterns for the first time. A conclusion

that can be drawn is that patterns are quite difficult to understand and to

use, and patterns are not immediately useful, not without proper training

or proper tool support.

A set of common problems were also stated, concerning how to use the



170 CHAPTER 5. ONTOLOGY PATTERNS

patterns. Some of those problems were:

• Understanding the patterns.

– Too brief descriptions of some patterns.

– Missing examples.

• Difficult to match between the specific domain and the general pat-

terns.

• How to choose between patterns.

• How to use only parts of a pattern, and how to extend patterns.

• How to combine patterns.

• Missing patterns.

Next, the ontologies were analysed, to achieve a more objective assess-

ment of the usefulness of the patterns and to identify remaining problems.

The coverage was generally high for most ontologies, which indicates that

the subjects had managed to solve most parts of the problems within the

time limit. Concerning usability, all of the ontologies resulting from the first

task lacked comments, and many also lacked concept and property labels,

as well as disjointness axioms. Usually some formal definitions of concepts

were included and some inverses of selected properties. The ontologies re-

sulting from the second task, in which they all included some concepts and

labels, for instance, showed considerable improvement in all respects.

Common problems in the ontologies from the first task were how to

model n-ary relations, how to distinguish between persons and their roles

and between an abstract information object and its concrete physical reali-

sation, i.e. songs and tracks in this case. Naive solutions were provided, for

example modelling roles as subclasses of persons, which in turn resulted in

the problem that a person cannot have different roles in different settings

or during different time periods. In the ontologies that solved the tasks cor-

rectly, most of the solutions were more or less identical to the ones suggested

by a corresponding content pattern, the so called ’information realization’

pattern, something that the subjects at the time had not yet seen.



5.3. ONTOLOGY CONTENT DESIGN PATTERNS 171

Many of these issues were in the ontologies of the second task in fact

solved by the means of directly reusing content design patterns. Most sub-

jects used several patterns in their ontology, and most of the common prob-

lems from the first task did not occur at all in the set of ontologies from

the second task. Unfortunately, some patterns seemed difficult to reuse,

such as the situation pattern, intended to solve the n-ary relations problem,

and the collection pattern, for modelling collectives such as labour unions.

Therefore, misused patterns could be observed, mainly patterns that were

specialised and composed in an incorrect way but also patterns that were

used in a context where they were not really applicable. From this we can

conclude that patterns are sometimes both hard to match and select, as

well as reuse in a correct way. There is no direct tool support for any of

these tasks present today. Patterns have to be selected manually, imported

into the ontology by means of the owl:import functionality, and then spe-

cialised by the ontology engineer. However, patterns did solve most of the

modelling issues, and prevented common mistakes, when understood and

used in a correct way, whereby these results still confirm the usefulness of

patterns.

Analysis and conclusions

Some general conclusions can be drawn from the results above. First let

us revisit the hypotheses stated at the beginning of this section. The first

hypothesis proposed that ontology content design patterns would be per-

ceived as useful by ontology engineers. The subjects of this study were

mostly novice ontology designers, which means that no general conclusion

can be drawn, but for such inexperienced ontology engineers there is clear

support for the hypothesis. Most of the subjects, 69%, perceived the pat-

terns as either very useful or to some extent useful, while only 8% did not

find them very useful. Additional support for this hypothesis is that a ma-

jority of the subjects who received proper pattern training, 61%, perceived

that they solved the final task better than any other task during the exper-

iment. We were also able to note several improvements in the ontologies

themselves that confirm this hypothesis. We cannot, however, find any sup-

port for saving time by using patterns. This may be because most subjects

were inexperienced, it may also be due to the small amount of training, but

we cannot rule out that using patterns can actually increase development

time instead of reducing it. Despite this, we conclude that experimental

results support the first hypothesis; content design patterns are useful.



172 CHAPTER 5. ONTOLOGY PATTERNS

Nevertheless, using patterns is no universal solution that will make

novice ontology engineers construct wonderful ontologies. The opinions of

the subjects, as presented above, confirm that they built ’better’ ontologies

when using patterns. At the same time, 72% of the subjects concluded that

they in the final task still had to, in some way, remodel parts of the ontology

during the process, because of issues they did not foresee when they began

the modelling. The results of analysing the ontologies themselves, however,

strongly support the second hypothesis, i.e. the quality improved both with

respect to fewer remaining problems and better usability. We conclude that

also the second hypothesis is supported.

However, neither hypothesis was supported without some perceived prob-

lems. This issue is also related to the fact that many problems the subjects

experienced when using patterns were not supported by any available tool or

guideline. Issues related to understanding patterns could be resolve through

better training, providing more detailed information about patterns and

providing examples connected to the patterns. The issue of providing sup-

port for finding, matching, selecting, adapting, extending, and composing

patterns is more difficult. As we have noted in previous chapters, there are

some basic support for ontology search and retrieval, matching and merging,

but these approaches are not tailored to small and general ontologies such

as content design patterns. Search can be conducted also on the natural

language descriptions of the patterns, or any kind of metadata, but this in

turn puts us back in the scope of the first problems noted, that pattern

descriptions are currently insufficient and sometimes unclear. Additional

tool support for, semi-automatic, pattern selection and reuse is definitely

needed.

To summarise this discussion, patterns are in fact useful and increase

the quality of the produced ontologies, when used correctly. Nevertheless,

there are many unresolved issues regarding the use of patterns, and there

is currently very little tool support to meet these issues. We see this as an

additional motivation for proposing a semi-automatic ontology construc-

tion method that exploits patterns. The method proposed in the following

chapters, called OntoCase, attempts to exploit patterns by automatically

matching them to ontological elements learnt from text or present within

an initial ontology, then selecting a set of patterns, adapting and pruning

them, and finally composing them into a draft ontology. In addition to im-

proving current methods in ontology learning, OntoCase becomes one step

in the direction of providing support for exactly the problems perceived by

the subjects of this study.



Chapter 6

Initial method, industry

evaluation and experiences

This chapter describes the first phase of this research, which involved devel-

oping and implementing an initial method for pattern-based semi-automatic

ontology construction. The method was applied in an industry case, which

gave valuable insights to the requirements and open issues of this problem,

as well as valuable experience comparing manual and semi-automatic ontol-

ogy construction. First, the initial version of the method is described, then

the experiments performed within the SEMCO project are presented, and

finally the results are analysed and some conclusions are drawn.

6.1 Initial method

Based on the initial literature study and a survey of existing tools, we con-

cluded that many approaches already exist for the different steps of element

extraction within ontology learning from text. The approaches include algo-

rithms tailored to extract specific elements, e.g. terms, relations, or specific

axioms, for ontology construction. However, so far very few of these ap-

proaches continue beyond the extraction of single terms or relations, the

results are generally large and diverse, and the approaches rely on manual

validation in order to construct the actual ontology from these extracted

elements. Our initial idea was to study the feasibility of applying ontology

patterns on top of these results, to produce a ’better’ ontology that is easier

for the ontology engineer process further.

173



174 CHAPTER 6. INITIAL METHOD

The method that was initially developed can be seen in Figure 6.1. We

assumed that a state of the art OL system, providing a set of elements

extraction algorithms, would as a minimum produce a set of terms and

relations. The idea was to take extracted terms and unnamed binary re-

lations, match them against the patterns and depending on the result use

parts of the patterns to build the ontology. As a pre-processing step a text

corpus was analysed by a term and relation extraction software, which was

assumed to render a list of possibly relevant terms and relations. These

lists of terms and relations were assumed to be provided as input for our

method.

6.1.1 Pattern matching and selection

Based on the input of terms and relations, the first step was then to match

the list of terms against all the patterns in the library. The precise method

used for this matching was not fixed, at this stage of our method develop-

ment, but was restricted to lexical matching. There exist many matching

approaches for lexical matching, and for each method a decision has to be

made on what grounds to register an accepted match. Later we show one

possible realisation of this matching process, using a string matching tool,

that was used for the initial experiments.

The first step resulted in two things; a score for each pattern, represent-

ing the amount of terms in the pattern that matched the term-list, and a

list of the terms in the extracted term-list that were considered to match

the pattern at hand. The list of correctly matched terms was used, for each

pattern, to extract possible relations in the pattern also present in the text

corpus. This relation extraction was outside the scope of our research, since

tools for this have already been proposed. The output of this was a list of

concept pairs. These connected concepts were then compared to the current

pattern and a score was computed based on the amount of relations in the

pattern identified among the extracted relations. The exact nature of the

matching was not fixed at this stage, an example procedure used for the

initial experiments is presented later.

Next, the two scores obtained, matched concepts and matched relations,

were weighted and added to form a total ’matching score’ for each pattern.

Then, a decision was made, according to some threshold value, which pat-

terns to keep and included in the resulting ontology and which to discard.



6.1. INITIAL METHOD 175

Amount of relations matched

Input text corpus

Extract terms

from texts using some

automatic extraction

mechanism

Match extracted

   terms to

concepts in pattern

Compute score based

on the two values

Extract associations

from texts using the

matched terms for

each pattern

      Is

pattern score above

      threshold?

Compose ontology

of the accepted

patterns

Discard pattern

Term list

Score for each pattern

Accepted patterns

Match extracted

relations to relations

in patterns

Pattern catalogue

Set of matched terms

Amount of terms

matched

Association list

Figure 6.1: The basic steps of the initial method.



176 CHAPTER 6. INITIAL METHOD

6.1.2 Ontology composition

The following step was to build an ontology from the accepted patterns.

This construction was based on the matching lists generated, i.e. the lists

of matched concepts and relations. The method for building the ontology,

by considering one pattern at a time, is depicted in Figure 6.2.

     Term already

in ontology?

Add new

synonyms

Add as concept to

ontology

Add relations connected to

concept according to

heuristics

Yes

No
List of matched

terms Untreated concepts?

Yes

No

List of matched

relations

Figure 6.2: Steps of the ontology building, for each accepted pattern.

For each pattern the lists of matches were used as input. Then there

were an iterative step which considered all concepts and relations of the

pattern. If the term at hand was already in the ontology, no conflicting

synonyms was assumed as sufficient evidence for equality, the concept in

the ontology was only enriched with all new synonyms of the added term.

If the term was not in the ontology already, it was added as a concept along

with all matched synonyms of the concept label.

Relations between concepts were added according to a set of heuristics.

Relations to and from concepts already present in the ontology, and listen

in the matching process previously, were added. Other heuristics, such as

adding hierarchical relations directly between concepts which in the pattern

are separated only by intermediate concepts, or adding a node if more than

a certain number of relations lead to it could be included, but were not used

in the initial experiments. The iterative process continued until there were

no more concepts or relations of the pattern to consider.

At this point, the focus was to create a process very close to a fully

automatic method, thereby drawbacks such as that the patterns might not

perfectly reflect what the enterprise actually means by the terms they use

were ignored. A fact that reduce the effect of this problem was that if

a concept had been matched to the wrong sense intended by the enter-

prise, then other parts of the pattern would probably not be matched, and



6.2. EXPERIMENT - SEMCO 177

thereby pruned later in the process. It should also be kept in mind that

semi-automatic methods should be seen as a complement, an aid, to the

manual ontology construction process, whereby there will certainly be a

post-processing step performed by ontology engineers before the ontology

is taken into use.

6.2 Experiment - SEMCO

In order to validate the approach introduced above we performed an ex-

periment, which was part of the research project SEMCO, as described in

section 1.1.2. The scope of the experiment was to construct a selected part

of the enterprise ontology for one of the SEMCO industry partners. The

purpose of the ontology was to support capturing relations between devel-

opment processes, organisation structures, product structures and artefacts

within the development process. The ontology was limited to describing

the requirements engineering process, i.e. requirements and specifications

with connections to products and parts, organisational concepts and project

artifacts. As a crucial part of this study the same ontology was constructed

using two different methods, the semi-automatic method presented in this

thesis and a manual method, as presented by Öhgren and Sandkuhl [151].

The construction was performed in parallel with access to the same material

and background knowledge, but without any contact or interaction between

the development processes. The structure of the experiment is illustrated

in Figure 6.3.

6.2.1 Semi-automatic ontology construction

For the semi-automatic construction 26 ontology patterns were developed

based on the approach presented in section 5.3.2, and are presented in Ta-

ble 5.3. The patterns were represented as small ontologies, additionally

enriched with concept label synonyms manually selected from WordNet∗.

The text corpus used as input consisted of software development plans,

software development process descriptions, and other similar documents in-

ternal to the enterprise in question. The extraction of relevant terms and

relations from these texts were performed using the OL tool Text-To-Onto†

[127] within the KAON tool-suite‡. This choice was made mainly out of

∗http://wordnet.princeton.edu/
†http://sourceforge.net/projects/texttoonto
‡http://kaon.semanticweb.org/



178 CHAPTER 6. INITIAL METHOD

Figure 6.3: The structure of the experiment.

convenience, since this was one of the most elaborate tools and it was freely

available on the KAON website. Any evaluation of the methodology would

be conducted with the same prerequisite extraction method, so this was not

considered a significant bias at this early stage of method development.

In order to keep the experiment on a reasonable scale, to be able to

validate the accuracy and efficiency of the method manually, the concepts

and patterns were restricted to a relatively low number. An absolute fre-

quency threshold of 10 was set for the term extraction and used during the

experiment. This rendered 190 terms as the initial input of the construction

process.

The matching of the pattern-concepts and their label synonyms against

the extracted terms was done using a lexical matching tool. In order to be

able to test different matching algorithms and measures, an existing string

matching comparison tool proposed by Cohen et al. [39] was selected for

this task, Secondstring§. A Jaccard string similarity measure was selected

and the threshold for a match was set to a similarity level of 0.5. When this

matching was completed for each pattern, a score was computed according

to the number of matched concepts. There was also a list of matched terms,

matching score above the threshold, which were then used with the Text-

To-Onto tool in order to extract relations between those terms.

When matching relations, all relations were assumed to be transitive,

§http://secondstring.sourceforge.net/



6.2. EXPERIMENT - SEMCO 179

since this simplified the matching task when an intermediate concept did

not exist among the matched terms. The score representing the number of

matched relations was weighted and added to the score of matched concepts

resulting in a total score for each pattern. Since the relations were deemed

more important than the lexical matching of concept names, the relation

scores were in this experiment given a higher weight than the concept-

matching scores.

Most patterns received a quite low score. This was mainly due to the

difficulty of extracting relations and thereby also matching relations to the

patterns. A quite low threshold score was set, after some consideration

and manual evaluation of the relevance of the patterns, and also because

by accepting quite a few patterns the properties of the pruning algorithm

could be studied more thoroughly. This resulted in 14 accepted pattern out

of the original 26.

The 14 accepted patterns were then composed into an ontology using the

method specified previously. Each pattern was treated separately, one at a

time. For each pattern each of its concepts was considered. If a matched

term was not already in the ontology it was included, together with all its

matched synonyms. Then all relations leading to and from the concept were

considered. Using a set of heuristics some of the relations were added to

the resulting ontology.

Descriptions of the heuristics used:

• Include all relations between added concepts, even if they were not

matched.

• Use the transitive property of hierarchical taxonomic relations, if an

intermediate concept is missing add the child directly at the level of

the missing concept.

• An associative relation which originally relates two concepts is added

even if one of the concepts is missing, if and only if there is a direct

subconcept of the missing concept present in the ontology.

The resulting ontology contains 35 concepts directly beneath the ’root’

concept and in total 85 concepts. The ontology is not really divided into

subject areas, as can be seen in Figure 6.4, a screenshot from the visualisa-

tion tool in KAON. The final choice of ontology implementation language

was still to be made at this time, but the internal representation of the

KAON tool based on F-logic conformed to the ontology definition used.



180 CHAPTER 6. INITIAL METHOD

The figure shows only a small part of the ontology and some details are hid-

den to increase readability. Despite this, we can note that products, parts

and requirements play a central role in this ontology. Also roles, work and

parties appear in the ontology. Already in this small illustration the high

number of relations can be noted. For example in the figure the relations

tell us that a product will be produced in response to a work requirement,

the product is asked for via a set of product requirements, the product has

a set of features which can be either available or selected and the product

is described in some document.

Figure 6.4: Top-level concepts of the aut. constructed ontology.

Figure 6.5 shows an additional part of the resulting ontology. This

shows for example concepts concerning products, their features, and their

connection to the product requirements. When analysed individually the

coverage of the ontology with respect to the extracted terms turned out to

only be about 34%, which is a relatively low number. This, together with

other characteristics of the ontology, is analysed further in later sections.

6.2.2 Manual ontology construction

The manual construction followed the phases described by Öhgren and

Sandkuhl [151]. A user requirements document was produced, which in-



6.2. EXPERIMENT - SEMCO 181

Figure 6.5: A part of the resulting ontology.

cluded identification of existing knowledge sources, defining usage scenar-

ios, and the possibility to find other ontologies to integrate was considered,

but no ontologies that were considered relevant were found. The available

project documents were used in the first iteration of the building phase. A

simple concept hierarchy was built, but natural language descriptions for

each concept were deemed unnecessary at this point. It was quite hard to

derive relations and axioms from the documents so after document analysis,

focus was switched to the other knowledge sources: interviews with selected

employees at the company.

Interviews with company employees were performed in two sessions. At

the first session the interviewees discussed the top-level concepts, then went

further down the subsumption hierarchy, discussing each concept. Feed-

back was given in the form of suggestions, such as ”Restructure this” or

”This concept is not that important”. After the first interview session, the

suggestions were considered and some were implemented. The second inter-

view session was carried out similarly, resulting in minor corrections of the

ontology. Implementation of the ontology was integrated into the building

phase, the ontology was quite light weight and no language expressivity

problems occurred. The last phase of the manual methodology, evaluation

and maintenance, was partly integrated into the building phase, where the

interviewees reviewed the ontology. Other parts of the evaluation are de-



182 CHAPTER 6. INITIAL METHOD

Figure 6.6: Top-level concepts of the man. constructed ontology.

scribed later in this chapter, and maintenance was not performed within

the scope of the project.

The resulting ontology has 8 concepts directly beneath the ’root’ of

the subsumption hierarchy, and 224 concepts in total. Some of the most

general concepts are illustrated in Figure 6.6 through a screen-shot from

OntoEdit, a previous version of OntoStudio from Ontoprise GmbH¶. The

ontology representation language was not considered at this point, since the

application intended to use the ontology was still in its planning stage at

that time. The choice of tool was based on convenience, since the tool was

available and the ontology engineer constructing the ontology was familiar

with that specific tool.

The resulting manually constructed ontology contains a few major parts,

as seen in Figure 6.6. The figure shows only a small part of the ontology

and some details are hidden to increase readability. Despite this, the di-

vision of the ontology into subject areas can be noted. Directly related

to the focus of the ontology are the parts dealing with product parts and

requirements. In addition one part deals with artefacts, which denotes dif-

¶http://www.ontoprise.de



6.2. EXPERIMENT - SEMCO 183

ferent things produced during the product development process, such as

documents and requirements. Another important part is the organisation

units and the roles present in the organisation, which in turn participate

in the processes of the organisation. This was included for connecting roles

to both the request and realisation of different requirements and product

parts, in different process steps. Finally some supporting areas like quan-

tities and measuring units were included in order to assist when describing

requirements and product parts.

6.2.3 Evaluation

This section presents the choice of evaluation methods for the resulting

ontologies, and a description of the evaluation and its results.

Evaluation setup

A decision was made to use several evaluation approaches, both intended for

ontology expert and domain expert evaluation, to get a broader view of the

ontologies and indirectly also the construction methods. A detailed descrip-

tion of the measures and the rationale behind the selection was presented

in section 4.2.2.

A general comparison of the ontologies was needed to get an idea of dif-

ferences and similarities. This comparison was done based on basic struc-

tural measures, such as number of concepts, average number of attributes

per concept, average number of subclasses per concept, and average num-

ber of associations per concept, as for example suggested by Gangemi et

al. [77]. Also, the cohesion metrics proposed by Yao et al. [222] were used,

since we felt that they complement the other measures well. These metrics

are: number of root classes, number of leaf classes and average depth of

inheritance tree.

Second, an evaluation was performed by internal ontology experts using

the two most well-known approaches for structural evaluation of the taxon-

omy, presented by Gómez-Pérez [84] and Guarino and Welty [91]. Internal

ontology experts were used for these evaluations, mainly because of their

previous knowledge of the evaluation methods. Since we were evaluating

both the ontologies and, indirectly, the methods for constructing them, the

initial idea was that the errors discovered could give valuable indications on

advantages and disadvantages of each construction method.

Finally, to evaluate the content of the ontologies at a functional level,



184 CHAPTER 6. INITIAL METHOD

i.e. their fit to the intended scope, a subset of the OntoMetric framework

by Lozano-Tello and Gómez-Pérez [122] was used. For our purpose only

the dimension content was deemed interesting, and only one level of char-

acteristics for each factor. Some characteristics were not applicable to both

ontologies and since this was mainly a comparison, these were not consid-

ered. Domain experts from the company in question formed the evaluation

team, but internal ontology experts prepared the material, assisted through

the evaluation, and collected the results.

A desirable method of evaluation would of course have been to apply

the ontologies in their intended application context. This was not possible

however, since the resulting application of the SEMCO-project was planned

to be developed and deployed in a second project that had not yet started

at that time.

General characteristics

First the structural characteristics of the ontologies were collected. In Ta-

ble 6.1 these are presented for the two ontologies, the ontology constructed

using the semi-automatic method is denoted ’Aut’ and the manually con-

structed ontology is denoted ’Man’. The results showed that the automat-

ically constructed ontology has a large number of root concepts, it lacks

some abstract general notions to keep the concepts together in groups or

subject areas. It is also quite shallow and many concepts lack subconcepts

altogether. Despite this, the concepts are more strongly related through

non-taxonomic relations and have more attributes than in the manually

constructed ontology ontology.

The manually constructed ontology, on the other hand, contains a larger

number of concepts. It also contains a top-level abstraction dividing the on-

tology into ’intuitive’ subject areas. There are few attributes and relations,

this might be due to that many attributes are actually represented by other

specific concepts, they were just not connected by an appropriate relation.

A lesson learnt was that relations seem to be harder to elicit from interviews

than the concepts themselves.

Evaluation by ontology engineers

Two structural evaluation methods were used by ontology experts, general

taxonomic evaluation criteria and the OntoClean framework. The ontologies

were first evaluated by ontology engineers according to the criteria presented

by Gómez-Pérez [84]. The criteria were the following:



6.2. EXPERIMENT - SEMCO 185

Table 6.1: Comparison of structural characteristics.

Characteristic Man Aut

Number of concepts 224 85
Number of root concepts 8 35
Number of leaf concepts 180 64
Avg depth of inheritance 2,52 1,95
Avg number of rel. concepts 0,13 0,79
Avg number of attributes 0,01 0,46
Avg number of subclasses 1,00 0,57

• Inconsistency: circularity, partition and semantic errors.

• Incompleteness: incomplete concept classification and partition errors.

• Redundancy: grammatical redundancy, identical formal definitions of

concepts or instances.

There were no circularity errors in the automatically constructed on-

tology since there was no multiple inheritance present, this also prevented

most errors belonging to the inconsistency partition errors group. Multiple

inheritance in the manually constructed ontology occurred only in a few

cases, and no circularity errors were discovered among these. This also re-

duced the possibility of partition errors, as mentioned previously. There are

no exhaustive decompositions or partitions specified in either ontology so

this eliminates the possibility of finding any other kind of partition errors.

Semantic inconsistency errors were more subtle to discover. This was

a question of identifying wrong classifications. In the automatically con-

structed ontology there existed two concepts which could be thought of as

wrongly classified since they made no sense in the context of this ontol-

ogy, they were simply ’junk’ that happened to enter the ontology due to

the uncertainty of the ontology construction process. Semantic inconsisten-

cies could also occur when two overlapping patterns are both included in

the ontology, but this seemed not to be the case in the ontology at hand.

Concerning the manually constructed ontology these errors could only be

assumed to have been discovered in the interview sessions with the domain

experts, because at this stage no more such errors were discovered.

Next, the incompleteness criteria were examined. Incomplete concept

classifications could exist in the semi-automatically constructed ontology

due to concepts missing in the patterns or not explicitly mentioned in the

text corpus used to develop the ontology, and thereby not extracted. Since



186 CHAPTER 6. INITIAL METHOD

this was an application ontology, not the complete domain needed to be

modelled, only the parts required for this specific application. When com-

paring the two ontologies however, the semi-automatically constructed on-

tology seemed to lack more specific concepts, such as document names and

company specific terms. This was definitely a problem originating from

the semi-automatic process in itself, since it did not at this time contain

any way to determine subsumption relations between extracted elements

and patterns, only direct overlap. Even for the manually constructed on-

tology it was difficult to determine the incompleteness criteria until the

ontology was to be used in its intended context, but in comparison to the

semi-automatically constructed ontology it was more complete on the lower

levels of abstraction.

Several occurrences of partition errors were found in the semi-automatically

constructed ontology, especially lack of disjointness definitions. This could

be included in the patterns in order for it to propagate into the constructed

ontologies, or more recent methods, as proposed by Völker et al. [210],

could be used to try to discover disjointness directly from the text input.

Also some cases of believed exhaustive knowledge omission were found, but

on the other hand that knowledge might not be needed for this specific ap-

plication. In the manual construction process disjointness and exhaustive

partitions were not discussed before building the ontology, so it is at this

point not certain that there is a need for defining this. Deciding this ought

to be part of the construction methodology, i.e. an important addition to

the manual methodology.

Finally, there were no concepts with identical formal definitions but dif-

ferent names or redundant subclass relations in either ontology. Redundant

subclass relations are not present in the patterns used in the automatic ap-

proach and no overlapping patterns had introduced it in this case. However,

it is worth studying when considering overlap between patterns, and meth-

ods to resolve such issues might be needed in the semi-automatic ontology

construction process.

Next, another expert evaluation was performed, this time by using the

OntoClean methodology. Every concept in the ontology was annotated

with the properties rigidity, identity and unity. This resulted in a backbone

taxonomy containing 25 concepts in the semi-automatically constructed on-

tology. Here two violations of the unity and anti-unity rule were found and

one violation of the incompatible identity rule. When analysed the unity

problems arose because in this company ’work’ was seen as a ’product’, but

’work’ is generally not a whole. The identity conflict had the same cause,



6.2. EXPERIMENT - SEMCO 187

Table 6.2: Result of the OntoClean evaluation.

OntoClean rule Man Aut

Incompatible identity No 1
Incompatible unity criteria No No
Unity/anti-unity conflict 1 2
Rigidity/anti-rigidity conflict No No

the issue of ’work’ being defined as subsumed by ’product’, physical prod-

ucts were identified by a id-number while work was not. This is a quite

serious problem which required some consideration to be solved, so that the

solution still reflected the reality of the enterprise but did not introduce

undesirable properties of the ontology when used in an application.

For the manually constructed ontology, the backbone taxonomy con-

tained 178 concepts. One violation of the unity and anti-unity rule was

found, and none of the other kinds of errors. The violation arose between

the concepts ’function’ and ’code’, while a function was a clearly defined

unit the concept of code was more abstract and could not generally be seen

as a homogeneous unit. This violation existed mainly due to that the ab-

straction level differed too much among the concepts on the same level of

the taxonomic hierarchy of the ontology. The fact that no other violations

were found was perhaps due to the simple structure of the ontology, it was

very much like a simple taxonomy of terms. A summary of the results is

presented in Table 6.2, where the manually constructed ontology is denoted

’Man’ and the semi-automatically constructed ontology is denoted by ’Aut’.

Evaluation by domain experts

The third step of the evaluation process included a functional evaluation

performed by domain experts from the company in question. The evalua-

tion was done based on a part of the OntoMetric framework proposed by

Lozano-Tello and Gómez-Pérez [122] as mentioned in the evaluation setup

previously. Only the dimension ’content’ was considered and also no final

score was computed, since the assessed characteristics were quite few and

could individually tell us much about the nature of the ontologies. The eval-

uation was performed by a team of domain experts, working at the company

in question, but the process was guided by an experienced ontology engineer

in order to explain the notions to be evaluated to the evaluation team. For

the evaluation a standard ontology editor user interface was used, where the



188 CHAPTER 6. INITIAL METHOD

ontologies were visible as graph structures. The ontology engineer assisted

the team in understanding the semantics of the ontology primitives and the

functionality of the user interface but was not allowed to explain the content

of the ontologies, i.e. concepts and relations.

The dimension ’content’ contains four factors: concepts, relations, tax-

onomy and axioms. For each of these factors characteristics applicable in

this case were chosen. The scale suggested by Lozano-Tello and Gómez-

Pérez [122] ranging from ’very low’ to ’very high’ in five steps was used

for assessment, i.e. for each evaluated issue the evaluation team members

had to agree on a subjective score between ’very low’ and ’very high’. The

characteristics used and the resulting scores for each ontology are presented

in Table 6.3, where ’Man’ denotes the manually constructed ontology and

’Aut’ the semi-automatically constructed ontology.

As presented in Table 6.3, both ontologies seemed to contain an appro-

priate number of concepts, neither was considered too small or too large and

both seemed to cover the intended scope, but the concepts in the manually

constructed ontology were deemed more essential. This is most likely due to

that the concepts were more specific. The semi-automatically constructed

ontology also lacked some general abstract concepts to give it a compre-

hensible structure, which sometimes confused the evaluation team since the

ontology had no intuitive division into subject areas. On the other hand,

the semi-automatically constructed ontology contained more attributes and

relations, a higher density of each concept, which helped to describe and de-

fine the concepts and reduced the need for natural language descriptions of

each concept. This fact was found very useful by the domain expert evalua-

tors, and is a valuable finding with respect to how people interpret concepts

when no formal definition is present. The evaluators were faster to grasp

the meaning of these concepts than some of the concepts in the manually

constructed ontology that were only described through their placement in

the taxonomy, without additional properties connected to the concepts.

The semi-automatically constructed ontology contained more non-taxo-

nomic relations than the manually constructed one, even such relations that

the company might not have thought of itself but which were still valid. This

was explicitly noted by the evaluation team. The manually constructed

ontology mostly contained relations explicitly stated by the company and

easily expressed in words, e.g. either in documents or orally during the

interviews. It was the non-taxonomic relations that gave structure and

comprehensiveness to the semi-automatically constructed ontology while the

manually constructed ontology relied on specificity of concepts and precise



6.2. EXPERIMENT - SEMCO 189

Table 6.3: Results of the domain expert evaluation.

CHARACTERISTIC SCORE
Very low Low Medium High Very high

CONCEPTS
Essential concepts in superior levels Aut Man
Essential concepts Aut Man
Formal spec. coincides with naming Aut Man
Attributes describe concepts Man Aut
Number of concepts Man Aut
RELATIONS
Essential relations Man Aut
Relations relate appropriate concepts Man Aut
Formal spec. of relation
coincides with naming Aut Man
Formal properties of relations Man Aut
Number of relations Man Aut
TAXONOMY
Several perspectives Man Aut
Maximum depth Man Aut
Average number of subclasses Aut Man
AXIOMS
Axioms solve queries Man Aut
Number of axioms Man Aut

naming, i.e. company specific terms.

The semi-automatically constructed ontology also had a taxonomic struc-

ture, even though it lacked both some abstract top-level and the most spe-

cific levels, compared to the manually constructed one. Despite this, it was

perceived by the evaluation team as having quite a large depth, most likely

due to the detailed division of the intermediate levels. This detailed division

of the taxonomy was due to the detailed taxonomies present in the patterns

used as a basis for the ontology. The manually constructed ontology had a

larger number of subclasses per concept since a high number of very spe-

cific concepts existed. At a higher level of abstraction the average number

of subclasses per concept was comparable between the ontologies.

The number of general axioms was low in both ontologies, and the ones

present were simple. More advanced ’business rules’ was something that the

company might need if the implemented application using the ontology were

to function efficiently, especially if extended to handle more advanced use-

cases than simple structuring and retrieval of documents, and information

within documents. For the manual method the question is how to elicit

such rules using interviews, which is not a well-specified task so far. In the

semi-automatic method these should be included in the patterns but then

needs to be appropriately matched to the extracted elements. So far we

are not aware of any method for matching and comparing axioms, this is



190 CHAPTER 6. INITIAL METHOD

probably a suitable focus of future research.

At the end of the evaluation, in addition to the evaluation of the charac-

teristics, an unstructured interview was conducted with the evaluation team

members in order to see what parts might be completely missing. Natu-

ral language descriptions of concepts was one such item of discussion. For

the task to be performed by the implemented ontology the interviewed do-

main experts thought this was not needed, since it was quite clear from the

naming and context how a certain concept would be used. In a longer per-

spective though, for evolution and maintenance of the ontology, this would

still be desirable, since concepts and their meanings can also evolve and

change during an application’s lifetime.

6.2.4 Analysis and practical consequences in the project

When compared to the extracted elements, the automatically constructed

ontology covered only 34% of the terms extracted from the documents.

The reason was partly a small pattern catalogue, but when compared to

the manually constructed ontology it was mainly quite specific terms that

were missing. A pattern selection process is not enough to cover the scope,

since patterns are too abstract compared to a text corpus. Some abstract

information was also missing since this is not explicit in the texts. The

semi-automatically constructed ontology also had some nice features when

compared to the manually constructed ontology, e.g. a larger number of

relations connecting the concepts and to some extent a better structure.

This analysis lead us to believe that the pattern selection and combination

approach tested in this initial experiment was not enough to substantially

improve on current OL approaches. Ways to introduce a general structure

and abstract concepts were needed, as well as ways to incorporate the most

specific terms within the context and the structure of the patterns, i.e. to

close the abstraction gap between learnt elements and abstract patterns.

Merging of the ontologies

Based on the evaluation results presented previously and the analysis of the

benefits and drawbacks of each ontology, it was in the context of SEMCO

decided that the two ontologies should be combined to produce the final

version of the SEMCO ontology.

Since both of the constructed ontologies were built for the same case,

and were partly constructed using the same knowledge sources it was as-



6.2. EXPERIMENT - SEMCO 191

Table 6.4: General characteristics

Characteristic M A C

Number of concepts 224 85 379
Number of root concepts 8 35 5
Number of leaf concepts 180 64 273
Avg depth of inheritance 2,5 1,9 3,5
Avg number of rel. concepts 0,1 0,8 1,3
Avg number of attributes 0,0 0,5 0,1
Avg number of subclasses 1,0 0,6 1,0

sumed that they used approximately the same terminology. Methodologies

commonly used for ontology merging do not take into account such special

features, but rather solve problems related to distinctions in definitions and

conflicts between terms. A major function of existing matching and merging

tools is that they are able to give suggestions on candidates that should be

merged, or have a relationship. In our case it was fairly obvious what terms

should be connected and what terms that were possible to merge into one

concept. Based on this, the merging process was performed manually and

the KAON tool-suite was used for the implementation. The reason for this

was still convenience, since the more complex relations and some axioms

of the automatically constructed ontology were already implemented using

this tool. The process started with an ’empty’ ontology, where parts from

each ontology were entered in turn, starting from the top of the subsumption

hierarchy.

First, the top-level concepts of the manually constructed ontology were

added, together with all relations between them. The former top-level con-

cepts of the automatically constructed ontology were thereby grouped as

subconcepts of this structure. This step also resulted in some slight re-

organisation of the top-level concepts, and the addition of some intermedi-

ate concepts, to make the two ontologies fit together and to achieve a more

intuitive structure. It was also considered important that all the siblings of

a concept were on the same level of generality.

Second, the most specific concepts from the manually constructed ontol-

ogy were inserted into the ontology, at the bottom level of the subsumption

hierarchy. The fit between the two ontologies was not always perfect, there-

fore some new intermediate concepts were introduced. This was due to the

same reasons as the re-organisation of the top-level, to achieve an intuitive

structure and to have all siblings on the same level of generality. All re-



192 CHAPTER 6. INITIAL METHOD

lations and attributes from the manually constructed ontology, which were

not already in the automatically constructed ontology, were also included.

This process resulted in an ontology with 379 concepts, where only 5 of

them were placed directly beneath the root of the subsumption hierarchy.

A summary of some general characteristics of the ontology is presented in

Table 6.4, in the table the combined ontology is denoted by C, together

with the values of each ontology before the combination, the manually con-

structed one denoted by M and the automatically constructed one denoted

by A. The average measures represented the average over all concepts in

the ontology. The intermediate ’glue’-concepts that were added during the

combination process amount to 18% of the total number of concepts.

During the merging process, care was taken to make sure that no new

errors, i.e. of the type described in 6.2.3, were introduced. The manual

merging process made sure that there were no language level syntax mis-

matches. Language expressivity problems were avoided partly due to the

fact that neither of the ontologies were very complex and the general axioms

that did exist were fairly simple and partly because both ontologies were ex-

pressed in F-logic based languages. Since both ontologies were constructed

for the same enterprise and task it was also possible to avoid ontology level

mismatches.

The most interesting evaluation is however not yet performed, since the

applications where the ontology can be used are only partially developed

and not yet deployed. To apply the ontology is the only way to test how well

it actually performs its tasks. The ontology was implemented in the KAON

tool-suite. The top-level concepts of the resulting ontology can be viewed

in Fig. 6.7. In the figure some parts of the ontology are excluded due to

readability reasons. The final ontology contained many of the same subject

areas as the manually constructed ontology described previously at the top

level, such as roles, processes and parties. In the combined ontology two new

top categories were introduced, further grouping the concepts concerned

with products and their features, namely ’work product’ and ’feature’. A

work product is anything that is produced by a process, e.g. requirements

and specifications as well as the product itself. The feature concept grouped

all features of products and processes.

When the application scenarios in the following section were developed

in detail, a decision was made to export the ontology to Protégé‖, but

this was conducted through the tools’ import and export capabilities, i.e.

‖http://protege.stanford.edu/



6.2. EXPERIMENT - SEMCO 193

Figure 6.7: The top-level concepts and relations of the resulting ontology.

still without introducing any mismatches since Protégé conforms to a sim-

ilar frame-based ontology representation formalism as KAON. In addition

an experiment was made to transform the ontology into the standard web

ontology language OWL, but this time some problems arose. The most

frequently encountered problem was the issue of classes as property val-

ues, which is not easily expressible in OWL, as described by the W3C [3].

The conclusion was that for our application scenarios the Protégé internal

ontology formalism would be used.

SEMCO applications

There were several applications of the ontology envisioned in the SEMCO-

project, but so far only one of these have been implemented, however not

yet deployed. This scenario was the ontology-based artefact management,

supporting reuse and comparison of artefacts between projects, as a part

of the more general framework of realising a domain repository for the

development processes. The artefact management tool was constructed as a

plug-in for the ontology development environment Protégé and is currently

called ArtifactManager, as described by Billig and Sandkuhl [19]. The main

idea of the artefact management tool was to use the enterprise ontology to

define and store metadata and attributes of an artefact, as well as a link to

the artefact itself. The enterprise ontology provided the attributes and the



194 CHAPTER 6. INITIAL METHOD

Figure 6.8: The Protégé ArtifactManager plug-in. [19]

metadata, and artefacts were attached to it as instances, and connected to

instantiated attributes. In this way the actual artefact can be connected to

a part of the enterprise ontology and have attribute values corresponding

to instances of enterprise ontology concepts.

When artefacts have been stored they can be searched, retrieved, and

compared using their connection to the enterprise ontology. The search is

divided into attribute search and ontology search, where attribute search

focuses on common keyword-based search of artefact attributes. The search

possibility involving the ontology is based on searching for concept paths

similar to the artefact metadata. The user could also create his own on-

tology, as a query, and compare it to the enterprise ontology, instead of

selecting parts of the enterprise ontology itself. In that case the search

was performed as ontology matching. The artefact management tab of the

ArtifactManager plug-in is shown in Figure 6.8.

The ArtifactManager plug-in was used by experienced engineers involved

in the project, but not evaluated together with the intended users at the

enterprise. Hence the final evaluation of the ontology in this scenario is yet

to be performed. However, it can be noted that the final merged ontology

covers all the major parts concerning common artefacts in the requirements

engineering phase, which leads us to believe that it can be used directly with

the ArtifactManager without any further configuration or modification.



6.2. EXPERIMENT - SEMCO 195

A second scenario proposed for future extensions of the SEMCO project

was the integration of feature models and enterprise ontologies, by support-

ing the feature metamodel in the enterprise ontology as proposed by Thörn

et al. [202], with the aim of identifying similar requirements and product

features in future projects. The features might be related also to the or-

ganisational elements in order to track responsibilities and expertise. The

aim of the application is to generate internal requirements directly from

detected features in the source documents, i.e. customer requirements, and

the enterprise ontology and its feature model, based on semantic similarities

between the source documents and stored requirements of previous projects.

Requirements for improved method

Based on the evaluations, the analysis of their results and the consequences

of this in the context of the SEMCO project, some open issues were listed

that needed improvement. These open issues led to the development of the

complete OntoCase framework presented in the following chapter. The main

open issues identified, with respect to the subproblems of semi-automatic

ontology construction, in the initial method were:

• Problem analysis

1. Lack of possibilities to include specific requirements and to focus

the construction process.

2. Lack of assistance for finding the ’right’ input.

3. Lack of assistance for finding the right pattern catalogue, deter-

mining its appropriateness and extending it if needed.

• Input processing

1. Lack of support for importing additional file formats.

2. Lack of possibility to start from already existing models and

ontologies instead of plain text.

• Element extraction

1. Incorporate additional existing algorithms.

2. Lack of possibility to extract complex axioms.

• Ontology composition



196 CHAPTER 6. INITIAL METHOD

1. Lack of possibility to bridge the abstraction gap between pat-

terns and extracted elements during pattern matching and com-

position.

2. Lack of possibility to add abstract general concepts as subject

areas of the taxonomy.

3. Lack of guidance for the pattern composition.

4. Lack of conflict resolution, between patterns and between ex-

tracted elements.

5. Lack of ways to assess relevance of elements in a way that con-

forms to human intuition.

6. Lack of possibility to adjust level of abstraction.

7. Lack of possibility to add additional background knowledge.

• Evaluation

1. Lack of automatic and semi-automatic evaluations.

2. Lack of semi-automatic refinement methods based on evaluation

results.

• Post-processing

1. Lack of connection to manual approaches.

2. More clearly define iteration possibilities of method.

• User interface

1. Not clear what is really helpful to the ontology engineer.

2. No graphical user interface present.

Concerning problem analysis we noted that some way to focus the pro-

cess was needed. Currently the ontology would cover everything mentioned

in the input text documents. In the SEMCO experiment mentioned pre-

viously, this issue appeared very clearly since some of the documents used

were not exactly within the right focus, although present in the texts, which

generated a set of terms in the ontology that were not within the intended

scope. There was then no way of excluding them from the ontology, other

than manually intervening and removing them. A more reasonable ap-

proach would be to state the requirements of the intended ontology in some

way, e.g. through a set of competency questions, and then match those to



6.2. EXPERIMENT - SEMCO 197

the patterns in order to get an ontology specific for a certain application

case and not representing the complete set of text documents. This issue

is closely related to the issue of finding the ’right’ input, since if the pre-

viously discussed method to focus the construction process is missing or

very weak then guidelines for finding the correct input are instead the only

way to focus the scope of the ontology. Nevertheless, even with a method

to additionally specify requirements and focus, assistance needs to be pro-

vided regarding what input might be suitable and what is not suitable. The

question arises how to find the input needed, even if it is determined what

can be suitable.

The third and final issue regarding the problem analysis is a slightly

more general issue, concerned also with patterns in general. In order to

use a pattern-based method a pattern catalogue must be present. Patterns

are probably not stable entities, but evolving and changing, new patterns

emerge. Patterns can additionally be more or less domain dependent, as

discussed in chapter 5. The issues noted in the SEMCO experiment was

that the pattern catalogue was too small to really cover the complete scope

intended, and that some of the patterns were not really suited for this

domain. This indicates that it would be desirable to describe the patterns

with some metadata in order to e able to do a first rough selection based on

things such as domain of the pattern. Some ways of evaluating and evolving

the patterns, and extending the pattern catalogues, are definitely needed.

Concerning the input processing issues a considerable amount of time

in the SEMCO experiment was spent on converting documents into the

correct input format. A major general shortcoming is also that the method

so far only is concerned with text corpus input, many other kinds of input

could be imagined. In the SEMCO case for example there existed several

databases at the company in question, it would have been desirable to

also be able to include for example data models or other more structured

information, such as taxonomies and thesauri if present. When processing

the input current OL systems only extract certain kinds of elements, but

as discussed in previous chapters there is still need for more approaches

concerned with for example concept formation, relation hierarchy extraction

and general axioms. The ontology produced in the SEMCO case was light-

weight, in terms of logical complexity, and this was the focus throughout

this thesis, but in the future it would be desirable to also produce more

complex ontologies.

The ontology composition step was the main focus of the initial method

described in this chapter, whereby most of the analysis and open issues



198 CHAPTER 6. INITIAL METHOD

are also found within this area. The first step of the process involved the

matching between patterns and extracted elements, and as noted previously

in this chapter only considering direct overlap is not enough to find all con-

nections. In fact, the inherent difference in term abstraction level between

patterns and extracted terms indicate that a method such as the one em-

ployed for the initial SEMCO experiment will only ’accidentally’ identify a

pattern, but in most cases appropriate patterns will not be found due to

this abstraction gap.

The general structure of the ontology produced in the SEMCO exper-

iment was not very easily comprehensible. For example, no intuitive top

structure was present to make the ontology easier to understand by humans

and to divide it into subject areas, neither was the ontology divided into any

kind of modules or views. For the SEMCO experiment this was not crucial,

but for a larger more complete enterprise ontology some structure to guide

the pattern composition would definitely be needed, so that the ontology

gets a more intuitive overall architecture. For the more detailed steps in

pattern composition also some naive assumptions were made in the initial

method, such as assuming that patterns will not have conflicting definitions

and that parts of the pattern that were not matched are not relevant to

include in the ontology. To detect and resolve conflicts between patterns

is partly concerned with the addition of pattern metadata, as proposed

above, but also to evaluation methods that can be used during construction

in order to detect conflicts and problems when they arise. What to keep

and what to discard when instantiating a pattern also needs more research.

Since one of the intentions when using patterns is to include more back-

ground knowledge, and include such information that is not explicit in the

text corpus, it is not desirable to naively discard everything that did not

have a match. Additionally some information might need to be added, in

order to for example adjust the level of abstraction of the different parts of

the ontology, or to add additional information to improve the ontology.

Evaluation of the ontology should be provided as part of the framework.

As seen in the SEMCO experiment evaluating the ontologies is not triv-

ial and usually requires some adaptation of the evaluation methods, and

evaluations are usually performed manually. Nevertheless, evaluation is a

crucial step in ontology construction as mentioned previously, evaluation is

for example needed already during the ontology composition process. Addi-

tionally, to be able to evaluate the initial ontology and provide suggestions

for improvements, and to optionally iterate the complete process with addi-

tional input would be desirable scenarios. However, the process will never be



6.2. EXPERIMENT - SEMCO 199

completely automatic, thereby a crucial issue is to really integrate methods

like this with manual ontology construction methodologies and frameworks,

and to eventually provide intuitive user interfaces for supporting the manual

process.





Chapter 7

Semi-automatic pattern-based

ontology construction

Based on the experiences gained in the SEMCO experiment described in

chapter 6 and the general open issues discussed in chapter 2 a more complete

framework for patter-based ontology construction was developed. In this

chapter the current version of OntoCase is described in detail. Examples

and initial evaluations of some of the methods are also discussed, although

the complete evaluation of the implemented parts of OntoCase is presented

separately in chapter 8.

7.1 OntoCase overview

OntoCase is a general framework for iterative and experience-based semi-

automatic ontology construction, based on the notion of ontology patterns.

To incorporate the idea to learn from previous experience, and to assist

in solving the pattern construction problem, the framework is inspired by

the methodology of case-based reasoning (CBR). CBR proposes a cycle

of learning from experience and using the learnt information to solve new

problems. Intuitively this applies perfectly to the pattern-based ontology

construction problem, since patterns are in fact encoded experiences, that

are used to solve new problems. In Figure 7.1 an overview of the OntoCase

approach is presented, including the tasks that are performed in each of

the phases. Below we first discuss the inspiration from CBR and then the

details of the OntoCase framework are discussed.

201



202 CHAPTER 7. ONTOCASE

Input

Pattern base

Retrieved 

ratterns

Initial 

ontology

Revised 

ontology

Pattern 

candidates

Retrieve

Reuse

Refine

Retain

OntoCase

Element 

extraction
Pattern 

matching

Pattern 

selection

Pattern 

adaptation

Pattern 

composition

Ontology 

evaluation

Ontology 

revision

Feedback 

generation

Pattern 

extraction

Figure 7.1: The OntoCase framework.

7.1.1 Semi-automatic ontology construction and CBR

A summary concerning some of the benefits and drawbacks of using case-

based reasoning was presented in section 3.3. Some of the benefits listed

were to reduced the load on knowledge acquisition tasks, learning from the

past, reasoning with incomplete, imprecise or insufficient information, and

reflecting human reasoning and means of explanation. Intuitively the reader

can reflect on that these are also some of the general problems of ontology

engineering. The guidelines were expressed as 5 questions, as presented in

3.3:

1. Does the domain have an underlying model?

2. Are there exceptions and novel cases?



7.1. ONTOCASE OVERVIEW 203

3. Do cases recur?

4. Is there significant benefit in adapting past solutions?

5. Are relevant previous cases obtainable?

With starting point in these questions we can now motivate the suitabil-

ity of CBR for pattern-based semi-automatic ontology construction. The

first question concerns the domain, and ontology construction is certainly

a very tough problem to model completely, not all underlying mechanisms

are fully understood. When constructing an enterprise ontology the prob-

lem and the requirements can never be completely unambiguously defined,

and whether the resulting ontology is completely correct and fulfils all those

requirements is usually also a matter of human judgement. Currently there

is no reasonable possibility to model the problem so that a complete and

correct ontology can be generated completely automatically.

There are certainly exceptions and novel cases, depending on the prob-

lem at hand. No two enterprise ontologies will ever be exactly the same,

even an enterprise ontology for the same enterprise with the same scope

and intended use will be different if constructed at a different point in time.

Ontologies are highly evolutionary structures that reflect the current situ-

ation. It is usually not possible to construct ontologies, except very simple

and basic ones, that apply to several enterprises, because even though enter-

prises may look similar on the surface there are most often exceptions and

differences present on the detailed level. However, some general principles

apply for different kinds of ontologies. When discussing enterprise ontolo-

gies, including the organisation structure in the ontology will probably be

very common. Even though the variability is almost infinite on the detailed

level, some general principles apply for enterprises and thereby also for their

ontologies. General principles of modelling also most certainly apply when

modelling ontologies in logical languages.

The fourth question is harder to answer, is there really any benefit in

adapting an old solution rather than constructing a new one? There are

two main benefits that are generally proposed when considering knowledge

reuse; to construct better models and to make the modelling easier and

faster. This has unfortunately not yet been shown to hold empirically in

the general case, although parts of an initial experiment supporting the

conclusion that ontologies are of better quality when based on patterns

were presented in section 5.3.4. Intuitively it seems plausible that at least

the first proposition should hold also in a more general setting, by using a



204 CHAPTER 7. ONTOCASE

’template’ or and example solution, i.e. a pattern, an engineer, or a semi-

automatic system, should be able to avoid making some common mistakes.

Whether the process is really easier and faster is a harder question, since

we are adding an additional structure as input to the problem, namely the

patterns. It is likely that the patterns add some overhead, for example the

time it takes to understand and correctly apply a pattern.

Finally, answering the fifth question is also not straight forward, are

past cases really present when discussing enterprise ontologies? If complete

ontologies are considered this is probably not true. Enterprises will not

provide their ontologies and make them public, and to only use past cases

from the enterprise in questions introduces a ’chicken and egg’ problem

of how to build the first ontologies of the enterprise. If instead smaller

parts, such as ontology patterns, are considered this is however a reasonable

assumption. Patterns do not give away the details of the enterprise, but

encode valuable experiences and can be stored in catalogues for future reuse.

OntoCase and CBR

When comparing our initial ideas for OntoCase, as described in chapter

6, with the general idea of the CBR methodology, these are quite similar.

The arrival of a new case would in terms of our initial method mean the

arrival of a new text corpus with the intention of constructing an ontology.

The problem can be expressed as finding the ontology that best represents

the domain of the input text corpus, and in addition the problem could be

further described by a set of optional competency questions or similar means

of representing ontology requirements. The retrieval phase corresponds to

extracting ontological elements from the text corpus, retrieving a set of

possibly relevant patterns, i.e. the partial past cases, and evaluating that

set for relevance. The final task in the retrieval phase is to choose what

patterns to reuse.

The following phase of CBR is reuse, in our initial method this corre-

sponds to reusing the patterns to propose an initial ontology. This phase

contains the specialisation and adaptation of the patterns and the composi-

tion of the adapted patterns into an ontology. The revise phase of CBR cor-

responds to evaluation and revision of the ontology, which was not present

in our initial method. The retain step is connected to the construction and

refinement of the patterns. Pattern extraction from solutions is still future

work and in the initial method only manual construction of patterns was

considered.



7.1. ONTOCASE OVERVIEW 205

7.1.2 The OntoCase framework

One of the core elements of a CBR approach is the case base and its content.

Figure 7.1 above presented an overview of OntoCase and its tasks, addition-

ally Figure 7.2 shows a tentative instantiation of the OntoCase cycle. The

general framework is presented at the centre of the figure and an example of

how these phases can be realised in actual tasks with input and output data

is surrounding the core framework. In the OntoCase approach, illustrated

at the centre of Figure 7.2, the case base corresponds to a pattern catalogue,

denoted pattern base, containing both ontology design patterns and tenta-

tively architecture patterns, although no such patterns were constructed

yet. Patterns are here seen in a broad sense, as recurring reusable modules,

but not necessarily proposed and certified by any ’pattern authority’, as

discussed in chapter 5. The patterns on the design level are constructed for

automatic use and are therefore small self-contained ontologies described

in some ontology representation language, examples presented in chapter 5

and appendix B.

The first OntoCase phase corresponds to case retrieval and constitutes

the process of analysing the input, i.e. the text corpus, extracting ontolog-

ical elements and matching them to the pattern base, and then selecting

appropriate patterns. The second phase, case reuse, constitutes the process

of reusing retrieved patterns and constructing a first version of the ontology,

by adapting, i.e. specialising, and composing the patterns. The third phase

concerns revision of the ontology, improving the fit to the intended scope

and task and improving the ontology quality. The final phase includes the

discovery of new patterns as well as storing pattern feedback.

In Figure 7.2 the OntoCase process is described at the centre of the

figure, and surrounding it an example instantiation of the complete process

is illustrated. The process starts from the top of the figure, with the input

provided by the user, and proceeds clockwise in the illustration. Certainly

the process is not limited to being applied in a linear fashion, the intention

is to be able to apply each phase independently, or iterate the complete

process if necessary, depending on available input data. Each phase in

itself may also contain iterations, but for the sake of simplicity we will here

describe the process step by step.

In the OntoCase approach there is an uncertainty inherent in all the

described steps. Each primitive found in the analysis of the input, mainly

terms and relations, can have a certain degree of confidence associated with

it, and so can the pattern primitives. The pattern confidences are based on



206 CHAPTER 7. ONTOCASE

T
e
x
t 
A

n
a
ly

s
is

 T
er

m
1

 T
er

m
2

 T
er

m
3

 T
er

m
4

 T
er

m
5

U
s
e
r 

In
it
ia

ti
n
g
 P

ro
c
e
s
s

D
o
c
u
m

e
n
ts

In
p
u
t 
R

e
p
re

s
e
n
ta

ti
o
n
 

(t
e
rm

s
 a

n
d
 r

e
la

ti
o
n
s
)

P
a
tt
e
rn

 R
a
n
k
in

g
 

a
n
d
 S

e
le

c
ti
o
n

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
5

C
8

C
2

C
8

C
4

C
9

C
1

0
C

1
1

C
1

2

C
1
3

O
n
to

lo
g
y
 D

e
s
ig

n
 P

a
tt
e
rn

s

R
e
u
s
e

R
e
tr

ie
v
e

R
e

v
is

e

R
e
ta

in

R
e
p
re

s
e
n
ta

ti
o
n
 

o
f 

te
x
t 
c
o
rp

u
s

In
it
ia

l 

O
n
to

lo
g
y

R
e
v
is

e
d
 a

n
d
 

E
x
te

n
d
e
d
 

O
n
to

lo
g
y

T
e
x
t 

C
o
rp

u
s

R
e
tr

ie
v
e
d
 

p
a
tt
e
rn

s
L
e
a
rn

e
d
 

P
a
tt
e
rn

s

O
n

to
lo

g
y
 

D
e
s
ig

n
 

P
a

tt
e

rn
s

A
rc

h
it
e
c
tu

re
 

P
a
tt

e
rn

R
e
s
u
lt
in

g
 O

n
to

lo
g
y

M
a
n
u
a
lly

 

C
o
n
s
tr

u
c
te

d
 

P
a
tt
e
rn

s

U
s
e
r

A
rc

h
it
e
c
tu

re
 P

a
tt
e
rn

C
o
n
s
tr

a
in

t 
1

C
o
n
s
tr

a
in

t 
2

C
o
n
s
tr

a
in

t 
3

..
.

C
1

C
1

5

C
3

C
1
4

C
5

C
7

C
2

C
8

C
4

C
1

0
C

1
1

C
1

2

C
1

3

T
h
in

g

C
1
7

C
1
9

C
1

6

P
a
tt
e
rn

 I
n
s
ta

n
ti
a
ti
o
n
 

a
n
d
 C

o
m

b
in

a
ti
o
n

C
o
v
e
ra

g
e
 E

v
a
lu

a
ti
o
n
 

a
n
d
 E

x
te

n
s
io

n

O
n
to

lo
g
y C

1
C

1
5

C
3

C
1

4

C
5

C
6

C
7

C
2

C
8

C
4

C
1

0
C

1
1

C
1

2

C
1

3

T
h

in
g

C
1

7

C
1

9

C
1
6

C
2
0

C
2

5

C
2
1

C
2

3

C
2
4

C
2

6

E
x
te

n
d
e
d
 O

n
to

lo
g
y

 T
er

m
1

 T
er

m
2

 T
er

m
3

 T
er

m
4

 T
er

m
5

In
p
u
t 
R

e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 a

n
d
 

E
x
te

n
s
io

n

C
1

C
1
5

C
3

C
1

4

C
5

C
6

C
7

C
2

C
8

C
4

C
1
0

C
1

1

C
1
2

C
1

3

T
h

in
g

C
1

7

C
1

9

C
1
6

C
2

0

C
2
5

C
2

2
C

2
1

C
2
3

C
2

4
C

2
6

W
e
b
 P

a
g
e
s

 T
er

m
1

 T
er

m
2

 T
er

m
3

 T
er

m
4

 T
er

m
5

In
p
u
t 
R

e
p
re

s
e
n
ta

ti
o
n

E
v
a
lu

a
ti
o
n
 a

n
d
 

R
e
v
is

io
n

C
1

C
1
5

C
3

C
1

4

C
5

C
6

C
7

C
2

C
8

C
4

C
1

0
C

1
1

C
1
2

C
1

3

T
h

in
g

C
1

7

C
1

9

C
1
6

C
2

0

C
2
5

C
2

2
C

2
1

C
2

3

C
2

4
C

2
6

U
s
e
r

P
a
tt
e
rn

 D
is

c
o
v
e
ry

C
1

C
1
5

C
3

C
1

4

C
5

C
6

C
7

C
2

C
8

C
4

C
1
0

C
1

1

C
1
2

C
1

3

T
h

in
g

C
1

7

C
1

9

C
1
6

C
2

0

C
2
5

C
2

2
C

2
1

C
2
3

C
2

4
C

2
6C

1

C
2

C
3

C
4

C
5

C
6

C
7

O
n
to

lo
g
y
 

D
e
s
ig

n
 P

a
tt
e
rn

P
a
tt
e
rn

 

C
o
n
s
tr

u
c
to

rs

U
s
e
r

E
x
te

n
d
e
d
 O

n
to

lo
g
y

O
n
to

lo
g
y
 O

u
tp

u
t

O
n
to

lo
g
y
 

D
e
s
ig

n
 P

a
tt
e
rn

 

C
a
n
d
id

a
te

s

W
o
rd

N
e
t

Figure 7.2: The OntoCase approach.



7.1. ONTOCASE OVERVIEW 207

a set of factors, where one factor is the ’nature’ of the pattern, i.e. whether

it is a consensual ontology design pattern that was manually constructed

representing some best practice or if it is a pattern retained from one or

several solutions, i.e. a pattern candidate. The pattern primitives match

extracted elements only to a certain extent, and the levels of confidence are

transferred onto the elements of the constructed ontology when it is built.

To store the ontology using a standard ontology representation formalism,

such as OWL, thresholds can be set for acceptable confidence levels or the

ontology primitives can be validated by a user.

When comparing the complete OntoCase cycle to the initial approach

used in the experiment described in chapter 6, the experiment covered two

of the four phases. The analysis of the input text corpus and selection of

patterns were in the experiment realised using existing text processing and

string matching algorithms, and the combination used a näıve implementa-

tion mainly transforming input and output into correct formats. The reuse

phase, composed patterns based on heuristics and used the extracted ele-

ments only for tailoring labels and synonyms. Compared to the conducted

experiment the phases have been considerably improved in the current On-

toCase approach. The description of the retrieval and reuse phase below

shows actual solutions together with future work, while the discussion of the

revise and retain phases describes theoretical views and future work, since

OntoCase as a whole is still ongoing research. However, first we provide

a more detailed discussion about the pattern base for storing design and

architecture patterns.

7.1.3 Pattern base

The pattern base would tentatively contain two distinct kinds of patterns,

patterns on the design and on the architecture level. Among the patterns

on design level the focus is on design patterns representing solutions to

restricted partial problems, i.e. solutions to modelling problems providing

small pieces of the complete solution. These are represented as small ontolo-

gies, as described in chapter 5. Intuitively, ontology design patterns need a

certain level of abstraction to be reusable in several cases, just as patterns

in other areas. However, ontology design patterns for automatic use need

to be specific enough to be matched against the extracted elements and be

suitable for providing missing general domain knowledge not explicit in the

input text corpus, and they need to be formally represented.

All the patterns on design level are thereby small ontologies, with the



208 CHAPTER 7. ONTOCASE

Figure 7.3: A pattern covering communication event concepts.

Figure 7.4: A pattern covering concepts related to positions.

restriction that the graph representation of the pattern must be connected.

At this point we do not restrict our approach to only ’certified’ or com-

monly patterns, but also accept any kind of proposed pattern candidates.

The quality of patterns certainly affect the quality of the output ontologies,

but with the scarce pattern catalogues existing today we have to lower the

standard in order to have a sufficient number of patterns to start with. Ex-

amples of slightly simplified versions of two patterns intended for enterprise

application ontology construction that were used in the initial construction

experiment described in chapter 6 are illustrated in Figure 7.3 and 7.4. The

positions pattern clearly qualify as an abstract ontology design pattern, the

communication event pattern is much more domain specific, and might be

treated as a recurring solution rather than an ontology design pattern, since

consensual acceptance and validation of the pattern by the community is

at this point uncertain.

The first pattern, illustrated in Figure 7.3, contains concepts connected

to communication within and between companies. A communication event



7.1. ONTOCASE OVERVIEW 209

has a certain purpose in the organisation and a specific role for a specific

party involved in the communication. This is an example of a relatively de-

tailed pattern, encoding domain knowledge of the business domain, but not

necessarily any specific business domain. Both patterns presented as exam-

ples originate in data model patterns for enterprise database construction,

but were slightly modified, replacing relational model specifics with ontol-

ogy modelling best practices as described in chapter 5. The transformation

was made manually by an ontology engineer. The second pattern example,

illustrated in Figure 7.4, represents a more abstract pattern, dealing with

positions within an organisation and their fulfilment by specific persons.

This is a simplified version of a pattern similarly inspired by data model

patterns.

In the OntoCase method, ontology design patterns can be constructed

manually although candidate patterns can also be discovered from produced

solutions. The manual pattern construction process involves reaching a con-

sensus and encoding best practices in ontology modelling. The OntoCase

method does not focus on this manual process, but assumes the existence

of a pattern base. In case there is a lack of best practices, or consensus,

also the possibility of adapting modelling patterns from other areas, such as

database construction and problem solving methods, could be used as previ-

ously described in chapter 5. In addition to the ontology design patterns in

the pattern base, possibly useful variants and specialisations of these design

patterns can be stored. In this way the distinction between mined patterns,

as reoccurring solutions retained from constructed ontologies, and consen-

sual ontology design patterns will not be strict in the OntoCase approach,

as a matter of fact in the implemented automatic construction process no

distinction is made at all. The automatic discovery of pattern candidates

from solutions is still future work, as described later.

The notion of architecture patterns would tentatively be used to ensure

an appropriate overall structure of the constructed ontology, and to impose

constraints on the ontology construction process. In an abstract sense, an

ontology architecture pattern can, for example, describe a division of the

ontology into modules, layers, and subject areas. Such a general structure

could utilise a top level enterprise ontology similar to what is described by

Uschold et al. [207]. In the OntoCase approach an architecture pattern is

represented as a set of constraints, both used when composing the ontology

from the selected ontology content design patterns and also as a specifica-

tion or restriction when searching for patterns in the pattern base. So far no

architecture patterns have been constructed in practice, mainly due to the



210 CHAPTER 7. ONTOCASE

lack of available enterprise ontologies, but the theoretical notion of archi-

tecture patterns will still be considered as part of the OntoCase framework.

More specifically we envision that future versions of the implemented On-

toCase framework will exploit ontology reference architectures for guiding

the ontology composition process in the reuse phase.

The pattern base is currently realised in the form of a database, only

considering the storage of content design patterns in the form of OWL build-

ing blocks. The pattern base contains metadata of each pattern, pointers

to the actual pattern, and connections between patterns, tentatively includ-

ing connections between possible architecture patterns and content design

patterns. The metadata is part of the pattern base index and is currently

based on the labels of the core concepts of each pattern, a set of manually

entered keywords (optional), the domain of the pattern (optional), and the

name of the pattern. Connections to other patterns can currently be of two

kinds, either the pattern is a ’variant of’ another pattern or it is ’related

to’ another pattern. The variant relation indicates changed patterns, i.e.

patterns with a significant overlap, and can also be used to connect the

consensual design patterns to patterns that are retained solutions. When

patterns are retrieved for matching and ranking, based on a database query,

also variants and related patterns will be retrieved.

7.2 Retrieval

This section discusses the detailed methods of the retrieval phase, in its

current version.

7.2.1 Text processing for ontology learning

A small evaluation was performed comparing one of the recent OL systems

freely available, to more basic text analysis techniques such as tokenisation,

morphological normalisation, and stop word removal. This was done to ex-

emplify why pattern-based methods, e.g. OntoCase, need to rely on recent

OL systems, rather than standard text processing tools. For this example

the collection of concept extraction algorithms in the research prototype

called Text2Onto, as described by Cimiano [34], was chosen. The choice

was based on that Text2Onot incorporates a large number of different al-

gorithms, it is freely available for download, and it is considered by the

community as one of the more elaborate systems existing today.



7.2. RETRIEVAL 211

The example is not intended as a quality measure of the particular ap-

proach, or approaches such as the one proposed by Cimiano [34] in general,

it only aims to point out that certain features such as multi-word term ex-

traction, through algorithms as proposed by Frantzi et al. [71] also used in

Text2Onto, are needed for OL, and that multi-strategy approaches seem to

give more useful results than classical text processing. This is also our mo-

tivation why we build on existing OL systems, even though they are mostly

research prototypes, for element extraction instead of using standard text

processing components.

In the example a small text corpus was first manually analysed by an

ontology engineer, who picked the terms from the text he most likely would

use as labels of concepts, and label synonyms, when building an ontology

to represent the texts. This manually constructed term list was used as

a ’gold standard’, when comparing the result of Text2Onto to different

combinations of basic techniques, i.e. tokenisation, weak stemming, and

stop-word removal, in a standard implementation, i.e. the GATE ANNIE

framework, as described by Cunningham et al. [42].

Some example results are shown in Table 7.1. The experiment covered

several additional combinations, but the ones presented below are sufficient

to illustrate the general issues. The low level of recall using standard com-

ponents, see experiment 1-3, is mainly due to the fact that the classic tech-

niques do not consider multi-word terms, while this can be done through

more elaborate algorithms in tools like Text2Onto. It is also obvious that

the OL approach, see experiment 4, performs a much more effective and

tailored filtering to also increase the precision. This is mainly done through

specific term relevance measures and lexico-syntactic patterns applied on

the parsed text.

In general, existing OL approaches do not only transform terms and lin-

guistic annotations, determined through classic natural language processing

techniques, to an ontology representation, but additionally use algorithms

specifically tailored towards discovering ontology primitives and filtering out

irrelevant information. A problem with using existing OL systems, many of

which are still experimental prototypes, as a basis for OntoCase could be

to introduce a bias, and possibly filter out relevant information. Although

our small experiment indicates that the extracted primitives of the OL sys-

tem better agrees with human intuition, the decisions of a human ontology

engineer, than simply presenting every word from a text, we recognise this

risk since the recall is still below 50% compared to manual extraction. How-

ever, using existing OL algorithms clearly improve a lot on using classical



212 CHAPTER 7. ONTOCASE

Table 7.1: Precision and recall of text analysis for concept discovery.

Experiment Method Precision Recall

1 ANNIE tokenisation 14% 33%
2 ANNIE token. + weak stemming 16% 37%
3 ANNIE token. + weak stemming

+ stop words rem. 18% 37%
4 Text2Onto 52% 48%

text analysis techniques, which is the only alternative in terms of auto-

matic processing, for our specific case. As we shall see later we have used

the Text2Onto approach for performing the text analysis, when an existing

initial ontology is not already available.

7.2.2 Retrieval steps

Below the steps of the retrieval phase are described in detail.

Element extraction

The first step of the retrieval phase, as illustrated in Figure 7.2 previously,

involves extracting a representation of the input text corpus, i.e. extract

ontological elements from the texts. The input could in theory be of differ-

ent kinds, such as HTML pages or database schemas, but so far we assume

plain text files. The extraction involves analysing the input text corpus

to extract as much ’evidence’ relevant to ontological primitives as possible.

This analysis is the main focus of most existing OL approaches, as explained

previously, and studied through the experiment in the last section. There-

fore developing new solutions for this is not the focus of our research, merely

to select existing approaches that fit to the OntoCase approach.

As an alternative to this step OntoCase can also start from an existing

ontology, instead of extracting the elements from a text corpus. This initial

ontology might have been extracted by some other OL tool, it might be

the output of OntoCase itself if used iteratively, or it may be any ’seed

ontology’ that the user provides. Whether the elements are extracted from

a text corpus or present in an ontology, OntoCase stores them as an ontology

representing the input, i.e. the input representation in terms of CBR. The

extracted elements are assumed to be associated with normalised confidence

values, representing the confidence with which the elements are believed

to be correctly extracted and appropriate for the ontology. If the input is



7.2. RETRIEVAL 213

instead an ontology, as mentioned above, its elements can also be associated

with confidence values, e.g. if the ontology is the result of a previous run

of OntoCase, but if not, the further application of the OntoCase method

can be performed also without such values, although the result will be more

uncertain.

Pattern matching, ranking and selection

The second step of the retrieval phase involves comparing the input rep-

resentation, i.e the lists of terms and relations or the seed ontology, with

associated confidence values, if present, to the pattern base. When viewing

the matching on an abstract level it is similar to ontology matching, with

the addition that both ’ontologies’, the input representation and the pat-

tern, are uncertain, as explained above. On a more detailed level there are

also some specific characteristics of the ontologies being matched, i.e. the

patterns are relatively small, well structured, and abstract, while the input

representation can be large, and is usually quite diverse and sparsely con-

nected. The matching results is a special kind of ontology alignment, used

in the reuse phase for composing the ontology. It is also used in this step, as

a set of correspondences, each associated with a type and a value, between

primitives of the input representation and the patterns, for computing the

total ranking value. The matching method developed is heavily inspired by

recent ontology ranking schemes, such as the one described by Alani and

Brewster [6], although our approach draws on the richer structure of the

input extracted from the text corpus.

We propose a ranking scheme based on four different factors; concept

coverage, relation coverage, density and semantic proximity of matched con-

cepts in the pattern. Each pattern is evaluated against these factors and

a single value representing the rank of the pattern can be computed. The

pattern selection is made based on choosing patterns in the ranking order

and computing the resulting total coverage over the input representation.

Patterns are chosen until a threshold is reached, either a threshold on the

ranking value itself, or a sufficient coverage has been obtained, or the in-

crease in coverage is no longer significant by selecting more patterns.

To illustrate this process through an example we use the positions pat-

tern presented in Figure 7.4 and a pattern describing work effort and its

connection to the realisation of requirements, as illustrated in Figure 7.5

below. The example input representation is based on a set of randomly

selected short passages extracted from the text corpus used in the initial



214 CHAPTER 7. ONTOCASE

Figure 7.5: A pattern covering work efforts and requirements.

Figure 7.6: List of extracted terms with associated confidence values.

experiment of Section 6.2.3, i.e. project plans and process descriptions of

a company in the automotive industry. The details of the term extraction

are not relevant here, but it results in a term list of 33 terms as shown in

Figure 7.6, which will be used throughout this example.

For this example we only compute the concept coverage and use this as

the pattern rank. Concept coverage is based on a direct and an indirect part,

the direct part being term and label similarity, determined through string

matching, and the indirect part being subsumption coverage, determined

for example through the WordNet dictionary and a head heuristic. We

apply the Jaccard string similarity measure, details explained by for example

Cohen et al. [39], with a threshold of 0.5 on the term list and the two



7.2. RETRIEVAL 215

Table 7.2: String matching scores.

Pattern concept label Extracted term Similarity

requirement requirement 1.0
project project 1.0
phase phase 1.0
development development 1.0
production production 1.0
product requirement product 0.5
product requirement requirement 0.5
work requirement work 0.5
work requirement requirement 0.5
work effort work 0.5
project project management 0.5
project project manager 0.5
project sw project 0.5
development sw development 0.5

patterns. The concept labels of the positions pattern in Figure 7.4 have no

matching terms in the term list. On the other hand, the work effort pattern

from Figure 7.5 displays several matches, see Table 7.2.

Indirect concept coverage measures are applied to discover, with assis-

tance of WordNet and heuristics as mentioned above, that for example the

terms designer, engineer, developer and manager are concerned with peo-

ple, thereby indicating that the concept person in the positions pattern can

’indirectly’ cover these terms. Similarly, some terms can be found that are

possibly covered by the concept of organisation. In total this gives the po-

sitions pattern the aggregated concept coverage value of 0.27. For the work

effort pattern also some indirectly covered terms can be found and together

with the direct coverage, the string matching results, this results in a value

of 0.35. In these numbers the uncertainty of the extracted terms is incor-

porated, as well as the uncertainty of the matches and the fraction of the

pattern that is covered. In the complete method the ranking scheme would

proceed to calculate the relation coverage, the density, and the proximity

of the matched concepts, before aggregating these into a rank value.

The important benefits of this approach is the ability to rank abstract

patterns, such as the positions pattern with no directly overlapping terms,

since the ranking is not only based on simple string matching. The complete

ranking algorithm takes into account extracted and matched relations, and

the utility of the patterns in terms of their structure in relation to the



216 CHAPTER 7. ONTOCASE

matched concepts. For pattern selection the total coverage of the pattern(s)

over the input representation should be computed. Selection can then be

made based on what the user defines as sufficient coverage, as well as the

coverage gain in selecting more patterns. The details of the ranking scheme

are presented later in section 7.5.

7.3 Reuse

The reuse phase is concerned with instantiating, i.e. adapting and special-

ising, and combining the patterns into an initial solution ontology. The

combination process tentatively uses the architecture pattern chosen by the

user, if present, to guide the composition, while iterating over all selected

patterns. The default rule is to only include those parts of a pattern that

had some match in the input representation. This includes selecting only

matched concepts, selecting appropriate labels, and their synonyms, as well

as selecting relations. The process is enhanced by a set of heuristics, in-

tended to create a more well-structured ontology.

In the example presented in the last section, for the positions pattern the

default rule would imply to only include the concepts person and organisa-

tion, which covered some input primitives, but additionally a heuristic can

be used to include the superconcept party if it is desirable to keep the instan-

tiated pattern ’connected’. Another such heuristic is to use the transitive

property of taxonomic relations, including more taxonomic relations to keep

the ontology connected even if not all intermediate concepts were matched

and included. The heuristics currently proposed include the heuristics of

the initial method, as presented in section 6.2, and two additional heuristic

that were added in the revision of OntoCase:

1. Include all relations between added concepts/terms, even if they were

not matched.

2. Use the transitive property of hierarchical taxonomic relations, if an

intermediate concept is missing add the child directly at the level of

the missing concept.

3. Add all extracted subconcepts (terms) of concepts (terms) that were

matched to a pattern concept and included.

4. An associative relation which originally relates two concepts (or terms)

is added even if one of the concepts (or terms) is missing, if and only



7.3. REUSE 217

if there is a direct subconcept of the missing concept (or term) present

in the ontology.

5. Add all superconcepts of pattern concepts that were matched to ex-

tracted elements.

The first heuristic is included since relations are a lot harder to ex-

tract from a text corpus than terms, hence there will be a number of re-

lations missing. If two pattern concepts are matched to extracted terms,

and the concepts are connected through a relation in the pattern, which is

not matched, the relation can still be included in order to ensure that the

pattern structure is preserved, as illustrated in Figure 7.7.

Concept 1

Pattern Extracted elements

Concept 2

Relation 1

Term 1

Term 2

Direct

match 1

Direct

match 2

Concept 1/

Term 1

Concept 2/

Term 2

Relation 1

Resulting ontology

Figure 7.7: Heuristic for adding unmatched relations.

The second and fourth heuristics are included to preserve the structure

even if there are ’gaps’ in the matched parts. Gaps in the taxonomy are

closed by using the transitive property of the subclass relation. Adding

relations that could be added based on the first heuristic even if a concept

in the taxonomy is missing, is the focus of the fourth heuristic. Examples

of the heuristics are illustrated in Figure 7.8 and in Figure 7.9 respectively.

The third and fifth heuristics are included to preserve taxonomies present

in the extracted elements and in the patterns. From patterns we pick the

general top structure, and from the extracted elements we pick the specific

taxonomies of terms extracted from texts. Examples of the heuristics are

illustrated in Figure 7.10 and in Figure 7.11 respectively.

Pattern composition is another task during the ontology building of

the reuse phase. During pattern composition, pattern overlap needs to be

resolved. For some patterns explicit ’variant of’ relations exist in the pat-

tern base, then these can be used to assume an overlap between patterns.

Overlap can additionally be handled using heuristics, for example assuming

that two concepts represent the same concept if they have the same set of



218 CHAPTER 7. ONTOCASE

Concept 1

Pattern Extracted elements

Concept 2

Subclass of

Term 1

Term 2

Direct

match 1

Direct

match 2

Concept 1/

Term 1

Concept 2/

Term 2

Subclass of

Resulting ontology

Concept 3

Subclass of

Figure 7.8: Heuristic for taxonomic relations.

Concept 1

Pattern Extracted elements

Concept 2

Relation 1

Term 1

Term 2

Direct

match 1

Direct

match 2

Concept 1/

Term 1

Concept 3/

Term 2

Relation 1

Resulting ontology

Concept 3

Subclass of

Figure 7.9: Heuristic for downward propagation of relations.

Concept 1

Pattern Extracted elements

Term 1

Term 2

Direct

match 1

Concept 1/

Term 1

Term 2

Resulting ontology

Concept 3

Subclass of
Subclass of

Subclass of

Term 3

Term 4

Subclass of

Subclass of

Term 3

Subclass of

Term 4

Subclass of

Figure 7.10: Heuristic for preserving extracted structure.



7.4. FUTURE WORK - REVISE AND RETAIN 219

Concept 1

Pattern Extracted elements

Concept 2

Subclass of

Term 1

Direct

match 1

Resulting ontology

Concept 1

Concept 2/ 

Term 1

Subclass of

Figure 7.11: Heuristic for preserving pattern top levels.

synonyms and no conflicting relations, or other axioms. This is an initial

approach, also used for the first version of OntoCase, that needs further

refinement in future work, and should conform to more advanced methods

of ontology integration and merging. However, this has not been further

developed in this version of the OntoCase method. The confidence values

of the pattern primitives and input representation primitives are used to-

gether with the matching values to compute new confidence values for the

primitives of the resulting ontology.

7.4 Future work - revise and retain

For the revision phase, one objective is to compensate the missing back-

ground information of input texts, i.e. to really cover the complete domain

intended. Some missing parts have already been added with the help of

design patterns, but still we can see from the initial experiment that this

will probably not be enough. In this case we have to use external sources

of information to try and attach extracted primitives to the ontology, and

extend it, in a structured way. Our idea for improvement involves using

selected (focused) parts of the web to gather more general information. In

addition a second step of the revision phase will focus on reduction of re-

dundancy and resolving inconsistencies in the ontology. This step would be

based on user intervention, hence an appropriate graphical user interface is

essential.

The final phase, retaining patterns, is mainly inspired by approaches

to ontology modularisation and algorithms for finding strongly connected

graph components. Finding coherent parts of the ontology that might con-

stitute suggestions for new patterns can be done by traversing the taxon-

omy, and through heuristics the candidates can be restricted in their size



220 CHAPTER 7. ONTOCASE

and structure. We envision some user involvement in this step, validat-

ing and possibly generalising the candidates before inclusion in the pattern

base. The feedback process for existing patterns, involves the recalculation

of confidence values present in the applied patterns, as well as supporting

the user in making pattern changes or updates. Purely manual pattern

construction methods are considered outside the scope of OntoCase, but

manually constructed patterns can be stored and used in the approach.

7.5 Pattern ranking

The problem of pattern ranking focuses on describing how well a pattern

fits to the input representation. The patterns are in general more abstract

than the primitives found in the input hence a straight forward matching

is not always possible, in contrast to the selection approaches that exist.

Instead the matching must be viewed as a process of gathering clues as to

whether a pattern might be suitable or not. In this thesis we focus on a

ranking scheme that utilises a multi-strategy approach.

First, matching of terms against concept labels is applied, similarly to

the approaches existing for ontology search. Inexact matching is used but

still only a few similarities will be found, mainly due to the abstraction

level of patterns. Additionally an indirect matching is introduced, ’abstract-

ing’ from terms to concepts. Also, the extracted relations will be matched

against the pattern relations. Term to relation label matching is applied

in some related approaches, but in our case we additionally utilise the fact

that we have already distinguished between terms representing possible con-

cepts and terms representing relation labels in the input representation. As

a third step quality measures similar to the ones used for ontology search

are applied, to give clues on the usefulness of the pattern, but the measures

are selected and adapted based on the specific characteristics of ontology

patterns.

The ranking scheme is inspired by recent ontology ranking and selection

approaches as mentioned above, but also has some major differences. First,

the input to an ontology search engine is commonly assumed to be a small

set of keywords. In our case the input resembles a diverse ontology, in the

form of a term list and possible relations between those terms. This richer

structure should be utilised, hence the addition of a relation matching part

which is not present in any of the related approaches for ontology search.

Since patterns are constructed to be reusable components they can be as-



7.5. PATTERN RANKING 221

sumed to be more abstract than most terms used in a text. This assumption

leads to the additional introduction of two subsumption coverage measures.

The task is also slightly different from that of ontology search and selection

in that the input in our case is intended to restrict the scope of the ontology,

while a keyword search usually only hints to some general topical concepts.

It follows that the common approach in ontology search engines is to study

how well one single ontology covers the query, but in our case the task is

to study how well a pattern fits the input in order to find the best set of

patterns.

When compared to ontology matching, we can also find similarities. We

use many of the basic techniques also used in ontology matching. However,

there are some major difference, since we are already beforehand aware

of the abstraction gap between the extracted elements and the patterns.

Patterns and extracted elements rarely have a large overlap, if any. It

is also hard to rely on structural matching techniques since the structure

around the extracted elements is often quite sparse.

7.5.1 Concept coverage

To determine the direct coverage of extracted terms over the concepts of

a pattern, string matching of concept labels is used. The direct coverage

is computed based on the fraction of the pattern concepts ci that matches

a term ti in the extracted term list T . Each extracted term ti is associ-

ated with a confidence value conf(ti) as mentioned previously. The string

matching between terms and concept labels produces a similarity value

sim(ti, cj) representing the degree of similarity between two strings, any

common normalised string matching measure could be used. These values

are then composed into a weighted matching value for each discovered par-

tial match, match(ti, cj) = conf(ti) · sim(ti, cj). The intuition is to give

higher relevance to matches involving terms with a higher extraction confi-

dence. The confidence values and string matching scores are normalised, so

the matching score (match()) will also assume values between 0 and 1. For

each concept the direct coverage (dc()), the maximum weighted matching

value, is computed as:

dc(ci) = max
t∈T

(match(t, ci)) (7.1)

Since most extracted terms are quite specific, there is a need for addi-

tional ways to find clues of connections between a pattern and extracted

terms. We have chosen to initially focus on possible subsumption relations,



222 CHAPTER 7. ONTOCASE

i.e. hypernym relations between extracted terms and concept labels. Two

approaches are used, looking for connecting hypernym chains in WordNet

and subsequently using the ’head heuristic’ explained previously. The intu-

ition of subsumption coverage is that if a term is subsumed by a concept of

a pattern, then that is an additional clue that the pattern fits to the input.

The dictionary approach starts with a term ti ∈ T . This term is matched

against the WordNet dictionary, through exact string matching, its corre-

sponding WordNet term, if any, denoted by wn(ti). The matching of a

pattern concept cj to the WordNet dictionary can be done ’offline’ and the

match, denoted wn(cj), stored together with the pattern. At runtime the

hypernyms of each wn(ti) are searched for some wn(cj) of a concept in

the currently evaluated pattern p. Since wn(ti) can have several senses,

sen(wn(ti)) denoting the number of senses, there can be several paths from

wn(ti), not all leading to wn(cj) matching the concept cj. If one or more hy-

pernym chains are found between the terms, as illustrated in Figure 7.12, the

number of chains connecting wn(cj) and wn(ti) is denoted by |paths(ti, cj)|

and the shortest chain by pathmin(ti, cj). The subsumption coverage (sub())

of the concept cj ∈ p can be computed as:

sub(cj) =
∑

t∈T

|paths(t, cj)|

length(pathmin(t, cj)) · sen(wn(t))
· conf(t) (7.2)

To directly find some related concept cj in the pattern, for a multi-

word term ti, the so called ’head heuristic’ is applied. For each match the

number of modifiers, additional words preceding the pattern term, denoted

by mod(ti, cj), are treated analogously to a step in the hypernym chains

above. Since we have no information about senses of the terms, this is

disregarded. The formula then takes on this simpler form, for computing

the head heuristic relation coverage (vr()) of a concept cj:

vr(cj) =
∑

t∈T

1

mod(t, cj)
· conf(t) (7.3)

The coverage of each concept is computed as the sum of the three scores,

for each concept of the pattern, with a maximum score for each concept set

to 1. The total number of concepts of the current pattern p is n and the

number of concepts that had any match is m. Then the total concept

coverage (CC()) of the term list T can be computed as shown below.

coverc(ck) = min((dc(ck) + sub(ck) + vr(ck)), 1) (7.4)

CC(p, T ) =
1

n

m∑

k=1

coverc(ck) ck ∈ p (7.5)



7.5. PATTERN RANKING 223

term1

term2

term3

term4

Pattern 1

Input representation

WordNet

Synsets

term5

term6

term7

term8

Hypernym 

relations

ti

cj

wn(ti)=term2

wn(cj)=term8

Figure 7.12: The use of WordNet hypernym chains.

7.5.2 Relation coverage

Relation to relation matching can be done both based on relation labels

and on the term to concept matches found in the direct concept coverage

calculation. If t1 is considered to match c1 and t2 is considered to match

c2, then a relation between t1 and t2 might match a relation between c1

and c2 with some degree of confidence. It is not certain that it is the same

relation, if there are no other clues, but it can be added as a hypothesis with

a certain level of confidence. If the extracted relation is a named relation

then the label is also matched, using the same kind of string matching as

for the term to concept case described previously.

For each relation pri from concept cd to concept cr in the current pat-

tern p, the best match (if any) is selected from the extracted relations,

as illustrated in Figure 7.13, rj from term td to tr. The fitness score of

a match is calculated based on the individual matching scores of the di-

rect concept matches (dc()) and the extraction confidence of rj, denoted

conf(rj). When matching relation labels we let sim(pri, rj) denote the

string similarity between the relation labels. The value of the fitness score

of the pattern relation pri to any extracted relation rj ∈ R, where R

is the set of all extracted relations, can be computed as rel(pri, rj) =
1
2
(match(td, cd) · match(tr, cr) · conf(rj) + sim(pri, rj)).



224 CHAPTER 7. ONTOCASE

Pattern 1

Input representation

td

cr
cd

tr

label1

label2
match(td,cd)

match(tr,cr)

Figure 7.13: The relation matching.

The total relation coverage of one individual pattern relation is:

coverr(pri) = max
r∈R

rel(pri, r) (7.6)

and the pattern coverage is then computed from these individual matches.

The total number of relations in pattern p is denoted n and the number of

matched relations is denoted m. The total relation coverage is:

RC(p, R) =
1

n

m∑

k=1

coverr(prk) prk ∈ p (7.7)

7.5.3 Utility measures

When evaluating ontology fitness, measures like centrality, density and se-

mantic similarity are commonly used. These mainly aim to assess the struc-

ture of a larger ontology but with some modifications similar measures can

also be used for pattern ranking. Among the measures mentioned we choose

to use the notion of density and a variant of semantic similarity that we call

proximity. Measures such as structure and connectedness, as proposed by

[28], only consider the ontology (or pattern) as a whole and are thereby too

crude to give suitable clues on the usefulness of a pattern. Centrality is not



7.5. PATTERN RANKING 225

used since patterns are small, usually at most one or two levels of taxonomic

specialisation and in such a setting centrality does not make sense.

The density measure chosen is a simplified version of the measure pro-

posed by Alani and Brewster [6], considering taxonomically related con-

cepts, taxonomical siblings, and concepts directly related through general

relations. The reason for not including indirect relations is pure simplifica-

tion, and instances are left out because we are dealing with patterns that

are not expected to contain any instances. Both for this measure and the

proximity, all relations are considered disregarding any ’direction’ of the

relation. Hence, a relations from a to b is counted as a relation for both a

and b.

The number of all concepts of a pattern p is denoted by n. The number

of concepts that had any match in the concept coverage evaluation previ-

ously is denoted m, below we assume that ci belongs to this set. The number

of concepts directly connected to ci through taxonomic relations is denoted

tax(ci), and the number of siblings is denoted sib(ci). The number of con-

cepts directly connected to ci through general relations, non-taxonomic re-

lations, is denoted re(ci). Combined, we compute for each concept:

den(ci) = min(
(tax(ci) + sib(ci) + re(ci))

n
, 1) (7.8)

For each concept considered, a ci in the set C containing m concepts,

we finally weight the density value with the coverage value coverc(ci) it

received when matched in the concept coverage stage. The sum of all weights

α =
∑m

j=1 coverc(cj) is used for normalisation. The complete density of

pattern p is expressed as:

DE(p, C) =
1

α

m∑

j=1

coverc(cj) · den(cj) (7.9)

The proximity measure considers those concepts that had some match

through concept coverage, the set C above. The distance dist(ci, cj) be-

tween two concepts ci and cj in a pattern is computed as the length of the

shortest path between the concepts, taking into account all relations, except

paths passing an ’artificial’ root node, present in some ontology languages.

The length of a path from a concept to itself is 0. The maximum distance

(as defined above) between any two concepts in p, matched or not, is de-

noted diam(p). The proximity value of ci and cj can then be expressed

as prox(ci, cj) = 1 −
dist(ci,cj)

diam(p)
· (1 − m

n
) if ci �= cj and prox(ci, cj) = 0 if no

connecting path exists. The total proximity value of pattern p is normalised



226 CHAPTER 7. ONTOCASE

through the sum β =
∑m

k=1(m − k) and computed as:

PR(p, C) =
1

β

n−1∑

i=1

n∑

j=i+1

prox(ci, cj) (7.10)

7.5.4 Rank calculation

In order to make the ranks of the specific patterns comparable between

different instantiations of the process all normalisations are based on each

pattern itself, for example on the pattern size. This gives the benefit of

comparability, since a pattern will get the same rank even if more patterns

are added, as long as the input is the same.

The four measures need finally to be aggregated into one value. Al-

though more advanced combinations could be imaginable, for simplicity

reasons a linear combination is used with equal weight on all four mea-

sures. Let score(p) = {v1, v2, v3, v4} where v1 = CC(p, T ), v2 = RC(p, R),

v3 = DE(p, C) and v4 = PR(p, C). The combined ranking value of a pat-

tern p can be expressed as:

Rank(p) =
1

4

4∑

i=1

score(p)[i] (7.11)

7.5.5 Pattern selection

The simplest approach for selection is to let the user set a threshold on the

ranking value, but this is not very flexible. A more elaborate approach is

to study the total coverage of the patterns over the input representation in

order to dynamically set the selection threshold. A third option is to addi-

tionally study the increase in coverage that each step in the ranking order

produces. Initially we have used a combination of the first two approaches,

setting a threshold both on a suitable coverage and on the pattern rank

itself.

The coverage of selected patterns can be computed using the matching

data from the ranking process. Since patterns may have overlaps, at this

stage two primitives of the same type with equal labels are considered as

equal, all primitives have to be considered independently. For example if two

patterns each cover 50% of the input, this does not necessarily mean that

they together cover 100% of the input. In the worst case the matched parts

are identical, selecting both patterns then still yield only a total coverage

of 50%.



7.5. PATTERN RANKING 227

The coverage is also ’uncertain’, just as during the ranking process. The

coverage of a set of patterns P over the set of input primitives I = T ∩ R,

extracted terms T and relations R, can be expressed as:

Coverage(P, I) =
1

β

∑

primI

max
primP

(cover(primI)) · conf(primI) (7.12)

Where the value is normalised through β =
∑

conf(primI), where conf(primI)

is the original confidence values of the extracted primitives, and where

maxprimP
(cover(primI)) denotes the maximum partial coverage of any pat-

tern primitive over a specific input primitive. Whether cover denotes a

concept coverage, coverc() in equation 7.4, or a relation coverage, coverr()

in equation 7.6, depends on the primitive, if it is a relation or a term.

7.5.6 Ranking experiment

An initial experiment was performed using the above approach. In the ex-

periment the focus was on contrasting the specific features of OntoCase

ranking compared to similar approaches, such as ontology ranking and

keyword-based search, but it is not to be considered a complete evaluation.

Experiment overview

From the catalogue of patterns used in previous research experiments, see

chapter 6, 10 patterns were randomly selected. Due to space limitations

it is not feasible to show the details of each pattern, but in Table 7.3 the

general topic and number of concepts of each pattern are presented. It is

worth noting that all patterns are ’connected’, in a graph sense. The general

domain of the experiment for which the patterns were originally used was

product development enterprises, with focus on requirements engineering,

but the patterns are not domain specific with regard to industry domain,

only the type of enterprise ontology.

A subset of the texts used for the same experiment as mentioned above

was selected and the texts were reduced to a small corpus of six short doc-

uments. The origins of the texts are process descriptions and project plans

from a single enterprise. Based on these texts the patterns were first man-

ually ordered, through a card sorting-like method letting an ontology engi-

neer order every possible pair of patterns, based on the perceived fit. This

process was conducted twice, once with the instruction to order patterns

based on topical content and once to order them regarding the structure



228 CHAPTER 7. ONTOCASE

Table 7.3: Example patterns

Name Conc. Topic description

a) Product categories 11 Classification of product category concepts.
b) Work effort 24 Describing work effort connected to requirements,

organisations and work effort categories.
c) Validation 19 Steps and techniques in validation and testing.
d) Actions 8 Types of actions and their connections to plans.
e) Requirements analysis 4 General tasks of requirements analysis.
f) Organisations 8 Taxonomy of organisation concepts.
g) Parties 14 Classification of different parties.
h) Product associations 10 Categories of associations between products.
i) Positions 7 Types of positions and their fulfilment by a party.
j) Product features 24 Categories of product features and their attributes.

and perceived utility. The combination of these two orderings, from three

ontology engineers, resulted in the manual ranking of patterns that is used

for comparison against the automatically computed ranking orders below.

It is not to be perceived as the completely ’correct’ order of patterns, only

as an indication of how human ontology engineers perceived the patterns.

To create a true ’gold standard’ a larger group of subjects would be needed.

The text corpus used for the manual evaluation was processed by an

existing OL system, proposed by Maedche [123], resulting in 48 terms, at

a frequency threshold of 10, and 60 relations, each associated to a confi-

dence value. This extraction was not considered as a main factor of this

experiment since all automatic ranking was based on the same input, but

compared to the manual ranking this constitutes a bias.

First, keyword search, both exact and inexact matching, was used, rank-

ing the patterns according to how many keywords were present in the pat-

tern. The inexact matching was based on string inclusion, how large part

of one string was covered by the other. In the experiment the threshold

for considering the terms as ’matching’ was set to 0.5. The rank was then

computed as the fraction of pattern concepts matched.

Next, ranking was performed using the AktiveRank ontology ranking

scheme as described by Alani and Brewster [6], since this was considered

to be the most similar ranking scheme among the related work. A slight

simplification was made concerning the density measure, removing the in-

direct relations count. The experiment used a re-implementation of the

ranking scheme, based on the description presented by Alani and Brewster

[6], where ambiguities existed the formulas and not the textual explanations

were used.

Finally, the OntoCase pattern ranking approach presented in this paper

was applied. As an inexact string matching measure the same string inclu-



7.5. PATTERN RANKING 229

Figure 7.14: An ontology design pattern including the positions concept.

prototype(1.0)

ascm(0.81)

meeting(0.81)

acsm(0.69)

mini(0.69)

overview(0.69)

quality(0.69)

sub(0.69)

sw verification(0.69)

description(0.61)

document(0.61)

engineer(0.61)

engineering(0.61)

information(0.61)

module(0.61)

phase(0.61)

product(0.61)

production(0.61)

sw project manager(0.61)

sw project management(0.61)

system(0.61)

team(0.61)

verification(0.61)

work(0.61)
...

Figure 7.15: An extract from the terms list used.

sion as in the previous approaches was used. The comparison should not be

viewed as a full evaluation of the proposed research, merely as an indica-

tion of its usefulness. More thorough evaluations of the complete OntoCase

approach, including the ranking of patterns, are presented in chapter 8.

Example ranking computation

To illustrate the actual process of computing the ranking score of one specific

pattern, we look at one example pattern and present the steps in detail. To

increase the understandability of this example one of the smallest patterns

were chosen, the positions pattern, pattern i in Table 7.3. This pattern can

be illustrated as in Figure 7.14 and a part of the extracted terms, the term

list T , used for matching can be seen in Figure 7.15.

In the case of this pattern, no term matches any concept label so dc(ci) =

0 for all ci in the positions pattern. On the other hand, both the concept



230 CHAPTER 7. ONTOCASE

labels person and organisation covers a set of terms through WordNet hy-

pernym chains. Four terms, engineer, designer, developer and manager

can be found in WordNet as hyponyms of person. In the case of engineer

for example, it has two senses in WordNet and in one sense engineer is a

direct hyponym of person. The contribution of this to the total subsump-

tion coverage of person is then 1
1·2

= 0.5, and weighted by the confidence

0.5·0.61 = 0.305. The contributions from the other three terms are summed

up and the result is sub(person) = 0.845 (equation 7.2). Analogously the

coverage of organisation is determined to be sub(organisation) = 0.677.

The vertical heuristic does not give any contribution, so the total cover-

ages are equal to the subsumption coverages, thus coverc(person) = 0.845,

coverc(organisation) = 0.677 and coverc(ci) = 0 for all other ci in the

pattern (equation 7.4). The total concept coverage of the pattern is then

(according to equation 7.5):

CC(positions, T ) =
1

7
(0.845 + 0.677) = 0.217

No direct concept matches were found in this pattern, thus no relation

matches can be found this way. In addition no relation labels match, so in

total no relation matches can be found, since the relation matching relies

on the direct concept coverage dc() and label matching. When computing

the utility scores for the pattern only the two matched concepts person and

organisation were used. When computing the density of the concept person

it was noted that person has one taxonomically related concept, namely its

superconcept party, but it also has one sibling in the taxonomy, namely

organisation. Additionally person is related to the positionfulfillment

concept. The density of person is therefore computed as den(person) =
(1+1+1)

7
= 0.428 (according to equation 7.8). After a similar computation

for the organisation concept, the total density score can be computed as

(according to equation 7.9):

DE(position, {person, organisation}) =

1

0.845 + 0.677
(0.845 + 0.677) · 0.428 = 0.428

Next, the proximity between all possible pairs of matched concepts was

considered. In this case there existed only one possible combination, the

pair person − organisation. The length of the shortest path between the

two concepts was 2 and the diameter of the pattern was 3. The proximity

of person and organisation is then prox(person, organisation) = 1 − 2
3
·



7.5. PATTERN RANKING 231

Table 7.4: Ranking order (1-10) of the patterns (a-j).

Method — Position 1 2 3 4 5 6 7 8 9 10

Manual b) i) h) j) e) d) a) c) g) f)
Keyword b),d),f) h) a) c) j) e),g),i)
Keyword(inexact) b),e) j) d),f) c) h) a) g),i)
AktiveRank j) b) a) h) c) e) d),f) g),i)
OntoCase h) b) a) e) i) j) f) g) d) c)

(1 − 2
7
) = 0.524 and the total proximity score of the pattern is (according

to equation 7.10):

PR(positions, {person, organisation}) =
1

1
(0.524) = 0.524

Finally, the rank of the pattern is computed through combining the four

measures with equal weights (according to equation 7.11). The final ranking

value is

Rank(positions) = 0.25 · 0.217 + 0.25 · 0+

0.25 · 0.428 + 0.25 · 0.524 = 0.292

Results and analysis

The result of the ranking experiment can be viewed in Table 7.4. Since none

of the ranking orders represent the ’correct’ ranking there is no possibility

to completely assess the overall performance of these ranking schemes. We

will instead attempt to analyse their general features, and find benefits and

drawbacks for the specific case of pattern ranking for automatic ontology

construction.

First, we note that some patterns were ranked highly by all approaches,

such as pattern b concerned with work effort. This is not surprising since

the texts were gathered from plans and process documentation. In addition,

the pattern uses mainly the same terminology as the texts since it is ranked

highly even using exact term matching. In the general case however, such

patterns will be rare and quite domain specific.

Much more commonly there are abstract and domain independent pat-

terns, such as pattern i, the positions pattern described in the previous

section. For a human assessor it is natural to rank such a pattern highly,

since plans and process documents focus on different positions for various

projects that are in turn filled by specific persons. In the experiment pre-

sented above, out of the automatic ranking approaches OntoCase is the only



232 CHAPTER 7. ONTOCASE

one able to find the connections between specific extracted terms and the

more general concepts, and thereby more intuitively rank this pattern.

Compared to AktiveRank the effect of excluding the centrality and tun-

ing the measures in OntoCase is notable. AktiveRank ranks large patterns,

with a substantial taxonomic structure, higher than the OntoCase approach.

Examples of this can be seen in the ranking of patterns j and c, two of the

largest patterns, which in both cases differ five steps in the ranking order be-

tween AktiveRank and OntoCase. Generally, patterns are reasonably small

and abstract, to increase reusability and composability, thereby OntoCase

is clearly better suited to assess such patterns.

Finally, a comparison can be made between the automatic approaches

and the manual ranking order. As stated previously the manual ranking

order does not represent a completely ’correct’ order, but merely gives an

indication of human intuition. Compared to the manual ranking order, the

position of a pattern in the OntoCase ranking is on average 2.3 steps from

the manual order, and the maximum difference of any pattern is 4 steps.

The corresponding value of AktiveRank is 2.4, maximum 7 steps, and 2.7

and 3.2, maximum 7 and 9, for the approaches using keywords, inexact and

exact respectively. Although no general conclusions can be drawn from such

a small dataset we note that the OntoCase ranking scheme definitely has

some desirable properties.

7.6 Notes on the OntoCase implementation

A first version of the OntoCase method, including the two first phases,

was implemented as a proof of concept software during this research. This

implementation was subsequently used for the evaluations. The software

was implemented using the Java language, as a stand-alone command-line

application. The Jena API∗ was used for handling ontologies. Initially the

SecondString† string matching library was used, but later we switched to the

SimMetrics‡ library which is more actively supported. Additional external

software required is the WordNet§ lexical database.

The pattern base has to be provided separately, and is currently deployed

as a MySQL¶ database, however the coupling to the software is loose and

∗http://jena.sourceforge.net/
†http://secondstring.sourceforge.net/
‡http://sourceforge.net/projects/simmetrics/
§http://wordnet.princeton.edu/
¶http://www.mysql.com/



7.6. NOTES ON THE ONTOCASE IMPLEMENTATION 233

this could easily be exchanged for any other type of relational database

supporting remote network access. The pattern files, the actual ontologies,

are locally stored as OWL-files or directly linked to online ontologies on the

web, as in the case of patterns present on the ODP portal‖.

The initial text processing can be done through the Text2Onto∗∗ tool.

An interface to the tool is provided by OntoCase. The alternative is to

provide an input ontology represented as an OWL-file. This can be con-

structed using any OL software, or an existing ontology can be used. Sev-

eral variables can then be set for the construction process, e.g. the ranking

thresholds and the mode of composition. There are two modes of ontol-

ogy composition implemented, a pruning mode and an enrichment mode

including the complete input representation in the output. The pruning

mode uses the patterns as a basis and adds the matched parts of the input

representation using the heuristics, then stores the ontology in an OWL-file.

The enrichment mode uses the opposite approach, starting from the input

representation and adding the matched parts of the patterns.

Some of the ranking and composition data is saved in a log file, e.g. the

ranking scores of each pattern, the list of selected patterns, and the added

elements of each pattern. For analysis purposes also some statistical mea-

sures for ontologies were implemented. Existing tools that provide statistics

usually cannot handle ontologies with cyclic definitions. In our implemen-

tation, for example the average depth of the ontology is computed by only

considering the shortest path from each concept to the root concept, in this

way avoiding any cycles in the taxonomy.

The implementation is flexible, and portable since it is implemented

in Java. Some external components are needed, but if used without the

Text2Onto integration the only input needed is actually a set of OWL-files,

i.e. the input representation and the set of patterns. At the moment the

implementation does not provide a graphical user interface, but this is part

of future work. The OntoCase method could easily be integrated as a plug-in

for almost any existing ontology editing tool, only requiring support for the

OWL language and supporting a plug-in structure. Plug-in implementations

for both Protégé†† and the NeOn toolkit‡‡ will be considered in the future.

‖http://ontologydesignpatterns.org
∗∗http://ontoware.org/projects/text2onto/
††http://protege.stanford.edu/
‡‡http://www.neon-toolkit.org/



234 CHAPTER 7. ONTOCASE

7.7 A small example

Before discussing the actual evaluations of OntoCase in the following chap-

ter this section will provide an illustrative example, using a very small ’toy’

ontology as input. The input ontology shows typical characteristic of on-

tologies extracted through existing OL methods, it is quite diverse and

contains only a very shallow taxonomy with a high number of concepts di-

rectly beneath the root of the taxonomy, in this case owl:Thing. The aim

of this example is to first give an intuition of how OntoCase typically trans-

forms the input when reusing the patterns. Some typical characteristics

and effects on the output of the OntoCase process can be noted. In later

evaluations it will then be shown that OntoCase can actually improve the

quality of larger ontologies, but in this case we are only trying to give an

illustrative example whereby no evaluation measures are applied.

7.7.1 Ontology construction

In this case the input is not a text corpus, instead we use a small ontology

as input to the OntoCase method. The ontology used is a smaller version of

the example used in section 7.5.6. The ontology was reduced to 19 concepts

and 8 object properties, not counting their inverses. An illustration of the

ontology can be viewed in Figure 7.16 The illustration uses UML notation

and has been produced using the visualisation support in the ontology ed-

itor TopBraid Composer∗. In the illustration we can see that 15 out of 19

concepts have no superconcept at all, except owl:Thing which is the super-

concept of all concepts in an OWL ontology, and that 7, i.e. over one third,

of the concepts have no connection whatsoever to the rest of the concepts.

All properties are unnamed, but has a domain and a range defined. This is

a good illustration of typical ontologies produced by existing OL systems,

such as Text2Onto that will be used later.

The output of running OntoCase, with the pruning alternative, on this

input ontology can be seen in Figure 7.17, illustrated using the same nota-

tion as before. The resulting ontology was constructed based on 15 patterns

that had sufficient matches to be included, but most patterns were only par-

tially matched and thereby only partially included in the resulting ontology,

i.e. only some concept or relation had any match. In total the resulting

ontology contains 28 concepts and 13 object properties, not counting their

inverses. One may wonder how 15 patterns were used for this small ontology,

∗http://www.topquadrant.com/topbraid/composer/



7.7. A SMALL EXAMPLE 235

Figure 7.16: The concepts and properties of the input ontology.

but if considering the nature of the very general, domain independent, pat-

terns that were reused here, many of the patterns are also overlapping. As

an example 5 of the reused patterns contained the concept ’object’. These

patterns are overlapping, but since all are extracted from the top-level on-

tology DOLCE, this is indeed the same notion of ’object’ and not different

concepts. The patterns in turn add different aspects of the ’object’ concept.

The ’types of entities’ pattern adds object as a subconcept of ’entity’, while

’participation’ and ’co-participation’ add the relations to ’event’. Other pat-

terns contribute only with one concept, such as the ’person’-pattern that

constitute of only of one concept, since in this case none of the properties

are matched and included.

7.7.2 Result and analysis

The concept coverage of the output ontology over the input ontology terms

is quite high, since 17 of 19 concepts present in the input ontology are also

present in the output, this gives a coverage of 89% with respect to concept

inclusion. All object properties of the input ontology are also present in the



236 CHAPTER 7. ONTOCASE

Figure 7.17: The concepts and properties of the output ontology.

output, hence the relation coverage is 100%. The pruning method chosen for

this example has resulted in the removal of two concepts an no properties,

based on the matching results. Concepts and relations have in this way

mainly been added to the input ontology, rather than filtered or removed.

This is one of the major features of OntoCase. The intention is to add

background knowledge through the use of patterns, and to thereby add

both a general abstract layer to the ontology and give the ontology more

structure in the form of more relations. Since learnt ontologies rarely have

any formal axioms that define the concepts, the interrelations of concepts is

sometimes all we have in order to draw conclusions about the semantics of

the concepts, i.e. the ’meaning’ behind the terms representing the concepts.

Therefore it is essential that such a light weight ontology contains many

properties that can give some clues as to what the meaning of concepts may

be, in order to first of all increase the understandability of the ontology but

possibly also the utility. This was noted in the initial SEMCO experiment

described in section 6.2, where the domain experts found the concepts of

the automatically constructed ontology easier to comprehend and interpret

since they had more relations connecting them to other concepts.

The most remarkable change in the ontology is the addition of quite a few



7.7. A SMALL EXAMPLE 237

subclass relations between the learnt concepts, the input ontology, and the

added pattern concepts. At a first glance this may look like a complete mess,

but looking a bit closer we may note that this is actually a set of alternative

modelling choices, all included for the future evaluation and selection by

the ontology engineer. Consider for example the concept ’specification’ in

the top right part of Figure 7.17. It is a direct subclass of both ’entity’

and ’specification’. This is a common scenario where a redundant subclass

statement has been added. This redundancy could quite easily be filtered

out from the matching data before the statements are added, through only

considering the best matching score for example, but at the moment it is by

choice not done in the OntoCase implementation. The rationale behind it

is to include as much hypotheses as possible, since the method is intended

to be used in combination with manual editing and it is generally easier to

erase parts that are not needed among a set of alternatives, rather than to

think of new alternative that are not present.

In the top left corner of the figure the concept ’team’ shows another

good example of this. Team is here both an ’organisation’, a ’group’, and

an ’entity’. This is not redundant in the same way as for the ’specification’

concepts, but it still represents three alternatives. Probably a final version

of the ontology will not contain all three statements, but including them at

the moment will provide the opportunity to consider all three possibilities

before choosing one or several to remove. Note also that both ’team’ and

’specification’ had no superclasses at all in the input ontology, and now

they are connected to several pattern concepts, which give the added top

structure we were looking for. In addition the patterns provide a set of

general properties that may now be specialised and used for the subclasses.

The ’entity’ concept for example provides the properties hasConstituent

and isConstituentOf, that may be used with other entities. Again we can

consider the concept ’team’ which is stated to be a kind of entity, and the

concepts ’designer’ and ’engineer’ which are also proposed as entities. A

next, manual, step could be to specialise the constituency relations into

team membership relations, specifying that designers for example may be a

constituent of a software development team. Finding such relation special-

isations automatically is still future work.

In addition to the subclass relations added, also some equivalence ax-

ioms have been added based on matching results. The concepts ’design’,

’planning’ and ’description’ were all found to directly match a concept in a

pattern, using the same term as a concept label. In each case, both concepts

were included in the output ontology, but proposed as equivalent through



238 CHAPTER 7. ONTOCASE

an equivalence axiom. For the ’description’ concept the situation is a bit

more complex, since both evidence of a subclass relation and the equiva-

lence relation was found. This is the reason why both those alternatives are

included, as we can see in Figure 7.17.

As stated previously this example aimed at showing some typical effects

of applying OntoCase, before going into detail with respect to the larger

datasets used for the the evaluations presented in the following chapter.

The example above shows how OntoCase adds a general top structure to

the constructed ontology, thus adding some of the general knowledge that

is implicit in the domain. For example stating that planning is a kind of

design, that designers and engineers are people, although this is not always

a perfect modelling choice, and that objects can participate in events. Nu-

merous relations are also proposed, connecting the unconnected parts of the

ontology and proposing different interpretations of the ontology concepts.

At the moment a special purpose user interface to deal with the proposed

alternatives and their rationale originating in the pattern matching, and

even the text processing, is still future work. However, even just adding

this structure gives some added meaning to the concepts that were in the

input ontology simple isolated terms without any kind of explanation or

suggestions for how to interpret them or how to continue their modelling.



Chapter 8

Evaluation of OntoCase

This chapter contains three different sets of experiments using the so far

implemented parts of the OntoCase framework, i.e. the retrieval and reuse

phases. The intention was partly to validate the proof of concept implemen-

tation, to show that it is in fact possible to use ontology design patterns

semi-automatically to construct ontologies, but more important is showing

that the OntoCase method actually improves the results of existing ontology

learning (OL) methods. This chapter also aims to show the improvements

compared to the initial method, as described in chapter 6.

The first evaluation is a rerun of the SEMCO experiment, previously

described in chapter 6. It was repeated as closely as possible, with respect

to the original setting, but taking into consideration that the project ended

some time ago and that not all of the project resources were available, such

as the domain experts used in the previous experiment. The results of

this experiment provide a proof of concept, adding to the evidence from

chapter 6 regarding the feasibility of the approach, and clearly shows the

improvements made to the OntoCase framework.

The second experiment is set in the context of the university domain,

where an initial ontology is constructed for the task of structuring and an-

notating documents and information on a university intranet. The domain

is Jönköping International Business School, at Jönköping University, which

gave the opportunity to evaluate the ontology together with domain experts

from the organisation in question. This experiment shows the applicability

of the method to a company in a different domain, and points out some of

the benefits of the pattern selection and composition methods compared to

typical existing OL methods. Finally, OntoCase was applied in the agricul-

239



240 CHAPTER 8. EVALUATION OF ONTOCASE

ture domain, in order to show the applicability of OntoCase even outside its

intended scope, i.e. enterprise ontologies, and to again show benefits com-

pared to existing state of the art systems for OL. In this setting the focus

is also on showing the beneficial effects of the interaction between several

OL methods and ontology patterns.

8.1 Extended pattern catalogue

The pattern catalogue used for the subsequent experiments described in this

chapter consists of 41 patterns. It is an extension of the previous catalogue,

where additional patterns that are now available online have been included.

The patterns harvested from the web primarily originate from the ontology

design pattern portal∗ (ODP portal). All currently available design pattern

candidates were included, except those that included incorrect import ref-

erences or other errors, and thereby were incomplete. The complete list of

patterns can be viewed in appendix B.

When conducting the initial SEMCO experiment all the patterns were

represented in an F-logic based language, this time the patterns were trans-

lated into OWL. This is also the reason for excluding a few of the patterns

in the initial catalogue, since they did not translate well into OWL without

considerable modifications. The reason for transferring the patterns into

OWL, and using OWL as the base representation for both the second ver-

sion of the implemented OntoCase method and the patterns is primarily

that existing work both on OL and ontology patterns tend to focus more

an more on OWL. In order to compare results to these existing methods,

and to use the ontology patterns that have recently emerged, it is essential

to be able to handle OWL ontologies.

The patterns included in the catalogue originate from several different

domains, some are very general while others are somewhat domain specific.

They are also differing with respect to size, some include a small taxonomy

while others include just one or two concepts but instead some essential

properties. In appendix B some details are given about each pattern in the

original catalogue, including domain and number of concepts. Examples of

a selected number of patterns can also be found in appendix B and on the

ODP portal there are details of the remaining set of patterns.

∗http://www.ontologydesignpatterns.org



8.2. SEMCO REVISITED 241

8.2 SEMCO revisited

The first version of the OntoCase retrieval and reuse phases was used to con-

struct an ontology within the context of the SEMCO project, as described

in section 6.2. The project in itself ended some time before the finalization

of this thesis and the main industry project partner has undergone a major

reorganisation, whereby a complete rerun of the experiment was not pos-

sible. The intention was to construct a new version of the automatically

constructed ontology, throughout this chapter denoted the second version

of the automatically constructed ontology. However also an intermediate

version was constructed, using the new OntoCase method but only relying

on the initial pattern catalogues, this will be denoted the ’intermediate on-

tology’ in this chapter. These two ontologies would then be compared to

the version constructed automatically during the first SEMCO experiment,

throughout this chapter denote the initial, or first, version of the automati-

cally constructed ontology. Additionally the second version is compared to

the final version of the SEMCO ontology, the combined ontology here de-

noted the final SEMCO ontology, representing an approximation of a ’gold

standard’ for the task at hand. However, no ’gold standard’-based evalua-

tion has been used since we still believe that a real ’gold standard’ should

not be proposed without firm evidence from using that ontology in a real-

world setting. Since the intended application of the ontology was so far not

put into use within the organisation of the SEMCO project partners, it is

not reasonable to claim that the final SEMCO ontology is really a ’gold

standard’, i.e. completely correct in all parts representing the domain and

optimised for the intended task. Instead it should be viewed as a more

complete and correct version than the initially proposed manually or auto-

matically constructed ontologies, but not as a completely ’correct’ ontology

since a task-based evaluation was never conducted.

8.2.1 Ontology construction

This second SEMCO experiment involved the construction of two ontologies,

both using the same method for semi-automatic ontology construction but

one using the original pattern catalogue and the other using the extended

catalogue. For constructing the ontologies, this time the updated method,

i.e. the implementation described in section 7.6, was used. The initial step

of text processing was conducted by using the same text extraction methods

and tools as in the previous experiment, together with the same input texts



242 CHAPTER 8. EVALUATION OF ONTOCASE

Table 8.1: Ranking values of the patterns in the SEMCO case.

Pattern name Source Pattern name Source

Actions* 0.11 Validate and test 0.037
Analysis and modelling 0.00 Work effort 0.029
Communication event 0.0076 Time interval 0.00
Employee and department* 0.080 Precedence* 0.26
Engineering change 0.0074 Participation* 0.17
Information acquisition 0.00 Information realisation 0.00
Organisation* 0.074 Description* 0.25
Parts* 0.049 Agent role* 0.17
Party* 0.086 Classification* 0.5
Person* 0.25 Collection entity* 0.27
Planning and scheduling 0.00 Constituency* 0.27
Positions 0.038 Co-participation* 0.098
Product* 0.12 GO top* 0.25
Product associations* 0.11 Invoice 0.00046
Product categories* 0.084 Metonymy 1 FAO 0.011
Product features* 0.061 N-ary participation* 0.063
Requirements* 0.045 Object role* 0.19
Requirements analysis 0.00 Situation* 0.27
System* 0.28 Species v1.0 model* 0.15
System analysis* 0.054 Task role* 0.30
System synthesis* 0.15 Types of entities* 0.31

this meant that the same 190 terms were extracted and used as a basis for

pattern retrieval and selection.

This time an extended catalogue of ontology design patterns was applied

for constructing one of the ontologies. A definite pattern selection thresh-

old, a combination of a rank value threshold and a threshold on the total

coverage of the patterns, was used for the selection, resulting in 29 patterns

being selected for the construction of the second version of the SEMCO

ontology. The rank values of all the patterns can be viewed in Table 8.1

and selected patterns are marked with a ’*’. For the intermediate ontology

the original pattern catalogue was used, and the focus was set on tuning the

thresholds in order to achieve an ontology similar in size to the first version

of the SEMCO ontology. This resulted in 16 patterns that were matched

and selected, compared to 14 patterns in the original experiment.

To be comparable to the previous ontology the pruning version of the

composition algorithm was used to construct both the ontologies from the

selected patterns, i.e. only the terms and relations that matched some

pattern were also included in the ontology. A threshold was set on the

matching values for synonyms, but no threshold was set on subsumption

matches. The selected patterns were added to the resulting ontologies,

together with all the terms and relations that had some match, above the set

thresholds. Finally, the ontologies were exported to OWL-files, disregarding

the confidence values of each element. This resulted in the intermediate



8.2. SEMCO REVISITED 243

ontology having 90 concepts and 37 object properties and the second version

of the ontology based on the extended pattern catalogue having 150 concept

and 48 object properties, both represented as OWL ontologies.

8.2.2 Evaluation setup

To be able to compare the results with the initial SEMCO ontologies the

new versions, the intermediate and the second version, the ontologies were

primarily evaluated using the same evaluation measures as during the first

SEMCO experiment, described in chapter 6. First, some basic structural

measures were used, to give a general idea of the nature and characteris-

tics of the ontologies. For the intermediate ontology, this was considered

enough to show the differences to the initial experiment, whereby it was not

evaluated further. A discussion about the differences was provided instead.

However, for the second version of the SEMCO ontology, the same kinds

of structural evaluations as in the initial SEMCO experiment were per-

formed, in order to find errors in the taxonomy of the constructed ontology.

First the taxonomical evaluation of Gómez-Pérez [84] was performed and

then the OntoClean method was applied. The third and final part of the

evaluation would have been the evaluation together with domain experts,

but since the situation does not allow this, not only have the project ended

but additionally a reorganisation of the main industry partner has made

it impossible, instead we provide a discussion of the changes compared to

the automatically constructed ontology of the initial SEMCO experiment

and how these changes relate to the aspects of the previous evaluation with

domain experts.

8.2.3 Evaluation results and analysis

Below results from the three parts of the evaluation are presented and

discussed in detail. concerning the intermediate ontology results are only

present for the first structural evaluations, but it is also mentioned in the

discussion of functional measures later in this section.

General characteristics

The collected data from the structural measures can be seen in Table 8.2,

together with a comparison to the ontologies of the initial SEMCO ex-

periment. Aut1 denotes the automatically constructed ontology from the

initial experiment, ’Man’ the manually constructed ontology, ’Comb’ the



244 CHAPTER 8. EVALUATION OF ONTOCASE

Table 8.2: General characteristics of the SEMCO ontologies.

Characteristic Man Aut1 Comb Aut2 Aut3

Number of concepts 224 85 379 90 150
Number of root concepts 8 35 5 21 13
Number of leaf concepts 180 64 273 65 107
Avg depth of inheritance 2,52 1,95 3,5 2,10 1,62
Avg number of rel. concepts 0,13 0,79 1,30 0,82 0,64
Avg number of subclasses 1,00 0,57 1,00 1,06 1,62

combined ontology from the SEMCO project, Aut2 the intermediate ontol-

ogy constructed using the initial pattern catalogue but using the improved

method, and finally Aut3 denoting the final version of the automatically

constructed ontology, constructed using the extended pattern catalogue.

The count of attributes has been excluded since this version of the ontology

is represented in a different way, i.e. in OWL, and the notion of attribute

used in the first experiment is not comparable to what could be denoted

attributes in this OWL ontology.

The intermediate ontology is comparable in size to the initial SEMCO

ontology. The initial SEMCO ontology had a coverage of 34% over the

input terms, while the intermediate ontology covers 38% of the input terms.

This increase in coverage is not significantly large, but the intention was to

produce an ontology of similar size using the improved method but the same

patterns as before, and then study the differences in terms of structure. The

number of root concepts has decreased from 35 to 21 in the intermediate

ontology, and we can note general concepts such as ’activity’ and ’facility’

that were not present in the initial version of the ontology, and are not

present in the input. These concepts have been matched using the methods

in the improved OntoCase method for bridging the abstraction gap between

specific terms and general patterns concepts, and provide a more general

top structure for the intermediate ontology. The concept ’activity’ has

subclasses such as ’inspection’, ’release’ and ’test’ that would not have been

possible to connect to the general concept of ’activity’ using the initial

method in chapter 6.

There is a slight increase in the depth of the ontology, and in the number

of general, non-taxonomic, properties per concept, from the initial version of

the ontology to the intermediate ontology. Most significant, however, is the

increase in the average number of subclasses per concept, from 0.57 in the

initial version to 1.06 in the intermediate version. This is due to the ability



8.2. SEMCO REVISITED 245

of the new OntoCase method to add such relations, i.e. subsumption, based

on matching information, which was not present at all in the initial version

of the method, where only direct overlap, i.e. equivalence, was considered.

The conclusion we can draw from this comparison is that the improved

OntoCase method does in fact construct ontologies with a more general

top structure, and with an increased number of relations added, as was the

intention when updating the method.

Next, we consider the final version of the ontology, where not only the

method was changed but we also used the extended pattern catalogue. This

ontology has a quite general top-structure with only 13 concepts directly

beneath the root concept of the taxonomy, which is even less than for the

intermediate ontology. This fact is due to the more general pattern that

were now present in the pattern catalogue, and could be added to provide

this abstract structure. The ontology is also considerably larger than both

the automatically constructed ontology of the initial SEMCO experiment

and the intermediate ontology, thus indicating that the OntoCase method

is able to identify more connections between what can be extracted from

the text input and what is present in the patterns, even though the patterns

were now even more general.

The number of subclasses per concept has increased drastically, even

compared to the intermediate ontology using the same construction method.

This is due to that some very general concepts such as ’event’ and ’object’

present in the added patterns attracted a large number of subconcepts. This

is also the main reason for the decrease in average depth, because many of

the new concepts were added to some of the most general patterns, thereby

creating a quite shallow taxonomy for those parts of the ontology. The aver-

age number of non-taxonomically related concepts has also decreased, this is

due to the ratio between added concepts and added properties, since many

more concepts have been added while only a small amount of additional

properties were found.

A lot of new concepts were matched and added to the ontology, but a

significant number of the relations, properties, originate in the patterns so

there was no significant increase in the number of properties added from the

extracted input. The ontology is thereby not very well connected through

properties on the lower levels of the taxonomy, the object properties origi-

nating in the general patterns connect the top concepts. However, these are

still very valuable, since they can easily be specialise manually and adapted

to more specific concepts. Compared to the ontology constructed in the

initial experiment the second version thus has a lover average number of



246 CHAPTER 8. EVALUATION OF ONTOCASE

directly related concepts, but it is still very well connected on the upper

levels of the taxonomy, while many more concepts are now present on the

lower levels.

The coverage of the 190 input terms, percentage of extracted terms

that also appear in the constructed ontology, is for this final version of the

ontology 64%. This number should be compared to the 34% coverage of

the automatically constructed ontology of the initial SEMCO experiment.

When studying the terms extracted from the text corpus, a set of terms can

immediately be determined to be ’junk’ originating from flaws the text pro-

cessing algorithms, such as letter combinations that are not English words

or misspelled abbreviations, and single letters. Taking this into account,

considering that it is intuitively correct not to include these in the ontol-

ogy, the coverage over the reasonable input terms is instead 70%. This is

quite a good coverage, which in this case means that an ontology engineer

only would have to take care of 68 unconnected terms, including the ’junk’

terms mentioned, if starting to refine the ontology in order to cover all the

extracted terms.

Taxonomic evaluation

In this section the application of two methods for structural evaluation of

the correctness of the taxonomy to the final version of the automatically

constructed SEMCO-ontology is described. The results were analysed and

some examples of problems and errors are discussed below.

The general taxonomic evaluations proposed by Gómez-Pérez [84] was

applied, and during this evaluation some interesting observations were made.

This time, compared to the initial SEMCO experiment in chapter 6, the on-

tology was much more ’tangled’, i.e. it contains numerous cases of multiple

inheritance and redundant relations, thereby this evaluation yielded more

interesting results than for the simpler taxonomies of the initial SEMCO

experiment. The reason for the increased ’tangledness’ of the ontology is

primarily the merging of different kinds of evidence that is conducted dur-

ing the pattern composition and ontology construction in OntoCase. There

can be both evidence for synonymy and hyponymy between two terms, for

instance, and in this case both hypotheses were included, as equivalence

and subclass relations, in the proposed ontology. The intuition behind this

is that since it is an initial ontology, to be further developed either man-

ually or by some other automatic methods, it is more useful to include all

hypotheses than to discard some of them based on uncertain evidence.



8.2. SEMCO REVISITED 247

The evaluation method proposes to first focus on circularity errors. Mul-

tiple inheritance is certainly present, and also some circularities were found,

but only on the level of distance 0. This means that a concept was stated to

be the subclass of itself. The reason for these errors is that the hypotheses

from the matching phase are not filtered, thereby a term that is found to

be a synonym of a pattern term will also possibly be found in for example

WordNet and thereby proposed also as a subclass. This is on the other hand

a small and simple error to correct, since if it is desirable to exclude such

errors a filter could be applied during the construction process, e.g. putting

a preference on equivalence before subclass relations in case both are sug-

gested. On the other hand it is not entirely clear that it is desirable to

exclude these relations, intuitively these circularities suggest a choice to be

made by the ontology engineer, to either keep an asserted equivalent class

axiom or the subclass relation. A future interface for OntoCase should use

such redundancies and support the user in making informed choices.

The ontology does not contain any instances so we can only consider

the structure of classes for the evaluation of partition errors. There are

a few places in the ontology where there exist common classes in disjoint

partitions. This includes the concept ’part’ which is both a subclass of

the concept ’object’ and the concept ’role’. In this case it is a questions

of choosing how to model parts in the ontology. If the enterprise in ques-

tion considers parts as physical components of their products, and thereby

objects, this alternative should be chosen. However, depending on how the

ontology will be used it might still be more suitable to model ’part’ as a role

that a certain object can take in a certain situation. This is an important

modelling choice that is pointed out by this ’error’ in the ontology.

Another such error found is that ’description’ is a subclass of ’concept’

but these two concepts are also disjoint. This error most likely originates in

the fact that the very general concept of ’description’ can be used on several

levels of abstraction. Probably the enterprise in questions refers to an actual

textual description when they use the term ’description’ while the ontology

patterns applied use ’description’ and ’concept’ as two distinct and disjoint

concepts interacting to form definitions of concepts and describe situations.

In this case it is actually the questions of ’description’ having two slightly

differing definitions, although in the ontology they are set as synonyms.

This is a much harder issue to solve than the previous one described. In

this case the description concept would have to be defined in detail and

possibly there is a need for two distinct concepts, referring to the different

meanings of ’description’.



248 CHAPTER 8. EVALUATION OF ONTOCASE

There is one complete decomposition defined in the ontology; ’entity’

is stated to have the complete partition ’abstract’, ’quality’, ’event’ and

’object’. In total these five concepts have 208 subclasses, where 92 concepts

are represented more than once or subclasses of ’entity’ directly, i.e. 44% of

the subclass relations in this sets violate the complete partition restriction.

A large number of these violations occur because concepts are found to be

both direct subclasses of ’entity’ and subclasses of one of the four subclasses.

This is again a matter of presenting the redundant findings to the user

instead of resolving conflicting evidence automatically. The rest of the errors

occur due to that a concept has been found to be subclass of two or more

of the subclasses of ’entity’. In most of these cases it is again a question of

disambiguation of the extracted concepts, and this task is currently up to

the ontology engineer refining the ontology.

Next, the semantic errors of the ontology were studied. 29 semantic

errors were found in the ontology, these are all due to invalid classifications

of extracted concepts. The discovery of semantic errors was done based

only on domain knowledge of the enterprise in question, not on any task

requirements of the ontology. The majority of these errors occur because

some general background knowledge has been used in the pattern matching

process, whereby sometime the knowledge added is too general. It may be

true that ’acceptance’ is a kind of tolerance in a general sense, but in this

specific setting ’acceptance’ is intended to mean the situation when the cus-

tomer in fact accepts the product as the solution they ordered. Fortunately

this second, more specific, meaning is also represented in the ontology, be-

cause acceptance is also a subclass of ’situation’. This illustrates how many

of these errors again represent alternatives that may be incompatible but

can still be valuable to the ontology engineer in order to select the correct

one.

Incomplete concept classifications might be present in the ontology, but

since this is closely related to the task of the ontology it is not possible to

clearly identify these errors. The same problem arises with the partition

errors, what knowledge is really required to be present in the ontology has

to be determined using a detailed task description, or by running the ac-

tual system using the ontology, but neither of these are available in our case.

Finally, checking for redundancy is the last step in this first taxonomic eval-

uation. There are no direct repetitions of subclass relations, but as we have

noted several times before there are many cases of redundant subclass state-

ments in the ontology, i.e. there exist quite a few indirect repetitions. As

also stated previously, many of these can be viewed as suggestions for fur-



8.2. SEMCO REVISITED 249

ther refining the model, or alternatives for making some modelling decision,

whereas we believe that it is not entirely a bad thing that these redundan-

cies exist. There are no identical explicit definitions of any classes, but in

a few cases some synonyms were not detected by OntoCase, and thereby

for example ’organisation’ and ’organization’ are two different concepts, as

well as ’doc’ and ’document’, and ’sw’ and ’software’, and some compound

terms containing the software term.

The second part of the taxonomic evaluation consisted in applying the

OntoClean methodology on the second version of the ontology. A sum-

mary of the OntoClean results can be viewed in table 8.3. The number of

errors found is comparable to the number found within the initial ontol-

ogy constructed previously, which is a reasonably good result since the new

version is considerably larger and thereby could potentially contain more

errors than the smaller initial ontology. First, the concepts in the ontology

were tagged with the rigidity property, whereas a backbone taxonomy of 46

rigid concepts could be distinguished. Incompatible identity deals with how

instances are identified, and in this category two errors were detected, both

connected to the concept ’person’. Both ’supplier’ and ’customer’ are in

the constructed ontology subconcepts of ’person’, which in the general case

might be correct, but in this specific case we are modelling an enterprise

that has other enterprises as both customers and suppliers. Persons can be

identified by, for instance, their social security number, while companies, i.e.

customers and suppliers, can be identified by other means and do not have

social security numbers. This fact points at a modelling problem, ’supplier’

and ’customer’ needs to be organisations rather than persons.

Among the incompatible unity criteria found in the ontology is the fact

that ’name’ and ’source’ are kinds of objects. An object generally has

some spatial limit and the constituents of an object can be seen as a unit

connected through their spatial an physical relatedness. ’Name’ on the other

hand is an abstract concept, which intuitively does not have any requirement

on spatial or physical relatedness of its individual parts, whether those parts

are the characters making up the name, or the first name and family name

for instance. ’Source’ is in the context of this enterprise referring to source

code of the software produced, and a unit of source code does not necessarily

have any spatial or physical relation connecting its parts. The third error

is the classification of ’doc’ as a kind of ’department’, which is a clear error

since ’doc’ in this context is an abbreviation of document, which is not a

department. Considering unity, one of the unity and anti-unity violations

originates in ’focus’ being a kind of ’object’. While an object can usually



250 CHAPTER 8. EVALUATION OF ONTOCASE

Table 8.3: Results of the OntoClean evaluation.

OntoClean rule No of cases

Incompatible identity 2
Incompatible unity criteria 3
Unity/anti-unity conflict 2
Rigidity/anti-rigidity conflict No

be viewed as a whole, connected through spatial or physical relations as

mentioned above, ’focus’ is an abstract notion which could refer to any

combination of abstract notions, events or objects. Additionally ’audit’ is

found to be a kind of ’document’, which is opposed by the unity and anti-

unity criteria, since audit is a composite event able to contain any kind

of participants and actions while document is a well-defined piece of text

collected in a computer file or as a printed document. In this enterprise

context ’audit’ is more likely a kind of task or event, while a ’document’ is

a physical record that may record the results or aims of an audit session,

but the audit itself is not a document.

Analysis of previous domain expert evaluation

An evaluation of the new versions of the ontology together with domain

experts from the enterprise in question was no longer possible, as mentioned

previously. Instead the evaluation results of the initial SEMCO experiment

are compared to the changes that occurred in the ontology and a discussion

is provided on how these changes most likely have affected the benefits

and drawback that the domain experts found when evaluating the initial

ontology. In the initial SEMCO case the evaluation was conducted through

interviews with domain experts, where the domain experts examined the

ontology and assessed its characteristics on a scale from ’very low’ to ’very

high’. The characteristics were related mainly to the content of the ontology,

and were divided into four parts; concepts, taxonomy, relations and axioms.

In the concept section of the evaluation the domain experts found the

initial automatically constructed ontology to contain very few essential con-

cepts on the higher levels of abstraction, while the manually constructed

ontology contained a high number. Top level concepts of the manually

constructed ontology were concepts such as ’artefact’ and ’process’, while

the automatically constructed ontology had concepts such as ’requirement

status’ and ’part specification’ on the top level. The new versions of the au-



8.2. SEMCO REVISITED 251

tomatically constructed SEMCO ontologies, the intermediate and the sec-

ond version, contain much more general concepts. The most general top

structure can be found in the final version, containing concepts such as ’en-

tity’, ’facility’, ’dimension’ and ’organisation’. The intermediate ontology

lies somewhere in between, due to that only the domain specific patterns

were used, but the abstraction level is still considerably higher than in the

initial version of the SEMCO ontology. The possible level of abstraction, at

the top level, has undeniably been raised, although the level of abstraction

is still not uniform across all top level concepts of the automatically con-

structed ontologies. Whether these top concepts are really essential or not

would however only be possible for domain experts to assess.

The initial automatically constructed ontology was deemed to contain

too few essential concepts in general. This was mainly due to the low cov-

erage of domain specific terms. This coverage has now been raised from

34% to 38% in the intermediate ontology and 64% in the final version, both

due to the improved method and the extended pattern catalogue. This is

however a coverage measured over the extracted terms, to improve this even

further also improvements of the text processing and term and relations ex-

traction algorithms are needed, to more precisely cover the intended scope.

It can be noted that the combined ontology contained 379 concepts, neither

of the automatically constructed ontologies are anywhere close to achieving

this good coverage of the intended scope.

Formal definitions and attributes were already in the initial ontology

quite highly rated, unfortunately this rating might have been slightly lower

for the final version of the ontology since many more concepts have been

added but the number of relations has not increased at the same rate. This

is the main conclusion that can be drawn from the section of the evaluation

regarding relations. The initial automatically constructed ontology was very

rich in relations and by adding mostly concepts, and not a corresponding

amount of relations, the final version is now slightly more sparse. However,

that this is not a flaw in the actual method can be seen by comparing the

initial ontology and the intermediate ontology, where both the coverages

and the relation ratios are similar. It should be noted on the other hand

that most relations are in the final version of the ontology on the higher

levels of abstraction, whereby an ontology engineer continuing to refine the

ontology could specialise those relations and create a more well-connected

and well-defined ontology.

The evaluators were quite satisfied with the taxonomy of the initial ver-

sion of the ontology. Although the average depth has somewhat decreased



252 CHAPTER 8. EVALUATION OF ONTOCASE

in the final version, due to the addition of a large number of concepts,

the taxonomy is still reasonable and would provide a nice starting point

for further refinement. This conclusion is also supported by the fact that

the depth actually increased slightly between the initial ontology and the

intermediate version, using the same set of patterns.

The taxonomy of the final version of the automatically constructed on-

tology certainly provides a lot of different perspectives. This is both a

benefit and a drawback, since the perspectives are not clearly separated

and defined, instead perspectives are mixed and manifested as redundan-

cies or alternative modelling choices presented together in the ontology. The

benefit is that an ontology engineer refining the ontology has a lot of sugges-

tions how to model, the problem is how to choose the right ones. For such

tasks an appropriate user interface is a key feature, and tools to analyse

consequences of the choices, but both these services are so far outside the

scope of OntoCase. With respect to axioms more research is needed, no

improvements has been made in the area of matching and selecting general

axioms to be included in the resulting ontology in the second iteration of

our research. In OntoCase axioms from both patterns and extracted from

text are simply included as is, without further analysis.

8.2.4 Summary and discussion

In summary we can from this second run of the SEMCO experiment see

clear improvements in the OntoCase method. Primarily the improvements

relate to the ability to include more abstract knowledge in the form of more

abstract patterns. This is due to the more elaborate matching methods

used. Additionally we can note the increased coverage of the terms and

relations extracted from text, which was both due to the improved method

and the extended pattern catalogue. This is a very valuable improvement

since these terms represent the core knowledge to be represented in the

ontology, the domain specific knowledge. These improvements are valuable

but it is also important to note that the method has, despite all changes and

additions, not introduced any more structural errors, i.e. as defined in the

OntoClean framework, into the new version of the ontology, even though

the final version of the ontology is considerably larger than the initial one.

This is however based on not viewing the modelling choices present in

parallel as errors, but precisely as choices for further refinement. Since the

intention is only to produce an initial ontology, which will be refined in

the OntoCase revise phase or further developed by an ontology engineer,



8.3. JIBSNET - THE JIBS ENTERPRISE ONTOLOGY 253

redundancies and modelling alternatives should not necessarily be viewed

as errors but instead as suggestions to be considered and verified by a user.

Intuitively the reader can agree that providing some guidance and choices

to the user is most likely better than to select one alternative automatically,

whereas wrong choices may sometimes be made. Also the results from the

initial SEMCO experiment showed that the domain experts appreciated

a dense structure of relationships in order to interpret and evaluate the

concepts of an ontology.

8.3 JIBSNet - the JIBS enterprise ontology

The second evaluation was performed in a different domain, namely the

university domain. JIBSNet is an intranet present at Jönköping Interna-

tional Business School (JIBS). The intranet contains internal documents of

all kinds, from personnel instructions to meeting minutes and information

on ongoing projects. The intranet is additionally used to provide internal

information to JIBS’ students on all levels. JIBSNet is suffering from similar

information logistical problems as many other systems where large amounts

of information is being stored. Information is hard to find, people store and

annotate information according to many different schemas and viewpoints,

and retrieval of documents is done solely based on classical file structure

browsing or keyword search. An enterprise ontology representing the con-

text of JIBS and the organisation, activities and processed at JIBS could

help to improve the classification, presentation and retrieval of information

from JIBSNet.

The intention of constructing an ontology for JIBSNet is to provide a

structure from which to extend content and with which to annotate and

reason about existing content. The aim is to improve the usability, under-

standability and effectiveness of JIBSNet. No complex reasoning is required,

instead the focus should initially be on providing a formal structure to do

simple categorical classification and reasoning to assess similarity and rele-

vance of information with respect to contexts and queries. An example is

that a document annotated with the concepts ’instruction’ and ’professor’

should be retrieved when searching for instructions for researchers, since

’professor’ should be modelled as a kind of ’researcher’.



254 CHAPTER 8. EVALUATION OF ONTOCASE

8.3.1 Ontology construction

An initial version of the JIBSNet ontology was constructed using a text cor-

pus harvested from JIBSNet’s internal documents in English and in addition

all English language web pages from the JIBS public web†. The corpus con-

sisted of 207 individual documents. The documents were of varying sizes,

but the majority were short texts, scraped from public web pages for in-

stance. To exclude the possibility of introducing a bias by using an old

version of Text2Onto, as for the SEMCO case, the initial text processing

and term and relations extraction was this time performed externally by

the developers of Text2Onto, using the latest version of the software and

experimentally optimised settings of variables and thresholds. This input

representation contained 6535 terms organised in a shallow taxonomy with

a maximum depth of three, but most classes directly beneath the root, and

connected by 218 other properties.

Based on this input the OntoCase method was applied, matching the ex-

tended pattern catalogue to the set of terms and relations, and subsequently

reusing the patterns to construct an initial ontology. The pruning option

was used, which means that only the terms and relations from the input

that could be somehow connected to the selected patterns were included in

the constructed ontology. In this case 30 patterns were selected for inclusion

in the ontology, and the resulting ontology contains 2576 concepts.

8.3.2 Evaluation setup

The evaluation was performed in a similar way as for the SEMCO case,

consisting of three parts; collecting general structural characteristics, struc-

turally evaluating the taxonomy and functionally evaluating the ontology

through assessments of domain experts. Since this ontology is consider-

ably larger than the SEMCO ontologies, a randomly selected subset of the

concepts and relations was used as a sample of the content of the ontol-

ogy and only this sample was evaluated. For the taxonomic evaluation a

random selection of 100 concepts from each ontology were included. The

selection was made through randomly selecting concepts and including all

their superconcepts, until the level of 100 concepts was reached.

The evaluation by domain experts intended to assess the same issues as

in the part of the OntoMetric framework used in the SEMCO ontology eval-

uation, but due to the fact that this time a sample of the ontology concepts

†http://www.ihh.hj.se/eng/



8.3. JIBSNET - THE JIBS ENTERPRISE ONTOLOGY 255

and relations was used the assessments cannot be performed directly by the

domain experts, as assessments selected on a scale. For example, it is not

reasonable for a domain expert to assess the amount of essential concepts

in the complete JIBSNet ontology, and not even for the sample it is an easy

task. Therefore another method was applied in this case, letting the do-

main experts assess single concepts and relations, and from the judgement

of several domain experts, in agreement, we tried to deduce more general

assessments of the ontology.

Six domain experts representing different roles, i.e. university teachers,

PhD students, senior researchers, administrators and IT-support personnel,

in the organisation were used for the evaluation, thereby covering the broad

spectrum of interests different groups in the organisation have with respect

to JIBSNet information. Randomly selected parts of the ontology were

then represented in simple concept graphs and shown to the experts, asking

them to assess the relevance and correctness of the displayed concepts and

relations. For each assessment five choices were given; ’essential’, ’accept’,

’not sure’, ’not correctly modelled’, and ’incorrect or not appropriate’.

’Essential’ meaning that the evaluator believed that the concept or rela-

tion was highly relevant for internal information on JIBSNet and that it was

correctly modelled in its current setting in the ontology. ’Accept’ indicating

a concept or relation that was valid within the organisation but where the

relevance was lower with respect to internal information. ’Not sure’ indi-

cating that the meaning of the concept or relation was not really intuitive

to the evaluator, or that the evaluator was not certain how relevant or cor-

rectly modelled the concept or relation was. ’Not correctly modelled’ stating

that the concept or relation was somehow relevant, or at least valid, but

that it was not modelled in a correct way. This assessment was used when

the evaluators found something they believed was placed incorrectly in the

taxonomy, although still relevant, or when a concept should be remodelled

with a slightly different name. Finally, ’incorrect or not appropriate’ was

used for concepts or relations that the evaluators would like to delete from

the ontology, since they believed they were incorrect or simply not relevant

with respect to the JIBSNet scenario.

Two evaluators assessed all subsets of concepts and relations in the ran-

dom sample, thereby the results were based on agreements or disagreements

among the evaluators and represented both consensual views, but also the

views of different roles in the organisation. The evaluators were asked to

talk out loud when making their judgements, and to motivate their choices.

Aside from motivations, the domain experts were also asked to provide com-



256 CHAPTER 8. EVALUATION OF ONTOCASE

Table 8.4: Number of concepts and relations collected in the sample.

Evaluation set No of concepts No of relations

Input ontology (top structure) 94 63
Input ontology (total) 138 101
Output ontology (top structure) 62 62
Output ontology (total) 236 249

ments on the concept graph, e.g. noting how they would like to solve issues

they discovered, and what they thought was missing in the ontology.

In order to be able to compare the results of OntoCase to typical OL

tools, such as Text2Onto, the initial input ontology generated by the devel-

opers of Text2Onto was assessed in the same way. Using a random sample

and the same interpretations of the evaluators’ assessments, this ontology

was evaluated with the domain experts. The top structure of the ontol-

ogy was a problematic issue in the initial SEMCO case, and was showed to

have improved since then when revisiting the SEMCO case, therefore also

a special evaluation was made on the top structures of both the JIBSNet

ontology and the input ontology created by Text2Onto. Table 8.4 shows the

size of the random samples collected from each ontology. The reason for

not using exactly the same sample as for the taxonomic evaluation was that

in this case the ’context’, meaning the surrounding relations and concepts

to a certain depth, of each concept was included, in order to support the

understandability by the domain experts.

8.3.3 Evaluation results and analysis

In this section the results of the above presented evaluation setting are

described and analysed in detail.

General measures

The collected data from the basic structural measures can be seen in Table

8.5, where ’input ontology’ denotes the initial ontology extracted from the

text corpus using Text2Onto and ’output ontology’ denotes the ontology

constructed based on the input ontology using OntoCase. The set of mea-

sures is the same compared to the previously described evaluation of the

SEMCO ontologies.

The input ontology is shallow and contains very few taxonomic relations

compared to its size, only 167 of the 6535 concepts are not on the top level



8.3. JIBSNET - THE JIBS ENTERPRISE ONTOLOGY 257

Table 8.5: General characteristics of JIBSNet ontology.

Characteristic Input ontology Output ontology

Number of concepts 6535 2576
Number of non-taxonomic properties 218 147
Number of root concepts 6368 15
Number of leaf concepts 6399 2527
Avg depth of inheritance 1.03 2.72
Avg number of related concepts 0.067 0.11
Avg number of subclasses 0.029 1.83

of the taxonomical hierarchy of the ontology. The input ontology contained

218 named properties extracted from the text corpus, this is quite a low

number for such a large ontology. In contrast, the output ontology has a

quite general top-structure with only 15 concepts directly beneath the root

concept of the taxonomy. It is also considerably smaller than the input

ontology, only about 39% of the input size, since the pruning version of

the composition algorithm was used in OntoCase. This additionally means

that it covers about 39% of the input terms, since only 13 of the added

pattern concepts are not found as synonyms to any extracted terms. If

we again consider the amount of ’incorrect’ concepts in the input, 9.2%

of the concepts were deemed incorrect by the evaluators as noted later in

the evaluation by domain experts, we can reduce the number of reasonable

terms in the input to 5933 and arrive at a coverage of about 43%. The

relation coverage, of non taxonomical relations, is 55%.

When analysed, some reasons for this low coverage of input ontology

terms can be noted, e.g. the amount of proper names and abbreviations

in the ontology and some Swedish terms that were present in the input.

137 concept labels contain the Swedish letter ä, 41 the Swedish letter ö

and 34 the Swedish letter å. Also, it should be noted that in the SEMCO

experiment the catalogue had 15 patterns specific for the product develop-

ment domain, while in this case there were no patterns specifically for the

domains of research and university education, although the more general

patterns still apply. This indicates the importance of having a larger pat-

tern catalogue and more domain specific patterns, but it also shows that

we are actually able to achieve some reasonable results without these do-

main specific patterns, only using the most general and domain independent

patterns.



258 CHAPTER 8. EVALUATION OF ONTOCASE

Taxonomic evaluation

The analysis of the taxonomy was performed in two steps, applying two

different methods. Below the results of these evaluations are described and

discussed, together with some examples of problems or modelling errors that

were discovered. For both these evaluations sets of 100 concepts connected

into a small taxonomy, randomly extracted from each ontology, were used

to perform the evaluation.

When applying the general taxonomic evaluation proposed by Gómez-

Pérez [84] some interesting observations could be made also in this case. The

input ontology contains some circularities and some multiple inheritance,

but the output ontology is much more ’tangled’, just as in the SEMCO case,

i.e. it contains numerous cases of multiple inheritance and redundant rela-

tions. The reason for the increased ’tangledness’ is primarily the merging of

different kinds of evidence that is performed during the pattern composition

and ontology construction in OntoCase, e.g. evidence for both synonymy

and hyponymy might be present. We arrive at the same conclusion as in

the previous evaluation, since this is an initial ontology to be further de-

veloped, either manually or by some other automatic methods, it is more

useful to the user, i.e. the ontology engineer, to include all hypotheses than

to discard some of them.

The method for taxonomic evaluation first focuses on circularity errors.

Multiple inheritance was present in both ontologies, as well as circularities.

These are however very few in the input ontology constructed by Text2Onto,

and the multiple inheritance is mainly due to that some concepts are ex-

plicitly stated to be subclasses of owl:Thing as well as of another concept.

In the output ontology constructed by OntoCase a few circularities could

be found, but mainly on the level of distance 0. This means that a concept

is stated to be the subclass of itself. The reason for these errors is that we

do not filter the hypotheses, i.e. a term that is found to be a synonym of a

pattern term might also be found to be a subclass of it. As noted previously

this is an easy error to prevent if needed, a simple filter could be applied

during the construction process, but again we note that this also represents

a choice to be made by the ontology engineer and as such it may be a useful

information. One circularity on the level of distance 1 is also found, where

’situation’ is stated to be a ’position’ but also the opposite, ’position’ being

a kind of ’situation’.

Partition errors is the second category of errors considered, but since

neither ontology contains any instances we can only consider the structure



8.3. JIBSNET - THE JIBS ENTERPRISE ONTOLOGY 259

of classes for this evaluation. The input ontology does not contain any

disjointness axioms, since such algorithms were not included when it was

constructed using Text2Onto. In the output ontology however there are

a few places in the ontology where there exist common classes in disjoint

partitions. In fact, the exact same issue occurs this time as in the SEMCO

ontology, where the concept ’part’ is both a subclass of ’object’ and ’role’

although they are disjoint. This issue originates in the composition of two

patterns, whereas it is not so unexpected that it might occur in several

ontologies. Nevertheless, this is a questions of choosing how to model parts

in the ontology, but since the issue originates from the pattern composition,

it might be possible to provide additional support for resolving it already at

composition time. Following what was previously stated, the input ontology

does not contain any complete decompositions but there is one complete

decomposition defined in the output ontology; again it is ’entity’ with the

complete partition ’abstract’, ’quality’, ’event’ and ’object’. Just as in the

SEMCO case there are a number of concepts that are subclasses of two or

more of these general concepts, it is a matter of presenting the redundant

findings to the user instead of resolving conflicting evidence automatically.

Next, the semantic errors of the ontologies were studied. In the output

ontology 8 semantic errors were found among the 100 concepts studied, these

are all due to invalid classifications of extracted concepts. The discovery

of semantic errors was again done based only on domain knowledge of the

enterprise in question, not on any task requirements for the ontology. The

majority of these errors are due to that too general knowledge has been

added, by using background knowledge such as WordNet, which leads to

several modelling alternatives are present but some are then not correct in

this domain.

With respect to incomplete concept classifications these might be present

in both ontologies, but since this is closely related to the task of the on-

tology it was not possible to discover these errors without specifying the

task requirements in more detail. The same problem arose with the parti-

tion errors, what knowledge is required to be present in the ontology has

to be determined using a detailed task description. Some comments from

the domain experts, in the following domain expert evaluations, are related

to these issues however. Some domain experts pointed out areas where

knowledge was missing or incomplete.

Checking redundancy in the two ontologies was the last step. There

were no direct repetitions of subclass relations in either ontology, but as

we have noted several times before there are many cases of redundant sub-



260 CHAPTER 8. EVALUATION OF ONTOCASE

Table 8.6: Result of the OntoClean evaluation of the JIBSNet ontologies.

OntoClean rule No of cases No of cases
Input ontology (T2O) OntoCase

Incompatible identity criteria 3 2
Incompatible unity criteria 8 4
Unity/anti-unity conflicts 7 1
Rigidity/anti-rigidity conflicts 10 5

class statements in the output ontology, i.e. there exist quite a few indirect

repetitions. As also stated previously, many of these can be viewed as sug-

gestions for further refining the model, or alternatives for making modelling

decisions, hence we believe that it is in fact not desirable to remove all these

’errors’ automatically, unless a completely correct automatic selection can

be guaranteed. There were no identical explicit definitions of any classes,

but in the input ontology some concepts were in fact represented by terms

that are synonyms and also a few cases of synonyms were not detected by

OntoCase, and hence not corrected in the output ontology. An example is

that ’endeavour’ and ’endeavor’ were modelled as two different concepts,

although they are obviously only two spellings of a term representing the

same concept.

When annotating the set of 100 concepts from the initial ontology con-

structed by Text2Onto using the OntoClean properties, a backbone taxon-

omy of 26 concepts was identified. 7 Concepts were not annotated, due to

the fact that they could not be interpreted in any reasonable way, and were

probably errors introduced by Text2Onto. Next, the ontology constructed

through OntoCase was treated in the same way, annotating the set of 100

randomly selected concepts with the OntoClean properties. Only two con-

cepts were left untreated, due to that they could not be interpreted clearly

enough. The results of studying the rigidity, identity and unity criteria of

the remaining 93 and 98 concepts, in each ontology respectively, can be seen

in Table 8.6.

There were a few cases of each problem type present in the input on-

tology constructed by Text2Onto, but it should also be noted that several

of the cases in the different categories actually refer to the same pair of

concepts. An incorrectly modelled taxonomic relation might give rise to

several of the conflicts at the same time. The concept ’business school’

being modelled as a subclass of ’area’ both violates the compatibility of

identity criteria and the compatibility of unity criteria. A business school



8.3. JIBSNET - THE JIBS ENTERPRISE ONTOLOGY 261

is an organisation being identified by an organisation number while an area

can be identified by its extent in terms of location coordinates. A business

school is an organisation where the parts are joined together with the ab-

stract notion of being organised within the same unit, while an area is a

whole through the proximity of its coordinates.

Other examples of issues discovered in the input ontology are several

cases where the subclass relation was used in the opposite direction, com-

pared to intuition. ’Event’ was modelled as a subclass of ’inauguration’,

while one would normally expect the opposite. Several cases where subclass

relations were used instead of partonomy could also be noted, such as where

’faculty’ was modelled as a subclass of ’industry professor’. The direction

of the relation should be the opposite, but additionally the relation should

be ’part of’ and not subclass.

When considering the output ontology, constructed using OntoCase,

there are fewer errors in all categories. However, errors exist and one ex-

ample is the ’agent’ concept which is used both as a kind of actor, a person

or an artificial agent, and a chemical agent, such as medicines and drugs.

This gave rise to both incompatible identity and unity criteria. Drugs can

be identified by their chemical composition or their medical names, while

an agent in the sense of a person would be identified by his personal iden-

tification number or his DNA. A medicine seen in a concrete sense may be

a whole, the physical instance of a drug, and the connecting relation would

be the chemical bindings connecting the compounds in the drug. A per-

son might also be viewed as a whole and could in theory be seen as a set of

molecules, it is not obvious however that it is chemical bindings that connect

the parts of a person, more intuitively it is the physical presence of body

parts within one body. The rigidity and anti-rigidity criteria was violated

mostly in cases where a concrete concept, such as the technical concept of

a ’bus’ was a subclass of a general abstract notion, such as ’configuration’.

In the case of ’bus’ it was again a case of using the subclass relation instead

of a more appropriate relation such as ’involved in’, to state that choosing

a specific hardware bus might be a part of the configuration of a hardware

and software system.

Evaluation by domain experts

When collecting the results from the domain expert assessments some inter-

pretations had to be made in order to arrive at results giving an indication

of the overall evaluation criteria concerning the complete ontology. Results



262 CHAPTER 8. EVALUATION OF ONTOCASE

were interpreted in different ways for concepts and relations, due to the

way the subjects used the assessment alternatives when judging concepts

and relations. The subjects noted that in their opinion ’not correctly mod-

elled’ chosen for a relation usually meant that the relation was wrong, it

should be replaced with some other relation. When chosen for a concept,

’not correctly modelled’ usually meant that the concept in itself was rele-

vant in some context, but the relations and concepts surrounding it did not

fit. A concept assessed as ’not correctly modelled’ might thereby be either

essential or at least acceptable but still assessed to be wrongly modelled if

the surrounding relations and concepts were incorrect or inappropriate.

The interpretations used for concepts and relations were based on the

set of assessments from the evaluators. Table 8.7 shows the interpreta-

tions when combining two evaluator assessments, similar interpretations

were used when three or more evaluators assessed the same concepts and

relations. The difference of interpretation between concepts and relations

when considering the ’not correctly modelled’ alternative, as mentioned

above, should be noted specifically, but additionally the special treatment

of the ’essential’ assessment. It was not expected that all evaluators would

agree since they represent different roles in the organisation. As long as

some role believed that a concept or relation was essential this had to be

taken seriously, even if somebody representing another role might be more

sceptical. Only if an assessment as ’essential’ was combined with the ’in-

correct’ assessment the total interpretation was set as a disagreement.

Table 8.8 presents the results of the evaluation of concepts and taxo-

nomic relations. The results are shown as a percentage of the total number

of concepts or relations. The ’essential’ and ’accept’ assessments were added

under the heading ’correct’, while disagreements and incorrect results are

defined as described above. Not surprisingly the input ontology has a high

number of correct concepts, regardless whether we are studying only the

top structure or the complete ontology. This is due to that all the concepts

are derived directly from the input text corpus, which means that the con-

cepts are terms collected from the internal documents of JIBS and merely

filtered for relevance. When studying the taxonomic relations of the input

ontology the results are not encouraging, around half of the relations are

deemed incorrect by the evaluators. This is mainly due to two issues, one is

the fact that relations are harder to correctly extract from texts than terms

and concepts, and thereby many relations on all levels are actually incor-

rect, but also due to that the evaluators assess almost all relations to the

top concept (owl:Thing) as incorrect. The latter issue can be interpreted as



8.3. JIBSNET - THE JIBS ENTERPRISE ONTOLOGY 263

Table 8.7: Interpretation of assessment combinations.

Interpretation of concept assessments
Interpretation Assessment combination

Essential Agreement on essential
Essential and acceptable
Essential combined with not sure
Essential combined with not correctly modelled

Accepted Agreement on accept
Accept combined with not sure
Accept combined with not correctly modelled
Agreement on not correctly modelled
Not correctly modelled combined with not sure

Disagreement Agreement on not sure
Essential and incorrect
Accept and incorrect
Not sure and incorrect
Not correctly modelled and incorrect

Incorrect Agreement on incorrect

Interpretation of relation assessments
Interpretation Assessment combination

Essential Agreement on essential
Essential and acceptable
Essential combined with not sure
Essential combined with not correctly modelled

Accepted Agreement on accept
Accept combined with not sure

Disagreement Agreement on not sure
Essential and incorrect
Accept and incorrect
Accept combined with not correctly modelled

Incorrect Agreement on not correctly modelled
Not correctly modelled combined with not sure
Agreement on incorrect
Not sure and incorrect
Not correctly modelled and incorrect

the evaluators disagreeing with the concepts being modelled as direct sub-

concepts of the top concept. This was confirmed by the subjects, voluntary

by ’talking out loud’ and when explicitly asked for an explanation during

the evaluation. This indicates that the evaluators really do miss a more

abstract structure and division of the concepts into categories.

The OntoCase output ontology has a slightly lower percentage of cor-

rect concepts, both on the top level and overall, and instead a slightly larger

number of disagreements. This indicates that some problems arise when in-

terpreting concepts in the ontology constructed by OntoCase. Such results

are quite natural, considering that in this case concepts were added based

on patterns that were matched, whereby the concepts have only an indirect

connection to the actual terminology used at JIBS and are in some cases

not easy to interpret appropriately. The top concepts are sometimes very



264 CHAPTER 8. EVALUATION OF ONTOCASE

Table 8.8: Interpretation results.

Evaluation set Assessment % of concepts % of relations

Input ontology (top structure) Correct 85.1% 33.4%
Disagreement 11.7% 17.5%
Incorrect 3.2% 49.2%

Input ontology (total) Correct 75.3% 26.8%
Disagreement 15.9% 15.8%
Incorrect 9.2% 57.4%

Output ontology (top structure) Correct 80.6% 58.1%
Disagreement 16.1% 38.7%
Incorrect 3.2% 3.2%

Output ontology (total) Correct 73.7% 53.4%
Disagreement 16.1% 24.9%
Incorrect 10.2% 21.7%

general, these are harder to interpret than more specific concepts. In favour

of the OntoCase method we note that the number of incorrect concept only

increase very slightly for the complete ontology, and is stable when consid-

ering the top structure. As mentioned previously the evaluators missed a

general top structure when studying the input ontology, in the output ontol-

ogy this had been added and thereby also ’pushed’ some incorrect concepts

further down the taxonomic hierarchy, fortunately without adding incorrect

concepts on the top level.

When considering the taxonomic relations we can note a considerable

improvement in the percentage of correct relations, both on the top level and

overall. There was some disagreement around the interpretation of relations

introduced by OntoCase, but at least the number of incorrect relations

decreased drastically. Very general relations can be hard to interpret and

it was hard to judge whether they were really essential to the ontology or

not. However, even in the hypothetical case that all disagreements should in

reality have been classified as incorrect relations we would have been able to

note a considerable decrease in the amount of incorrect relations compared

to the input ontology. This is also partly due to the fact that a more intuitive

top structure had been introduced, whereby relations leading directly to a

top concept were no longer perceived as incorrect to the same extent. There

are other improvements as well, many of the new relations introduced by

the patterns are actually found to be essential, a conclusion additionally

supported by comments made by the evaluators during evaluation.

Non-taxonomical relations were assessed separately, and the results can

be seen in Table 8.9. At the bottom of the table the added pattern relations

in the output ontology are presented separately, in order to show that these

were actually mostly correct according to the evaluators. There was even



8.3. JIBSNET - THE JIBS ENTERPRISE ONTOLOGY 265

Table 8.9: Interpretation results concerning non-taxonomic relations.

Evaluation set Assessment % of relations

Input ontology Correct 50.7%
Disagreement 16.2%
Incorrect 33.1%

Output ontology Correct 65.0%
Disagreement 11.9%
Incorrect 23.1%

Relations added from patterns Essential 88,9%
Incorrect 11.1%

Relations added from input ontology Correct 59.5%
Disagreement 14.7%
Incorrect 25.9%

a stronger agreement between the evaluators within this set of relations,

whereby no acceptable relations or disagreements were found, hence only

presenting the amount of essential and incorrect concepts. The selected re-

lations from the input ontology are presented separately. We note that there

is an increase in correct relations between the input and output ontologies

and a decrease in incorrect relations, while the disagreements are kept on

a relatively stable level, a small decrease can be noted. The results when

separating between added pattern relations and relations selected from the

input ontology indicate that when pruning some of the relations and con-

cepts from the input ontology we actually manage to select a larger amount

of correct relations rather than the incorrect ones. The amount of correct

relations thereby improved compared to the input ontology.

The domain experts were asked to talk ’out loud’ during their evalua-

tion, and to give comments with respect to missing items and unexpected

modelling choices. Mostly the comments were pointing out missing rela-

tions, since the evaluators were only shown the taxonomy some of the re-

lations were in fact present just not shown to them, and missing concepts.

For example, pointing out that ’informatics’ is not the only department of

JIBS, and asking ”Where are the others?”. Similarly only ’civilekonompro-

grammet’, an educational program given at the economics department, was

present, while other educational programs were missing. This is a flaw in

the results, although it could be observed that the evaluators easily listed

the rest of the missing concepts, such as the rest of the programs, when

given one example in the ontology. The evaluators also noted that dif-



266 CHAPTER 8. EVALUATION OF ONTOCASE

ferent views were mixed in the ontology, and requested some intermediate

structure in some cases, e.g. to divide the concept ’design’ into different

categories depending on what the design was intended for, design of sys-

tems or design of educational programs, before adding the subclasses that

were at the moment direct subclasses of design.

Missing relations were mostly non-taxonomical relations, the evaluators

commented on numerous occasions that ”this concept has to do with that

one”, indicating some kind of relation. In some cases however the relation

was a missing subclass relation, this occurred particularly often where two

different patterns had been included in the ontology but without proper

composition. An example was the composition of the employee, party and

organisation patterns. In the employee pattern we can see that employees

are employed within a department, and when combined with parties and

organisations the employees are also classified as persons. The pattern con-

cept department was however not considered in the composition process,

and since it did not have any prior matches to organisations or other in-

cluded concepts the connection was not identified at this stage. Similar

problems arose for synonyms, it was perceived that some reasonably easy

cases of synonymy should be detected by the system, i.e. differences in

spelling of terms such as ’organisation’ and ’organization’.

At the end of the session the evaluators that had evaluated both top

structures of the two ontologies, 4 out of 6 of the evaluators did both tasks,

were asked which one of the two top structures they would prefer to base a

further refinement of the information structure for JIBSNet on ‡. Three out

of four answered in clear favour of the ontology produced by OntoCase and

motivated it by the generality and understandability of the structure, that

it covered most of the general areas that were needed, and that it contained

less mistakes than the other one. The fourth evaluator was unsure and

explained that although the structure of the ontology produced by OntoCase

was much simpler and more clear, the evaluator also liked some specific

modelling solutions in the other one and would like to combine parts of

both.

‡Exact wording of the interview question was: ”When considering these two struc-
tures and your recent evaluation of them, if you had to choose one, which one would you
choose to continue to refine and why?” The evaluators had no prior knowledge about the
ontologies, such as how they had been constructed, and by what method.



8.4. FAO - AGRICULTURAL ONTOLOGIES 267

8.3.4 Summary and discussion

The JIBSNet ontology was not yet applied in a real-world setting, since

no ontology-based ILOG system is present for structuring and retrieval of

information on JIBSNet. Despite this we performed a rigorous evaluation

of the constructed ontology, both with respect to structural characteristics,

correctness of the taxonomy, and functional measures, i.e. correctness and

understandability as viewed by domain experts. One main aim of this eval-

uation was to compare OntoCase to a typical state of the art system for

ontology learning. Text2Onto was chosen for this task, since it is one of

the few systems that work almost completely automatically, it is used by

the community, and it has been shown to perform well. For this system

we were able to let the developers of Text2Onto themselves perform the

ontology construction, in order to be certain not to introduce any bias in

the process.

The results show that with respect to the concepts of the ontologies

themselves, OntoCase perform on the same level of accuracy as Text2Onto,

while with respect to the structure OntoCase considerably improves on the

initial input. The top structure added gives a more intuitive structure to

the ontology and the relations are deemed correct to a larger extent than

the relations of the input ontology. The same issues with respect to the

taxonomy can be noted in this evaluation as for the SEMCO evaluation.

The tangledness is also in this case present throughout the ontology and

some redundancy can be noted as well. It is important to point out that

this might actually be an advantage if used in the right way, providing some

options for an ontology engineer when continuing to refine the ontology.

When applying OntoClean a difference in the number of errors can be noted,

between the input ontology and the OntoCase result. The fact that there

are less errors after applying the patterns is mainly due to that ’strange’

and unclear concepts are pruned when applying the patterns, instead the

ontology is enriched with relations originating in the patterns and from the

matching process.

8.4 FAO - agricultural ontologies

The third evaluation performed using OntoCase was set in the agriculture

domain. The two previous evaluations clearly show the merits and char-

acteristics of OntoCase when applied within the core focus of the method,

namely enterprise ontology construction for ILOG applications. It is im-



268 CHAPTER 8. EVALUATION OF ONTOCASE

portant to note however that OntoCase is actually more general than that.

Depending on what patterns are available, and what input can be provided,

OntoCase could be used for almost any domain. There are limitations, such

as the use of WordNet in the matching process which would degrade the

performance of the pattern matching if the domain was too specific. Trying

to apply OntoCase on certain types of biomedical ontologies, for example

would probably yield less good results, since the common sense style of

matching between patterns and extracted terms and relations might not be

applicable in this domain, provided only general background knowledge, i.e.

WordNet. Nevertheless, there are many domains in addition to enterprise

ontologies for structuring of information, where light weight ontologies of

reasonable quality can be of great value, either as a starting point for fur-

ther refinement or in their own right. One such domain is the agriculture

domain. The intention of this experiment is mainly to display the applica-

bility of OntoCase to other domains and point at the benefits of an interplay

between OntoCase and other ontology learning techniques.

The setting of this experiment is the Food and Agriculture Organisation

(FAO) of the United Nations and their work on improving the use of agri-

cultural resources around the globe. In the context of assisting countries in

improving their agriculture, forestry and fishing practises the organisation

monitors, structures, and provides information relevant to the agriculture

domain. To facilitate these tasks numerous thesauri, taxonomies and other

linguistic resources are used. Currently the organisation is trying to im-

prove their processes by moving from simple structures, such as a thesaurus

of terms, to more complex definitions of concepts, such as an ontology. This

is for example investigated in the context of the use-cases in the research

project NeOn§. This experiment was conducted as a part of the NeOn

project, through the cooperation project DEON¶, although separately from

the actual case studies of the project. The experiment was additionally

reported in the NeOn Deliverable 3.8.2 [211].

The ontologies to be constructed were set within the agriculture do-

main. The FAO have numerous taxonomies and light weight ontologies

constructed by reengineering of different sources, but these are quite sim-

ple and also sometimes error prone, whereas the intention was to further

develop these into full fledged ontologies and correct some errors that were

present. For this experiment one such existing light weight ontology was

§http://www.neon-project.org
¶Development and Evolution of Ontologies for Networked Organizations, financed by

the Swedish Foundation for International Cooperation in Research and Higher Education



8.4. FAO - AGRICULTURAL ONTOLOGIES 269

used as a starting point. Ontologies were also constructed directly from

text corpora and textual concept definitions, and the results of OntoCase

were compared to the input and the results of the ontology learning tool

Text2Onto. Text2Onto is, as mentioned previously, a state of the art OL

tool that was during this thesis previously used in order to represent the

level of a ’typical’ current OL system.

Two hypotheses were stated in order to be tested in this experiment.

The hypotheses were the following:

1. Patterns can improve the structure of learnt ontologies, even in an-

other domain than enterprise ontologies.

2. Enrichment of ontologies, by adding concepts and relations using ex-

isting OL methods, can improve the pattern matching in OntoCase.

The first hypothesis states that applying OntoCase on top of results from

other OL methods, such as the ones in Text2Onto, will improve those re-

sults, for example by connecting unconnected parts, such as unconnected

concepts, and give the ontology a more general top structure by adding

missing general background knowledge. The structure has to be added with-

out introducing errors into the ontology, whereas it is important to assess

the correctness of the ontologies both before and after applying OntoCase.

This is the same focus as for the two previous experiments presented in

this chapter, although the domain is different. The second hypothesis pro-

poses that applying other OL methods, such as the ones in Text2Onto, as

a pre-processing step in order to enrich the input ontology before applying

OntoCase can actually assist the pattern matching, so that more relevant

patterns can be identified and included. The general aim is to show that

OL methods can benefit from each other, and that combining and iterating

different methods can provide better results than applying the individual

methods.

8.4.1 Ontology construction

The data used for the experiments was provided by the FAO and was set

within the agriculture domain. A simple lightweight ontology was provided,

generated and translated into OWL from a manually engineered graphical

concept network representation. The ontology was focused on concepts

related to the concept of ’rice’. This ontology is here denoted Ontology rice,

and some information about the ontology can be seen in Table 8.10. Three



270 CHAPTER 8. EVALUATION OF ONTOCASE

additional ontologies were produced using the Text2Onto tool based on

texts provided by FAO. Out of the three text corpora, two were generated

by extracting DBPedia abstracts and comments respectively, collected by

using the concepts in the Ontology rice as search terms. DBPedia‖ is a

semantic version of Wikipedia∗∗. It contains a large amount of annotated

data, but not everything is reliable since it is based on the wiki idea of

community created content. The third text corpora was produced by FAO

based on article abstracts connected to the AGROVOC thesaurus††, related

to the term ’rice’. Additional information about the ontologies generated

from these text corpora using Text2Onto can be seen in Table 8.10. They

are named T2O DBPabstracts, T2O DBPcomments, and T2O AgrovocAbs

respectively. Finally, one manually engineered translation of a part of the

AGROVOC thesaurus connected to rice concepts were also provided, here

denoted Thesaurus rice, although it is in fact an OWL ontology.

No. of No. of No. of No. of Avg.
concepts top concepts subclass relations properties depth

Ontology rice 266 155 110 37 1.68
T2O DBPabstracts 1086 1018 89 17 1.06
T2O DBPcomments 365 290 189 3 1.34
T2O AgrovocAbs 3575 1822 1954 49 1.68
Thesaurus rice 525 4 542 138 3.60

Table 8.10: The experiment input ontologies.

For the second part of the experiment the Ontology rice ontology was

then enriched with additional concepts and relations produced by Text2Onto,

using the two text corpora extracted from DBPedia. Two new ontologies

were thereby constructed, named OntologyRice EnrichedAbs and Ontolo-

gyRice EnrichedComm. Details about these can be seen in Table 8.11.

No. of No. of No. of No. of Avg.
concepts top concepts subclass properties depth

relations
OntologyRice EnrichedAbs 1256 1080 199 53 1.20
OntologyRice EnrichedComm 535 352 299 39 1.57

Table 8.11: The enriched ontologies for the second part of the experiment.

Next, OntoCase was run with all these ontologies as input, in the pruning

mode, meaning that only the parts matching any pattern were included

in the output. The reason in this case was to minimise the evaluation

‖http://dbpedia.org/
∗∗http://www.wikipedia.org/
††http://www.fao.org/agrovoc/



8.4. FAO - AGRICULTURAL ONTOLOGIES 271

effort. The pattern ranking threshold was set to 0.08 (level experimentally

determined). The extended catalogue of 41 ontology patterns were used,

containing all content patterns that were at the time available, and correctly

represented, on the ontology design pattern portal∗ and in addition a set

of patterns previously used with OntoCase, see section 8.1. The ontologies

resulting from applying OntoCase to all the above presented ontologies can

be seen in Table 8.12 together with their structural characteristics.

No. of No. of No. of No. of Avg.
concepts top concepts subclass properties depth

relations
OC Ontology rice 280 112 245 46 2.19
OC T2O DBPabstracts 812 22 1471 28 2.37
OC T2O DBPcomments 321 22 628 16 2.39
OC T2O AgrovocAbs 2823 27 4162 63 2.84
OC Thesaurus rice 344 6 377 27 4.50
OC OntologyRice EnrichedAbs 1293 758 1679 73 3.36
OC OntologyRice EnrichedComm 570 248 921 62 3.06

Table 8.12: The experiment output ontologies.

8.4.2 Evaluation setup

After producing the ontologies, we proceeded by evaluating the ontologies.

First, some general structural characteristics were gathered for each ontol-

ogy, see tables above and results in the following section. This aimed at

providing an idea of the structure of the ontologies, e.g. indicating the

number of top concepts and average depth of the taxonomy. The sizes of

the ontologies is an interesting feature that shows that these are in fact not

toy examples. After this collection of structural characteristics, the taxo-

nomical correctness was evaluated, in order to show that the added concepts

and relations had not affected the correctness negatively.

Since some of the ontologies were quite large and the evaluations had to

be performed manually we used a random sample of concepts and relations

for the evaluations, and not the complete ontologies. This introduces some

uncertainty into the results, but in this case we aim to show the general

trends and that the correctness is not affected negatively, rather than the

exact amount of improvement, hence this uncertainty can be accepted. Due

to time and resource restrictions the ontologies were only evaluated by one

person (ontology expert), which also introduces uncertainty. Although this

is reduced by the fact that the same method and the same judgements were

∗http://www.ontologydesignpatterns.org



272 CHAPTER 8. EVALUATION OF ONTOCASE

applied to all ontologies, whereas the relations between the error rates of

the input and the output should stay the same. In summary, the values

presented should not be taken too seriously as absolute numbers, but can

be seen as very reliable as a group of results showing an overall trend when

comparing the input and output of OntoCase.

Additionally, since the evaluator was an ontology expert and not a do-

main expert, i.e. not from the agriculture domain, the evaluation had to be

based on textual sources of agriculture information. These sources were pri-

marily the AGROVOC thesaurus, of agricultural terms and their relations,

and secondarily agriculture information available on the web. However,

there were cases when only a domain expert could have evaluated the cor-

rectness properly, in these cases the evaluator had the choice of marking

the concept or relation with an ’I’m not sure’ annotation. The other two

alternatives were to annotate the concept or relation with ’correct’ or ’not

correct’, within the scope of a domain ontology in the agriculture domain.

The sample size for each ontology was between 104 and 180 for the ran-

domly selected concepts, and between 51 and 102 for the relations. The

relations were a mix of both subclass statements and general properties.

The reason for the differences in sample size was that the random selection

process was slightly dependent on the size of the ontology.

8.4.3 Evaluation results and analysis

In the sections below the results of the evaluations are presented. The first

part is related to the first hypothesis stated previously, and subsequently

the second hypothesis is treated.

Improving learnt ontologies

The ontologies resulting from running OntoCase on all the above presented

ontologies can be seen in Table 8.12 above, together with their characteris-

tics. Without going to details of the ontologies it can be noted that for most

ontologies the number of top concepts is reduced and the average depth is

increased, this is due to the added top structure provided by the quite gen-

eral ontology design patterns that were matched and reused by OntoCase.

This is how OntoCase attempts to add some of the missing general back-

ground knowledge that is explicit in the input texts, and thus not included

in the learnt input ontologies.



8.4. FAO - AGRICULTURAL ONTOLOGIES 273

Additionally, the number of subclass relations increased for most ontolo-

gies, even though the input ontologies were pruned of some of their concepts

and thus the output ontologies were generally smaller. This is due to that

OntoCase adds all ’hypotheses’ found in the pattern matching process, i.e.

all correspondences between pattern concepts and input concepts that may

be interpreted as subclass relations. This results in a certain amount of

redundancy and can even result in cycles in the taxonomy, as exemplified

in section 7.7. At a first glance these may be considered as errors, but it

is actually an intended feature of OntoCase, providing the ontology engi-

neer with suggestions for alternative modelling choices. However, the user

interaction is not properly supported by a graphical user interface at the

moment. The ontologies were also enriched with more properties from the

patterns, which can be noted in the properties column of Table 8.12.

The next step was to evaluate the ontologies with respect to correctness,

using the method stated in the previous section. The results of this evalua-

tion can be seen in Table 8.13. From the results in the table we can conclude

that the correctness is generally not affected negatively by applying Onto-

Case. Only in one single case is the correctness of concepts slightly lower for

the output ontology, the case of T2O DBPcomments. However, this specific

result is quite inconclusive since the amount of incorrect concepts actually

decreased, and it was the amount of concepts that the evaluator was un-

certain of that increased for the output ontology. This could thereby be an

effect of the random selection of concepts. Nevetheless, the trend is clearly

an increased correctness of the ontologies after applying OntoCase. The

increase of concept correctness is quite small, while the increase of relation

correctness is considerable.

The increase in correctness is however mainly a side-effect of applying

the method rather than a direct feature, since OntoCase does not attempt to

explicitly filter out ’irrelevant’ parts. Rather, the results originate from the

pattern matching, since when concepts are clearly incorrect, i.e. represented

by misspelled terms and strangely combined multi-word terms, they will not

match anything in a pattern and will therefore be pruned. In some domains,

if the terms are very specific, some additional domain specific background

knowledge might be needed for the pattern matching in order not to prune

too many domain specific concepts and thereby reduce the ontology qual-

ity. At the moment, only domain independent background knowledge was

used for the matching, whereby these results are encouraging, showing that

even in a quite specific domain like agriculture the method and the general

patterns produce a reasonable result for most cases.



274 CHAPTER 8. EVALUATION OF ONTOCASE

Ontology Concepts Correct % Not sure % Incorrect %
Properties

Ontology rice C 92.8 5.4 1.8
P 90.0 5.7 4.3

OC Ontology rice C 97.8 2.2 0.0
P 92.8 2.9 4.4

T2O DBPabstracts C 85.5 3.4 11.1
P 61.6 12.8 25.6

OC T2O DBPabstracts C 87.9 4.6 7.6
P 77.5 2.5 20.0

T2O DBPcomments C 94.2 2.9 2.9
P 64.1 11.5 24.4

OC T2O DBPcomments C 93.0 4.4 2.6
P 86.1 6.3 7.6

T2O AgrovocAbs C 84.9 5.7 9.4
P 65.9 13.2 20.9

OC T2O AgrovocAbs C 88.5 5.8 5.8
P 79.3 6.9 13.8

OntologyRice EnrichedAbs C 87.8 5.6 6.7
P 76.2 10.7 13.1

OC OntologyRice EnrichedAbs C 88.1 5.6 6.4
P 79.1 8.1 12.8

OntologyRice EnrichedComm C 92.0 4.3 3.7
P 78.4 4.9 16.7

OC OntologyRice EnrichedComm C 93.6 3.6 2.7
P 88.2 5.9 5.9

Table 8.13: The evaluation results of the ontologies.

The observant reader may have note that one pair of ontologies is missing

from Table 8.13, namely Thesaurus rice and OC Thesaurus rice. During

this experiment it was determined more or less impossible to evaluate the

OC Thesaurus rice in the above described manner, and thereby this pair

was not included in the evaluation. Instead we provide a short discussion

about why this was the case and in what way this ontology was not possible

to use with the current version of OntoCase. Inherent in OntoCase are some

common principles of ontological modelling, such as the common practice

that concepts are given humanly understandable names, or at least labels

in natural language.

The ontology Thesaurus rice was, as mentioned previously, in fact an

ontology, in the sense that it was represented in OWL and used some of

the features in OWL, but it was in all other respects more of a thesaurus.

The transformation had been done more or less like a ’direct translation’,

whereby the structure was not a common ontological structure. Almost none

of the concepts in the ontology have natural language names or labels, but

are instead encoded using a number, such as c 3259. The ontology provides

a very general top structure which is basically a metamodel of a thesaurus,

containing concepts such as lexicalization, term, noun, category, and domain



8.4. FAO - AGRICULTURAL ONTOLOGIES 275

concept. There is a taxonomy and properties specialising this structure,

but all actual domain knowledge, concepts and terms, are instances of the

concepts in this structure. Even the concept instances are connected to

their lexicalization only through special purpose properties.

Some of the general metamodel concepts were recognised by OntoCase,

and matched general pattern concepts, thereby some kind of result was ac-

tually produced by OntoCase after the pattern reuse phase. This was not

a comprehensive result however, since at the moment OntoCase does not

treat instances, whereas the part where the information of the input ontol-

ogy actually resides was completely ignored by the method. In the pruning

mode, OntoCase even prunes all the instances of the ontology, whereby the

output was complete nonsense since all concepts had been stripped of their

lexicalizations, which in this case was the only form of concept definitions

existing. Due to this fact, the output ontology was just a set of numbered

concepts, in a logical structure without meaning, hence it was impossible

to evaluate the correctness of this structure. This provided a good example

of a type of ontology that OntoCase, in its current version, cannot handle.

Enrichment as support for pattern matching

To find support for the second hypothesis the pattern matching results from

running OntoCase on the original ontology, called Ontology rice above, and

the two ontologies that were enriched by the results from Text2Onto were

recorded. The general characteristics of the input ontology Ontology rice

were already presented in Table 8.10 and the characteristics of the enriched

ontologies in Table 8.11. Results after running OntoCase were shown in

Table 8.12, see above.

The intention in this case was to show that enrichment using other OL

methods would ensure that more patterns are correctly identified to match

the input ontology, without introducing errors. In this case errors could be

both incorrect concepts and relations in the ontology, as discussed previ-

ously, or an inappropriate pattern that was matched and included. For the

first type of errors we have already seen in the last section, see Table 8.13,

that the enrichment in itself will in fact introduce some errors, compare

the correctness results for Ontology Rice and OntologyRice EnrichedAbs

in Table 8.13. The OL methods used are not exact, and the original ontol-

ogy was in this case manually engineered and thereby quite accurate in its

definitions. This introduces a trade-off, whether it can be worth extending

the ontology or not. We are not able to answer this question in general



276 CHAPTER 8. EVALUATION OF ONTOCASE

here, we merely show that there are also some benefits when applying On-

toCase on top of these enriched ontologies compared to applying it on the

non-enriched ontology.

The results in terms of the number of selected patterns can be viewed

in Table 8.14. 19 patterns out of the catalogue of 41 were selected for

inclusion by OntoCase based on the Ontology rice ontology. This number

was increased to 24 and 23, for the two enriched ontologies, respectively.

We can also note that patterns are not only added, see + column, some are

also no longer selected, see the - column. This is due to that the enrichment

also slightly changes the focus of the ontologies, whereas some patterns can

then be considered more relevant while some are considered less relevant.

Ontology No. of
selected patterns - +

Ontology rice 19
OntologyRice EnrichedAbs 24 -2 +7
OntologyRice EnrichedComm 23 -3 +7

Table 8.14: The number of patterns selected.

To show that the change in pattern selection is reasonable, we also stud-

ied the patterns that were selected in more detail. It is generally hard to say

if a pattern is valid or not for a specific domain or case at hand, rather one

has to study what parts of the pattern that were actually used in the ontol-

ogy. There can be concepts and properties from a pattern that are valid in

a certain domain, even though the complete pattern is not appropriate. In

this case many patterns in the pattern catalogue are quite general and can

be appropriate to include in any domain, whereas the task of deciding if a

pattern was correctly selected is more connected to if the matches found are

indeed correct. In Table 8.15 below, the patterns selected for each of the

ontologies are listed.

The patterns were assessed in a similar way as the correctness of concepts

and properties previously, assigned either ’complete match’, ’incorrect’ or

’partial match’ by an ontology engineer. ’Complete match’ denoting that

the complete pattern fitted the domain and case at hand, ’partial match’

meaning that there were some parts of the pattern that could be used for this

domain and case at hand, and finally ’incorrect’ meaning that this pattern

did not fit the domain or case at hand. The task was described as to judge if

the pattern had been correctly or incorrectly selected, based on if any part

of the pattern could be applicable in the domain, rather than to evaluate



8.4. FAO - AGRICULTURAL ONTOLOGIES 277

Ontology rice OntologyRice EnrichedAbs OntologyRice EnrichedComm
Actions.owl Actions.owl Actions.owl
AgentRole.owl AgentRole.owl AgentRole.owl
Classification.owl Classification.owl Classification.owl
CollectionEntity.owl CollectionEntity.owl CollectionEntity.owl
Constituency.owl Constituency.owl Constituency.owl
CoParticipation.owl CoParticipation.owl CoParticipation.owl
Description.owl Description.owl Description.owl
GOtop.owl GOtop.owl GOtop.owl
ObjectRole.owl ObjectRole.owl ObjectRole.owl
Participation.owl Participation.owl Participation.owl
Person.owl Person.owl Person.owl
Precedence.owl Precedence.owl Precedence.owl
Product.owl Product.owl Product.owl
SpeciesModel.owl SpeciesModel.owl SpeciesModel.owl
System.owl System.owl System.owl
TypesOfEntities.owl TypesOfEntities.owl TypesOfEntities.owl
Organisation.owl Organisation.owl EmployeeDepartment.owl
ProductAssociations.owl EmployeeDepartment.owl Metonymy.owl
ProductCategory.owl Metonymy.owl NaryParticipation.owl

NaryParticipation.owl Party.ow
Party.owl Situation.owl
Situation.owl SystemSynthesis.owl
SystemSynthesis.owl TaskRole.owl
TaskRole.owl

Table 8.15: The patterns selected.

all the actual matching results. Missing patterns were not considered. In

Table 8.16 the number of patterns in each category can be seen for each

ontology.

Ontology Complete match Partial match Incorrect
Ontology rice 15 (79%) 4 0
OntologyRice EnrichedAbs 20 (83%) 4 0
OntologyRice EnrichedComm 19 (83%) 4 0

Table 8.16: The number of completely and partially applicable patterns.

The four patterns considered to only partially match the domain of

Ontology rice are the Person, Product, ProductAssociations, and Product-

Category patterns. The Person-pattern was not completely suitable since it

is more intended for ontologies about people and the information associated

to individuals, i.e. social security numbers, age, height, weight. The other

three patterns are domain specific patterns from the product development

domain. However, some general parts of these patterns, treating products

and their features could also be applicable in the agriculture domain, agri-

culture does in fact produce some types of products. Two of these, the

ProductAssociations and ProductCategory patterns, were removed for the

OntologyRice EnrichedAbs and OntologyRice EnrichedComm but instead

two other patterns deemed as only partially suitable for the domain, i.e. the



278 CHAPTER 8. EVALUATION OF ONTOCASE

EmployeeDepartment and SystemSynthesis patterns were introduced. No

completely unsuitable pattern was included in any ontology. Nevertheless,

this means that 5 completely appropriate patterns were added into each

of the enriched ontologies, patterns that were not possible to identify and

include before the enrichment of the input ontology.

8.4.4 Summary and discussion

To summarise these result we can conclude that OntoCase in fact provides

an added structure to the ontologies, and does connect unconnected parts

of the ontologies produced by other OL methods. A general top structure

is introduced, adding some of the missing general background knowledge

not found explicitly in the input texts. These improvements are achieved

without increasing the error rate of the ontologies, hence the first hypothesis

is supported.

Although this was a completely different domain and focus, than for the

two first evaluation experiments, and there were no domain specific patterns

available, the results are reasonable. OntoCase was able to connect large

parts of the ontologies to the patterns, even with this very small pattern

catalogue. It has to be noted though, that the ontologies produced have still

to be viewed only as a basis for further development, hence they contain

for example multiple modelling choices from which the user may choose the

needed ones.

Based on the results presented above it can also be noted that enrichment

of ontologies, whether learnt or handcrafted, can lead to the selection of

more relevant patterns. The enrichment in itself might introduce some

errors compared to manually constructed ontologies, but this is natural

since enrichment is done automatically. However, the error rate did not

increase by applying OntoCase on top of the results, and the additional

patterns selected were to a high extent correct. The overall conclusion is

clear, the second hypothesis is supported, enrichment supports matching

of patterns. This is an additional merit of OntoCase, that it is suited for

interaction with other OL methods, not only in a purely sequential manner

where output from one method becomes input of the other, but in a more

iterative fashion. Nevertheless, no conclusion can be drawn with respect to

the trade-off between the errors introduced when enriching the ontologies

and the benefits of being able to include more relevant patterns.



Chapter 9

Discussion and future work

This chapter reflects on the results presented in the previous chapters. The

first section revisits the evaluation questions, regarding research method

and presentation, that were proposed in chapter 4. This discussion puts

the research in perspective and comments on the method and the research

process itself. Then the chapter continues with a discussion of the results

themselves, and especially future work potential. Most results, although

supportive of the OntoCase method, also indicate additional improvements

that can be attained, such open issues and future work will be noted and

discussed throughout this chapter.

9.1 Research evaluation

In chapter 4 a method for evaluating the research approach as such was

discussed, and some questions were posed in order to be answered at the

end of this research. After finishing the evaluation of the actual results it is

now time to briefly also evaluate the methods applied in the research. The

questions were divided into five categories that will be treated below:

1. Significance of the study

2. Internal validity

3. External validity

4. Objectivity and confirmability

5. Reliability and auditability

279



280 CHAPTER 9. DISCUSSION AND FUTURE WORK

9.1.1 Significance

Significance concerns the relevance and the contribution of the research, as

well as the quality of the research results. To determine the significance of

the research results the following questions were posed:

• Who are the beneficiaries of these results and what relevance do these

research results have to the beneficiaries’ problems?

• What are the main research contributions of this research to the field?

• How is this solution better than previously proposed solutions to the

same kind of problems?

With respect to the first question it may be noted that this research is

relevant mainly to ontology engineers and ontology researchers. However,

ontology engineers are a growing category of people, in contrast to when

ontologies were used for expert systems during the 90’s, today ontologies

are constructed and presented on the web by different categories of people.

Thereby the term ’ontology engineer’ can include almost any person who

constructs an ontology, just for fun or for some specific purpose, whether in

their spare time or as a part of a research or development enterprise. This

is also precisely why approaches such as the one presented in this thesis

are most relevant, if inexperienced ontology engineers or domain experts

are to be able to construct reasonable ontologies they need help. Tools

and automatic methods can provide this help, and patterns provide a way

to reuse best practices and well-established knowledge. These are crucial

facilitators for the development of ontology-based applications on a larger

scale, whereby this research is highly relevant.

The second question addresses the main research contributions. These

are additionally stated and discussed in chapter 10, but in brief the main

novel research contributions are the following:

• Patterns

– The typology of ontology patterns.

– Characteristics and descriptions of the pattern types.

– Catalogue of content design patterns.

– Experiments showing the usefulness of patterns.

• Semi-automatic ontology construction



9.1. RESEARCH EVALUATION 281

– The overall framework for pattern-based semi-automatic ontol-

ogy construction, called OntoCase.

– A method for pattern ranking and selection.

– A method for pattern composition.

– Implementation of the above, facilitating experimentation on the

methods.

• Evaluations

– Evaluations of pattern-based semi-automatic ontology construc-

tion.

– Experiences from ontology construction with industry partners.

– Experiences from adapting and using ontology evaluation mea-

sures and methods.

The focus of the third question is on how these results improve the re-

sults achieved with previously existing methods. This issue was addressed

in chapter 8, mainly during the evaluation of the JIBSNet ontology where

results were compared to typical results of an existing OL system. Addition-

ally in the SEMCO experiments reported, we noted that relation elicitation

was hard to do even manually, whereby the patterns proved to provide

many good suggestions and added some structure even in comparison with

a manually engineered ontology. The interplay between existing OL systems

and OntoCase was discussed in the third evaluation case, in the context of

the FAO agricultural ontologies. It seems that combining existing OL tech-

niques with the use of patterns gives some promising results, and this aspect

has not been explored in any other research effort so far.

9.1.2 Internal validity

Internal validity is concerned with the evidence that supports the research

conclusions and the credibility of the arguments made. Questions asked

with respect to internal validity are:

• Does the method actually solve the problem? Completely or only

partly?

• Does the method meet all stated requirements?

• Is the method compared to alternative methods, and are results for

such comparisons presented?



282 CHAPTER 9. DISCUSSION AND FUTURE WORK

• Is negative evidence sought for and presented?

• Does the evidence support the claims for the research results suffi-

ciently?

The first question can be answered with both yes and no. The very

general problem of automatically constructing ontologies is far from solved,

but this was not the intention with the thesis. With respect to the specific

research questions stated, the implemented parts of the OntoCase method,

in combination with the pattern typology and the pattern catalogue, does

really provide one possible solution to that specific problem. Resulting

ontologies are not perfect but as noted in the last section, they are indeed an

improvement over ontologies constructed by comparable existing methods.

If we consider the research questions as indicating the overall requirements

of the method, the solution does meet all the requirements, e.g. it produces

ontologies of better quality than existing methods. Nevertheless, only a

part of the OntoCase method is treated in detail, so the result can be seen

as a partial solution to the problem.

The method is compared to alternative methods, although one weakness

is that during the experimentation phase the method is only compared to

one specific alternative system. This is due to several practical reasons,

e.g. the availability of alternate tools and details of other methods, and

theoretical reasons such as fairness. Since all the methods for OL are semi-

automatic in some way, the user needs to provide some minimum amount

of input, such as setting variables or choosing input data sets, which makes

comparisons hard. The tools usually require user input in different ways,

and most require some user validation throughout the construction process.

Setting up an experiment that fairly compares supporting tools for ontology

construction when all the tools require different kinds of input and decision-

making from the users, is a very hard problem. The comparison easily

becomes a comparison of user abilities rather than tool capacity. To avoid

this we have chosen to select one typical tool, the one that is most similar

to our own approach, requiring a minimum of user intervention. We then

mainly show that our method can improve the results of this tool, which

in turn can be viewed as producing typical results from state of the art OL

algorithms today. These comparisons and a brief comparison to a manually

engineered ontology was presented previously in chapter 8.

There is no description of a complete failure of the method, since we

have no such evidence at all, as far as concerns the presence of negative

evidence. Nevertheless, there are results that show that even though the



9.1. RESEARCH EVALUATION 283

method does improve on results produced by other systems it still produces

some errors, i.e. the method is not perfect and has its own benefits and

drawbacks. Negative evidence is provided in the evaluation results in the

last chapter, as well as in the discussion of open issues and future work in

the following sections and chapter 10. One specific example of an ontology

that could not be handled by OntoCase was provided in section 8.4. The

positive evidence presented comes from four larger experiments, including

the first SEMCO experiment, and some minor examples and studies, within

three different domains. We believe that this is sufficient evidence for the

benefits and drawbacks of the proposed method, and enables us to draw the

conclusion that OntoCase really improves existing methods.

9.1.3 External validity

External validity is connected to the generalisability of the results, in the

sense that if external validity is low then the results only hold for the specific

cases tested. Questions asked to confirm external validity are:

• Is the method based on existing theories? Does it confirm and support

those theories?

• Are assumptions, personal opinions and biases clearly stated and anal-

ysed?

• Are the procedures and methods used clearly described?

• Are there limitations to the evidence collected thus suggesting limited

generalisability?

The work of this thesis is firmly based on theories and empirical evidence

from many existing research efforts. A thorough state of the art survey is

presented in chapter 2 and chapter 3. In these chapters, for example, ex-

isting methods for OL are discussed and presented. Using these theories

and methods as a basis, our method provides another layer that improves

these results. The algorithms proposed to solve the concrete problems are,

in many cases, based on or at least inspired by, well established theories

and methods, although considerably adapted to this specific field and the

specific problem at hand. The OntoCase approach confirms the hypothesis

underlying all OL systems, that it is possible to construct some parts of an

ontology automatically starting from existing knowledge sources. Addition-

ally it builds on the notion of patterns and shows that ontology patterns

can also be useful in semi-automatic ontology construction.



284 CHAPTER 9. DISCUSSION AND FUTURE WORK

As far as possible, personal opinions are kept outside this thesis, al-

though judgements and conclusions drawn are always to some extent based

on personal opinions. During the method development, ideas and ap-

proaches were developed based partly on personal ideas and ’hunches’ of

how to solve problems, but all these were then confirmed through the im-

plementation and the empirical evidence provided in chapter 8. Any as-

sumptions made are clearly stated throughout this thesis, whether these

are assumptions of specific ontology languages being used or assumptions

of available input to the method. The aim is to describe the method and

the experiments in such detail that any procedure or method can easily be

scrutinised for biases or any implicit assumptions still remaining.

The generalisability of the typology of patterns is very high. This is a

general theoretical result that is valid for the entire ontology engineering

field without restrictions, although the patterns themselves might some-

times be domain-dependent. Such a typology of patterns can also be ap-

plied to other fields where patterns are used, although this is beyond the

scope of this thesis. Even though we have chosen to restrict our claim of

applicability to the construction of enterprise ontologies, the final experi-

ment within the agriculture domain shows that OntoCase and even existing

patterns might actually be applicable to a much broader field than the one

explored. There is no empirical evidence or theoretical considerations that

prevent OntoCase from being applied to ontology engineering in general.

A current limitation is the low complexity of the ontologies constructed,

since there are few methods for extracting, matching or composing general

ontological restrictions and axioms. This restricts the applicability of the

method slightly. Although there is nothing that prevents us from using the

method on complex extracted ontologies, the only issue is that these fea-

tures cannot currently be matched to the patterns, but may be included in

the ontology as is.

9.1.4 Objectivity and reliability

The final two criteria can be combined into one set of questions, actually al-

ready partly covered by the previous ones. Questions regarding objectivity,

reliability, confirmability, and auditability are:

• Are the research questions clear?

• Are basic constructs and basic assumptions clearly specified?

• Are all methods, experiments and procedures described in detail?



9.1. RESEARCH EVALUATION 285

• Is it clear what data is used for testing and experiments?

• Are all assumptions made explicit during the process?

• What biases exist for the persons and methods involved in the re-

search?

• Is the status and role of the researcher explicitly described?

• What limitations are imposed by biases or subjectivity in the research

results and conclusions?

The research questions are clearly stated and available in section 1.2.4,

they are discussed throughout the thesis and subsequently answered in the

conclusions chapter. Basic constructs and assumptions, such as ontology

definition and details about OL methods, are presented in chapters 2 and

3, and additional assumptions are discussed in the context of the method

implementation and the evaluations in chapter 8. Detailed descriptions are

provided for each method proposed, and the exact setup of each experiment

is described in detail. The only details missing are the proprietary company

specific data and information that was used for constructing the ontologies,

as well as the complete content of the ontologies constructed. Some of

this data unfortunately cannot be published publicly due to property rights

issues and non-disclosure agreements. Other data was excluded due to space

restrictions in this thesis, but can be retrieved from the author on request.

Assumptions during the process are explicitly stated, or at least deriv-

able from detailed descriptions of the proposed methods and the experi-

ments. Biases are naturally present in all experimentation settings that in-

volve both humans and methods developed by humans, this is unavoidable.

The effects of such biases can be minimised through careful engineering of

experimentation settings and selection of subjects and data sets. By con-

ducting several experiments in different domains, with different settings and

different domain experts involved, we have shown that biases are indeed not

the cause of the positive results achieved.

Biases are also closely connected to the role of the researcher in the ex-

periments, since taking a too active part in the experiments could introduce

a bias. Running the automatic methods was a task of the researcher in the

experiments presented above, except for the external tool (Text2Onto) that

was run by the tool’s developers themselves. Input data was also selected by

the researcher, although in almost every case all available information was

used, such as the complete set of English texts available at JIBSNet, or the



286 CHAPTER 9. DISCUSSION AND FUTURE WORK

complete set of available pattern candidates from the ODP portal, hence

no subjective decision-making was involved. Some results were evaluated

by the researcher, such as the collection of structural characteristics, and

the application of OntoClean and other taxonomic evaluations. This is of

course a weakness, but due to practical limitations and the availability of

alternative personnel with ontology engineering experience, there were no

other options available. To compensate for this a very important part of

the evaluations were the evaluations conducted by domain experts, where

external evaluators assessed the results. The researcher was also involved

in these experiments, but strictly refrained from interfering other than to

present the task and the setting.

For practical reasons there were some limitations on the selection of

data and evaluation methods. It is important to be aware of these limita-

tions, as discussed above, but by presenting several examples and evalua-

tions that all agree and point at certain general conclusions, sufficient rigour

is achieved. The exact numbers presented in each evaluation setting should

not be viewed as an absolute objective truth, but the trends are nevertheless

clear and unmistakable. The level of detail in the descriptions additionally

makes it possible to conduct similar experiments and confirm these results

if needed.

9.2 Ontology patterns

One of the main contributions provided in this thesis is the typology of

patterns and the initial pattern catalogue that was developed. Below, the

implications of having such a typology as a frame of reference are discussed,

and the possible benefits and drawbacks of different kinds of patterns are

noted.

9.2.1 Benefits of ontology patterns

The typology of patterns presented in chapter 5 contains four levels of ab-

straction; the application level, the architecture level, the design level, and

the syntactic level. It is easy to see that these levels cover all possible levels

of abstraction when constructing ontologies. The levels of granularity for

each abstraction level are quite intuitive. This framework of pattern levels,

i.e. a typology, is beneficial in several ways. As noted in chapter 3 patterns

are commonly stated to have three kinds of benefits:



9.2. ONTOLOGY PATTERNS 287

• reuse,

• guidance,

• and communication benefits.

Reuse benefits mainly concern constructing better artefacts, in our case

ontologies, due to the reuse of some best practices, in the form of patterns.

At the design pattern level the reuse benefits are many, although the produc-

tion of formal evidence has only begun, e.g. see the experiment reported in

section 5.3.4 and the evaluations in chapter 8. On the syntactic and design

level, patterns are ontological elements, pieces of ontologies or restrictions

on the overall architecture, whether described for a specific representation

or on an abstract logical level. Since such patterns are usually provided as

implemented building blocks, that can be directly reused, it is easy to see

that the reuse benefits are stronger in ontology engineering than in for ex-

ample software engineering, where reusable components are rarely shipped

together with patterns. Design patterns in software engineering are usually

just abstract guidelines for how to solve a certain problem, where ontology

design patterns in addition provide the implemented solution.

Reuse benefits for architecture and application patterns cannot immedi-

ately be accepted, without further study, since many architecture patterns

or application patterns can be quite abstract. It is not trivial to see how

applying an ontology architecture pattern would always improve the quality

of the ontology. Since researchers are today still asking what is a good ar-

chitecture, there is no clear answer to whether or not ontology architecture

patterns could provide better ontologies. Similarly, as far as concerns appli-

cation patterns it is not clear that such patterns would necessarily make the

ontology ’better’ in some sense. Nevertheless, these patterns are valuable

in other respects, as we shall see later.

Guidance benefits are given by patterns that offer rich problem descrip-

tions, point at difficult issues and provide suggestions for solutions. Some-

times the actual solution of the pattern is not the most valuable thing.

Equally valuable is for example the problem description itself, which can

help developers to avoid common mistakes and notice issues that would

have otherwise gone unnoticed. When ontology design patterns are reused,

even as ready-made building blocks, they also provide guidance as to how

things should be modelled. Then the developer is to extend and adapt the

pattern to fit the case at hand. These benefits are likely to be the most

important, for all patterns, especially for inexperienced ontology engineers.



288 CHAPTER 9. DISCUSSION AND FUTURE WORK

Although experienced ontology engineers may find some patterns trivial,

the patterns can be used as checklist, ensuring that nothing important has

been overlooked. Some research is even proposing to use design patterns for

evaluating ontologies, since they are encoded best practices and can guide

ontology evaluation as well as ontology construction.

Communication benefits have been discussed and promoted in software

engineering. Communication benefits can be seen both when teaching a

craft, such as ontology engineering, when performing it, when discussing it

between developers, and when documenting the artefacts and the processes.

Patterns provide a common vocabulary to talk about difficult problems and

their solutions. If two developers both know ontology design patterns, then

they have a much easier and more compact way of expressing a solution

to the n-ary relation problem by saying that you should use the ’situa-

tion pattern’ than by describing the individual concepts and relations that

are needed. Additionally this is the aim of anti-patterns, describing ’bad

practices’ and showing common mistakes, in order to communicate those in

a standard way. Anti-patterns can be viewed as a vocabulary for talking

about problems and common mistakes.

When used automatically content design patterns need to be formally

represented and machine processable, this increases the chance of achieving

reuse benefits, since the patterns are really used as building blocks, auto-

matically composed into an ontology. How good the resulting ontology will

actually be is highly dependent on other factors as well, therefore it is not

automatically true that by reusing patterns we achieve a high quality, as

we have seen when evaluating OntoCase in previous chapters. Guidance

benefits are not currently present when patterns are reused automatically.

However, if architecture patterns were present, these could be used to guide

the automatic composition of the ontology, rather than reusing them di-

rectly, and thereby provide guidance benefits of a sort. Communication

benefits are not provided by the patterns used in OntoCase at the mo-

ment, since no detailed provenance information or other documentation is

produced by the system. In the future however it would be desirable to

provide a way of tracking what patterns were used to construct what parts

of the ontologies, and how the patterns were adapted and composed. Such

information would increase human trust in such a system and would help

when manually changing or refining the ontology. In such a case patterns

would provide communication benefits, being a means for communicating

the solutions provided by an automatic method.



9.2. ONTOLOGY PATTERNS 289

In addition to the ontology patterns discussed in this thesis, where the

focus has been on ontology patterns in the sense ’patterns for ontology con-

struction’, there can be a need for other patterns concerning ontologies, but

not directly related to their construction. Re-engineering patterns have for

example been proposed by other researchers, as well as reasoning patterns

to describe common services provided by reasoning engines and logical lan-

guages. Although all such patterns are valuable, we believe that there is

need for a more coherent and informative terminology with respect to on-

tology patterns, which is one intention behind the typology proposed in this

thesis. Today, too many things are called patterns, this makes it confusing

for both developers, researchers and when teaching ontology engineering.

We believe that it would be a great benefit to the community if a common

terminology could be used and if the term pattern was used a bit more

restrictively.

9.2.2 Pattern construction

At the moment, patterns are constructed more or less ad-hoc, sometimes

without proper grounding in best practices or existing solutions. Many of

the current patterns presented in this thesis have been reengineered from

different kinds of knowledge sources. Even if those sources are patterns in

themselves there is no proof, neither theoretical nor empirical, that the re-

sulting ontology pattern candidates are really appropriate patterns for the

field. Generally, patterns should represent some consensus within a commu-

nity, whereby a process for pattern review and promotion can be beneficial.

Such a process is applied in the ODP portal∗ where the portal community

is responsible for reviewing and proposing patterns. The patterns used and

produced in this thesis are all candidates in the sense that they have not yet

passed this process of peer review. Other than development by reengineer-

ing most patterns today are constructed through extracting self-contained

pieces of top-level ontologies, which result in very abstract and high-level

patterns. Sometimes less rigorous methods have to be used however, for

bootstrapping a first set of patterns for some particular domain. As dis-

cussed in chapter 3 the initiation of a design by/for reuse process is a crucial

phase, where patterns need to be produced without any initial reward for

this extra effort.

In the context of this research we have taken a very pragmatic approach

to patterns that slightly diverges from the stricter process mentioned above.

∗http://www.ontologydesignpatterns.org



290 CHAPTER 9. DISCUSSION AND FUTURE WORK

We believe that being a pattern is simply a role of an artefact, e.g. a small

ontology. Something becomes a pattern when it is reused in a new setting,

i.e. when it takes the role of ’pattern’. This is very close to the notion of

reusable stored cases in the context of CBR. We have thereby chosen not to

consequently call all our applied patterns ’pattern candidates’ but instead

have shown that they are indeed reusable and, thereby, are patterns. The

restriction that a pattern should also represent best practices is somewhat

relaxed in this thesis, and it is not altogether clear what a best practice is.

For instance, a pattern representing a ’work around’, solving something that

cannot be represented in a certain type of logic, might not be a pattern, since

the best practice might be to choose another type of logic for representing

the ontology. Nevertheless, this might be a very useful pattern in practise,

if the choice of representation is not made by the ontology developer.

In the OntoCase framework the retain phase that closes the development

cycle is devoted to pattern extraction. The phase as such is suggested based

on the inspiration from CBR, and for the detailed realisation of this phase we

mainly propose to take inspiration from approaches to ontology modularisa-

tion and approaches from graph theory, e.g. algorithms for finding strongly

connected graph components. Finding coherent parts of the ontology that

might constitute suggestions for new patterns could be one way of evolving

the pattern catalogue, while the OntoCase method is used. We envision

some user involvement in this step, validating and possibly generalising the

candidates before including them in the pattern base. Additionally, a feed-

back process for existing patterns is needed, one that supports the user

in making pattern changes or updates. Purely manual pattern construc-

tion methods are beyond the scope of OntoCase, but manually constructed

patterns are very valuable and can of course be stored and used.

9.2.3 Ontology content design patterns

The focus of this thesis is on ontology content design patterns for use in

semi-automatic ontology construction. The requirements on such patterns

are to provide an implemented building block ready to be reused, and to

either represent some best practices or common solutions. This thesis does

not bother with the description and presentation of patterns. Although

an important issue when patterns are intended for human reuse, it is not

equally important when reusing patterns semi-automatically. Nevertheless,

even for automatic or semi-automatic use additional information about the

patterns can be valuable, such as the domain of the pattern or the compati-



9.2. ONTOLOGY PATTERNS 291

bility with other patterns. To take such additional information into account

when matching, selecting and composing patterns could improve the results

of the OntoCase retrieval and reuse phases.

An important prerequisite for applying OntoCase is that a sufficient

number of patterns are present. Even though it was shown in the last chap-

ter that the implementation of OntoCase performs reasonably well even

with no patterns specific to the domain at hand, as in the JIBSNet case,

it would most likely perform even better with additional patterns tailored

to that domain. Domain specific patterns, like any other patterns, can

be developed either by specialising some existing domain independent pat-

terns or by developing new patterns based on solutions within the domain.

Using domain specific pattern catalogues would provide more specialised

ontologies, with fewer errors due to the generality of the patterns. Future

work include to specialise general patterns and develop catalogues specific

to enterprise ontology domains.

Other useful information are compatibility, and other relations between

patterns. At the moment OntoCase takes a quite naive approach to com-

patibility, assuming that if nothing is said about incompatibility there is

none and it is left to the ontology developer, or evaluator, to resolve any

inconsistencies or other issues introduced in the ontologies. Composition is

done only through pattern overlap, but could in the future also benefit from

using other relations between patterns. For example, it was noted through-

out the evaluations that some patterns could actually have been connected,

although since the matching methods were only applied between extracted

elements and the patterns, and not between patterns, such connections were

not added. Patterns could be matched ’off line’ and the matchings validated

by an ontology engineer, in order to obtain a preexisting set of connections

between the patterns in a catalogue, to then be used at runtime.

9.2.4 Ontology architecture patterns

Very few ontology architecture patterns have been proposed, and they are

usually very general, such as the architecture styles layering or modulariza-

tion. At the moment the OntoCase implementation does not make use of

any architecture styles or patterns. To improve the pattern reuse phase fur-

ther, and to support pattern composition, some formal guidance would be

desirable. Such guidance could be provided by an ontology architecture pat-

tern, or even more specifically by an ontology reference architecture. From

our point of view, a reference architecture displays the use of one or more



292 CHAPTER 9. DISCUSSION AND FUTURE WORK

architecture patterns but is more specific and tailored to a specific domain.

A reference architecture for enterprise ontologies, or even more specifically

enterprise ontologies of a certain type of enterprise, could provide a general

structure where design patterns could fit together like pieces of a puzzle.

9.3 OntoCase

Many benefits of the OntoCase method were described in the previous chap-

ter, and supported by experimental results. Nevertheless, only parts of the

framework have been studied in detail and implemented so there is great

potential for future improvements and for covering the complete OntoCase

cycle. First, we will discuss the retrieval and reuse phases, their benefits

and drawbacks, and state some future work possibilities. Then the potential

of the revision phase will be explored and ideas for its realisation are pre-

sented. Retaining patterns, and issues related to this task, were mentioned

in the discussion of pattern construction above.

9.3.1 Pattern retrieval

The pattern retrieval phase can be divided into two steps, i.e. input pro-

cessing and pattern matching and selection. Input processing is done by

using existing ontology learning methods, such as algorithms for term ex-

traction and relation extraction. The assumptions made in this research are

that the input to the method is a text corpus and that, at a minimum, the

input processing method provides a set of terms and unnamed binary rela-

tions, with confidence values, as output. This is the typical output of OL

systems existing today, although most systems additionally provide some

more advanced features, possibly requiring some human intervention. Start-

ing from these basic elements is an obvious choice, but in order to improve

the overall results further improved methods are also needed for this step,

such as methods for axiom extraction and generation of complex concept

definitions.

In the current implementation of OntoCase an alternative to exploiting

Text2Onto is provided, through the possibility to start from an existing

OWL ontology. This gives the opportunity to use any OL tool able to pro-

duce an OWL ontology as the tool for input processing. Current research

topics within the OL field include support for reengineering existing knowl-

edge structures, such as databases, thesauri and community created tag sets.

Another topic is the extraction of more complex and expressive ontologies,



9.3. ONTOCASE 293

where recent developments have provided methods to extract disjointness

axioms and complex class definitions from dictionary definitions in natural

language. The key challenge is then to make use of these more expressive

elements for pattern matching and selection.

Other improvements for matching between patterns and extracted el-

ements are to use more specific background knowledge. At the moment

the complete WordNet dictionary is used as background knowledge in the

matching process, but there exist methods to for example prune Word-

Net, selecting only a domain specific part of the dictionary. Other kinds of

background knowledge could also be used, and hypotheses could be tested

against knowledge present on the web. The ’asking Google’ approach has

been used successfully in many other contexts. If a hypothesis can be trans-

formed into a natural language sentence that is submitted to the Google API

as a query, the number of hits hint at the likeliness that the hypothesis is

true. Also methods for word sense disambiguation could help improve the

quality of the matching results.

Matching currently involves only content design patterns and elements

extracted from a text corpus. One issue noted at the beginning of this

thesis was the lack of focus that can be observed in current OL systems,

there is no way to state formal requirements for the ontology and to restrict

the extraction process. This is also true for the OntoCase method. The

only way to restrict the process is to select a different input, in the form

of a different set of patterns or a different set of input texts. Ideally the

ontology developer using the OntoCase method would be allowed to input a

set of requirements to guide the ontology development process, for example

by specifying a set of competency questions. Automatically matching these

competency questions to competency questions of the patterns would then

give a new level of matching, above single elements of patterns and extracted

elements. This is additionally a step in the direction towards a pure CBR

methodology, where case descriptions are matched rather than the actual

case solutions.

Another future work direction would be to include architecture patterns,

possibly in the form of reference architectures in the matching process. Au-

tomatically matching and selecting reference architectures seems like a hard

problem requiring a lot of research, so in a first stage this selection would

probably have to be done manually. Nevertheless, when used to guide the

design pattern reuse in the following phase, a general overall structure would

have great benefits, whether expressed as constraints on the composition or

as a frame structure where design patterns act as components.



294 CHAPTER 9. DISCUSSION AND FUTURE WORK

9.3.2 Pattern reuse

The pattern reuse phase takes the set of elements extracted from the input

text corpus, a set of patterns, and the matching results from the previous

phase as input. An initial ontology is constructed from this input. Two

different approaches are currently used, either the extracted elements are

used as the basis and matched parts of the patterns are added, or the

extracted input elements are reduced to the set that were matched to any

pattern element. If the first approach is used the coverage of extracted input

elements is complete. In this way nothing is lost compared to only using

the OL method, without adding any patterns. The second approach has

been used for most of the evaluations in this thesis, since by pruning the

extracted ’ontology’ there is more focus on what is added from the pattern

catalogue, which allows us to evaluate things like the coverage of extracted

terms.

The pattern composition done in this phase uses simple heuristics to

combine the selected patterns, and the matching results are used to con-

nect the patterns to the extracted elements. Things that are not included

in the matching process, such as additional axioms, are generally included

if the concepts or relations involved in their definitions are added to the on-

tology. The set of heuristics seem to work quite well, a reasonable ontology

is produced as we could see in the evaluations in the last chapter, but still

there if potential for improvement. The heuristics deal at the moment with

simple constructs, such as adding a subclass of a subclass of a concept, as a

direct subclass of the concept, even if the intermediate direct subclass was

not matched. Future improvements could be to exploit the formal defini-

tions and restrictions of the model, and to use an inference engine to find

more connections, rather than to only treat the asserted model.

Another issue in pattern composition was noted earlier when discussing

patterns and relations between patterns. Since no matching between pat-

terns is currently performed, and no preexisting relations between patterns

are used, the patterns are only treated as small ontologies that are added as

is. Pattern overlap is used to connect patterns, but the existence of pattern

overlap cannot be assumed in the general case.

The ontologies constructed by the current OntoCase method are very

rich in structure and quite ’tangled’ with respect to the number and struc-

ture of relations present. This is due to the number of hypotheses developed

during the matching step in the retrieval phase, that are later added to the

ontology mainly as relations. This could be viewed as making the ontology



9.3. ONTOCASE 295

very complex and hard to comprehend, but on the other hand this also gives

a lot of options to the ontology developer for choosing the correct way of

modelling some issue. It is also our firm belief that it is harder to spot a

missing relation than to decide whether a suggested relation is correct or

incorrect, and thereby to add more structure, more relations, to the ontol-

ogy is beneficial, up to a certain limit of course. Similarly to the famous

statement by Firth [66] guiding the development of many of today’s NLP

and information retrieval approaches based on collocations: ”you shall know

a word by the company it keeps”, we would like to propose the statement

”you shall know a concept by its relations to other concepts”. This is some-

thing also noted by domain experts in the evaluations presented previously,

relations are very important for the understanding of a concept. Then a

future user interface for OntoCase should provide assistance to resolve the

tangled sets of hypotheses, such support is not yet developed.

9.3.3 Ontology revision

The third phase of the method is not treated in detail in this thesis, this

means that the complete study and realisation of this phase is still future

work. The idea of this phase is to semi-automatically improve the ontology

constructed through pattern reuse in the previous phase until it is ready to

be applied in its intended setting. This would involve cleaning and pruning

of the ontology, as was discussed previously, to remove incorrect alterna-

tives added in the pattern composition. Additionally, this would involve

semi-automatic evaluation of the ontology in order to determine what is-

sues remain and what improvements and refinements can be performed. If

future versions of OntoCase include the specification of requirements of the

ontology, such as a set of competency questions, these evaluations can be

more precise and concrete, but otherwise the method would have to rely on

general quality measures, such as the ones used in chapter 8.

Based on the evaluation results the ontology should be refined and pos-

sibly extended. OntoCase can be used as an iterative process. If the evalua-

tions show some lack of content or incorrect focus, another iteration may be

run, providing the ontology as input but adding new patterns or additional

elements extracted from a new text corpus. Apart from a complete rerun

of the OntoCase method, some ontology enrichment methods or ontology

population algorithms could also be applied in this phase. Revision would

still be partly a manual process. Although many OL approaches aim at

bringing ontology engineering into the grasp of domain experts, this is a



296 CHAPTER 9. DISCUSSION AND FUTURE WORK

far off vision, whereby some parts of the revision would most likely be done

manually by an ontology engineer. In this sense the method could be used

as one tool among others, within a manual ontology engineering process,

for example to provide the first draft of an ontology.

9.4 Summary of future work

To summarise this discussion the typology of patterns needs to be embraced

by the ontology pattern community, it is a first step towards a common

terminology for ontology patterns and a coherent way of dividing patterns

for ontology engineering into categories. In the future, all these categories

should be populated and used for ontology engineering, but at the moment

only a few are actually used in practise. When patterns are considered in

a strict best practices sense, there is need for processes and methods how

to develop patterns and how to agree and promote pattern candidates to

become ’real’ patterns. We have taken a more pragmatic approach where

pattern candidates can be produced by reengineering, or extracted from

existing solutions, and directly reused, without necessarily providing any

other proof of their status than that they were used to solve some real-

world problem.

Future work concerning the OntoCase method include improvements on

current methods, such as disambiguation of terms, and tailoring of both

input and output more strongly to the domain. Pattern matching could

include additional background knowledge, as well as requirements in the

form of competency questions. Pattern composition might benefit from

additionally matching patterns, and applying more advanced heuristics as

well as background knowledge about the patterns in the composition pro-

cess. Implementation-wise the next steps would be to provide a tailored

user interface to the method, allowing the user to follow and understand

the process steps, as well as providing support for utilising the different

results when further refining the ontology.



Chapter 10

Conclusions

A set of conclusions can be drawn from the theoretical studies and the ex-

periments performed. As far as concerns patterns, it can be noted that

there are currently several kinds of patterns for ontologies. Ontology design

patterns are already being used today when constructing ontologies, but

more kinds of patterns are emerging and believed to be beneficial. We have

structured and characterised different kinds of ontology engineering pat-

terns, producing a coherent typology of patterns for ontology construction.

Ontology engineering patterns can be described on four levels of abstrac-

tion, ranging from syntactic patterns, via design and architecture patterns,

to application patterns. Patterns with differing scopes can be introduced

on all these levels, i.e. patterns can have different levels of granularity. As

the level of abstraction decreases several levels of granularity become pos-

sible. A unified and thoroughly described mental and theoretical model for

ontology engineering patterns, with defined levels of abstraction and gran-

ularity, is a novelty and will assist ontology engineers and researchers when

discussing, developing and using patterns.

There are challenges in semi-automatically constructing ontologies from

sources such as text corpora, and one of the prime challenges is how to

incorporate the ’missing’ information that is not explicitly stated in do-

main specific texts. This is both common sense knowledge and domain

knowledge that is assumed and not stated explicitly, due to assumptions

by the information provider with respect to the intended audience. We

have addressed this challenge by introducing ontology content design pat-

terns into semi-automatic ontology construction, and we have proposed a

general framework for pattern-based semi-automatic ontology construction

297



298 CHAPTER 10. CONCLUSIONS

called OntoCase. More specifically, ontology content design patterns on the

granularity level of ontology pieces of the ontology, solving some specific

modelling problem, are used to assist ontology construction. Experiments

have shown that the ontologies produced are reasonable with respect to

their intended domain and topics, and that they have both certain bene-

fits compared to manually constructed ontologies, and improve the quality

of output compared to typical existing semi-automatic methods. This im-

proved quality may come at the expense of coverage, but since the ontologies

are intended to be further processed manually, or enriched automatically,

quality and comprehensibility are deemed more important than coverage of

the extracted information.

More specifically we have developed a pattern ranking scheme that is

used for ranking patterns according to their relevance with respect to an

extracted set of terms, and relations between those terms, with the intent

to select a set of patterns for ontology construction. Experiments have

shown the benefits of this scheme compared to existing ontology ranking

approaches, and it was then used in the implementation of the OntoCase

framework. Pattern composition is also a crucial issue, which is included and

implemented into the current version of OntoCase. Benefits of the pattern

composition method are the variety of alternative modelling choices that

are presented to the user for further selection and refinement, the added

level of abstraction of the produced ontology, i.e. the addition of a general

top level, and the improved structure of the output ontology, in terms of

added relations.

The following research questions were posed in section 1.2.4:

• What kinds of ontology patterns can be differentiated?

• How can ontology design patterns be used in semi-automatic ontology

construction?

• How does ontology design pattern-usage in the ontology composition

step affect the quality of the resulting ontologies?

The first question was addressed by proposing the pattern typology, char-

acteristics, and pattern definitions in chapter 5. The second question was

addressed by proposing the OntoCase framework, and specific methods for

realising the details of the first and second phases, such as the pattern rank-

ing scheme. The OntoCase framework was treated in detail in chapter 7.

The third and final question was addressed through a set of experiments us-

ing the implemented OntoCase method and the quality measures discussed



299

in chapter 4. The experimental results were presented in chapter 8, and an

illustrative example can also be found in section 7.7.

To summarise, we have shown that four different kinds of ontology pat-

terns can be differentiated, and are needed, for ontology construction. A

pattern catalogue was developed that contains a set of ontology content de-

sign patterns, reengineered from other pattern sources. The general frame-

work, OntoCase, presents a method for applying patterns in semi-automatic

ontology construction, and the proof of concept implementation demon-

strates the feasibility of the method. In order to study the characteristics

and quality of the produced ontologies, to determine the appropriateness

of the method, a set of experiments were performed in several different

settings. Results clearly show that OntoCase improves the quality of the

ontologies produced, compared to existing OL methods.





Bibliography

[1] Nationalencyklopedin, entry on the term ”ontologi”. Available online:

http://www.ne.se/jsp/search/article.jsp?i art id=276179. (Accessed 2008-

08-27). [cited at p. 25]

[2] Nationalencyklopedin, entry on the term ”semiotik”. Available at:

http://www.ne.se/artikel/1174236. (Accessed 2008-11-11). [cited at p. 29]

[3] Representing classes as property values on the semantic web. Available at:

http://www.w3.org/TR/swbp-classes-as-values/, April 2005. [cited at p. 95,

193]

[4] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues ,

methodological variations, and system approaches. AICom, 7:39–59, 1994.

IOS Press. [cited at p. 98]

[5] R. Al-Halimi, R. C. Berwick, J. F. M. Burg, M. Chodorow, Christiane Fell-

baum, Joachim Grabowski, Sanda Harabagiu, Marti A. Hearst, Graeme

Hirst, Douglas A. Jones, Rick Kazman, Karen T. Kohl, Shari Landes,

Claudia Leacock, George A. Miller, Katherine J. Miller, Dan Moldovan,

Naoyuki Nomura, Uta Priss, Philip Resnik, David St-Onge, Randee Tengi,

Reind P. van de Riet, and Ellen Voorhees. WordNet - An Electronic Lexical

Database. MIT Press, 1998. [cited at p. 30, 48, 53, 67]

[6] H. Alani and C.Brewster. Ontology Ranking based on the Analysis of

Concept Structures. In Proceedings of K-CAP’05, Banff, Alberta, Canada,

October 2005. [cited at p. 71, 211, 223, 226]

[7] T. Albertsen and E. Blomqvist. Describing ontology applications. In Pro-

ceedings of the 4th European Semantic Web Conference (ESWC07), Inns-

bruck, Austria, June 3-7 2007, 2007. [cited at p. 146, 147]

[8] C. Alexander. The Timeless Way of Building. Oxford University Press,

New York, 1979. [cited at p. 80]

301



302 BIBLIOGRAPHY

[9] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King,

and S. Angel. A Pattern Language: Towns, Buildings, Construction. Ox-

ford University Press, New York, 1977. [cited at p. 80]

[10] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Ad-

dison Wesley, 1999. [cited at p. 47, 121]

[11] C. F. Baker, C. J. Fillmore, and J. B. Lowe. The berkeley framenet project.

In Proceedings of the COLING-ACL, Montreal, Canada, 1998. [cited at p. 90]

[12] J. Bao, D. Caragea, and V. G Honavar. Towards collaborative environments

for ontology construction and sharing. In Proceedings of the International

Symposium on Collaborative Technologies and Systems (CTS 2006), 2006.

[cited at p. 69]

[13] K. Barker, B. Porter, and P. Clark. A Library of Generic Concepts for

Composing Knowledge Bases. In Proceedings of the International Confer-

ence on Knowledge Capture, pages 14–21, Victoria, British columbia, 2001.

ACM Press, New York. [cited at p. 67]

[14] V. R. Basili. The role of experimentation in software engineering: Past,

current and future. In Proceedings of ICSE-18, 1996. [cited at p. 105]

[15] K. Beck, J. O. Coplien, R. Crocker, L. Dominick, G. Meszaros, F. Paulisch,

and J. Vlissides. Industrial experience with design patterns. In Proceed-

ings of the 18th International Conference on Software Engineering. IEEE

Computer Society Press, 1996. [cited at p. 11]

[16] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific

American Magazine, 2001. [cited at p. 26, 38]

[17] A. Bernstein and E. Kaufmann. Gino - a guided input natural language

ontology editor. In Proceedings of the 5th International Semantic Web Con-

ference (ISWC 2006), Athens, Georgia (US), November 2006. [cited at p. 44]

[18] A. Billig and K. Sandkuhl. Match-Making based on Semantic Nets - The

XML-based Approach of BaSeWeP. In XML Technologien für das Semantic

Web - XSW 2002, Proceedings zum Workshop, June 2002. [cited at p. 70, 94]

[19] A. Billig and K. Sandkuhl. Enterprise ontology based artefact management.

GI Jahrestagung, P134:681–687, 2008. [cited at p. 5, 193, 194, 344]

[20] G. Bisson, C. Nédellec, and D. Canamero. Designing clustering methods

for ontology building: The Mo’K workbench. In S. Staab, A. Maedche,

C. Nédellec, and P. Wiemer-Hastings, editors, Proceedings of the First

Workshop on Ontology Learning OL’2000, Berlin, Germany, August 25,

2000, August 2000. [cited at p. 54]



BIBLIOGRAPHY 303

[21] S. Björk, S. Lundgren, and J. Holopainen. Game Design Patterns. In

M. Copier and J. Raessens, editors, Level Up - Proceedings of Digital Games

Research Conference 2003, Utrecht, The Netherlands, 4-6 November 2003,

2003. [cited at p. 83, 86]

[22] E. Blomqvist and K. Sandkuhl. Patterns in Ontology Engineering: Classifi-

cation of Ontology Patterns. In Proceedings of the International Conference

on Enterprise Information Systems 2005, Miami Beach, Florida, May 24-28

2005. [cited at p. 146]

[23] J. Bos. Wide-Coverage Semantic Analysis with Boxer. In Johan Bos and

Rodolfo Delmonte, editors, Semantics in Text Processing. STEP 2008 Con-

ference Proceedings, volume 1 of Research in Computational Semantics,

pages 277–286. College Publications, 2008. [cited at p. 59]

[24] C. Brewster, H. Alani, S. Dasmahapatra, and Y. Wilks. Data Driven On-

tology Evaluation. In Proceedings of the 4th International Conference on

Language Resources and Evaluation (LREC 2004), Lisbon, Portugal, 2004.

[cited at p. 61, 120, 121]

[25] C. Brewster, F. Ciravegna, and Y. Wilks. User-centred Ontology Learning

for Knowledge Management. In Proceedings 7th International Workshop

on Applications of Natural Language to Information Systems, Stockholm,

2002. [cited at p. 55, 82, 93]

[26] C. Brewster, F. Ciravegna, and Y. Wilks. Background and foreground

knowledge in dynamic ontology construction. In Proceedings of the Seman-

tic Web Workshop, SIGIR, 2003. [cited at p. 62]

[27] P. Buitelaar, T. Eigner, , and T. Declerck. Ontoselect: A dynamic ontology

library with support for ontology selection. in . In Proceedings of the Demo

Session at the ISWC04, Hiroshima, Japan, Nov. 2004, 2004. [cited at p. 70,

71]

[28] P. Buitelaar, T. Eigner, and T. Declerck. OntoSelect: A Dynamic Ontology

Library with Support for Ontology Selection. In Proc. of the Demo Session

at the ISWC’04, Hiroshima, Japan, Nov. 2004. [cited at p. 222]

[29] P. Buitelaar, D. Olejnik, and M. Sintek. A protégé plug-in for ontology

extraction from text based on linguistic analysis. In Proceedings of the

1st European Semantic Web Symposium (ESWS), Heraklion, Greece, May

2004. [cited at p. 59]

[30] F. Burstein and S. Gregor. The systems development or engineering ap-

proach to research in information systems: An action research perspec-



304 BIBLIOGRAPHY

tive. In Proceedings of ACIS99, pages 122–134, Wellington, NZ, 1999.

[cited at p. 111, 112, 113]

[31] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.

Pattern-oriented Software Architecture - A System of Patterns. John Wiley

& Sons, Chichester, 1996. [cited at p. 64, 80, 81, 83, 84, 85, 86, 87, 343]

[32] A. Chalmers. What Is This Thing Called Science? Open University press,

1999. [cited at p. 104]

[33] H. Cherfi and Y. Toussaint. How far Association Rules and Statistical

Indices help Structure Terminology. In 15th European Conference on Ar-

tificial Intelligence (ECAI’02): Workshop on Machine Learning and Nat-

ural Language Processing for Ontology Engineering, Lyon, France, 2002.

[cited at p. 49, 50]

[34] P. Cimiano. Ontology Learning and Population from Text - Algorithms,

Evaluation and Applications. Springer, 2006. [cited at p. 8, 30, 32, 34, 45, 46,

49, 51, 92, 208, 209]

[35] P. Cimiano, P. Buitelaar, and B. Magnini, editors. Ontology Learning

and from Text: Methods, Evaluation and Applications. IOS Press, 2005.

[cited at p. 46]

[36] P. Cimiano, A. Hotho, and S. Staab. Learning concept hierarchies from

text corpora using formal concept analysis. Journal of Artificial Intelligence

Research, 24:305339, 2005. [cited at p. 49]

[37] P. Cimiano and J. Völker. Text2onto - a framework for ontology learning

and data-driven change discovery. In Proceedings of the 10th International

Conference on Applications of Natural Language to Information Systems

(NLDB), Lecture Notes in Computer Science, Alicante, Spain, June 2005.

[cited at p. 51]

[38] P. Clark, J. Thompson, and B. Porter. Knowledge Patterns. In A. G. Cohn,

F. Giunchiglia, and B. Selman, editors, KR2000: Principles of Knowl-

edge Representation and Reasoning, San Francisco, 2000. Morgan Kaufman.

[cited at p. 90, 91, 94, 343]

[39] W. Cohen, P. Ravikumar, and S. Fienberg. A Comparison of String Dis-

tance Metrics for Name-Matching Tasks. In Proc. of IJCAI-03 Workshop

on Information Integration on the Web (IIWeb-03), August 9-10, 2003,

Acapulco, Mexico, 2003. [cited at p. 178, 212]

[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press, 2001. [cited at p. 143]



BIBLIOGRAPHY 305

[41] N. Cross. Designerly ways of knowing: Design discipline versus design

science. Design Issues, 17(3):49–55, Summer 2001. [cited at p. 107]

[42] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE:

A Framework and Graphical Development Environment for Robust NLP

Tools and Applications. In Proc. of ACL’02, 2002. [cited at p. 209]

[43] M. d’Aquin, C. Baldassarre, L. Gridinoc, M. Sabou, S. Angeletou, and

E. Motta. Watson: Supporting next generation semantic web applications.

In Proceedings of the WWW/Internet conference, Vila real, Spain, 2007,

2007. [cited at p. 70]

[44] I. Davies, P. Green, S. Milton, and M. Rosemann. Using Meta Models for

the Comparison of Ontologies. In Proc. of Eval. of Modeling Methods in

Systems Analysis and Design Workshop-EMMSAD’03, 2003. [cited at p. 120]

[45] B. Davis. The Power of Knowledge Pattern Recognition. White Paper,

available at: http://www.kikm.org/pattern recog.htm, 2001. [cited at p. 90]

[46] G. de Chalendar and B. Grau. How to Classify Words Using their Context.

In Proceedings of the 12th International Conference on Knowledge Engi-

neering and Knowledge Management, EKAW2000, Juan-les-Pins, France,

October 2000, pages 203–216. Springer, 2000. [cited at p. 48]

[47] A. Dearden, J. Finlay, L. Allgar, and B. McManus. Evaluating pattern

languages in participatory design. In Proceedings of CHI2002, Minneapolis,

USA, April 2002. ACM. [cited at p. 11]

[48] W. Deiters, T. Löffeler, and S. Pfennigschmidt. The information logistics

approach toward user demand-driven information supply. In Cross-media

service delivery : Based on papers presented at the Conference on Cross-

Media Service Delivery - CMSD-2003. Kluwer Academic Publishers, 2003.

[cited at p. 26]

[49] K. Dellschaft, H. Engelbrecht, J. Monte Barreto, S. Rutenbeck, and

S. Staab. Cicero: Tracking design rationale in collaborative ontology engi-

neering. In Online Demo Proceedings of the 5th European Semantic Web

Conference (ESWC2008), Tenerife, Spain, June 2008. [cited at p. 45]

[50] K. Dellschaft and S. Staab. On How to Perform a Gold Standard Based

Evaluation of Ontology Learning. In In Proceedings of the 5th International

Semantic Web Conference (ISWC2006), volume 4273 of LNCS, Athens,

GA, USA, November 2006. [cited at p. 121]



306 BIBLIOGRAPHY

[51] V. Dimitrova, R. Denaux, G. Hart, C. Dolbear, I. Holt, and A. G. Cohn.

Involving domain experts in authoring owl ontologies. In Proceedings

of the 7th International Semantic Web Conference (ISWC2008), 2008.

[cited at p. 44]

[52] L. Ding, R. Pan, T. Finin, A. Joshi, Y. Peng, and P. Kolari. Finding and

ranking knowledge on the semantic web. In Proceedings of ISWC 2005,

2005. [cited at p. 70]

[53] Y. Ding and R. Engels. IR and AI: Using Co-occurrence Theory to Generate

Lightweight Ontologies. In Proceedings of the 12th International Workshop

on Database and Expert Systems Applications, 3-7 sept. 2001. IEEE, 2001.

[cited at p. 49]

[54] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to Map

between Ontologies on the Semantic Web. In Proceedings of the eleventh

international conference on World Wide Web, pages 662–673, Honolulu,

Hawaii, 2002. ACM. [cited at p. 73]

[55] M. Dzbor, M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Blomqvist,

H. Lewen, and M. Espinoza. D5.6.2 Experimentation with parts of

NeOn methodology. Technical report, NeOn Project, 2009. Available at:

http://www.neon-project.org. [cited at p. 161, 165]

[56] J. Euzenat and P. Shvaiko. Ontology Matching. Springer Verlag Berlin-

Heidelberg, 2007. [cited at p. 72, 73]

[57] A. Faatz and R. Steinmetz. Ontology Enrichment with Texts from the

WWW. In Proceedings of ECML - Semantic Web mining 2002, Helsinki,

Finland, 2002. [cited at p. 60]

[58] D. Faure and C. Nédellec. A Corpus-based Conceptual Clustering Method

for Verb Frames and Ontology Acquisition. In LREC Workshop on

Adapting Lexical and Corpus Resources to Sublanguages and Applications,

Granada, Spain, 1998. [cited at p. 48, 54]

[59] D. Faure, C. Nédellec, and C. Rouveirol. Acquisition of Semantic Knowl-

edge using Machine Learning Methods: The System ”ASIUM”. Technical

Report ICS-TR-88-16, Université Paris Sud, Paris, 1998. [cited at p. 54, 55,

92]

[60] E. A. Feigenbaum. Themes and case studies of knowledge engineering. In

D. Michie, editor, Expert Systems in the Micro-Electronic Age. Edinburgh

University Press, Edinburgh, Scotland, 1979. [cited at p. 2]



BIBLIOGRAPHY 307

[61] D. Fensel and A. Gómez Peréz. Deliverable 1.3: A survey on ontology tools.

OntoWeb, Ontology-based information exchange for knowledge manage-

ment and electronic commerce, IST-2000-29243, May 2002. [cited at p. 44,

72]

[62] E. B. Fernandez and X. Yuan. Semantic Analysis Patterns. In Proceed-

ings of the 19th International conference on conceptual Modelling, ER2000,

pages 183–195, Salt Lake City, October 2000. [cited at p. 83]

[63] M. Fernández, A. Gómez-Pérez, and N. Juristo. Methontology: from onto-

logical art towards ontological engineering. In Proceedings of the AAAI97

Spring Symposium Series on Ontological Engineering, 1997. [cited at p. 6]

[64] M. Fernandéz López. Overview of Methodologies for Building Ontologies. In

Proceedings of the IJCAI-99 Workshop on Ontologies and Problem Solving

Methods (KRR5) Stockholm, Sweden, August 2, 1999, 1999. [cited at p. 43]

[65] R. Fikes and A. Farquhar. Distributed repositories of highly expressive

reusable ontologies. IEEE Intelligent Systems, 14(2):73–79, March-April

1999. [cited at p. 43, 66, 70]

[66] J. Firth. A synopsis of linguistic theory 1930-1955. In Studies in Linguistic

Analysis. Philological Society, Oxford, 1957. reprinted in Palmer, F. (ed.

1968) Selected Papers of J. R. Firth, Longman, Harlow. [cited at p. 293]

[67] B. Fortuna, M. Grobelnik, and D. Mladenic. Background knowledge

for ontology construction. In Poster proceedings of WWW 2006, 2006.

[cited at p. 57]

[68] B. Fortuna, M. Grobelnik, and D. Mladenic. Ontogen: Semi-automatic on-

tology editor. In Proceedings of HCI International 2007, 2007. [cited at p. 57]

[69] M. Fowler. Analysis Patterns - Reusable Object Models. Addison-Wesley,

1997. [cited at p. 83, 84, 85, 160, 330, 331, 343]

[70] M. Fowler. Patterns of Enterprise Application Architecture. Addison-

Wesley, 2003. With contributions from Rice, D., Foemmel, M., Hieatt,

E., Mee, R. and Stafford, R. [cited at p. 83, 85, 86, 343]

[71] K. Frantzi, S. Ananiadou, and J. Tsuji. The c-value/nc-value method of

automatic recognition for multi-word terms. In Proceedings of the ECDL,

1998. [cited at p. 47, 209]

[72] P. Gamallo, M. Gonzalez, A. Augustinin, G. Lopes, and V. S. de Lima.

Mapping Syntactic Dependencies onto Semantic Relations. In 15th Eu-

ropean Conference on Artificial Intelligence (ECAI’02): Workshop on Ma-



308 BIBLIOGRAPHY

chine Learning and Natural Language Processing for Ontology Engineering,

Lyon, France, 2002. [cited at p. 48]

[73] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns -

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[cited at p. 80, 81, 83, 85, 86, 343]

[74] A. Gangemi. Ontology design patterns for semantic web content. In The

Semantic Web ISWC 2005, volume 3729 of Lecture Notes in Computer

Science. Springer, 2005. [cited at p. 96]

[75] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann. Ontology eval-

uation and validation - an integrated formal model for the quality diag-

nostic task. Technical report, LOA , ISTC-CNR, 2005. Available at:

http://www.loa-cnr.it/Files/OntoEval4OntoDev Final.pdf. [cited at p. 115,

116, 122, 126]

[76] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann. Modelling

ontology evaluation. In Proceedings of the Third European Semantic Web

Conference. Berlin, Springer, 2006. [cited at p. 120]

[77] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann. Qood grid: A

metaontology-based framework for ontology evaluation and selection. In

D. Vrandecic, M.C. Suarez, A. Gangemi, and Y. Sure, editors, Proceedings

of Evaluation of Ontologies for the Web, 4th International EON Workshop,

Located at the 15th International World Wide Web Conference WWW

2006, 2006. [cited at p. 114, 115, 117, 120, 121, 123, 183]

[78] A. Gangemi and V. Presutti (eds.). Ontology Design Pattern portal. Avail-

able at: http://www.ontologydesign-patterns.org, 2008. [cited at p. 331]

[79] A. Gangemi, J. Lehmann, V. Presutti, M. Nissim, and C. Catenacci. C-

ODO: an OWL Meta-model for Collaborative Ontology Design. In Proceed-

ings of the Workshop on Social and Collaborative Construction of Struc-

tured Knowledge (CKC 2007) at the 16th International World Wide Web

Conference (WWW2007), 2007. [cited at p. 44]

[80] A. Gangemi and P. Mika. Understanding the Semantic Web through De-

scriptions and Situations. In Proc. of the International Conference on On-

tologies, Databases and Applications of SEmantics (ODBASE 2003), Cata-

nia, Italy, November 3-7 2003. [cited at p. 160, 330]

[81] A. Gangemi and V. Presutti. Ontology design for interaction in a reason-

able enterprise. In P. Rittgen, editor, Handbook of Ontologies for Business

Interaction, 2007. [cited at p. 96]



BIBLIOGRAPHY 309

[82] K. Gardner, A. Rush, M. Crist, R Konitzer, and B. Teegarden. Cognitive

Patterns - Problem-solving Frameworks for Object Technology. Cambridge

University Press, 1998. [cited at p. 160, 330, 331]

[83] A. Geyer-Schulz and M. Hahsler. Software Reuse with Analysis Patterns.

In Proceedings of AMCIS 2002, Dallas, Texas, August 2002. [cited at p. 83,

84]

[84] A. Gómez-Pérez. Evaluation of Taxonomic Knowledge in Ontologies and

Knowledge Bases. In Banff Knowledge Acquisition for Knowledge-Based

Systems, KAW’99, volume 2, 16-21 October 1999. [cited at p. 117, 123, 183,

185, 241, 244, 256]

[85] A. Gómez-Pérez, M. Fernández-Liópez, and O. Corcho. Ontological Engi-

neering. Springer, 2004. [cited at p. 41, 117, 118, 119]

[86] S. Gourlay. Towards conceptual clarity for tacit knowledge: a review of

empirical studies. Knowledge Management Research & Practice, 4:60–69,

2006. [cited at p. 2]

[87] T. Gruber. A translation approach to portable ontology specifications. In

Knowledge Acquisition, volume 5, pages 199–220, 1993. [cited at p. 3, 31, 32,

33]

[88] M. Gruninger and M. S. Fox. The role of competency questions in enterprise

engineering. In Proceedings of the IFIP WG5.7 Workshop on Benchmarking

- Theory and Practice, 1994. [cited at p. 44]

[89] N. Guarino. Ontology and Information Systems. In Proceedings of FOIS’98,

pages 3–15, 1998. [cited at p. 32, 39, 40, 343]

[90] N. Guarino and P. Giaretta. Ontologies and Knowledge Bases: Towards

a Terminological Clarification. In Towards Very Large Knowledge Bases:

Knowledge Building & Knowledge Sharing, pages 25–32. IOS Press, 1995.

[cited at p. 31, 32, 33]

[91] N. Guarino and C. Welty. Evaluating Ontological Decisions with On-

toClean. Communications of the ACM, 45(2):61–65, February 2002.

[cited at p. 118, 123, 183]

[92] U. Hahn and K. G. Markó. An integrated, dual learner for grammars

and ontologies. Data and Knowledge Engineering, 42(3):273–291, 2002.

[cited at p. 57, 92]

[93] U. Hahn and K. G. Markó. Ontology and Lexicon Evolution by Text

Understanding. In 15th European Conference on Artificial Intelligence



310 BIBLIOGRAPHY

(ECAI’02): Workshop on Machine Learning and Natural Language Pro-

cessing for Ontology Engineering, Lyon, France, 2002. [cited at p. 57]

[94] U. Hahn and M. Romacker. Content Management in the SYNDIKATE

system - How technical documents are automatically transformed to text

knowledge bases. Data & Knowledge Engineering, 35:137–159, 2000.

[cited at p. 57]

[95] J. Hartmann, P. Spyns, A. Giboin, D. Maynard, R. Cuel, M. C. Suarez-

Figueroa, and Y. Sure. D1.2.3 methods for ontology evaluation. Version

1.3.1, Available at: http://knowledgeweb.semanticweb.org/, Downloaded

2005-05-10, 2005. [cited at p. 115]

[96] H. Hasan. Information systems development as a reasearch method. Aus-

tralasian Journal of Information Systems, 11(1), 2003. [cited at p. 110]

[97] D. C. Hay. Data Model Patterns - Conventions of Thought. Dorset House

Publishing, 1996. [cited at p. 87, 88, 343]

[98] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora.

In Proceedings of the Fourteenth International Conference on Computa-

tional Linguistics, pages 539–545, Nantes, France, July 1992. [cited at p. 49,

82, 93, 95]

[99] M. Hepp and J. de Brujin. Gentax: A generic methodology for deriving

owl and rdf-s ontologies from hierarchical classifications, thesauri, and in-

consistent taxonomies. In Proceedings of the 4th European Semantic Web

Conference (ESWC2007). Springer Verlag, 2007. [cited at p. 43]

[100] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science Re-

search in Information Systems. Management Information Systems Quar-

terly, 28(1):75–105, March 2004. [cited at p. 107, 109]

[101] G. Heyer, M. Läuter, U. Quasthoff, T. Wittig, and C. Wolff. Learning

Relations using Collocations. In Maedche, Staab, Nédellec, and Hovy, edi-

tors, Proceedings IJCAI Workshop on Ontology Learning, Seattle/WA, 19-

24 August 2001, 2001. [cited at p. 49]

[102] L. Holder, D. Cook, J. Gonzalez, and I. Jonyer. Structural Pattern Recog-

nition in Graphs. In D. Chen and X. Cheng, editors, Pattern Recognition

and String Matching, volume 13 of Combinatorial Optimization. Kluwer

Academic Publishers, November 2003. [cited at p. 93]

[103] R. Ichise, H. Takeda, and S. Honiden. Rule Induction for Concept Hierarchy

Alignment. In Proceedings of the IJCAI-01 Workshop on Ontology Learning

(OL-2001), pages 26–29, Seattle, 2001. [cited at p. 73]



BIBLIOGRAPHY 311

[104] A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based Algorithm for

Mining Frequent Substructures from Graph Data. In Proceedings of the 4th

European Conference on Principles and Practice of Knowledge Discovery

in Data Bases (PKDD), pages 13–23, Lyon, September 2000. [cited at p. 93]

[105] Y. R. Jean-Mary and M. R. Kabuka. Asmov: Results for oaei 2008. In

Proceedings of the Third International Workshop on Ontology Matching,

2008. [cited at p. 75]

[106] D. Jones, T. Bench-Capon, and P. Visser. Methodologies for ontology

development. In Proceedings of IT&KNOWS Conference of the 15 th IFIP

World Computer Congress, pages 62–75. Chapman and Hall Ltd, 1998.

[cited at p. 43]

[107] D. Jurafsky and J. H. Martin. Speech and Language Processing - An Intro-

duction to Natural Language Processing, Computational Linguistics, and

Speech Recognition. Prentice Hall, 2000. [cited at p. 30, 31, 47]

[108] Y. Kalfoglou and M. Schorlemmer. IF-Map: An Ontology-Mapping Method

based on Information-Flow Theory. Journal on Data Semantics I, pages

98–127, 2003. Lecture Notes in Computer Science, Springer. [cited at p. 73,

74]

[109] Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: the state of the

art. The Knowledge Engineering Review, 18(1):1–31, 2003. Cambridge

University Press. [cited at p. 72]

[110] M. Kavalec and V. Svátek. A study on automated relation labelling. In

Ontology Learning from Text: Methods, Evaluation and Applications. IOS

Press, 2005. [cited at p. 50]

[111] M. Keet. Aspects of Ontology Integration. Available at: http://www.dcs.

napier.ac.uk/˜cs203/AspectsOntologyIntegration.pdf, 2004. [cited at p. 73]

[112] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object oriented

and frame based languages. Journal of the ACM, 42(4):741–843, 1995.

[cited at p. 36]

[113] M. Klein. Combining and relating ontologies: an analysis of problems

and solutions. In A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt, and

M. Uschold, editors, Workshop on Ontologies and Information Sharing,

IJCAI’01, Seattle, Auguat 2001. [cited at p. 73]

[114] M. Kokla and M. Kavouras. Fusion of Top-level and Geographic Domain

Ontologies Based on Context Formation and Complementarity. Interna-



312 BIBLIOGRAPHY

tional Journal of Geographical Information Science, 15(7):679–687, 2001.

[cited at p. 73]

[115] M. Kolp, P. Giorgini, and J. Mylopoulos. Organizational Patterns for Early

Requirements Analysis. In Proceedings of teh 15th International Confer-

ence on Advanced Information Systems Engineering (CAISE’03), Velden,

Austria, June 2003. [cited at p. 83, 84, 343]

[116] M. Kuramochi and G. Karypis. Finding Frequent Patterns in a Large

Sparse Graph. In Proceedings of the 2004 SIAM International Conference

on Data Mining, Lake Buena Vista, April 2004. [cited at p. 93]

[117] D. B. Leake, A. Maguitman, T. Reichherzer, A. Caas, M. Carvalho, M. Ar-

guedas, S. Brenes, and T. Eskridge. Aiding knowledge capture by searching

for extensions of knowledge models. In Proceedings of the Second Interna-

tional Conference on Knowledge Capture (K-Cap 2003), 2003. [cited at p. 98]

[118] P. De Leenheer and C. Debruyne. DOGMA-MESS: A Tool for Fact-

Oriented Collaborative Ontology Evolution. In Proceedings of OTM

Confederated International Workshops and Posters, Monterrey, Mexico,

November 9-14, 2008., LNCS. Springer, 2008. [cited at p. 67]

[119] D. B. Lenat. CYC: A large-scale investment in knowledge infrastructure.

Communications of the ACM, 38(11):33–38, 1995. [cited at p. 67]

[120] T. V. Levashova, M. P. Pashkin, N. G. Shilov, and A. V. Smirnov. Ontology

Management, II. Journal of Computer and Systems Sciences International,

42(5):744–756, 2003. [cited at p. 43, 66]

[121] H. Lewen, K. Supekar, N. F. Noy, and M. A. Musen. Topicspecific trust and

open rating systems: An approach for ontology evaluation. In Proceedings

of the 4th International EON Workshop - Evaluation of Ontologies for the

Web, located at the 15th International World Wide Web Conference WWW

2006, 2006. [cited at p. 72, 120]

[122] A. Lozano-Tello and A. Gómez-Pérez. ONTOMETRIC: A Method to

Choose the Appropriate Ontology. Journal of Database Management, 15(2),

April-June 2004. [cited at p. 119, 124, 183, 187, 188]

[123] A. Maedche. Ontology Learning for the Semantic Web. Kluwer Academic

Publishers, 2002. [cited at p. 8, 32, 45, 46, 51, 82, 226]

[124] A. Maedche and S. Staab. The TEXT-TO-ONTO Ontology Learning En-

vironment. Software Demonstration at ICCS-2000 - Eight International



BIBLIOGRAPHY 313

Conference on conceptual Structures August 14-18, 2000, Darmstadt, Ger-

many, available at: http://www.aifb.uni-karlsruhe.de/˜sst/ Research/Pub-

lications/Publications.htm, August 2000. [cited at p. 51]

[125] A. Maedche and S. Staab. Learning Ontologies for the Semantic Web. In

Semantic Web 2001 (at WWW10), May 2001. [cited at p. 51]

[126] A. Maedche and S. Staab. Ontology Learning. In S. Staab and Studer R.,

editors, Handbook on Ontologies in Information Systems. Springer, 2003.

[cited at p. 51]

[127] A. Maedche and R. Volz. The ontology Extraction & Maintenance Frame-

work Text-To-Onto. In ICDM’01: The 2001 IEEE International Confer-

ence on Data Mining Workshop on Integrating Data Mining and Knowledge

Management, November 2001. [cited at p. 51, 92, 178]

[128] S. T. March and G. f. Smith. Design and natural science research on

information technology. Decision Support Systems, 15:251–266, 1995.

[cited at p. 107]

[129] D. L. McGuinnes. Ontologies Come of Age. In D. Fensel, J. Hendler,

H. Lieberman, and W. Wahlster, editors, Spinning the Semantic Web:

Bringing the World Wide Web to Its Full Potential. MIT Press, 2002.

[cited at p. 4, 38]

[130] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An Environment

for Merging and Testing Large Ontologies. In Proceedings of the Seventh

International Conference on Principles of Knowledge Representation and

Reasoning (KR2000), Breckenridge, Colorado, April 2000. [cited at p. 73]

[131] E. Mena, A. Kashyap, A. Illarramendi, and A. P. Sheth. OBSERVER:

An approach for Query Processing in Global Information Systems based

on Interoperation across Pre-existing Ontologies. In Proceedings of the

1 st IFCIS International Conference on Cooperative Information Systems

(CoopIS ’96), Brussels, Belgium, June 1996, 1996. [cited at p. 73]

[132] T. Menzies. Object-oriented patterns: Lessons from expert systems. Soft-

ware - Practice and Experience, 1(1), December 1997. [cited at p. 11, 78, 79]

[133] H. Mihoubi, A. Simonet, and M. Simonet. Towards a Declarative Approach

for Reusing Domain Ontologies. Information Systems, 23(6):365–381, 1998.

[cited at p. 73]

[134] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. Intro-

duction to WordNet: an on-line lexical database. International Journal of

Lexicography, 3(4):235–244, 1990. [cited at p. 53, 67]



314 BIBLIOGRAPHY

[135] M. Minsky. A Framework for Representing Knowledge. Technical Report

AIM-306, Massachusetts Institute of Technology, 1974. [cited at p. 90]

[136] P. Mitra, G. Wiederhold, and M. Kersten. A Graph-oriented Model for

Articulation of Ontology Interdependencies. In Proceedings Conference

on Extending Database Technology 2000 (EDBT’2000), Konstanz, 2000.

[cited at p. 73]

[137] E. Motta and Z. Zdrahal. A library of problem-solving components based

on the integration of the search paradigm with task and method ontologies.

Int. Journal of Human-Computer Studies, 49:437–470, 1998. [cited at p. 90]

[138] M. Nagy, M. Vargas-Vera, and P. Stolarski. Dssim results for oaei 2008.

In Proceedings of the Third International Workshop on Ontology Matching,

2008. [cited at p. 75, 76]

[139] D. Nardi, R. J. Brachman, F. Baader, W. Nutt, F. M. Donini, U. Sat-

tler, D. Calvanese, R. Mlitor, G. De Giacomo, R. Ksters, F. Wolter, D. L.

McGuinness, P. F. Patel-Schneider, R. Mller, V. Haarslev, I. Horrocks,

A. Borgida, C. Welty, A. Rector, E. Franconi, M. Lenzerini, and R. Rosati.

The Description Logic Handbook - Theory, Implementation and Applica-

tions. Cambridge University Press, 2003. [cited at p. 36]

[140] R. Navigli, P. Velardi, A. Cucchiarelli, and F. Neri. Automatic Ontology

Learning: Supporting a Per-Concept Evaluation by Domain Experts. In

Workshop on Ontology Learning and Population (ECAI 2004), Valencia,

Spain, 2004. [cited at p. 120, 121]

[141] R. Navigli, P. Velardi, and A. Gangemi. Ontology Learning ant Its Appli-

cation to Automated Terminology Translation. IEEE Intelligent Systems,

18(1):22–31, Jan-Feb 2003. [cited at p. 47, 53]

[142] A. Newell. The knowledge level: Presedential address. AI Magazine, 2(2):1–

20, Summer 1981. [cited at p. 28]

[143] I. Niles and A. Pease. Towards a standard upper ontology. In Proceedings

of the international conference on Formal Ontology in Information Systems

- Volume 2001, pages 2–9. ACM Press, New York, 2001. [cited at p. 67]

[144] N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool for Automated

Ontology Merging and Alignment. In Seventeenth National Conference on

Artificial Intelligence (AAAI-2000), Austin, Texas, 2000. [cited at p. 73]

[145] N. F. Noy and M. A. Musen. Anchor-PROMPT: Using Non-Local Con-

text for Semantic Matching. In Workshop on Ontologies and Information



BIBLIOGRAPHY 315

Sharing at the Seventeenth International Joint Conference on Artificial In-

telligence (IJCAI-2001), Seattle, WA, 2001. [cited at p. 73]

[146] N. F. Noy and M. A. Musen. Evaluating Ontology-Mapping Tools: Re-

quirements and Experience. In Workshop on Evaluation of Ontology Tools

at EKAW’02 (EON2002), 2002. [cited at p. 73]

[147] N. F. Noy, N. H. Shah, B. Dai, M. Dorf, N. Griffith, C. Jonquet, M. J.

Montegut, D. L. Rubin, C. Youn, and M. A. Musen. Bioportal: A web

repository for biomedical ontologies and data resources. In Poster and

Demo Proceedings of ISWC 2008, 2008. [cited at p. 70]

[148] J. F. Nunamaker and M. Chen. Systems development in information sys-

tems research. In Proceedings of The 23nd Annual Hawaii International

Conference on System Sciences, 1990. [cited at p. 110]

[149] C. Ogden and I. Richards. The Meaning of Meaning - A Study of the In-

fluence of Language upon Thought and of the Science of Symbolism. Rout-

ledge, 1923. [cited at p. 29]

[150] A. Öhgren. Ontology development and evolution: Selected approaches for

small-scale application contexts. Technical Report ISSN 1404-0018;2004:7,

Jnkping University, School of Engineering, 2004. [cited at p. 43]

[151] A. Öhgren and K. Sandkuhl. Towards a Methodology for Ontology Devel-

opment in Small and Medium-Sized Enterprises. In IADIS Conference on

Applied Computing, Algarve, Portugal, February 2005. [cited at p. 177, 180]

[152] A. Öhgren and K. Sandkuhl. DO SME NEED ONTOLOGIES? Results

from a Survey among Small and Medium-sized Enterprises. In To appear in:

Proceedings of the 10th International Conference on Enterprise Information

Systems (ICEIS2008), 2008. [cited at p. 1]

[153] A. Oliveira, F. Câmara Pereira, and A. Cardoso. Automatic Reading and

Learning from Text. In Proceedings of the International Symposium on

Artificial Intelligence, ISAI 2001, 2001. [cited at p. 54]

[154] L. Orbst, T. Hughes, and S. Ray. Prospects and possibilities for ontology

evaluation: The view from ncor. In Proceedings of Evaluation of Ontologies

for the Web, 4th International EON Workshop, Located at the 15th Inter-

national World Wide Web Conference WWW 2006, 2006. [cited at p. 120]

[155] S. K. Pal and S. Shiu. Foundations of Soft Case-based Reasoning. John

Wiley & Sons Inc, 2004. [cited at p. 98, 99]



316 BIBLIOGRAPHY

[156] C. Patel, K. Supekar, Y. Lee, , and E. K. Park. OntoKhoj: A Semantic Web

Portal for Ontology Searching, Ranking and Classification. In Proceeding

of the Workshop On Web Information And Data Management. ACM, 2003.

[cited at p. 70]

[157] A. Pease, I. Niles, and J. Li. The Suggested Upper Merged Ontology: A

Large Ontology for the Semantic Web and its Applications. In Working

Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web,

Edmonton, July-August 2002. [cited at p. 67]

[158] H. S. Pinto and J. P. Martins. A Methodology for Ontology Integration. In

Proceedings of the First International Conference on Knowledge Capture

2001, New York, USA, 2001. ACM. [cited at p. 73]

[159] T. Pirlein and R. Studer. An environment for reusing ontologies within

a knowledge engineering approach. International Journal of Human-

Computer Studies, 43:945–965, 1995. [cited at p. 69]

[160] M. Polanyi. The Tacit Dimension. Routledge, 1966. [cited at p. 2]

[161] R. Porzel and R. Malaka. A Task-based Approach for ontology Evaluation.

In Workshop on Ontology Learning and Population (ECAI 2004), 2004.

[cited at p. 120]

[162] L. Prechelt, B. Unger, M. Philippsen, and W. Tichy. Two controlled exper-

iments assessing the usefulness of design patterns documentation in pro-

gram maintenance. IEEE TRansactions on Software Engineering, 2001.

[cited at p. 11]

[163] V. Presutti and A. Gangemi. Content ontology design patterns as practical

building blocks for web ontologies. In Proceedings of ER2008, Barcelona,

Spain, 2008. [cited at p. 96]

[164] V. Presutti, A. Gangemi, S. David, G. Aguado de Cea, M. C. Suárez-

Figueroa, E. Montiel-Ponsoda, and M. Poveda. D2.5.1: A library of on-

tology design patterns: reusable solutions for collaborative design of net-

worked ontologies. Available at: http://www.neon-project.org/ (Down-

loaded 2008-05-23), 2008. [cited at p. 94, 96, 97, 343]

[165] F. Puppe. Knowledge Formalization Patterns. In Proceedings of PKAW

2000, Sydney, Australia, 2000, 2000. [cited at p. 90, 91, 343]

[166] A. Rector. Modularisation of Domain Ontologies Implemented in Descrip-

tion Logics and related formalisms including OWL. In Proceedings of the

international conference on Knowledge capture, pages 121–128, Sanibel is-

land, 2003. ACM Press. [cited at p. 68]



BIBLIOGRAPHY 317

[167] J. R. Reich. Ontological design patterns: Metadata of molecular bio-

logical ontologies, information and knowledge. In Database and Expert

Systems Applications, 11th International Conference, DEXA 2000, 2000.

[cited at p. 95]

[168] T. Russ, A. Valente, R MacGregor, and W. Swartout. Practical Experi-

ences in Trading Off Ontology Usability and Reusability. In Proceedings

of the Twelfth Banff Knowledge Acquisition for Knowledge-based Systems

Workshop, Banff, Alberta, Canada, October 1999. [cited at p. 73]

[169] M. Sabou, V. Lopez, E. Motta, and V. Uren. Ontology Selection: Ontology

Evaluation on the Real Semantic Web. In Proceedings of the Evaluation of

Ontologies on the Web Workshop, held in conjunction with WWW’2006,

2006. [cited at p. 71, 72, 119]

[170] K. Sandkuhl. Information logistics in networked organisations: Selected

concepts and applications. In Jorge Cardoso, Jos Cordeiro, and Joaquim

Filipe, editors, Enterprise Information Systems VIII, LNBIP. Springer, To

appear 2008. [cited at p. 2, 26, 27, 343]

[171] R. C. Schank. Explanation Patterns: Understanding Mechanically and Cre-

atively. Hillsdale, NJ: Erlbaum, 1986. [cited at p. 89]

[172] R.C. Schank and R. Abelson. Scripts, Plans, Goals, and Understanding.

Hillsdale, NJ: Earlbaum Assoc, 1977. [cited at p. 89]

[173] F. Scharffe, Y. Ding, and D. Fensel. Towards correspondence patterns for

ontology mediation. In Proceedings of The Second International Workshop

on Ontology Matching, 2007. [cited at p. 76, 95]

[174] A. Schlicht and H. Stuckenschmidt. Towards structural criteria for ontol-

ogy modularization. In Workshop on Modular Ontologies (WoMO), 2006.

[cited at p. 68]

[175] M. Schorlemmer. Duality in Knowledge Sharing. In Seventh International

Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale,

Florida, January 2002. AI&M 20-2002. [cited at p. 74]

[176] M. Shaw. Some Patterns for Software Architectures. In J. M. Vlissides,

J. O. coplien, and N. L. Kerth, editors, Pattern Languages of Program

Design, volume 2, pages 255–269. Addison-Wesley, 1996. [cited at p. 83, 84,

85, 343]

[177] P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches.

Journal on Data Semantics, IV:146–171, December 2005. [cited at p. 72]



318 BIBLIOGRAPHY

[178] P. Shvaiko and J. Euzenat. Ten challenges for ontology matching. In Pro-

ceedings of the OTM 2008 Confederated International Conferences, CoopIS,

DOA, GADA, IS, and ODBASE 2008. Part II on On the Move to Mean-

ingful Internet Systems, number 5332 in LNCS, Monterrey, Mexico, 2008.

[cited at p. 74, 77]

[179] L. Silverston. The Data Model Resource Book - A Library of Universal Data

Models by Industry Types, volume 2. John Wiley & Sons, 2001. [cited at p. 88,

160, 330, 331]

[180] L. Silverston. The Data Model Resource Book - A Library of Universal

Data Models for All Enterprises, volume 1. John Wiley & Sons, 2001.

[cited at p. 88, 157, 158, 160, 330, 331, 343]

[181] E. Simperl, C. Tempich, and D. Vrandecic. A methodology for ontology

learning. In Ontology Learning and Population: Bridging the Gap between

Text and Knowledge. IOS Press, 2008. [cited at p. 45, 61]

[182] J. F. Sowa. Knowledge Representation - Logical, Philosophical, and Com-

putational Foundations. Brooks/Cole, 2000. [cited at p. 3]

[183] C. Sporleder. A Galois Lattice based Approach to Lexical Inheritance Hi-

erarchy Learning. In 15th European Conference on Artificial Intelligence

(ECAI’02): Workshop on Machine Learning and Natural Language Pro-

cessing for Ontology Engineering, Lyon, France, 2002. [cited at p. 48]

[184] R. Srikant and R. Agrawal. Mining Generalized Association Rules. In

Proceedings of VLDB ’95, pages 407–419, 1995. [cited at p. 49]

[185] S. Staab, M. Erdmann, and A. Maedche. Engineering Ontologies using

Semantic Patterns. In D. O’Leary and A. Preece, editors, Proceedings of the

IJCAI-01 Workshop on E-business & The Intelligent Web, Seattle, 2001.

[cited at p. 89]

[186] R. D. Stacey. Complex Responsive Processes in Organizations - Learning

and Knowledge Creation. Routledge, 2001. [cited at p. 28]

[187] M. Stevenson. Combining Disambiguation Techniques to Enrich an On-

tology. In 15th European Conference on Artificial Intelligence (ECAI’02):

Workshop on Machine Learning and Natural Language Processing for On-

tology Engineering, Lyon, Franc, 2002. [cited at p. 60]

[188] H. Stuckenschmidt. Modularization of Ontologies. WonderWeb Deliv-

erable D21, available at: http://wonderweb.semanticweb.org/deliverables

/D21.shtml, May 2003. [cited at p. 68]



BIBLIOGRAPHY 319

[189] H. Stuckenschmidt and J. Euzenat. Ontology Language Integration: A

Constructive Approach. In Proceedings of the Workshop on Application of

Description Logics at the Joint German and Austrian Conference on AI,

CEUR-Workshop Proceedings, volume 44, 2001. [cited at p. 89]

[190] H. Stuckenschmidt and M. C. A. Klein. Integrity and change in modular

ontologies. In Proceedings of IJCAI’03, pages 900–908, 2003. [cited at p. 67]

[191] R. Studer, R. Benjamins, and D. Fensel. Knowledge Engineering: Prin-

ciples and Methods. Data and Knowledge Engineering, 25:161–197, 1998.

[cited at p. 3, 31, 33]

[192] G. Stumme and A. Maedche. FCA-MERGE: Bottom-Up Merging of On-

tologies. In Proceedings of the 7:th International Joint Conference on Arti-

ficial Intelligence, Seattle, USA, August 1-6 2001, San Fransisco/CA. Mor-

gan Kauffmann, 2001. [cited at p. 73]

[193] M. C. Suárez-Figueroa, G. Aguado de Cea, C. Buil, C. Caracciolo, M. Dz-

bor, A. Gómez-Pérez, G. Herrrero, H. Lewen, E. Montiel-Ponsoda, and

V. Presutti. D5.3.1 neon development process and ontology life cycle.

NeOn deliverable, available at: http://www.neon-project.org, August 2007.

[cited at p. 43]

[194] M. C. Suárez-Figueroa and A. Gómez-Pérez. Building Ontology Networks:

How to Obtain a Particular Ontology Network Life Cycle? In Proceedings

of the International Conference on Semantic Systems (ISEMANTICS08),

Graz, Austria, September 2008. [cited at p. 41]

[195] M. C. Suárez-Figueroa and A. Gómez-Pérez. Neon methodology: Scenar-

ios for building networks of ontologies. In 16th International Conference

on Knowledge Engineering and Knowledge Management, Knowledge Pat-

terns, Poster and Demo Proceedings, Acitrezza, Catania, Sicily, September-

October 2008. (Online proceedings). [cited at p. 44]

[196] M. C. Suárez-Figueroa and A. Gómez-Pérez. Towards a Glossary of Ac-

tivities in the Ontology Engineering Field. In European Language Re-

sources Association (ELRA), editor, Proceedings of the Sixth International

Language Resources and Evaluation (LREC’08), Marrakech, Morocco, May

2008. [cited at p. 41]

[197] V. Sugumaran and V. C. Storey. Ontologies for conceptual modeling: their

creation, use, and management. Data & Knowledge Engineering, 42:251–

271, 2002. [cited at p. 66]



320 BIBLIOGRAPHY

[198] K. Supekar, C. Patel, and Y. Lee. Characterizing Quality of Knowledge on

Semantic Web. In Proceedings of AAAI Florida AI Research Symposium

(FLAIRS-2004), Miami Beach, Florida, May 17-19 2004. [cited at p. 120]

[199] A. Sutcliffe. The Domain Theory - Patterns for Knowledge and Software

Reuse. Lawrence Erlbaum Associates, 2002. [cited at p. 63, 64, 65, 66, 67, 69,

70, 91, 92, 159, 160, 330, 331, 343]

[200] E. Thomas, J. Z. Pan, and D. Sleeman. ONTOSEARCH2: Search-

ing Ontologies Semantically. In Proceedings of the OWLED 2007

Workshop on OWL: Experiences and Directions, 2007. Online pub-

lication: http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-

WS/Vol-258/. [cited at p. 70, 72]

[201] C. Thörn, Ö. Eriksson, E. Blomqvist, and K. Sandkuhl. Potentials and

limits of graph-algorithms for discovering ontology patterns. In Proceed-

ings of the International Conference on Intelligent Agents, Web Technology

and Internet Commerce - IAWTIC’2005, Wien, Austria, November 2005.

[cited at p. 93, 151, 156]

[202] C. Thrn, K. Sandkuhl, and W. Webers. Enterprise Ontology and Feature

Model Integration: Approach and Experiences from an Industrial Case. In

Proceedings of the Second International Conference on Software and Data

Technologies (ICSOFT 2007), Barcelona, Spain, July 2007. [cited at p. 6,

194]

[203] H. Tsoukas and E. Vladimirou. What is organizational knowledge. Journal

of Management Studies, 38(7), November 2001. [cited at p. 28]

[204] T. Tudorache and N. Fridman Noy. Collaborative protege. In Proceedings

of the Workshop on Social and Collaborative Construction of Structured

Knowledge (CKC 2007) at the 16th International World Wide Web Con-

ference (WWW2007), 2007. [cited at p. 45]

[205] R. Ungrangsi, C. Anutariya, and V. Wuwongse. Enabling Efficient Knowl-

edge Reuse in the Semantic Web with SQORE. In Proceedings of the Third

International Conference on Semantics, Knowledge and Grid. IEEE Com-

puter Society, 2007. [cited at p. 70, 72]

[206] M. Uschold. Building Ontologies: Towards a Unified Methodology. In Pro-

ceedings of Expert Systems ’96, the 16th Annual Conference of the British

Computer Society Specialist Group on Expert Systems, Cambridge, UK,

December 1996. [cited at p. 66]



BIBLIOGRAPHY 321

[207] M. Uschold, M. King, S. Moralee, and Y. Zorgios. The enterprise ontology.

The Knowledge Engineering Review, 13, Special Issue on Putting Ontolo-

gies to Use, 1998. [cited at p. 4, 39, 40, 207]

[208] G. van Heijst, A. T. Schreiber, and B. J. Wielinga. Using explicit ontologies

for KBS development. International Journal of Human-Computer Studies,

46(2-3):183–292, February 1997. [cited at p. 39]

[209] P. Visser and T. Bench-Capon. On the Reusability of Ontologies

in Knowledge-System Design. In Seventh International Workshop on

Databases and Expert Systems Applications, DEXA ’96, Zrich, Switzer-

land, September 9-10, 1996. IEEE-CS Press, 1996. [cited at p. 69]

[210] J. Voelker, D. Vrandecic, Y. Sure, and A. Hotho. Learning disjointness.

In Proceedings of the 4th European Semantic Web Conference, Innsbruck,

Austria, June 2007. [cited at p. 186]

[211] J. Völker, E. Blomqvist, C. Baldassarre, and S. Rudolph. D3.8.2 Eval-

uation of Methods for Contextualized Learning of Networked Ontolo-

gies. NeOn Deliverable, Available at: http://www.neon-project.org., March

2009. [cited at p. 266]

[212] J. Völker, P. Haase, and P. Hitzler. Learning expressive ontologies. In

Ontology Learning and Population: Bridging the Gap between Text and

Knowledge, Frontiers in Artificial Intelligence and Applications. IOS Press,

2008. [cited at p. 48, 58]

[213] J. Völker, P. Hitzler, and P. Cimiano. Acquisition of OWL DL Axioms

from Lexical Resources. In Enrico Franconi, Michael Kifer, and Wolf-

gang May, editors, Proceedings of the 4th European Semantic Web Con-

ference (ESWC’07), Lecture Notes in Computer Science. Springer, 2007.

[cited at p. 48]

[214] J. Völker and S. Rudolph. Lexico-logical acquisition of owl dl axioms -

an integrated approach to ontology refinement. In Proceedings of the 6th

International Conference on Formal Concept Analysis (ICFCA’08), volume

4933 of Lecture Notes in Artificial Intelligence, February 2008. [cited at p. 49]

[215] D. Vrandecic and Y. Sure. How to design better ontology metrics. In Pro-

ceedings of the 4th European Semantic Web Conference (ESWC07), Inns-

bruck, Austria, June 2007. Springer. [cited at p. 95]

[216] P. Wang and B. Xu. Lily: Ontology alignment results for oaei 2008. In

Proceedings of the Third International Workshop on Ontology Matching,

2008. [cited at p. 75]



322 BIBLIOGRAPHY

[217] Y. Wang, P. Haase, and J. Bao. A survey of formalisms for modular on-

tologies. In Proceedings of the International Joint Conference on Artificial

Intelligence 2007 (IJCAI’07) Workshop SWeCKa, 2007. [cited at p. 69]

[218] R. O. Weber, K. D. Ashley, and S. Brüninghaus. Textual case-based reason-

ing. The Knowledge Engineering Review, 20(3):255–260, 2006. [cited at p. 98]

[219] P. Wiemer-Hastings, A. C. Graesser, and K. Wiemer-Hastings. Inferring

the Meaning of Verbs from Context. In Proceedings of the Twentieth Annual

Conference of the Cognitive Science Society, 1998. [cited at p. 48]

[220] S.-H. Wu and W.-L. Hsu. SOAT: A Semi-Automatic Domain Ontology

Acquisition Tool from Chinese Corpus. In COLING 2002: The 17th Inter-

national Conference on Computational Linguistics: Project Notes, Taipei,

Taiwan, 2002. [cited at p. 47, 50, 51, 92]

[221] G. Xexéo, A. Vivacqua, J. Moreira de Souza, B. Braga,

J. Nogueira D’Almeida Jr, B. Kinder Almentero, R. Castilho, and

B. Miranda. Coe: A collaborative ontology editor based on a peer-to-peer

framework. Advanced Engineering Informatics, 19(2):113–121, April 2005.

Collaorative Environment for Desing and Manufacturing. [cited at p. 45]

[222] H. Yao, A. M. Orme, and L. Etzkorn. Cohesion Metrics for Ontology

Design and Application. Journal of Computer Science, 1(1):107–113, 2005.

[cited at p. 117, 123, 183]

[223] P. Yeh, B. Porter, and K. Barker. Using Transformations to Improve

Semantic Matching. In Proceedings of the international conference on

Knowledge capture, pages 180–189, Sanibel Islands, 2003. ACM Press.

[cited at p. 70, 94]

[224] M. V. Zelkowitz and D. R. Wallace. Experimental models for validating

technology. IEEE Computer, 31:23–31, 1998. [cited at p. 105]

[225] X. Zhang, Q. Zhong, J. Li, J. Tang, G. Xie, and H. Li. Rimom results for

oaei 2008. In Proceedings of the Third International Workshop on Ontology

Matching, 2008. [cited at p. 75, 76]

[226] Y. Zhang, W. Vasconcelos, and D. Sleeman. Ontosearch: An ontology

search engine. In Proceedings of the AI-2004 Conference. Springer, Decem-

ber 2004. [cited at p. 70]

[227] J. Zhong, H. Zhu, J. Li, and Y. Yu. Conceptual Graph Matching for Se-

mantic Search. In Proceedings of the 10th International Conference on Con-

ceptual Structures (ICCS 2002), Borovets, Bulgaria, July 2002. Springer.

[cited at p. 70, 94]



Appendices

323





Appendix A

Ontology metamodel

To help the reader of this thesis understand our perspective on ontologies

and what such ontologies generally contain, a metamodel of ontologies was

developed. The metamodel describes the parts that constitute an ontology

and how they are related. The model should mainly be understood as a

way of clarifying terminology for this thesis, thereby the model does not

aim to be complete and some of the parts of the model are not defined

in full detail. Due to visualisation constraints, the model is here shown in

several parts, concerning the different elements of an ontology. The parts of

the model relevant for the currently implemented version of the OntoCase

method are shown in a darker colour, to give the reader an idea of what is

currently the elements explicitly treated by OntoCase. The metamodel has

been described using the UML modelling language∗. Figure A.1 describes

the terminology concerning ontologies and knowledge bases. Figure A.2

takes a closer look at the term ’concept’, while Figures A.3 and A.4 focus

on hierarchical relations and other relations respectively.

∗Information about the UML language can be found at http://www.uml.org/.

325



326 APPENDIX A. ONTOLOGY METAMODEL

Knowledge Base

Ontology

Instance

1..*

1..*

Concept Hierarchy Relation

Logic Formula

Logic Theory

First-order Logic

DL

F-logic

1..*

1..1

Covered by

1..*

1..*

0..*0..*

0..*

1..*

Has type

1..*

0..*

Expressed by

1..*

0..*

Expressed by

1..*

0..1

Expressed by

1..1

0..*

Thesaurus

Taxonomy

1

{incomplete}

{incomplete, 

overlapping}

Disjointness

Equivalence

Axiom Rule

1..*

0..*

1..*

1..*

Transitivity

Symmetry

Inverse

{incomplete, 

disjoint}

0..*

2

0..*

2

0..1

0..1

0..1

1

2

H
o
ld

s
 f
o

r

H
o
ld

s
 f

o
r

H
o

ld
s
 f

o
r

H
o
ld

s
 f

o
r

H
o

ld
s
 f
o

r

Figure A.1: The relation between knowledge bases, ontologies and logic.



327

Concept

Extension

Term

Intension 0..1

0..*

0..1

Attribute

Instance Label Concept Label Relation Label

1
..1

-Name

Natural language

Word

1..1

1..*

0..*1..*

Consist of

0..*1..*

Expressed in

Data type

String

Integer

Date

0..*

0..1

O
f ty

p
e

R
e

p
re

s
e

n
ts

1..*

1..*

{incomplete, overlapping}

{incomplete,

disjoint}

{incomplete}

Instance

0..*

1..*

Has type

1..*

1
..*

1
..

1

1
..*

Figure A.2: Metamodel describing our view of ontology concepts.



328 APPENDIX A. ONTOLOGY METAMODEL

Hierarchy

Partonomical hierarchy Taxonomical hierarchyTerm hierarchy Relation hierarchy

Thesaurus relation

Partonomic relation Taxonomic relation

0..*

0..*

Broader term

Narrower term

Relation specialisation

0..*

1..*

0..*

0..*

0..*

1..*

0..*

{incomplete, disjoint}

{incomplete, disjoint}
Relation

{incomplete}

In
c
lu

d
e

s
 o

n
ly

In
c
lu

d
e
s
 o

n
ly

In
c
lu

d
e
s
 o

n
ly

In
c
lu

d
e
s
 o

n
ly

Figure A.3: Hierarchies found in ontologies.



329

Concept

Relation

Attribute

Relation Label

Thesaurus relation

Concept association

Binary concept association

Attribute relation Partonomic relationTaxonomic relation

Broader term Narrower term Synonym Related term

1
..*1..1 Represents

Relation specialisation

0..*

Relates

More specific More general
Subclass of Superclass of Part of Has part

0..*

1..1

Thesaurus

Taxonomy

0..* 1..*

0..*

0..*

Relation association

Binary relation association

2

{incomplete}

{incomplete}

{incomplete} {incomplete}

{complete, disjoint}
{complete,

disjoint}

{complete, 

disjoint}

{complete, disjoint}

R
e

s
tr

ic
te

d
 t

o

Restricted to

1..1

0..*

R
e

la
te

s

R
e

la
te

s

{complete, disjoint}

Figure A.4: Metamodel describing our view of ontological relations.





Appendix B

Pattern catalogues

As described previously in this thesis an initial pattern catalogue was devel-

oped based on knowledge reused from other fields, such as data modelling.

For completeness we here repeat the list of patterns and their sources in

Table B.1. Table B.2 shows the list of patterns in the extended catalogue

used for the evaluations of OntoCase. In Table B.3 some details are given

concerning the main topic and domain of each of the patterns, and the size

in terms of number of concepts. The patterns in this last catalogue are

all represented in OWL, while in the initial catalogue the patterns were

represented in F-logic. Two patterns from the original catalogue were not

translated into OWL, due to difficulties in modelling the features originally

translated from their data model counterparts. The patterns could have

been remodelled, but this was not done due to the intention to keep the

patterns as close to the original sources as possible. Additionally, one pat-

tern was not translated and included in the extended catalogue since it was

a pattern originally translated from an OWL ontology into F-logic, and it

did not make sense to translate it back again. The patterns added from the

ODP portal actually already covered this pattern, since they were extracted

from the same source, a top-level ontology.

331



332 APPENDIX B. PATTERN CATALOGUES

Table B.1: Patterns and their original sources.

Pattern name Source

Actions Analysis pattern [69]
Analysis and modelling Goal structure [199]
Communication event Data model [180]
DOLCE Descriptions and Situations Top-level ontology [80]
Employee and department Data model [180]
Engineering change Data model [179]
Information acquisition Goal structure [199]
Organisation Data model [180]
Parts Data model [179]
Party Data model [180]
Party relationships Data model [180]
Party roles Data model [180]
Person Data model [180]
Planning and scheduling Goal structure [199]
Positions Data model [180]
Product Analysis pattern [69]
Product associations Data model [180]
Product categories Data model [180]
Product features Data model [180]
Requirements Data model [180]
Requirements analysis Goal structure [199]
System Cognitive pattern taxonomy [82]
System analysis Cognitive pattern taxonomy [82]
System synthesis Cognitive pattern taxonomy [82]
Validate and test Goal structure [199]
Work effort Data model [180]



333

Table B.2: Patterns in the extended pattern catalogue and their sources.

Pattern name Source

Actions Analysis pattern [69]
Analysis and modelling Goal structure [199]
Communication event Data model [180]
Employee and department Data model [180]
Engineering change Data model [179]
Information acquisition Goal structure [199]
Organisation Data model [180]
Parts Data model [179]
Party Data model [180]
Person Data model [180]
Planning and scheduling Goal structure [199]
Positions Data model [180]
Product Analysis pattern [69]
Product associations Data model [180]
Product categories Data model [180]
Product features Data model [180]
Requirements Data model [180]
Requirements analysis Goal structure [199]
System Cognitive pattern taxonomy [82]
System analysis Cognitive pattern taxonomy [82]
System synthesis Cognitive pattern taxonomy [82]
Validate and test Goal structure [199]
Work effort Data model [180]
Time interval proposed ODP [78]
Precedence proposed ODP [78]
Participation proposed ODP [78]
Information realisation proposed ODP [78]
Description proposed ODP [78]
Agent role proposed ODP [78]
Classification proposed ODP [78]
Collection entity proposed ODP [78]
Constituency proposed ODP [78]
Co-participation proposed ODP [78]
GO top proposed ODP [78]
Invoice proposed ODP [78]
Metonymy 1 FAO proposed ODP [78]
N-ary participation proposed ODP [78]
Object role proposed ODP [78]
Situation proposed ODP [78]
Species v1.0 model proposed ODP [78]
Task role proposed ODP [78]
Types of entities proposed ODP [78]



334 APPENDIX B. PATTERN CATALOGUES

Table B.3: Pattern content

Name Conc. Domain Topic

Actions 8 Organisation Planning and follow-up of actions
Analysis and modelling 23 Product dev. Problem analysis and solution modelling
Communication event 25 Organisation Types and usage of communication
Employee and department 2 Organisation Relations concerning employees
Engineering change 18 Product dev. Changes to specification and realizations
Information acquisition 15 Product dev. Acquiring information
Organisation 8 Organisation Types of organisations
Parts 24 Product dev. Products, part and their specifications
Party 14 Organisation Types of persons and organisations
Person 1 Organisation Attributes of a person
Planning and scheduling 21 Organisation Constructing plans and schedules
Positions 7 Organisation Positions filled by different parties
Product 9 Product dev. Contracts and products
Product associations 10 Product dev. Types of associations between products
Product categories 11 Product dev. Categories and classifications
Product features 24 Product dev. Categories of attributes and their features
Requirements 21 Product dev. Types and relations of requirements
Requirements analysis 4 Product dev. General parts of requirements analysis
System 5 Product dev. General categories of systems
System analysis 16 Product dev. Types of system analysis methods
System synthesis 11 Product dev. Modes of synthesis and tasks involved
Validate and test 19 Product dev. Tasks for validation and testing
Work effort 24 Product dev., Work effort categories and purpose

Organisation
Time interval 1 General Intervals with start and end time
Precedence 1 General Sequencing of entities
Participation 2 General Objects participating in events
Information realisation 2 General Semiotic view of information
Description 2 General Concepts and their use in descriptions
Agent role 4 General Agents taking different kinds of roles
Classification 1 General Concepts classifying entities
Collection entity 1 General Collections with members
Constituency 1 General Entities made up of constituents
Co-participation 3 General Several objects participating in an event
GO top 4 Biology Top categories of the Gene Ontology (GO)
Invoice 11 Business Transactions and concepts concerning invoicing
Metonymy 1 FAO 2 Agriculture Species and commodities
N-ary participation 5 General Several entities participating in a situation
Object role 3 General Objects taking different roles
Situation 1 General Situation as setting for entities
Species v1.0 model 5 Biology, Top categories for species

Agriculture
Task role 2 General Tasks for specific roles
Types of entities 5 General Categories for general entities



335

To give the reader a better intuition concerning the nature of the pat-

terns, a set of selected pattern examples are presented in brief below. These

are examples from the catalogue of patterns developed for the initial exper-

iment, but here the versions translated into OWL are shown. The illus-

trations use a UML-notation, produced by the ontology editor TopBraid

Composer∗.

The first pattern example is the Actions pattern. An illustration of the

pattern structure can be seen in Figure B.1. The pattern models different

types of actions, with respect to their status, such as proposed actions, com-

pleted actions, and abandoned actions. Actions may also have a suspension,

if the action has been suspended or aborted. Proposed actions form a plan.

In order to show a detailed example of the syntactic representation of a con-

tent pattern the OWL XML-syntax of the Actions pattern is also displayed

in Listing B.1.

Figure B.1: The Actions pattern.

Listing B.1: The representation of the Actions pattern.✞ ☎
<?xml version=” 1 .0 ”?>

<rdf:RDF

xmlns=” ht tp : //www. eva . ing . hj . se /Act ions#”

xmlns:oxml=” ht tp : //schema . on top r i s e . com/oxml/ core /2.1#”

xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema#”

xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”

xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”

xmlns:dc=” ht tp : // pur l . org /dc/ e lements /1 .1/ ”

xml:base=” ht tp : //www. eva . ing . hj . se /Act ions ”>

<owl:Ontology rd f : abou t=””/>

∗http://www.topquadrant.com/topbraid/composer/



336 APPENDIX B. PATTERN CATALOGUES

<ow l :C la s s rd f : ID=”Plan”>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Actions#

Plan</ r d f s : l a b e l>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :a l lValuesFrom>

<ow l :C la s s rd f : ID=” Proposed act ion ”/>

</ owl :a l lValuesFrom>

<owl :onProperty>

<owl :ObjectProperty rd f : ID=”composed of ”/>

</ owl :onProperty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :minCard ina l i ty rd f : da ta type=” ht tp : //www.w3 . org

/2001/XMLSchema#nonNegat iveInteger ”

>1</ owl :minCard ina l i ty>

<owl :onProperty>

<owl :ObjectProperty rd f : abou t=”#composed of ”/>

</ owl :onProperty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f r d f : r e s o u r c e=” ht tp : //www.w3 . org /2002/07/

owl#Thing”/>

</ owl :C la s s>

<ow l :C la s s rd f : ID=” Act i on s ta tu s ”>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Actions#

Action s t a tu s</ r d f s : l a b e l>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :onProperty>

<owl :ObjectProperty rd f : ID=” s t a t u s f o r ”/>

</ owl :onProperty>

<owl :minCard ina l i ty rd f : da ta type=” ht tp : //www.w3 . org

/2001/XMLSchema#nonNegat iveInteger ”

>1</ owl :minCard ina l i ty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f r d f : r e s o u r c e=” ht tp : //www.w3 . org /2002/07/

owl#Thing”/>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :a l lValuesFrom>

<ow l :C la s s rd f : ID=”Action”/>

</ owl :a l lValuesFrom>

<owl :onProperty>



337

<owl :ObjectProperty rd f : abou t=”#s t a t u s f o r ”/>

</ owl :onProperty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

</ owl :C la s s>

<ow l :C la s s rd f : about=”#Proposed act ion ”>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Act ions#

Proposed ac t i on</ r d f s : l a b e l>

<rd f s : subC la s sO f>

<ow l :C la s s rd f : about=”#Action”/>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :minCard ina l i ty rd f : da ta type=” ht tp : //www.w3 . org

/2001/XMLSchema#nonNegat iveInteger ”

>1</ owl :minCard ina l i ty>

<owl :onProperty>

<owl :ObjectProperty rd f : ID=” in ”/>

</ owl :onProperty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :a l lValuesFrom rd f : r e s o u r c e=”#Plan”/>

<owl :onProperty>

<owl :ObjectProperty rd f : abou t=”#in ”/>

</ owl :onProperty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

</ owl :C la s s>

<ow l :C la s s rd f : ID=”Abandoned action”>

<rd f s : subC la s sO f>

<ow l :C la s s rd f : about=”#Action”/>

</ rd f s : subC la s sO f>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Act ions#

Abandoned ac t i on</ r d f s : l a b e l>

</ owl :C la s s>

<ow l :C la s s rd f : ID=”Completed act ion ”>

<rd f s : subC la s sO f>

<ow l :C la s s rd f : ID=” Implemented act ion ”/>

</ rd f s : subC la s sO f>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Act ions#

Completed ac t i on</ r d f s : l a b e l>

</ owl :C la s s>

<ow l :C la s s rd f : about=”#Implemented act ion ”>

<rd f s : subC la s sO f>

<ow l :C la s s rd f : about=”#Action”/>



338 APPENDIX B. PATTERN CATALOGUES

</ rd f s : subC la s sO f>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Actions#

Implemented ac t i on</ r d f s : l a b e l>

</ owl :C la s s>

<ow l :C la s s rd f : ID=”Suspension ”>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Actions#

Suspension</ r d f s : l a b e l>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :a l lValuesFrom>

<ow l :C la s s rd f : about=”#Action”/>

</ owl :a l lValuesFrom>

<owl :onProperty>

<owl :ObjectProperty rd f : ID=” concerns ”/>

</ owl :onProperty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :onProperty>

<owl :ObjectProperty rd f : abou t=”#concerns ”/>

</ owl :onProperty>

<owl :minCard ina l i ty rd f : da ta type=” ht tp : //www.w3 . org

/2001/XMLSchema#nonNegat iveInteger ”

>1</ owl :minCard ina l i ty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f r d f : r e s o u r c e=” ht tp : //www.w3 . org /2002/07/

owl#Thing”/>

</ owl :C la s s>

<ow l :C la s s rd f : about=”#Action”>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :onProperty>

<owl :ObjectProperty rd f : ID=” consequence o f ”/>

</ owl :onProperty>

<owl :minCard ina l i ty rd f : da ta type=” ht tp : //www.w3 . org

/2001/XMLSchema#nonNegat iveInteger ”

>1</ owl :minCard ina l i ty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :onProperty>

<owl :ObjectProperty rd f : abou t=”#consequence o f ”/>

</ owl :onProperty>

<owl :a l lValuesFrom rd f : r e s o u r c e=”#Action”/>



339

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :onProperty>

<owl :ObjectProperty rd f : ID=”dependent on”/>

</ owl :onProperty>

<owl :a l lValuesFrom rd f : r e s o u r c e=”#Action”/>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :onProperty>

<owl :ObjectProperty rd f : ID=” ha s s t a tu s ”/>

</ owl :onProperty>

<owl :minCard ina l i ty rd f : da ta type=” ht tp : //www.w3 . org

/2001/XMLSchema#nonNegat iveInteger ”

>1</ owl :minCard ina l i ty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :a l lValuesFrom rd f : r e s o u r c e=”#Act i on s ta tu s ”/>

<owl :onProperty>

<owl :ObjectProperty rd f : abou t=”#has s t a tu s ”/>

</ owl :onProperty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f r d f : r e s o u r c e=” ht tp : //www.w3 . org /2002/07/

owl#Thing”/>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Act ions#

Action</ r d f s : l a b e l>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :minCard ina l i ty rd f : da ta type=” ht tp : //www.w3 . org

/2001/XMLSchema#nonNegat iveInteger ”

>1</ owl :minCard ina l i ty>

<owl :onProperty>

<owl :ObjectProperty rd f : ID=”has”/>

</ owl :onProperty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :onProperty>

<owl :ObjectProperty rd f : abou t=”#has”/>

</ owl :onProperty>



340 APPENDIX B. PATTERN CATALOGUES

<owl :a l lValuesFrom rd f : r e s o u r c e=”#Suspension ”/>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>

<owl :onProperty>

<owl :ObjectProperty rd f : abou t=”#dependent on”/>

</ owl :onProperty>

<owl :minCard ina l i ty rd f : da ta type=” ht tp : //www.w3 . org

/2001/XMLSchema#nonNegat iveInteger ”

>1</ owl :minCard ina l i ty>

</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>

</ owl :C la s s>

<owl :ObjectProperty rd f : abou t=”#dependent on”>

<rd f s :domain r d f : r e s o u r c e=”#Action”/>

<r d f s : r a n g e r d f : r e s o u r c e=”#Action”/>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Actions#

dependent on</ r d f s : l a b e l>

</ owl :ObjectProperty>

<owl :ObjectProperty rd f : abou t=”#in ”>

<r d f s : r a n g e r d f : r e s o u r c e=”#Plan”/>

<rd f s :domain r d f : r e s o u r c e=”#Proposed act ion ”/>

<ow l : i nve r s eOf>

<owl :ObjectProperty rd f : abou t=”#composed of ”/>

</ ow l : i nve r s eOf>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Actions#

in</ r d f s : l a b e l>

</ owl :ObjectProperty>

<owl :ObjectProperty rd f : abou t=”#concerns ”>

<r d f s : r a n g e r d f : r e s o u r c e=”#Action”/>

<rd f s :domain r d f : r e s o u r c e=”#Suspension ”/>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Actions#

concerns</ r d f s : l a b e l>

<ow l : i nve r s eOf>

<owl :ObjectProperty rd f : abou t=”#has”/>

</ ow l : i nve r s eOf>

</ owl :ObjectProperty>

<owl :ObjectProperty rd f : abou t=”#consequence o f ”>

<rd f s :domain r d f : r e s o u r c e=”#Action”/>

<r d f s : r a n g e r d f : r e s o u r c e=”#Action”/>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Actions#

consequence o f</ r d f s : l a b e l>

</ owl :ObjectProperty>

<owl :ObjectProperty rd f : abou t=”#composed of ”>

<rd f s :domain r d f : r e s o u r c e=”#Plan”/>

<ow l : i nve r s eOf r d f : r e s o u r c e=”#in ”/>



341

<r d f s : r a n g e r d f : r e s o u r c e=”#Proposed act ion ”/>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Act ions#

composed o f</ r d f s : l a b e l>

</ owl :ObjectProperty>

<owl :ObjectProperty rd f : abou t=”#has s t a tu s ”>

<r d f s : r a n g e r d f : r e s o u r c e=”#Act i on s ta tu s ”/>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Act ions#

has s t a tu s</ r d f s : l a b e l>

<ow l : i nve r s eOf>

<owl :ObjectProperty rd f : abou t=”#s t a t u s f o r ”/>

</ ow l : i nve r s eOf>

<rd f s :domain r d f : r e s o u r c e=”#Action”/>

</ owl :ObjectProperty>

<owl :ObjectProperty rd f : abou t=”#s t a t u s f o r ”>

<rd f s :domain r d f : r e s o u r c e=”#Act i on s ta tu s ”/>

<ow l : i nve r s eOf r d f : r e s o u r c e=”#has s t a tu s ”/>

<r d f s : r a n g e r d f : r e s o u r c e=”#Action”/>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Act ions#

s ta tu s f o r</ r d f s : l a b e l>

</ owl :ObjectProperty>

<owl :ObjectProperty rd f : abou t=”#has”>

< r d f s : l a b e l xml:lang=”en”>ht tp : //www. eva . ing . hj . se /Act ions#

has</ r d f s : l a b e l>

<ow l : i nve r s eOf r d f : r e s o u r c e=”#concerns ”/>

<r d f s : r a n g e r d f : r e s o u r c e=”#Suspension ”/>

<rd f s :domain r d f : r e s o u r c e=”#Action”/>

</ owl :ObjectProperty>

</rdf:RDF>

< !−− Created wi th Protege ( wi th OWL Plugin 2 .2 , Bui ld 339)

h t t p : // pro tege . s t an f o rd . edu −−>
✡✝ ✆

The second pattern example is the Communication Event pattern. A

partial illustration of the pattern structure can be seen in Figure B.2. In

the figure some parts are hidden for increasing the readability. The pattern

additionally includes small taxonomies of communication events, such as

letter correspondence and phone communication, and communication even

purposes, such as meetings, seminars, and enquiries. A communication

event has a status and a mechanism type, which is the medium used for the

communication. The parties involved have some kind of relationship, such

as a seller-buyer relationship, where each has a specific role in the event,

such as seller and buyer respectively. The roles are also connected to the

purpose of the event, i.e. in the selling buying situation the purpose could

be a sales follow-up.



342 APPENDIX B. PATTERN CATALOGUES

Figure B.2: The Communication Event pattern.

The third pattern example is the Parts pattern, focussing on products

and their parts. A partial illustration of the pattern structure can be seen in

Figure B.3. In the figure some parts of the pattern have been omitted, due

to readability reasons. Missing parts include small taxonomies of document

types, specification types, and part types. The pattern models how a part

is described in documents, and specified through a set of specifications of

different types. Parts are also used in different products.

The fourth pattern example is the Requirements pattern, focussing on

product requirements and their connections to features and the roles that

requirements play for different parties. A partial illustration of the pattern

structure can be seen in Figure B.4. In the figure some parts of the pat-

tern have been omitted, due to readability reasons. Missing parts include

concepts related to orders and fixed assets. The pattern models product

and work requirements, where product requirements represent desired fea-

tures of a product. Requirements can have different types of states, such as

different development states or realisation states. A requirement also has

different roles for the involved parties, such as being a work description for

a developer while being a part of the desired features in a contract for a

customer.



343

Figure B.3: The Parts pattern.

The above described patterns are examples of ontology content design

patterns developed in our research. Below an additional example is given,

to show the nature of the more general patterns present, for example in the

ODP portal†. The pattern is the Agent role pattern, and can be seen in

Figure B.5. The pattern is small, it includes only three concepts. Agents,

that are types of objects, that in turn can be classified by certain roles.

An example instantiation would be to specialise the ’agent’ concept and

add ’person’ as a subconcept, then add ’parenting role’ as a subconcept of

’role’. Such an instantiation can then be used to store information about the

parenting roles, i.e. instances of the ’parenting role’ concept such as ’father’

and ’mother’, of people, i.e. concrete instances of the ’person’ concept.

†http://ontologydesignpatterns.org/



344 APPENDIX B. PATTERN CATALOGUES

Figure B.4: The Requirements pattern.

Figure B.5: The Agent role pattern.



List of Figures

1.1 Semi-automatic ontology construction and its activities. . . . . . 8

1.2 The unexplored areas of OL. . . . . . . . . . . . . . . . . . . . . 13

1.3 The OntoCase framework. . . . . . . . . . . . . . . . . . . . . . 17

2.1 The information logistics triangle, according to Sandkuhl [170]. 27

2.2 An illustration of the semiotic triangle. . . . . . . . . . . . . . . 30

2.3 An example of two class definitions in the OWL XML-syntax. . 37

2.4 Ontologies with respect to their level of generality. [89] . . . . . 40

2.5 The Ontology Learning layers. . . . . . . . . . . . . . . . . . . . 46

3.1 The reuse processes. [199] . . . . . . . . . . . . . . . . . . . . . 65

3.2 The account pattern. [69] . . . . . . . . . . . . . . . . . . . . . 84

3.3 The joint venture pattern. [115] . . . . . . . . . . . . . . . . . . 84

3.4 The layered architecture pattern. [176] . . . . . . . . . . . . . . 85

3.5 The domain model pattern. [70] . . . . . . . . . . . . . . . . . . 86

3.6 The observer design pattern. [73] . . . . . . . . . . . . . . . . . 86

3.7 Singleton Idiom in C++ from Buschmann et al. [31]. . . . . . . 87

3.8 Products and services data model pattern. [97] . . . . . . . . . 88

3.9 The ’free space axiom’ in the container knowledge pattern. [38] 91

3.10 The heuristic decision tree pattern. [165] . . . . . . . . . . . . . 91

3.11 The object inventory OSM. [199] . . . . . . . . . . . . . . . . . 92

3.12 The typology proposed by Presutti et al. [164]. . . . . . . . . . 96

3.13 The agent role content pattern. [164]. . . . . . . . . . . . . . . . 97

4.1 The research process with an approximate time line. . . . . . . 127

4.2 The OntoCase phases in focus. . . . . . . . . . . . . . . . . . . 135

5.1 Levels of abstraction and granularity of ontology patterns. . . . 153

5.2 Data model pattern describing organisations. [180] . . . . . . . 158

345



346 LIST OF FIGURES

5.3 Resulting ontology content design pattern. . . . . . . . . . . . . 158

5.4 The perceived level of difficulty of the modelling problem. . . . 166

5.5 Trivial and inspiring patterns. . . . . . . . . . . . . . . . . . . . 167

5.6 Overall perceived usefulness. . . . . . . . . . . . . . . . . . . . . 167

5.7 Using patterns, was the task solved faster, easier and better? . . 168

5.8 The extent of managing to solve problems within time limit. . . 168

5.9 The easiest task and the ’best’ ontology. . . . . . . . . . . . . . 169

5.10 The easiest task and the ’best’ ontology. . . . . . . . . . . . . . 169

6.1 The basic steps of the initial method. . . . . . . . . . . . . . . . 175

6.2 Steps of the ontology building, for each accepted pattern. . . . . 176

6.3 The structure of the experiment. . . . . . . . . . . . . . . . . . 177

6.4 Top-level concepts of the aut. constructed ontology. . . . . . . . 180

6.5 A part of the resulting ontology. . . . . . . . . . . . . . . . . . . 181

6.6 Top-level concepts of the man. constructed ontology. . . . . . . 182

6.7 The top-level concepts and relations of the resulting ontology. . 193

6.8 The Protégé ArtifactManager plug-in. [19] . . . . . . . . . . . . 194

7.1 The OntoCase framework. . . . . . . . . . . . . . . . . . . . . . 200

7.2 The OntoCase approach. . . . . . . . . . . . . . . . . . . . . . . 204

7.3 A pattern covering communication event concepts. . . . . . . . 206

7.4 A pattern covering concepts related to positions. . . . . . . . . . 206

7.5 A pattern covering work efforts and requirements. . . . . . . . . 212

7.6 List of extracted terms with associated confidence values. . . . . 212

7.7 Heuristic for adding unmatched relations. . . . . . . . . . . . . 215

7.8 Heuristic for taxonomic relations. . . . . . . . . . . . . . . . . . 216

7.9 Heuristic for downward propagation of relations. . . . . . . . . . 216

7.10 Heuristic for preserving extracted structure. . . . . . . . . . . . 216

7.11 Heuristic for preserving pattern top levels. . . . . . . . . . . . . 217

7.12 The use of WordNet hypernym chains. . . . . . . . . . . . . . . 221

7.13 The relation matching. . . . . . . . . . . . . . . . . . . . . . . . 222

7.14 An ontology design pattern including the positions concept. . . 227

7.15 An extract from the terms list used. . . . . . . . . . . . . . . . . 227

7.16 The concepts and properties of the input ontology. . . . . . . . 233

7.17 The concepts and properties of the output ontology. . . . . . . . 234

A.1 The relation between knowledge bases, ontologies and logic. . . 324

A.2 Metamodel describing our view of ontology concepts. . . . . . . 325

A.3 Hierarchies found in ontologies. . . . . . . . . . . . . . . . . . . 326

A.4 Metamodel describing our view of ontological relations. . . . . . 327



LIST OF FIGURES 347

B.1 The Actions pattern. . . . . . . . . . . . . . . . . . . . . . . . . 333

B.2 The Communication Event pattern. . . . . . . . . . . . . . . . . 340

B.3 The Parts pattern. . . . . . . . . . . . . . . . . . . . . . . . . . 341

B.4 The Requirements pattern. . . . . . . . . . . . . . . . . . . . . . 342

B.5 The Agent role pattern. . . . . . . . . . . . . . . . . . . . . . . 342



List of Tables

5.1 Mappings between data models and ontologies. . . . . . . . . . 158

5.2 Chosen mappings between goal structures and ontologies. . . . . 159

5.3 Patterns and their original sources. . . . . . . . . . . . . . . . . 160

6.1 Comparison of structural characteristics. . . . . . . . . . . . . . 184

6.2 Result of the OntoClean evaluation. . . . . . . . . . . . . . . . . 187

6.3 Results of the domain expert evaluation. . . . . . . . . . . . . . 189

6.4 General characteristics . . . . . . . . . . . . . . . . . . . . . . . 191

7.1 Precision and recall of text analysis for concept discovery. . . . . 210

7.2 String matching scores. . . . . . . . . . . . . . . . . . . . . . . . 213

7.3 Example patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 226

7.4 Ranking order (1-10) of the patterns (a-j). . . . . . . . . . . . . 229

8.1 Ranking values of the patterns in the SEMCO case. . . . . . . . 240

8.2 General characteristics of the SEMCO ontologies. . . . . . . . . 242

8.3 Results of the OntoClean evaluation. . . . . . . . . . . . . . . . 248

8.4 Number of concepts and relations collected in the sample. . . . 254

8.5 General characteristics of JIBSNet ontology. . . . . . . . . . . . 255

8.6 Result of the OntoClean evaluation of the JIBSNet ontologies. . 258

8.7 Interpretation of assessment combinations. . . . . . . . . . . . . 261

8.8 Interpretation results. . . . . . . . . . . . . . . . . . . . . . . . 262

8.9 Interpretation results concerning non-taxonomic relations. . . . 263

8.10 The experiment input ontologies. . . . . . . . . . . . . . . . . . 268

8.11 The enriched ontologies for the second part of the experiment. . 268

8.12 The experiment output ontologies. . . . . . . . . . . . . . . . . 269

8.13 The evaluation results of the ontologies. . . . . . . . . . . . . . 272

8.14 The number of patterns selected. . . . . . . . . . . . . . . . . . 274

348



LIST OF TABLES 349

8.15 The patterns selected. . . . . . . . . . . . . . . . . . . . . . . . 275

8.16 The number of completely and partially applicable patterns. . . 275

B.1 Patterns and their original sources. . . . . . . . . . . . . . . . . 330

B.2 Patterns in the extended pattern catalogue and their sources. . 331

B.3 Pattern content . . . . . . . . . . . . . . . . . . . . . . . . . . . 332





Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation

System Based on Partial Evaluation, 1977, ISBN

91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification

of Time Margins in Digital Designs, 1977, ISBN

91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-

beskrivningar i naturligt språk, 1977, ISBN 91-

7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compil-

er and its Implications for Ideal Hardware, 1978,

ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries

in a Meta-Database System 1978, ISBN 91-7372-

232-4.

No 51 Erland Jungert: Synthesizing Database Structures

from a User Oriented Data Model, 1980, ISBN 91-

7372-387-8.

No 54 Sture Hägglund: Contributions to the Develop-

ment of Methods and Tools for Interactive Design

of Applications Software, 1980, ISBN 91-7372-

404-1.

No 55 Pär Emanuelson: Performance Enhancement in a

Well-Structured Pattern Matcher through Partial

Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-

Computer Interface in Commercial Systems, 1981,

ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-

stract Prolog Machine and its Application to Partial

Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques

and Tools for Expert Systems, 1981, ISBN 91-

7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in

large Software Systems, 1982, ISBN 91-7372-527-

7.

No 94 Hans Lunell: Code Generator Writing Systems,

1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight

Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Program-

ming Environment based on Incremental Compila-

tion,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning

Systems. An Experimental Operations Planning

System for Turning, 1984, ISBN 91-7372-805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum

Decompositions of Polygons, 1987, ISBN 91-7870-

133-3.

No 165 James W. Goodwin: A Theory and System for

Non-Monotonic Reasoning, 1987, ISBN 91-7870-

183-X.

No 170 Zebo Peng: A Formal Methodology for Automated

Synthesis of VLSI Systems, 1987, ISBN 91-7870-

225-9.

No 174 Johan Fagerström: A Paradigm and System for

Design of Distributed Systems, 1988, ISBN 91-

7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic

of Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an

Object Oriented Knowledge Base, 1989, ISBN 91-

7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and

Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical

Foundations of Truth Maintenance, 1989, ISBN 91-

7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support

and Discourse Management in User Interface Man-

agement Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowl-

edge Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interac-

tive Design in Multiple Inheritance Hierar-

chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic For-

malism with Explicit Defaults, 1991, ISBN 91-

7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic De-

bugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-Cog-

nitive and Computational Aspects, 1992, ISBN 91-

7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract

Machines: Contributions to a Methodology for the

Implementation of Logic Programs, 1992, ISBN 91-

7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-

bound Object References, 1992, ISBN 91-7870-

873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data

Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause

Logic with External Polymorphic Functions, 1992,

ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Man-

agement Systems with an Active Expert Methodolo-

gy, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity



of Reasoning about Plans, 1992, ISBN 91-7870-

979-2.

No 292 Mats Wirén: Studies in Incremental Natural Lan-

guage Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slic-

ing with Applications to Debugging and Testing,

1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using Clas-

sification and Defaults, 1993, ISBN 91-7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Natural

Language Interfaces - An Empirical Approach,

1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Phys-

ical Environments: Compositional Modelling and

Framework for Verification, 1994, ISBN 91-7871-

237-8.

No 371 Bengt Savén: Business Models for Decision Sup-

port and Learning. A Study of Discrete-Event Man-

ufacturing Simulation at Asea/ABB 1968-1993,

1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode

Switching Physical Systems, 1995, ISBN 91-7871-

516-4.

No 383 Andreas Kågedal: Exploiting Groundness in Log-

ic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,

Identification and Recovery from Problematic Con-

trol Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,

1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by

Testability Analysis and Transformations, 1996,

ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,

ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial

Training from an Organisational Learning Perspec-

tive - Development and Evaluation of the SSIT

Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Algo-

rithms and Complexity, 1996, ISBN 91-7871-704-

3.

No 437 Johan Boye: Directional Types in Logic Program-

ming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:

Participatory Design in Practice, 1996, ISBN 91-

7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-

scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Rela-

tional Database Technology for Finite Element

Analysis Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for

Complex Product Models, 1996, ISBN 91-7871-

855-4.

No 461 Lena Strömbäck: User-Defined Constructions in

Unification-Based Formalisms,1997, ISBN 91-

7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-

ming: A Multi-Level View of Query Answering,

1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -

En studie av hur ekonomiska styrsystem utformas

och används efter företagsförvärv, 1997, ISBN 91-

7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-

ments-Driven Impact Analysis in Object-Oriented

Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Co-

operative Perspective on Knowledge-Based Deci-

sion Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management Sys-

tems for Monitoring and Control, 1997, ISBN 91-

7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in

a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity

for Temporal and Spatial Formalisms, 1997, ISBN

91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Hetero-

geneous Real-Time Systems, 1997, ISBN 91-7219-

035-3.

No 503 Johan Ringström: Compiler Generation for Data-

Parallel Programming Langugaes from Two-Level

Semantics Specifications, 1997, ISBN 91-7219-

045-0.

No 512 Anna Moberg: Närhet och distans - Studier av kom-

munikationsmmönster i satellitkontor och flexibla

kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a Par-

allel Data Server for Telecom Applications, 1998,

ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault 

Prevention - An Empirical Study in Software Engi-

neering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for Pri-

oritizing Software Requirements, 1998, ISBN 91-

7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy

Functional Languages, 1998, ISBN 91-7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level Syn-

thesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data -

From Discrete to Continuous, 1999, ISBN 91-7219-

402-2.

No 563 Eva L Ragnemalm: Student Modelling based on

Collaborative Dialogue with a Learning Compan-

ion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-

graphical dispersion in organisations, 1999, ISBN

91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and



Evaluation of a Distributed Mediator System for

Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating Inhib-

itory Mechanisms in Mental Image Reinterpretation

- Towards Cooperative Human-Computer Creativi-

ty, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design

Knowledge - An Assessment of Commenting

Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narra-

tives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organization-

al Aspects of Requirements Engineering Methods -

A practice-oriented approach, 1999, ISBN 91-

7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Over-

load Management in Real-Time Database Systems,

1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the

Design of Information Systems and Services in the

Public Sector: A Methods Approach, 1999, ISBN

91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on

the Analysis of Impacts of Information Technology:

From Case Studies in Health-Care towards General

Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-

Supported Taskforce Training, 1999, ISBN 91-

7219-547-9.

No 607 Magnus Merkel: Understanding and enhancing

translation by parallel text processing, 1999, ISBN

91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory

data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive

Systems: A Generic Layered Architecture

Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken

- En studie av logiker i fyra projekt, 1999, ISBN 91-

7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive

Simulation, and Visualization of Object-Oriented

Models in Scientific Computing, 2000, ISBN 91-

7219-709-9.

No 637 Esa Falkenroth: Database Technology for Control

and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and

Knowledge Together: Information Systems Design

for Autonomy and Control in Command Work,

2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level Design

for Testability Methodology, 2000, ISBN 91-7219-

890-7.

No 688 Marcus Bjäreland: Model-based Execution

Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action

Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Pro-

vision - Managing Mandatory and Discretionary Use

of Information Technology, 2001, ISBN-91-7373-

126-9.

No 724 Paul Scerri: Designing Agents for Systems with

Adjustable Autonomy, 2001, ISBN 91 7373 207 9.

No 725 Tim Heyer: Semantic Inspection of Software Arti-

facts: From Theory to Practice, 2001, ISBN 91 7373

208 7.

No 726 Pär Carlshamre: A Usability Perspective on Re-

quirements Engineering - From Methodology to

Product Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Management to

Task Management in Electronic Mail, 2002, ISBN

91 7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach to

Intelligent Help for Web Information Systems,

2002, ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Team-

work Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for

Time Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-suppor-ted In-

ter-organisational Collaboration - A Case Study in

the Swedish Public Sector, 2002, ISBN 91-7373-

314-8.

No 749 Sofie Pilemalm: Information Technology for Non-

Profit Organisations - Extended Participatory De-

sign of an Information System for Trade Union Shop

Stewards, 2002, ISBN 91-7373-

318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory

of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of

Distributed Tactical Operations, 2002, ISBN 91-

7373-421-7.

No 772 Pawel Pietrzak: A Type-Based Framework for Lo-

cating Errors in Constraint Logic Programs, 2002,

ISBN 91-7373-422-5.

No 758 Erik Berglund: Library Communication Among

Programmers Worldwide, 2002,

ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented

Dynamic Systems Using a Logic-Based Framework,

2002, ISBN 91-7373-424-1.

No 779 Mathias Broxvall: A Study in the 

Computational Complexity of Temporal 

Reasoning, 2002, ISBN 91-7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for 

Enabling Interoperability of Structured and 

Object-Oriented Analysis and Design Tools, 2002,

ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie

av den Internetbaserade encyklopedins bruksegen-

skaper, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of

Complex Systems´ Development, 2003, ISBN 91-

7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och

förändringar i samband med införande av informa-



tionsystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics - program-

ming of social agents by children, 2003,

ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of Infor-

mation Systems with GIS Functionality in Public

Health Informatics: A Requirements Engineering

Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time

Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of 

Communication-Intensive Heterogeneous Real-

Time Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic

Behaviour of Large Distributed Systems to Improve

Development and Testing - An Emperical Study in

Software Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineer-

ing Tool Data Representation and Exchange, 2004,

ISBN 91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:

Studies in Complex Information Navigation for

Digital TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on

Travel and Travel Patterns, 2004, ISBN 91-7373-

935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of Or-

ganising when Implementing and Using Enterprise

Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of On-

tologies in Information-Providing Dialogue Sys-

tems, 2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-

Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient

Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:

Ubiquitous Computing Environments for Health-

care Professionals, 2004, ISBN 91-7373-971-5

No 882 Robert Eklund: Disfluency in Swedish 

human-human and human-machine travel booking

dialogues, 2004. ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign Lin-

quistic Elements in Spoken Swedish. Studies of

Productive Processes and their Modelling using Fi-

nite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-

inventory systems - Modellling and Analysis in

both a traditional and an e-business context, 2004,

ISBN 91-85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interac-

tion, 2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy

and Management Control - Theoretical Framework

and Empirical Evidence, 2004, ISBN 91-85295-82-

5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre

Perspectives on Interaction Design, 2004, ISBN 91-

85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of

interaction design for sociable use, 2004, ISBN 91-

85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Schedul-

ing Techniques for Real-Time Embedded Systems,

2004, ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-

Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as Con-

structing and Opposing Customer Focus: Three Case

Studies on Management Accounting and Customer

Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other Exten-

sions to Temporal Action Logic, 2005, ISBN 91-

85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual

Servoing for Unmanned Helicopter, 2005, ISBN 91-

85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test

Generation Techniques for Digital Systems, 2005,

ISBN: 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Infor-

mation Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing  Algorithms for

Constraint Satisfaction and Related Problems -

Methods and Applications, 2005,  ISBN 91-85297-

99-2.

No 963 Calin Curescu: Utility-based Optimisation of Re-

source Allocation for Wireless Networks, 2005.

ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic Situa-

tions, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability

Analysis for Interacting Finite State Systems, 2005,

ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for

Groups in Distributed Services, 2005, ISBN 91-

85457-54-X.

No 983 Sorin Manolache: Analysis and Optimisation of

Real-Time Systems with Stochastic Behaviour,

2005, ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application Inte-

gration for Business-to-Business Communications,

2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for Auto-

mated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Re-

usable and Reconfigurable Real-Time Software us-

ing Aspects and Components, 2006, ISBN 91-

85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending

the design and development agenda, 2006, ISBN 91-

85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling

and Simulation of Mechanical Systems with De-

tailed Contact Analysis, 2006, ISBN 91-85497-43-

X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact Sat-

isfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level

Language for Modeling with Partial Differential

Equations, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based

Embedded System Designs, 2006, ISBN 91-85523-

79-8.



No 1018 Ioan Chisalita: Communication and Networking

Techniques for Traffic Safety Systems, 2006, ISBN

91-85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The

Significance of Tools in Cognition and Coopera-

tion, 2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code

Generation for Digital Signal Processors, 2006,

ISBN 91-85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of

Equation-Based Simulation Programs, 2006, ISBN

91-85523-68-2.

No 1030 Robert Nilsson: A Mutation-based Framework for

Automated Testing of Timeliness, 2006, ISBN 91-

85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic 

Generation of Tests from Programs and Specifica-

tions, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,

2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian 

Algorithms for Dimensionality Reduction in Natu-

ral Language Processing, 2006, ISBN 91-85643-

88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of 

Glasses - Applying Systemic Accident Models on

Road Safety, 2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which can-

not be seen - A Cognitive Systems Engineering per-

spective on requirements management, 2006, ISBN

91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for 

Semantic Web Technology, 2007, ISBN 91-85643-

31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion

in Software Testing, 2007, ISBN 978-91-85715-74-

9.

No 1075 Almut Herzog: Usable Security Policies for 

Runtime Environments, 2007, ISBN 978-91-

85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and

upper bounds for satisfiability and related prob-

lems, 2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architec-

tures, 2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-

hensible Data Mining Models - An Evolutionary

Approach, 2007, ISBN 978-91-85715-34-3. 

No 1089 Traian Pop: Analysis and Optimisation of 

Distributed Embedded Systems with Heterogene-

ous Scheduling Policies, 2007, ISBN 978-91-

85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-

related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous

Shape Writing for Text Entry and Control, 2007,

ISBN 978-91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007,

ISBN 978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting

socially through embodied action, 2007, ISBN 978-

91-85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Manage-

ment in Conversational Recommender Systems,

2007, ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time

Data Consistency and Transient Overloads in Em-

bedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Predicta-

ble Design of Real-time Embedded Systems, 2007,

ISBN 978-91-85831-06-7.

No 1139 Per Wikberg: Eliciting Knowledge from Experts in

Modeling of Complex Systems: Managing Variation

and Interactions, 2007, ISBN 978-91-85895-66-3.

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data

Services under Uncertain Workload, 2007, ISBN

978-91-85895-49-6.

No 1150 Sanny Syberfeldt: Optimistic Replication with For-

ward Conflict Resolution in Distributed Real-Time

Databases, 2007, ISBN 978-91-85895-27-4.

No 1155 Beatrice Alenljung: Envisioning a Future Decision

Support System for Requirements Engineering - A

Holistic and Human-centred Perspective, 2008,

ISBN 978-91-85895-11-3.

No 1156 Artur Wilk: Types for XML with Application to

Xcerpt, 2008, ISBN 978-91-85895-08-3.

No 1183 Adrian Pop: Integrated Model-Driven 

Development Environments for Equation-Based

Object-Oriented Languages, 2008, ISBN 978-91-

7393-895-2.

No 1185 Jörgen Skågeby: Gifting Technologies - Ethno-

graphic Studies of End-users and Social Media

Sharing, 2008, ISBN 978-91-7393-892-1.

No 1187 Imad-Eldin Ali Abugessaisa: Analytical tools and

information-sharing methods supporting road safety

organizations, 2008, ISBN 978-91-7393-887-7.

No 1204 H. Joe Steinhauer: A Representation Scheme for

Description and Reconstruction of Object Configu-

rations Based on Qualitative Relations, 2008, ISBN

978-91-7393-823-5.

No 1222 Anders Larsson: Test Optimization for Core-based

System-on-Chip, 2008, ISBN 978-91-7393-768-9.

No 1238 Andreas Borg: Processes and Models for Capacity

Requirements in Telecommunication Systems,

2009, ISBN 978-91-7393-700-9.

No 1240 Fredrik Heintz: DyKnow: A Stream-Based Know-

ledge Processing Middleware Framework, 2009,

ISBN 978-91-7393-696-5.

No 1241 Birgitta Lindström: Testability of Dynamic Real-

Time Systems, 2009, ISBN 978-91-7393-695-8.

No 1244 Eva Blomqvist: Semi-automatic Ontology Con-

struction based on Patterns, 2009, ISBN 978-91-

7393-683-5.

Linköping Studies in Statistics
No 9 Davood Shahsavani: Computer Experiments De-

signed to Explore and Approximate Complex Deter-

ministic Models, 2008, ISBN 978-91-7393-976-8.

No 10 Karl Wahlin: Roadmap for Trend Detection and

Assessment of Data Quality, 2008, ISBN: 978-91-

7393-792-4

Linköping Studies in Information Science



No 1 Karin Axelsson: Metodisk systemstrukturering- att

skapa samstämmighet mellan informa-tionssyste-

markitektur och verksamhet, 1998. ISBN-9172-19-

296-8.

No 2 Stefan Cronholm: Metodverktyg och användbar-

het - en studie av datorstödd metodbaserad syste-

mutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om an-

veckling med kalkylprogram, 1999. ISBN-91-

7219-606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos in-

formationssystem och affärsprocesser, 2000. ISBN

91-7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för

processbestämning vid verksamhetsanalys, 2001,

ISBN 91-7373-067-X

No 6 Ulf Melin: Koordination och informationssystem i

företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability -

Understanding Information Technology as a Tool

for Business Action and Communication, 2003,

ISBN 91-7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra

systemutvecklingsverksamheter - en taxonomi

för metautveckling, 2003, ISBN91-7373-736-4. 

No 9 Karin Hedström: Spår av datoriseringens värden -

Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-

963-4.

No 10 Ewa Braf: Knowledge Demanded for Action -

Studies on Knowledge Mediation in Organisations,

2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration -

method and computerized tool support, 2005, ISBN

91-85297-48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att

organisera systemförvaltningsverksamhet med

hjälp av effektiva förvaltningsobjekt, 2005, ISBN

91-85297-60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,

motivation, IT-system och andra förutsättningar för

polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese Chris-
tiansson: Mötet mellan process och komponent -

mot ett ramverk för en verksamhetsnära kravspeci-

fikation vid anskaffning av komponentbaserade in-

formationssystem, 2006, ISBN 91-85643-22-X.


