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Abstract.  In this paper, we evaluate a semi-automatic liver segmentation 

method based on a level-set approach and a dynamically adapted speed func-

tion. The approach also relies on a-priori anatomic information to reduce leak-

age at the liver-rib interface. The numerical algorithms have been integrated 

into a complete system that permits loading DICOM images, segmenting these 

images, and visualizing the liver surface. Although the normal operation of the 

system assumes manual contour corrections, such corrections were not allowed 

for this evaluation. Results show that except for cases with large tumors that ex-

tend to the liver surface, the method we propose is comparable to a human rater. 

1. Introduction 

The method we have used to segment the images provided by the organizers of the 

challenge is a semi-automatic approach adapted from [1,2] and [3], which has been 

integrated into a complete system that permits loading the images, displaying them in 

orthogonal views, delineating initial contours on any of the orthogonal views, 

segmenting the liver based on these contours, editing computed contours, displaying 

the segmented liver, and saving segmented surfaces. Figure 1 shows a snapshot of the 

interface of the system we have developed. In normal operation, the system is used as 

follows. A contour is delineated manually on one of the slices. This contour is then 

automatically deformed and the liver is segmented on that slice. If needed, the user 

can correct the final contours using a number of editing tools that have been incorpo-

rated into the environment. This process typically starts in the middle of the liver. A 

skeleton of the final contour is computed and used to initialize contours on slices 

above or below the current one and the process is repeated until all the slices are seg-

mented. To speed up the process, contours are not computed on every slice. The con-

tours for the other slices are obtained by interpolation. Because of the format of the 

challenge, the normal segmentation procedure has been modified and manual editing 

of the contours has not been allowed. Instead, contours were manually delineated on a 

number of slices (this number varies across volumes and depends on factors such as 
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liver shape and number of slices). The liver was segmented on the slices on which 

contours were drawn. These contours were then interpolated on the other slices. No 

manual editing of these contours was allowed. 

2 Method 

2.1 Contour Evolution Algorithm 

2.1.2 The accumulative speed function 

The approach we have used falls into the category of geometric deformable models 

and we rely on a level-set approach to drive the contour evolution. In this approach, 

the 2D contour is the zero-level set of a 2D embedding function , which obeys the 

following equation: 
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F ,    (1) 

in which F is the speed function, i.e., the function that specifies the speed at which the 

contour evolves along its normal direction. In traditional speed functions, the terms 

related to the underlying image are static, i.e., they do not change as time progresses 

Figure 1: Interface of the liver segmentation system we have developed  
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or as a function of the path followed by the front and a typical expression [4] for the 

speed term is  

0
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and  the curvature of the front. To stop the front propagation at weak boundaries, 

these speed functions have to be designed to decelerate the fronts very quickly. This 

necessitates the choice of large values for the weights assigned to the gradient terms 

with the possible drawback of stopping the front at spurious edges. The approach we 

use is to progressively slow the front down as it passes over the boundary points. In 

essence, we build memory into the process. If the front passes over one boundary 

point it slows down some. If it passes over two boundary points in sequence, it slows 

down more, etc. The rate at which the front slows down as it passes over boundary 

points can be adjusted and it dictates the type of boundary (i.e., weak or strong, nar-

row or large) that stops the front. Because the actual speed is a function of the path of 

the contour, we have called this algorithm the accumulative speed function. The way 

by which this is implemented is as follows: 

1.  Define a standard image-dependent static multiplicative term basg    

2. Define 0g  as the actual multiplicative term to be used in the speed function 

 and let basgg0 .

3. At each iteration, compute },0),,(|),,{( zyxzyx the zero level set of 

the embedding function. For every point in this set, retrieve ( , , )basg x y z

and extend it to the narrow band in which the embedding function is com-

puted (the notion of extension is defined later). This create an additional 

multiplicative term which we call extg

4. Let extggg .00

5. Use 0g as the multiplicative term in the speed function that governs the 

propagation of the front. For example, to include curvature in the final speed 

function, define it as )1(0gF

6.  Compute the value of the embedding function at t+1,  using (1) 

7.  After a predefined number of iterations or if the zero level set does not move, 

stop. Otherwise, go to step 3 

Step 3 in the algorithm requires the computation of an extended multiplicative 

term. Here, the notion of extension is the same as the one proposed by Adalsteinsson 

and Sethian [5] for velocities defined on zero level sets only. Loosely speaking, for 
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voxels close to the zero level set, we set ( , , ) ( ( , , ))
ext bas

g x y z g c x y z  in which  

( , , )c x y z  is the closest point in the zero level set. Following Adalsteinsson's ap-

proach, this can be achieved by computing an extended multiplicative term that satis-

fies the following equation: 

0
ext

g

More details on this approach and comparisons between a traditional speed function 

and the one we use can be found in [1].  

2.1.2 Definition of the static speed function  

Our approach still requires the definition of an underlying static multiplicative term. 

Following the approach proposed by Cao [3] the evolution equation we use is  

0
( ) ((| | ) | |)

t bas
Sign g g k     (2) 

In which  ( )
bas

Sign g  is the sign of the base (temporally invariant) speed function and 

0
g  is the value of the accumulative speed function. 

bas
g  includes both an intensity 

and a gradient term and is defined as follows: 

bas grad gray
g g g                                                     (3) 

in which 
| |G I
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g e  and | |G I  is the magnitude of the intensity gradient of 

the image after convolution with a Gaussian smoothing filter with standard deviation ,

and
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The term Sign(gbas) is required because of the propagation scheme included in the ac-

cumulative speed function algorithm. Without this term, one would propagate a nega-

tive term when the base speed function is negative. This would lead to a term g0

whose sign would alternate from iteration to iteration.  

The algorithm we propose requires six parameters: Imin, Imax, (the coefficient in the 

gradient exponential term), (the coefficient in the intensity exponential term), 
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and (the multiplicative term in front of the curvature). The sixth parameter is the 

width of the narrow band. These parameters are non-linearly related, which makes 

their manual selection non-intuitive.  To address this problem, we have devised 

schemes by which the first five coefficients can be automatically estimated based on 
ROIs drawn on the structures of interest in the images [3]. The width of the narrow-

band is a user-selected parameter but the performance of the algorithm is not sensitive 

to this choice. 

2.2 A priori anatomic information and its use in the design of the speed function.

One area in which segmentation is particularly difficult in liver CT images is the in-

terface between the liver and the muscles between the ribs when the liver is in close 

proximity of the muscles. The approach we propose to address this problem is to con-

strain the propagation of the contour using a-priori anatomic information. In every 

slice, the skin and the ribs are automatically segmented. This is done through a se-

quence of operations including thresholding, morphology, and region labeling. The 

distance between the side of the ribs toward the chest cavity and the skin is computed 

and used as the distance between the skin and the liver. This distance is interpolated 

between rib segments to constrain the propagation of the liver. This is done by adding 

an additional exponential term in the speed function.  

3. Results 

The method described above has been applied to all the test volumes. As discussed in 

the introduction, the software has not been used the way it is intended to be used to 

conform with the rules of the challenge. For each of the volumes, the following steps 

were followed: (1) the image volume was loaded, (2) the ribs constrain was automati-

cally computed, (3) initial contours were drawn on selected slices, (4) the initial con-

tours were automatically deformed , (5) contours on the other slices were interpolated 

from the existing contours. These contours were saved and sent to the organizers of 

the challenge. Total segmentation time averages 20 minutes on a machine with a Pen-

tium D, 3.2GHz processor and 2GB of memory (about 10 minutes to delineate con-

tours on 20 to 30 slices, and 10 minutes to compute the final contours and perform the 
interpolation). Figure 2 compares our contours to the manual ones for the three cases 

selected by the organizers. Table 1 lists the results sent back to us by the organizers.  

The strengths and weaknesses of the method we propose are apparent from the figure 

and the table. Cases 3 and 4, which are shown in Figure 2, contain very large tumors 

that extend to the surface of the liver; the other cases do not have this characteristic. 

In our method, the values of the parameters used by the algorithm are automatically 

estimated from the original contours. We typically draw these original contours over 

normal regions. If we did also include abnormal regions, the variance in intensity val-

ues would be such that the estimated parameters would allow the contours to leak in 

adjacent structures, which may have intensity values in the same range as the abnor-

mal tissue region. If the tumor does not extend to the surface of the liver, there is no 

major problem. The contours evolve around the tumor and stop at the edge of the 

liver; this is the case for dataset 10. The figure also illustrates the efficacy of our rib 
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constraint. Very little leakage occurs at the interface between the rib cage muscles and 
the liver. Without cases 3 and 4, the average total score we have obtained is 71.9, 

which is close to the score obtained by the human rater. Another observation is that 

our method underestimates the total volume of the liver. Because our current objec-
tive is to produce liver surfaces to be used for surface-based registration in an image-

guided surgical system and because we are mainly interested in the outside surface, 

which is smooth, we smooth the surface we compute. This helps with the convergence 
of the registration algorithm but may reduce accuracy in certain areas of the liver.  

4. DISCUSSION 

A relatively easy solution to the difficulty we have encountered with this data set is to 
define two structures: one for the normal liver region, one for the abnormal region. 

Initial contours can be defined for both these structures, contours can then evolve in-

dependently, or even be coupled, and the final regions merged. At the time of writing, 

Figure 2: From left to right, a sagittal, coronal and transversal slice from a rela-

tively easy case (1, top), an average case (4, middle), and a relatively difficult 

case (3, bottom). The outline of the reference standard segmentation is in red, 
the outline of the segmentation of the method described in this paper is in blue. 

Slices are displayed with a window of 400 and a level of 70 

220



this approach has not been implemented but it will be at the time of the workshop. An 
alternative is to simply edit the contours that are incorrect. For instance, correction of 

the contour shown on the left panel of the middle row would only require a few 

mouse clicks. As usual tradeoffs between automaticity and practicality will have to be 
assessed to determine which approach leads to a system of clinical value. Results we 

have obtained suggests that, when using the editing tools implemented in our system, 

end users will be able to generate segmentation accurate enough fast enough to make 
this system useable clinically.  Clinical evaluation of this system as the pre-operative 

component of an image-guided surgical system is currently on-going. 
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