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Abstract—In this paper we present an approach to control
a real car with brain signals. To achieve this, we use a brain
computer interface (BCI) which is connected to our autonomous
car. The car is equipped with a variety of sensors and can
be controlled by a computer. We implemented two scenarios
to test the usability of the BCI for controlling our car. In the
first scenario our car is completely brain controlled, using four
different brain patterns for steering and throttle/brake. We will
describe the control interface which is necessary for a smooth,
brain controlled driving. In a second scenario, decisions for
path selection at intersections and forkings are made using the
BCI. Between these points, the remaining autonomous functions
(e.g. path following and obstacle avoidance) are still active. We
evaluated our approach in a variety of experiments on a closed
airfield and will present results on accuracy, reaction times and
usability.

I. INTRODUCTION

Autonomous cars play an important role in current robotics

and A.I. research. The development of driverless cars started

in the late ’70s and ’80s. Ernst Dickmann’s Mercedes Benz

achieved a travel velocity of 100 km/h on restricted highways

without traffic [3]. In the DARPA Grand Challenge 2005,

autonomous cars drove off-road on desert terrain, several of

them reaching the finish line [9]. DARPA’s Urban Challenge

of 2007 demonstrated that intelligent cars are able to handle

urban scenarios and situations with simulated traffic [10].

Lately, autonomous cars have been driving through real world

traffic for testing purposes in urban and rural areas alike [8].

This research lead to the introduction of various driver

assistance systems for street cars. One key aspect for driver

assistance systems is how the interface between human and

machine affects usability. This interface question is more

important for people without full bodily control. Brain Com-

puter Interfaces can be a solution here. Recently, BCI-systems

have become relatively affordable and allow people to interact

directly with their environment [5]. Another big field lies in

human interaction within computer games, e.g. in the research

game “Brain Basher” [1] or in [6]. As a sub-field of BCI

research, BCI using motor imagination brain patterns has

become popular, where the user has to think of a motion

instead of performing it physically [4]. In other work, users

could control mechanical devices with EEG patterns [7]. In

this paper we want to present a solution where a human

controls a car just by using brain signals, i.e., without need

for any physical interaction with the car.

In a first application, computer-aided free driving allows

the passenger to claim steering- and speed-control in special

areas. The car prevents traffic rule-violations and accidents by

reclaiming control before they happen. The second application

implements a semi-autonomous path-planning, where a car

drives autonomously through a road-network until it arrives

at so called decision points. Typically located at crossings,

decision points require the passenger to choose which way to

drive next.

The paper is structured as follows: Section II introduces

the autonomous car “MadeInGermany” and the applied BCI

hardware. In Section III we describe the training process

and the classification approach used. Section IV presents the

developed usability interface which enables a human to easily

and safely control the car using brain patterns, followed by

Section V, which shows experimental results of the presented

approach. Section VI summarizes the paper and suggests

future work.

II. AUTONOMOUS CAR AND BCI HARDWARE

Fig. 1. The autonomous car “MadeInGermany”

A. Autonomous Car

Our autonomous car “MadeInGermany” served as a test

platform c.f. Fig. 1: a modified Volkswagen Passat, equipped

with a variety of different sensors and a drive by wire control

via CAN bus. An introduction to these sensors is necessary



at this stage, as they are used in the here-described semi-

autonomous mode. The platform is equipped with six laser

scanners, three at front and three at the back. Additionally, on

top of the car a rotating laser scanner from Velodyne scans

the near environment, c.f. Fig. 2. Further, the car has different

radar sensors for obstacle detection and cameras, which are

used for 3D feature extraction, lane and traffic light detection.

The car actuators, i.e., gear shifting, motor and brake control

are manipulated via CAN bus.

A modular architecture allows separate software-

components for the different sensors and actuators on

each car, while utilizing the same modules for decision-

making and other higher level functions. Besides GPS and

CAN data, the car relies on camera, lidar and radar sensors.

Besides, the authors want to mention, that the architecture

described in this paper is also applied to a semi-autonomous

wheelchair, c.f. Fig. 3, but in this paper we want to focus on

the application to the semi-autonomous car.

Fig. 2. Sensor configuration of “MadeInGermany”

Fig. 3. Autonomous wheelchair equipped with Kinect and lidar sensors.

B. Brain Computer Interface

The brain computer interface used in this approach is a

commercial product, the Epoc cap from Emotive. It has 16

EEG sensors which measure potential differences on the scalp.

A contact fluid is necessary for good recognition. As a first

step, the device has to be trained to the brain patterns of a user.

The 16 sensor readings are mapped to four different direction

classes or to the neutral class. Unfortunately we had no access

to the sensor readings of the head sensors, thus, the first

classification process was not transparent. The classification

result is used by the controller module to generate throttle,

brake and steering commands.

Fig. 4. Epoc neuroheadset from Emotive. The cap is connected wirelessly
to the computer.

III. TRAINING AND CLASSIFICATION

In the training phase the user can decide whether to control

the steering only (two classes) or to also control steering

and velocity (four classes). The classification program then

asks the user to sequentially think of the different direction

schemes. Many users tend to think of different motions, i.e.

they think of moving the right arm, without really performing

those motions. Thus, certain motor images do activate different

regions in the brain, but not necessarily the same regions as

would be activated during real motions [2]. The corresponding

electric brain patterns are measured by the BCI. Usually, this

method is called “Motor Imagery”.

The training process must be executed every time the user

puts the cab on his head. After some time, a retraining can

be necessary. After the training process, the user can estimate

the quality of classification by performing an evaluation test.

If classification is not sufficiently correct, a retraining is

necessary; sometimes the user must choose other patterns, e.g.

to think of other motions or images.

IV. INTERFACE DESIGN

A. Requirements

With the free drive controller and BrainChooser alike,

design of interface is essential for BCI usability. Important

aspects we focused on were



• stability and smoothness of executed actions,

• robustness to falsely classified brain patterns,

• safety of executed maneuvers with respect to physical

limitations and to the surrounding area,

• minimality of necessary actions for maneuvers.

. Two solutions were developed and tested on the closed

Tempelhof airfield, for which we designed a demonstration

course, see Fig. 5.

Fig. 5. Test parcours on closed Berlin-Tempelhof airfield.

B. Free Drive

In free drive mode the operator has access to steering

and speed control. Accidents are prevented by constantly

monitoring the operator’s decisions. If a collision is imminent

or if the car is about to leave the free drive zone, the computer

immediately stops the car.

a) Control Actions.: The four brain commands (“left”,

“right”, “push”, “pull”) are mapped to steer and velocity com-

mands as follows: Commands “left” and “right” increase or

decrease the current steering wheel angle. Commands “push”

and “pull” increase or decrease the desired velocity. This

solution proved superior compared to giving direct throttle

or brake commands, as it is easier to maintain a certain

speed. When none of the four commands is detected, the

velocity stays constant. The steering angle stays constant for

one second, and then is reduced (or respectively increased)

towards zero position, in which the car moves straight.

b) Control Frequency.: Steering a car requires the driver

to be able to execute steering motion with slow response

times. To allow filtering of noisy brain signals, we allowed

only one steering command per second in earlier tests. Then,

a large steering angle was added to the current position. In

this solution the driver had problems to execute small steering

angles, the response times were shown to be too long. In

further tests a control frequency of 5 Hz and a steer step

of 0.6 rad proved to be a good solution, meaning that one

revolution of the steering wheel takes about two seconds. The

velocity can be increased or decreased by 0.15 m/s in each

step. The steering angle is limited to ±2.5π. Velocities are

cropped between 0 and 10 m/s.

c) Steering.: When no “left” or “right” command is

received for more than one second, the steering wheel returns

to neutral position. At higher velocities (>2 m/s), the steering

wheel turns more slowly and the steering angle limits are

reduced. This prevents excessive centrifugal forces and allows

the driver to stay on a desired trajectory without causing

oscillations. The steering angle ω, depending on the velocity

of the car v in m/s is limited to the following values (in rad):

ω = 2.5π ∗min(1.0, 2.0/v) (1)

Accordingly, the steering angle change δω within each time

step is:

δω = 0.6π ∗min(1.0, 2.0/v) (2)

When the driver is accelerating or decelerating (“pull” or

“push” commands), we also reduce the steering angle.

d) Steer Angle Smoother.: Sending steering angle com-

mands to the steering controller with 5 Hz only causes non-

smooth steering maneuvers. The steer controller works with

100 Hz, therefore we implemented a steering angle smoother,

which linearly extrapolates 20 desired angle values (one value

for each 10 ms) for the controller. The result was a very soft

turning steering wheel.
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Fig. 6. Steer Angle Smoother, black dotted curve shows the raw angle values
at 5 Hz; blue, red and green curves show interpolated values for interpolation
frequencies higher, equal or lower than 5 Hz.

e) Velocity Controller.: The desired velocity is input

to a PID-controller. The PID-controller generates positive or

negative output values. Positive outputs are weighted and

mapped to throttle commands, negative outputs are similarly

mapped to brake commands.

As experiments will show later, staying on a given trajectory

can be hard at higher velocities, so an application on open

traffic is far away. Therefore we implemented and tested

another solution for the BCI, in which it assists the human in

deciding which direction to take; all driving and safety relevant

decisions are made by the car.

C. BrainChooser

While the autonomous car usually plans the best trajectory

through the road network to reach its destination, the Brain-

Chooser application allows the passenger to modify the route

at certain decision points by using the BCI device.



The road network is presented as a directed graph of

way-points which are connected by lanes. Curved lanes are

approximated by spline interpolation over the way-points. Fig.

7 shows the spline interpolation of the road network graph with

the car at a decision point for two possible directions.

Fig. 7. A spline interpolation of the road network with a point cloud from
the lidar-scanner for detecting obstacles. A path along the right lane has been
chosen at the decision point in front of the crossroad, as indicated by the
highlighted red-green line.

To find a desired trajectory in the road network, weights are

assigned to lanes representing the distance, speed-limit and

obstacles on the lanes, if necessary. When the car reaches a

decision point where an operator’s choice is required, e.g. an

intersection, the operator is requested to choose a direction.

The request is executed with the help of a synthetic voice

recording. Once a choice was made, the chosen trajectory on

the road network is processed and executed by the steering

and velocity controller.

At decision points, the operator is requested by voice

recording to input a direction with the BCI. Since it’s usually

not possible to hold a brain pattern steady over a long period of

time, messages with detected patterns arrive at irregular inter-

vals and include false positives. To robustly classify the brain

pattern into one of the four categories, four variables (one for

each possible pattern) accumulate the detection-probabilities.

The variable which first passes a certain threshold defines the

operator’s decision. This method proved to be relatively robust

to false detections. It also gives the operator the required

time to enter the desired direction. To prevent distraction,

no audio-feedback is given during the selection. However, a

display presents the currently detected pattern, resulting in

faster decisions.

V. EXPERIMENTS

A. Benchmarks

We conducted different experiments on the former Tempel-

hof airport in Berlin.

Experiment 1: At first we measured the accuracy of

control. The first task was to keep the car on an infield course,

see Fig. 5, using “left” and “right” patterns for steering only.

The velocity was set to 2 meters per second. The driver had

to drive the track for three laps to see whether the accuracy

remained constant over time. The resulting traces are depicted

in Fig. 8; the errors are shown in Fig. 13.

Experiment 2: In the second experiment the driving

person had to control throttle and brake in addition to the

steering commands for left and right. The car was now able

to accelerate from 0 to 3 meters per second. The resulting

trace is shown in Fig. 11, the errors are shown in Fig. 13.

Experiment 3: To check the lateral error to the lane at

higher speeds, we designed another track with long straight

lanes and two sharp corners. The velocity was fixed to 5 meters

per second and like in the first experiments, the driver had to

steer left and right only, trying to stay at the reference lane. The

resulting trajectory is shown in Fig. 12, the errors in Fig. 13.

Experiment 4: We checked the response time of the test

person. The test person received different commands, such

as “left”, “right”, “push” or “pull” from another person and

had to generate the corresponding brain pattern - this had to

be recognized by the control computer. The time from the

command until the recognition within the control computer

was measured. We also measured falsely classified patterns.

Experiment 5: In this experiment, we tested the second

module, the BrainChooser. Here, at intersections, the operator

was asked to decide for the left or the right route. Then the

test person had about ten seconds to decide for left or right

direction. This long decision phase helps to filter out noise

and ensures that the test person was generating the desired

pattern over a longer time, reducing the risk of coincidentally

generated patterns.

B. Experimental Results

Experiment 1: At the beginning of the first experiment

we marked the desired lanes on the airfield. As we found, on a

flat surface those lanes are hard to see from greater distances.

Moreover, it is difficult for a human driver to estimate his

distance to the middle of the lane with centimeter accuracy.

Therefore the test person had access to a computer monitor,

which displayed a model of the car on the virtual track from

bird’s eye perspective. The test person succeeded in keeping

a close distance to the desired trajectory, while only having to

steer the car. We performed three tests to observe the variance

between different laps. The standard deviation of the lateral

error function over time was 1.875 meters for one lap, the

error function is shown in Fig. 9. One lap lasted for about 10

minutes. In the following laps this error did not diverge by

more than 0.2 m. The angular error standard deviation was

0.20 rad. The traces of the driven laps are shown in Fig. 8.

Fig. 13 comprises the results of the first three experiments.



Fig. 8. Experiment 1: Infield test course. The test person had to control
the car with two steering commands (“left” and “right”). Velocity was set to
2 meters per second. The traces of all three driven laps are depicted (red).
Reference trace of the original track in blue.

Fig. 9. Experiment 1: Lateral error of the car to the reference trajectory.

Fig. 10. Experiment 1: Orientation error of the car to the reference trajectory.

Fig. 11. Experiment 2: Infield test course. The test person had to control
the car with four commands (“left”, “right”, “push”, “pull”) to steer the car
and to adjust the velocity, 0-3 meters per second. The traces of the car (red)
and of the original lap (blue) are depicted.

Experiment 2: The test person managed to control the car,

controlling the velocity and the steering wheel. However, the

accuracy of steering control was reduced, compared to Exp.

1, resulting in a larger standard deviation of the lateral error,

which was 2.765 m. The standard deviation of the orientation

was 0.410 rad and, thus, larger as well.

Experiment 3: The lateral error became even greater on

the speedway. The speed was set to 5 meters per second and

the test person tried to focus on heading in the right direction

(keeping the orientation error small) rather than reducing the

lateral distance. This is due to the fact that at higher speeds,

the target point for orienting the car is displaced forwards. The

standard deviation of the lateral error was 4.484, the standard

deviation of the orientation error was 0.222 rad. The results

are contained in 13.

Experiment 4: In this experiment we measured the time

it takes to generate a pattern with the brain and to classify it.

Results are shown in Fig. 14. Over 60 percent of the brain

commands could be generated within 5 or less seconds, about

26 percent even within two seconds or less. In 20 percent of all

cases the generated pattern was wrong. This was usually due

to concentration problems of the test person. After a while,

at latest after one hour a new training of the brain patterns

is necessary. Further, after using the BCI for 90 minutes we

experienced some tiredness of our test subject, which results



Fig. 12. Experiment 3: Speedway test course. As in the first experiment, the
test person had to control the car with two steering commands. Velocity was
set to 5 meters per second. The traces of the car (red) and of the original lap
(blue) are depicted.

σlateral

[m]

σangle

[rad]

Infield 2m/s, 2 DOF 1.875 0.200

Infield 3m/s, 4 DOF 2.765 0.410

Speedway 5m/s, 2 DOF 4.484 0.222

Fig. 13. Error measurements: Lateral distance to reference trajectory in
meters and orientation error in rad. 2 or 4 DOF refer to the two or four
patterns, the test person has to generate.

in longer response times or higher inaccuracies.

Experiment 5: In this experiment for the BrainChooser

the test person achieved correctly classified directions in more

than 90 percent of cases.

VI. CONCLUSION AND FUTURE WORK

Brain-computer interfaces pose a great opportunity to in-

teract with highly intelligent systems such as autonomous

vehicles. While relying on the car as a smart assistance system,

they allow a passenger to gain control of the very essential

aspect of driving without the need to use arms or legs. Even

while legal issues remain for public deployment, this could

already enable a wide range of disabled people to command a

vehicle in closed environments such as a parks, zoos, or inside

buildings.

Free drive with the brain and BrainChooser give a glimpse

of what is already possible with brain-computer interfaces for

commanding autonomous cars. Modifying the route of a vehi-

cle with a BCI is already an interesting option for applications
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falsely

class.

percent 26 % 36 % 10 % 9 % 20 %

Fig. 14. Experiment 4: Reaction times. The test subject is told to generate a
certain pattern. A pattern counts as recognized, when the computer recognizes
the correct class.

that help disabled people to become more mobile. It has been

proven that free driving with a BCI is possible, but the control

is still too inaccurate for letting mind-controlled cars oper-

ate within open traffic. The semi-autonomous BrainChooser

overcame this weakness, and decisions were performed with

a high precision. Improvements of the BCI device could

have multiple positive effects. One effect, of course, would

be a more accurate control of the car, i.e., a more accurate

steering and velocity control in free drive mode. Further, it is

desirable to be able to distinguish more than four brain patterns

in the future. This would enable the driver to give further

commands, e.g., switching lights off and on, or setting the

onboard navigation system to the desired location by thought

alone.

More detailed experiments regarding this decline of concen-

tration over time and within the context of car driving will be

future work as well.
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