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Semi-Classical Wavefront Set and
Fourier Integral Operators

Ivana Alexandrova

Abstract. Here we define and prove some properties of the semi-classical wavefront set. We also define

and study semi-classical Fourier integral operators and prove a generalization of Egorov’s theorem to

manifolds of different dimensions.

1 Introduction

In this article we define the semi-classical wavefront set and Fourier integral operators

and establish some of their properties.

Robert [9], defined semi-classical Fourier integral operators through oscillatory

integrals. He has proven a composition formula for a general class of semi-classical

Fourier integral operators, while for the unitary group U (t) = e−
i
h

tA(h) of certain

semi-classical pseudodifferential operators A(h), he has established an oscillatory in-

tegral representation and has investigated the propagation of the frequency set of a

distribution. Composition rules for semi-classical Fourier integral operators have

been proven in [3].

Another good reference for the theory of classical Fourier integral operators is the

book by Duistermaat [4], in which Fourier integral operators and some of their prop-

erties and applications are again studied through their oscillatory integral representa-

tions. Here we take a different approach and make a coordinate-invariant definition

the starting point of our investigation of semi-classical Fourier integral operators.

This paper is organized as follows. The results on the propagation of the semi-

classical wave front set which we prove in Section 3 are the analogs of the ones in

the classical case (h = 1) [6, Ch. 7]. In this article we make the distinction be-

tween the finite and the infinite wavefront sets. In Section 4, we define semi-classical

Fourier integral operators in a way similar to Melrose’s definition in the classical case

(see [7, Definition 25.1.1]). We then prove that, as in the classical case, one can also

express semi-classical Fourier integral distributions in terms of oscillatory integrals.

The proof from the classical case, however, does not completely carry over to the sit-

uation discussed here, because the Lagrangian submanifolds which we consider are

no longer restricted away from the zero section in T∗
R

n. Section 5 is devoted to a

generalization of the semi-classical Egorov theorem to manifolds of unequal dimen-

sions.
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We remark that the results of this paper have been applied to the study of the

structure of the scattering amplitude [1, 2]. In [1], we studied smooth compactly

supported perturbations of the Euclidean Laplace–Beltrami operator and proved that

the scattering amplitude is a semi-classical Fourier integral operator quantizing the

scattering relation. In [2], we extended this result to the case of short range pertur-

bations of the Laplacian when the scattering amplitude is restricted away from the

diagonal in S
n−1 × S

n−1. In both cases we have first applied the generalization of

Egorov’s Theorem given in Section 5 to reduce the problem to that of showing that

the appropriately cut-off resolvent is a semi-classical Fourier integral operator associ-

ated to the perturbed Hamiltonian flow relation. In proving the latter, we have made

use of the propagation of the semi-classical wave front set results proved in Section 3.

Lastly, the characterization of semi-classical Fourier integral operators in terms of os-

cillatory integrals which we prove in Section 4.2 below has allowed us, under a certain

geometric condition, to express the scattering amplitude in the form e
i
h

Sa, where S is

a modified action along non-trapped trajectories and a is a suitably chosen symbol.

2 Preliminaries

In this section we recall some of the elements of semi-classical analysis which we will

use here. First we define two classes of symbols

Sm
2n(1) =

{
a ∈ C∞(R

2n × (0, h0]) : ∀α, β ∈ N
n, |∂αx ∂

β
ξ a(x, ξ; h)| ≤ Cα,βh−m

}

and

Sm,k(T∗
R

n) =

{
a ∈ C∞(T∗

R
n × (0, h0]) : ∀K ⋐ R

n, ∀α, β ∈ N
n,

sup
x∈K

|∂αx ∂
β
ξ a(x, ξ; h)| ≤ Cα,βh−m〈ξ〉k−|β|

}
,

where h0 ∈ (0, 1] and m, k ∈ R. For a ∈ Sm
2n(1) or a ∈ Sm,k(T∗

R
n), we define

the corresponding semi-classical pseudodifferential operator of class Ψ
m
h (1,R

n) or

Ψ
m,k
h (R

n), respectively, by setting

Oph(a)u(x) =
1

(2πh)n

∫∫
e

i〈x−y,ξ〉
h a(x, ξ; h)u(y) dydξ, u ∈ S(R

n),

and extending the definition to S ′(R
n) by duality. Below we shall work only with

symbols which admit asymptotic expansions in h and with pseudodifferential op-

erators which are (left) quantizations of such symbols. For A ∈ Ψ
k
h(1,R

n) or A ∈

Ψ
m,k
h (R

n), we shall use σ0(A) and σ(A) to denote its principal symbol and its com-

plete symbol, respectively. If a is a symbol of the above classes, we shall say that a has

compact support if there exists a compact set K ∈ T∗
R

n such that supp a( · ; h) ⊂ K

for every h ∈ (0, h0].

For a symbol a ∈ Sm,k(T∗
R

n) or a ∈ Sm
2n(1), we now define its (semi-classical)

essential support ess-supph a. For that, we first let T̂∗
R

n
= T∗

R
n ⊔ S∗R

n, where we
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set S∗R
n

= (T∗
R

n\0)/R+ with the R+ action given by multiplication on the fibers

(x, ξ) 7→ (x, tξ). As in [5], the points in T∗
R

n will be called finite and the points in

S∗R
n will be called infinite.

Definition 2.1 Let (x0, ξ0) ∈ T̂∗(R
n). We shall say that (x0, ξ0) does not belong to

the essential support of a if

• If (x0, ξ0) is finite, then there exist open neighborhoods U and V of x0 and ξ0,

respectively, such that for all α, β ∈ N
n,

∂αx ∂
β
ξ a(x, ξ) = O(h∞) uniformly in (x, ξ) ∈ U ×V.

We shall denote the complement of the set of all such points by ess-supp
f
h a.

• If (x0, ξ0) is infinite, then there exist an open neighborhood U of x0, an open conic

neighborhood V of ξ0, and a constant K > 0 such that for all α, β ∈ N
n,

∂αx ∂
β
ξ a(x, ξ) = O(h∞〈ξ〉−∞) uniformly in (x, ξ) ∈ U × ({ξ : ‖ξ‖ > K} ∩V ).

We shall denote the complement of the set of all such points by ess-suppi
h a.

We also let ess-supph a = ess-supp
f
h a⊔ess-suppi

h a denote the semi-classical essential

support of a.

For A ∈ Ψ
m,k
h (R

n) or A ∈ Ψ
m
h (1,R

n), we then define its (semi-classical) wavefront

set as

W F
f
h (A) = ess-supp

f
h a, W Fi

h(A) = ess-suppi
h a, W Fh(A) = ess-supph a,

where A = Oph(a). We shall say that W Fh(A) is compact if W Fh(A) ≡ W F
f
h (A) and

W F
f
h (A) is compact.

We also define the class of semi-classical distributions D ′
h(R

n), with which we will

work here

D
′
h(R

n) =
{

u ∈ C∞
h ((0, 1]; D ′(R

n)) : ∀χ ∈ C∞
c (R

n)∃ N ∈ N and CN > 0 :

|Fh(χu)(ξ)| ≤ CN h−N〈ξ〉N
}
,

where Fh(χu)(ξ) = 〈e−
i
h
〈 · ,ξ〉, χu〉, with 〈 · , · 〉 denoting the distribution pairing.

The class of semi-classical distributions of compact support E ′
h(R

n) consists of the

distributions u ∈ D ′
h(R

n) with supp u(h) contained in a fixed compact set indepen-

dent of h. The set S ′
h(R

n), on the other hand, consists of the elements of D ′
h(R

n)

which, for every h, extend to continuous linear functionals on S(R
n). (We remind

the reader that the distributions D ′(R
n) form the dual space to the space C∞

c (R
n)

with respect to the inductive limit topology. See [7, vol. 1] for a presentation of the

theory of distributions.)
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We shall work with the L2-based semi-classical Sobolev spaces Hs
h(R

n), s ∈ R,

which consist of the distributions u ∈ S ′
h(R

n) such that Fh(u) is locally square inte-

grable and

‖u‖2
Hs

h
(Rn)

def
=

1

(2πh)n

∫

Rn

(1 + ‖ξ‖2)s|Fh(u)(ξ)|2dξ <∞.

We shall say that u = v microlocally near an open set U ⊂ T∗
R

n, if there exists an

open set Ũ ⋐ T∗
R

n with U ⋐ Ũ such that for every P ∈ Ψ
0
h(1,R

n) satisfying

(1) W Fh(P) ⊂ Ũ ,

we have that P(u−v) = O(h∞) in C∞(R
n). We remark that this definition implicitly

requires that W Fh(P) have no infinite part.

We shall further say that u satisfies a property P microlocally near an open set

U ⊂ T∗
R

n if there exists v ∈ D ′
h(R

n) such that u = v microlocally near U and v

satisfies property P.

To extend these notions to compact manifolds, we recall the following definitions

of semi-classical distributions and pseudodifferential operators on compact mani-

folds. Let M be a smooth compact manifold and κ j : M j → X j , j = 1, . . . ,N , a set

of local charts. A semi-classical distribution u on M, u ∈ D ′
h(M), is defined by a set of

representatives u j ∈ D ′
h(X j), j = 1, . . . ,N , with u j ◦(κ j ◦κ

−1
k ) = uk in κk(M j ∩Mk).

A linear continuous operator A : C∞(M) → D ′
h(M) belongs to Ψ

m
h (1,M) or

Ψ
m,k
h (M) if for all j ∈ {1, . . . ,N} and u ∈ C∞

c (M j) we have Au◦κ−1
j = A j(u ◦ κ−1

j )

with A j ∈ Ψ
m
h (1,X j) or A j ∈ Ψ

m,k
h (X j), respectively, and

χ1Aχ2 : D
′
h(M) → h∞C∞(M)

if suppχ1 ∩ suppχ2 = ∅.

3 The Semi-Classical Wavefront Set of a Semi-Classical Distribution

In this section we discuss the different notions of semi-classical wavefront set used

in the literature and show that they are equivalent. We also establish some of their

properties.

We begin by proving the following.

Lemma 3.1 A distribution u ∈ C∞
h ((0, 1]; D ′

h(R
n)) is an element of D ′

h(R
n) if and

only if for every χ ∈ C∞
c (R

n) there exist m, km,Cm ∈ R such that ‖χu‖Hm
h

(Rn) ≤

Cmh−km , for every h ≤ h0 for some h0 ∈ (0, 1).

Proof The first implication is clear. For the second implication, let χ ∈ C∞
c (R

n)

and let m, km ∈ R be such that ‖χu‖Hm
h

(Rn) ≤ Cmh−km . Let ψ ∈ C∞
c (R

n) be such that

ψ = 1 on suppχ. Lastly, let s ∈ Z be such that s < min{0, ⌊m⌋}. Then

|Fh(χu)| =
∣∣〈 e−

i
h
〈·,ξ〉ψ, χu

〉∣∣ ≤
∥∥ e−

i
h
〈·,ξ〉ψ

∥∥
H−s

h
(Rn)

‖χu‖Hs
h
(Rn)

≤ Cm,s〈ξ〉
−shs−km .
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We now state the two alternative definitions of semi-classical wavefront set given

in the literature. The first one is as in [5].

Definition 3.2 Let u ∈ D ′
h(R

n) and let (x0, ξ0) ∈ T̂∗(R
n). We shall say that (x0, ξ0)

does not belong to the semi-classical wavefront set of u if either of the following holds:

• (x0, ξ0) is finite and there exist χ ∈ C∞
c (R

n) with χ(x0) 6= 0 and an open neigh-

borhood U of ξ0, such that ∀N ∈ N, ∀ξ ∈ U , |Fh(χu)(ξ)| ≤ CN,U hN . We shall

denote the complement of the set of all such points by W F
f
h (u).

• (x0, ξ0) is infinite and there exist χ ∈ C∞
c (R

n) with χ(x0) 6= 0 and a conic neigh-

borhood U of ξ0, such that ∀N ∈ N, ∀ξ ∈ U ∩ {‖ξ‖ ≥ 1
K
}, for some K > 0,

|Fh(χu)(ξ)| ≤ CN,U ,K hN〈ξ〉−N .

We shall denote the complement of the set of all such points by W Fi
h(u).

We shall further use W Fh(u) = W F
f
h (u)⊔W Fi

h(u) to denote the semi-classical wave-

front set of u.

The definition of semi-classical wavefront set given in [10] is as follows.

Definition 3.3 Let u ∈ D ′
h(R

n). Set

W̃ Fh(u) =
{

(x, ξ) : ∃A ∈ Ψ
0,0
h (R

n), with W F(A) compact and σo(A)(x, ξ) 6= 0,

such that Au ∈ h∞C∞((0, 1]h; C∞(R
n))

} c
.

We can now prove the following.

Lemma 3.4 If u ∈ D ′
h(R

n), then W F
f
h (u) ≡ W̃ Fh(u).

Proof Let (x0, ξ0) ∈ T∗
R

n\W F
f
h (u). Let ϕ ∈ C∞

c (R
n) be such that ϕ(x0) 6= 0 and

Fh(φu)(ξ) = O(h∞) uniformly in ξ in a bounded open neighborhood V ⊂ R
n of ξ0.

Let χ ∈ C∞
c (R

n) satisfy suppχ ⊂ V . Consider

Au(x) =
1

(2πh)n

∫∫
e

i
h
〈x−y,ξ〉ϕ(x)ϕ(y)χ(ξ)u(y) dydξ.

We clearly have that A ∈ Ψ
0,0
h (R

n) with σ0(A)(x0, ξ0) 6= 0 and Au = O(h∞) in

C∞(R
n).

Let (x0, ξ0) ∈ T∗
R

n be such that there exists A ∈ Ψ
0,0
h (R

n) with σ0(A)(x0, ξ0) 6= 0

and Au = O(h∞) in C∞(R
n). Let ϕ, χ ∈ C∞

c (R
n) be such thatϕ(x0) 6= 0, χ(ξ0) 6= 0,

and χ(hD)ϕ = BA + R, where B ∈ Ψ
0,0
h (R

n), R ∈ Ψ
−∞,−∞
h (R

n). Then

χ(hD)ϕu(x) =
1

(2πh)n

∫∫
e

i
h
〈x−y,ξ〉χ(ξ)ϕ(y)u(y) dydξ

=
1

(2πh)n

∫
e

i
h

x·ξχ(ξ)Fh(ϕu)(ξ) dξ = O(h∞) in C∞(R
n).
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Hence, χ(ξ)Fh(ϕu)(ξ) = O(h∞) uniformly in ξ, and therefore Fh(ϕu)(ξ) = O(h∞)

uniformly in ξ in a bounded open set containing ξ0, which implies that (x0, ξ0) /∈

W F
f
h (u).

Similary, one can prove the following.

Lemma 3.5 Let u ∈ D ′
h(R

n). Then (x0, ξ0) /∈ W Fi
h(u) if and only if ∃A ∈ Ψ

0,0
h (R

n)

with σ0(A)(x, ξ) ≥ C > 0 in a conic neighborhood of (x0, ξ0) such that Au = O(h∞)

in C∞(R
n).

Proof The proof is analogous to the one in the classical case — see [6, Proposition

7.4].

We note that Lemmas 3.4 and 3.5 are stated without proof in [5, Proposition A.I.12].

3.1 Properties of the Semi-classical Wavefront Set

In this section, we establish some properties of semi-classical wavefront sets; namely,

we show how semi-classical wavefront sets behave under compositions and tensor

products of distributions.

For u ∈ D ′
h(R

n), we set −W Fh(u) = {(x,−ξ) : (x, ξ) ∈ W Fh(u)}.
We have the following preparatory lemma.

Lemma 3.6 Let u1 ∈ D ′
h(R

n) and u2 ∈ E ′
h(R

n) satisfy W Fh(u1)∩(−W Fh(u2)) = ∅.
Then 〈u1, u2〉

def
=

∫
u1u2 = O(h∞), where the integral is defined as in [6, Proposition

7.6].

Proof For u ∈ D ′
h(R

n), let

Σh = {ξ ∈ R
n ⊔ S

n−1 : ∃ x ∈ R
n, (x, ξ) ∈ W Fh(u)},

Σ
i
h = {ξ ∈ S

n−1 : ∃ x ∈ R
n, (x, ξ) ∈ W Fi

h(u)},

Σ
f
h = {ξ ∈ R

n : ∃ x ∈ R
n, (x, ξ) ∈ W F

f
h (u)},

Σ
x
h = {ξ ∈ R

n ⊔ S
n−1 : (x, ξ) ∈ W Fh(u)}.

We have that Σ
x
h(u) = limsupp φ→{x} Σh(φu). The proof is the same as in the

classical case (h = 1) (see [7, §8.1]). For every x0 ∈ R
n, we can then findϕ ∈ C∞

c (R
n)

such that ϕ(x0) 6= 0 and Σh(ϕu1) ∩ (−Σh(ϕu2)) = ∅. By [6, Proposition 7.6], we

have that

(2)

∫
ϕu1ϕu2 =

1

(2πh)n

∫
Fh(ϕu1)(ξ)Fh(ϕu2)(−ξ) dξ.
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Now, since Σ
i
h(ϕu1) ∩ Σ

i
h(ϕu2) = ∅, for every ξ0 ∈ Σ

i
h(ϕu1) we can find an

open conic neighborhood Uξ0
of ξ0 such that Fh(ϕu2)(−ξ) = O(h∞〈ξ〉−∞) uni-

formly in Uξ0
∩ {ξ : ‖ξ‖ ≥ 1

C
} for some C > 0. Since u1 ∈ D ′

h(R
n), it follows

that there exist N ∈ N and C ′ > 0 such that |Fh(ϕu1)(ξ)| ≤ C ′h−N〈ξ〉N and there-

fore Fh(ϕu1)(ξ)Fh(ϕu2)(−ξ) = O(h∞〈ξ〉−∞) uniformly in Uξ0
∩ {ξ : ‖ξ‖ ≥ 1

C1
}.

The compactness of S
n−1 implies that we can find finitely many such neighbor-

hoods (U 1
l )L1

l=1 and (U 2
l )L2

l=1 and a constant C1 > 0 satisfying Σ
i
h(ϕu1) ⊂

⋃L2

l=1 U 2
l

and Σ
i
h(ϕu2) ⊂

⋃L1

l=1 U 1
l and such that Fh(ϕu1)(ξ)Fh(ϕu2)(−ξ) = O(h∞〈ξ〉−∞)

uniformly in U
j

l ∩ {ξ : ‖ξ‖ ≥ 1
C1
}, l = 1, . . . , L j , j = 1, 2. We can further ar-

range to have (
⋃L1

l=1 U 1
l ) ∩ (

⋃L2

l=1 U 2
l ) = ∅. Lastly, we choose finitely many sets

(Ul)
L3

l=1 such that S
n−1\(

⋃2
k=1

⋃Lk

l U k
l ) ⊂

⋃L3

l=1 Ul and a constant C2 > 0 such that

Fh(ϕu j)(ξ) = O(h∞〈ξ〉−∞) uniformly in ξ ∈ {ξ : ‖ξ‖ > 1
C2
} ∩ Ul, j = 1, 2,

l = 1, . . . , L3. With C = min{C1,C2}, we then have

∫

{ξ:‖ξ‖> 1
C
}

Fh(ϕu1)(ξ)Fh(ϕu2)(−ξ) dξ = O(h∞).

The same argument applied now to Σ
f
h (ϕu j) ∩ {ξ ∈ R

n : ‖ξ‖ ≤ 1
C
}, j = 1, 2,

gives that ∫

{ξ:‖ξ‖≤ 1
C
}

Fh(ϕu1)(ξ)Fh(ϕu2)(−ξ) dξ = O(h∞)

and therefore
∫
ϕu1ϕu2 = O(h∞).

Choosing a locally finite partition of unity
∑∞

j=1 ϕ
2
j = 1 with each function ϕ j

chosen as ϕ above, we have that 〈u1, u2〉 =
∑∞

j=1〈ϕ ju1, ϕ ju2〉 = O(h∞).

We now consider two position spaces R
d2+d1 and R

d3+d2 split into R
d2 × R

d1 and

R
d3 × R

d2 , respectively. This leads to the corresponding splitting of the phase spaces

T∗
R

d2+d1 and T∗
R

d3+d2 into T∗
R

d2 × T∗
R

d1 and T∗
R

d3 × T∗
R

d2 . For sets A ⊂
T∗

R
d2+d1 , B ⊂ T∗

R
d3+d2 , and a ⊂ T∗

R
d1 , we define

B ◦ A = {(m3,m1) ∈ T∗
R

d3+d1 : ∃m2 ∈ T∗
R

d2 , (m2,m1) ∈ A, (m3,m2) ∈ B},

A(a) = {m2 ∈ T∗
R

d2 : ∃m1 ∈ T∗
R

d1 , (m2,m1) ∈ A,m1 ∈ a}.

For U ∈ D ′
h(R

d j+1+d j ), j = 1, 2, we let

(W Fk
h) ′(U ) = {(x, ξ; y, η) : (x, ξ; y,−η) ∈ W Fk

h(U )}, k ∈ { f , i},

(W Fi
h) ′

R
d j

(U ) = {(y, η) ∈ S∗R
d j : ∃x ∈ R

d j+1 , (x, 0; y, η) ∈ (W Fi
h) ′(U )},

(W Fi
h) ′

R
d j+1

(U ) = {(x, ξ) ∈ S∗R
d j+1 : ∃y ∈ R

d j , (x, ξ; y, 0) ∈ (W Fi
h) ′(U )}.

Thus (W Fi
h) ′

R
d j

(U ) selects the points of W Fi
h(U ) which point to a direction in R

d j ,

reverses their directions, and projects them onto S∗R
d j , while (W Fi

h) ′
R

d j+1
(U ) selects
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the points of W Fi
h(U ) which point to a direction in R

d j+1 and projects them onto

S∗R
d j+1 .

Lastly, we shall say that U is properly supported if there exists 0 < h0 ≪ 1 such

that for every 0 < h < h0, suppU (h) is proper in the sense that for all compact sets

K j ⊂ R
d j and K j+1 ⊂ R

d j+1 the sets

suppU (h)(K j )
def
= {x ∈ R

d j+1 : ∃y ∈ K j , (x, y) ∈ suppU (h)},

(suppU (h))−1(K j+1)
def
= {y ∈ R

d j : ∃ x ∈ K j+1, (x, y) ∈ suppU (h)}

are compact.

We now have the following results on the behavior of the semi-classical wavefront

set under composition and tensor products.

Lemma 3.7 Let u ∈ D ′
h(R

d2 ), v ∈ D ′
h(R

d1 ), V ∈ D ′
h(R

d2+d1 ), W ∈ D ′
h(R

d3+d2 ).

Then

(i) W F
f
h (Av) ⊂ W F

f
h (A) ∩W F

f
h (v) for A ∈ Ψ

m
h (1,R

d1 ) with compact wavefront set

or A ∈ Ψ
m,k
h (R

d1 ), and W Fi
h(Av) ⊂ W Fi

h(A) ∩W Fi
h(v) for A ∈ Ψ

m,k
h (R

d1 ).

(ii) u ⊗ v ∈ D ′
h(R

d2+d1 ), W F
f
h (u ⊗ v) ≡ W F

f
h (u) ×W F

f
h (v), and

W Fi
h(u ⊗ v) ⊂ (W Fi

h(u) ×W Fi
h(v))

∪
(

(supp u × {0}) ×W Fi
h(v)

)
∪

(
W Fi

h(u) × (supp v × {0})
)
.

(iii) If V is properly supported, v ∈ E ′
h(R

d1 ), W Fi
h(v) ∩ (W Fi

h) ′
Rd1

(V ) = ∅, and

W F
f
h (v) is compact, then

V v ∈ D
′
h(R

d2 ),

W F
f
h (V v) ⊂ (W F

f
h ) ′(V )(W F

f
h (v)),

W Fi
h(V v) ⊂ (W Fi

h) ′(V )(W Fi
h(v)) ∪ (W Fi

h) ′
Rd2

(V ),

where V v is the distribution obtained by applying to v the continuous linear oper-

ator from C∞
c (R

d1 ) into D ′
h(R

d1 ) with Schwartz kernel V .

(iv) If at least one of V and W is properly supported,

(W Fi
h) ′

Rd2
(V ) ∩ (W Fi

h) ′
Rd2

(W ) = ∅,

and the set

{
p ∈ T∗

R
d2 : ∃ (q, r) ∈ T∗

R
d3 × T∗

R
d1 ,

(q, p) ∈ (W F
f
h ) ′(W ), (p, r) ∈ (W F

f
h ) ′(V )

}
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is compact, then

W ◦V ∈ D
′
h(R

d3+d1 ),

(W F
f
h ) ′(W ◦V ) ⊂ (W F

f
h ) ′(W ) ◦ (W F

f
h ) ′(V ),

and

(W Fi
h) ′(W ◦V ) ⊂ (W Fi

h) ′(W ) ◦ (W Fi
h) ′(V ) ∪ (W Fi

h) ′
Rd3

(W ) × (R
d1 × {0})

∪ (R
d3 × {0}) × (W Fi

h) ′
Rd1

(V ),

where W ◦V denotes the Schwartz kernel of the operator which is the composition

of the operators with Schwartz kernels W and V .

Remark Part (iii) of this lemma is proved in [5, Proposition A.I.13] without the

assumption on W F
f
h (v). In our proof, however, we also show that all estimates can

be made uniformly in a neighborhood of W Fh(v).

Proof We begin by proving (i). Let (x0, ξ0) /∈ W F
f
h (A). The proof is the same for

the two classes of operators; we only treat the case A ∈ Ψ
0,0
h (R

d1 ). Let B ∈ Ψ
0,0
h (R

d1 )

satisfy σ(B)(x0, ξ0) 6= 0, σ(B) ∈ C∞
c (R

d1 ), and W F
f
h (B) ∩ W F

f
h (A) = ∅. Then

BA ∈ Ψ
−∞,−∞
h (R

d1 ) and therefore BAu = O(h∞) in C∞(R
d1 ).

Now let (x0, ξ0) /∈ W F
f
h (u). Let c ∈ C∞

c (R
d1 ) satisfy c(x0, ξ0) 6= 0 and let d ∈

S0
2d1

(1) be such that d#hc = 1 in a neighborhood W ⊂ (W F
f
h (u))c of (x0, ξ0). Further,

let χ ∈ C∞
c (T∗

R
d1 ) have support in an open set V ⋐ W and be equal to 1 on an open

subset U ⋐ V . Then the operator T = Oph(χd#hc) has symbol σ(T) ≡ 1 mod h∞

in S0
2d1

(1) in U and supported in W , and therefore Tu = O(h∞) in C∞(R
d1 ). Let

B be elliptic at (x0, ξ0) with W Fh(B) ⊂ U . Then we have that BA ≡ BAT mod

Ψ
−∞,−∞
h (R

d1 ) and hence BAu ≡ BATu = O(h∞) in C∞(R
d1 ). Therefore, (x0, ξ0) /∈

W F
f
h (Au).

The proof in the infinite case is analogous to the proof in the classical case (see [6,

Lemma 7.2]).

We now turn to proving (ii). It is trivial to check that u⊗v ∈ D ′
h(R

d2+d1 ). We shall

now prove that W F
f
h (u ⊗ v) ⊂ W F

f
h (u) × W F

f
h (v). Let (x0, ξ0; y0, η0) /∈ W F

f
h (u) ×

W F
f
h (v). Without loss of generality, we can assume that (x0, ξ0) /∈ W F

f
h (u). Then

there exists χ2 ∈ C∞
c (R

d2 ) with χ2(x0) 6= 0 and a bounded open set O2 ⊂ R
d2

with ξ0 ∈ O2 such that |Fh(χ2u)(ξ)| = O(h∞) uniformly for ξ ∈ O2. Now let

χ1 ∈ C∞
c (R

d1 ) be such that χ1(y0) 6= 0. Then |Fh(χ1v)(η)| ≤ Ch−m〈η〉m for some

C > 0, m > 0, and therefore |Fh(χ2u ⊗ χ1v)(ξ, η)| = O(h∞) uniformly in (ξ, η) ∈
O2×O1 for any bounded open set O1 ⊂ R

d1 with η ∈ O1. Therefore (x0, ξ0; y0, η0) /∈

W F
f
h (u ⊗ v).

The opposite inclusion can be proved similarly.

The proof of the second assertion in (ii) is as in the C∞ case. See [7, Theorem

8.2.9].
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We now turn to proving (iii). For every 0 < h ≪ 1, we define the distribution

V (h)v(h) in the following way. For ϕ ∈ C∞
c (R

d2 ) we let

〈V (h)v(h), ϕ〉
def
=

1

(2πh)d1+d2

∫
Fh(V (h))(ξ, η)Fh(ϕ⊗ v(h))(−ξ,−η) dξdη.

(See also [6, Theorem 7.8].) The fact that V v ∈ D ′
h(R

d2 ) is proved in [5, Proposition

A.I.13].

We shall now prove that (W F
f
h ) ′(V )(W F

f
h (v)) is a closed set. Let ((xn, ξn))n∈N ⊂

(W F
f
h ) ′(V )(W F

f
h (v)) converge to (x0, ξ0). For every n ∈ N, let (yn, ηn) ∈ W F

f
h (v)

be such that (xn, ξn; yn, ηn) ∈ (W F
f
h ) ′(V ). Since W F

f
h (v) is compact, after pass-

ing to a subsequence, we can assume that (yn, ηn) → (y0, η0) ∈ W F
f
h (v). There-

fore (xn, ξn; yn, ηn) → (x0, ξ0; y0, η0) and since (W F
f
h ) ′(V ) is closed, it follows that

(x0, ξ0; y0, η0) ∈ (W F
f
h ) ′(V ). This implies that (x0, ξ0) ∈ (W F

f
h ) ′(V )(W F

f
h (v)), and

therefore (W F
f
h ) ′(V )(W F

f
h (v)) is closed.

Now let (x0, ξ0) ∈ ((W F
f
h ) ′(V )(W F

f
h (v)))c , and let O,O ′ ⊂ R

d2 be open neigh-

borhoods of x0 and ξ0, respectively, such that O×O ′ ⊂ ((W F
f
h ) ′(V )(W F

f
h (v)))c and

O ′ is bounded. Let χ ∈ C∞
c (R

d2 ) with χ(x0) 6= 0 have support in O and let ξ ∈ O ′.

By the proof of Lemma 3.6, we have that

〈V (·, ··), χ(·)e−
i
h
〈·,ξ〉 ⊗ v(··)〉

=
1

(2πh)d1+d2

∫
Fh(V )(η, τ )(Fh(χ(·)e−

i
h
〈·,ξ〉) ⊗ Fh(v))(η, τ )dηdτ = O(h∞)

uniformly in ξ ∈ O ′.

The proof in the case of the infinite wavefront set is the same as in the C∞ case

(see [6, Theorem 7.8]).

Lastly, to prove (iv), we first define the distribution W ◦ V as follows. Let χ j ∈
C∞

c (R
d j ), j = 1, 3. Then

〈W ◦V, χ3 ⊗ χ1〉
def
=

1

(2πh)d1+d2+d3

∫
Fh(W ⊗ χ1)(ξ, η, τ )Fh(χ3 ⊗V )(−ξ,−η,−τ ) dξdηdτ

and extend the definition to C∞
c (R

d3+d1 ) by continuity (see [6, Theorem 7.10].) The

fact that W ◦V ∈ D ′
h(R

d3+d1 ) follows as in the proof of [5, Proposition A.I.13].

We shall now prove that (W F
f
h ) ′(W ) ◦ (W F

f
h ) ′(V ) is closed. For that, let

((xn, ξn ; yn, ηn))n∈N ⊂ (W F
f
h ) ′(W ) ◦ (W F

f
h ) ′(V )

converge to (x0, ξ0 ; y0, η0). Let ((zn, ζn))n∈N ⊂ R
d2 be such that (xn, ξn ; zn, ζn) ∈

(W F
f
h ) ′(W ), (zn, ζn ; yn, ηn) ∈ (W F

f
h ) ′(V ), n ∈ N. By the hypothesis, we can assume
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that, after passing to a subsequence, (zn, ζn) → (z0, ζ0). Since then (xn, ξn ; zn, ζn) →

(x0, ξ0 ; z0, ζ0) and (W F
f
h ) ′(W ) is closed, it follows that (x0, ξ0 ; z0, ζ0) ∈ (W F

f
h ) ′(W ).

Similarly, (y0, η0 ; z0, ζ0) ∈ (W F
f
h ) ′(V ), and therefore

(x0, ξ0 ; y0, η0) ∈ (W F
f
h ) ′(W ) ◦ (W F

f
h ) ′(V ).

Now let (x, ξ ; y, η) ∈ ((W F
f
h ) ′(W ) ◦ (W F

f
h ) ′(V ))c. Let O1,O

′
1 ⊂ R

d1 , O3,O
′
3 ⊂

R
d3 be open neighborhoods of y, η, x, and ξ, respectively, such that O3 × O ′

3 × O1 ×
O ′

1 ⊂ (W F ′
h(W ) ◦ W F ′

h(V ))c and O ′
1 and O ′

3 are bounded. Let ϕ ∈ C∞
c (R

d1 ) and

ψ ∈ C∞
c (R

d3 ) have supports inside O1 and O3, respectively, and satisfy ϕ(y0) 6= 0

and ψ(x0) 6= 0. Then, by the proof of Lemma 3.6, we have that

〈W (·, · ·) ⊗ ϕ(· · · )e−
i
h
〈··· ,η〉, ψ(·)e−

i
h
〈·,ξ〉 ⊗V (· ·, · · · )〉 = O(h∞)

uniformly in (ξ, η) ∈ O ′
3 × O ′

1. Therefore (x, ξ ; y, η) /∈ W F
f
h (W ◦V ).

The proof in the infinite case is the same as in the C∞ case, see [6, Theorem 7.10].

4 Microlocal Semi-Classical Fourier Integral Operators

In this section we define semi-classical Fourier integral operators as microlocal ob-

jects and prove a characterization of the Schwartz kernels of these operators, which

is a semi-classical analog of Melrose’s characterization of Lagrangian distributions

in [7, Definition 25.1.1]. We then use this characterization to describe the finite wave-

front set of these semi-classical Fourier integral distributions.

4.1 Parameterizing Lagrangian Submanifolds

We first review some facts from symplectic geometry relating non-degenerate phase

functions and Lagrangian submanifolds.

Let V ⊂ R
n × R

m, m ∈ N0, be an open set and let ϕ = ϕ(x, θ) ∈ C∞
b (V ; R). For

m > 0, let ϕ also be a phase function in the sense of [8, Section 2.4]. If a ∈ Sr
n+m(1),

r ∈ R, we define the oscillatory integral

I(a, ϕ) =

∫

Rm

e
i
h
ϕ(·,θ)a(·, θ) dθ if m > 0,

as in [8, Section 2.4], and set I(a, ϕ) = e
i
h
ϕa if m = 0.

We further let

Cϕ = {(x, θ) ∈ V : ϕ ′
θ(x, θ) = 0} and Λϕ = {(x, ϕ ′

x(x, θ)) : (x, θ) ∈ Cϕ}

for m > 0, and

Λϕ = {(x, ϕ ′(x)) : x ∈ V}
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for m = 0. We also recall that a phase function ϕ is non-degenerate if

(3) ϕ ′
θ(x, θ) = 0 implies that (ϕ ′′

θx ϕ
′′
θθ) has maximum rank at (x, θ).

If m = 0, it is a standard fact from symplectic geometry that Λϕ is a Lagrangian

submanifold of T∗
R

n. If m > 0, (3) implies that Cϕ is a smooth n-dimensional

manifold. Let jϕ : Cϕ ∋ (x, θ) 7→ (x, ϕ ′
x(x, θ)) ∈ Λϕ. Then, after shrinking V around

any fixed point (x ′, θ ′) ∈ Cϕ, we can assume that Λϕ is a Lagrangian submanifold

of T∗
R

n and jϕ is a diffeomorphism. For a proof, we refer the reader to [6, Lemmas

11.2, 11.3].

If Λ ⊂ T∗
R

n is a Lagrangian submanifold such that for some open subset U ⊂
T∗

R
n the map πξ : Λ ∩ U ∋ (x, ξ) 7→ ξ ∈ R

n is a local diffeomorphism, then there

exist an open set W ⊂ R
n\{0} and a function H ∈ C∞

b (W ; R) satisfying

(4) Λ ∩U = {(H ′(ξ), ξ) : ξ ∈ W}.

For a proof, see [6, Section 9].

If Λ ⊂ T∗
R

n is any Lagrangian submanifold and γ ∈ Λ, then there exists an open

set U ⊂ T∗
R

n, γ ∈ U , and a non-degenerate phase function ϕ ∈ C∞(V ), V ⊂ R
n+m

open, m ∈ N0, such that

(5) Λ ∩U = Λϕ.

We include the proof of this well-known result here for completeness and to intro-

duce some notation. Let µ = TγΛ be identified in a natural way with a subspace of

T∗
R

n. By [6, Lemma 9.5] we have that after a canonical change of coordinates we

may assume that

(6) µ = {(0, x ′ ′ ; ξ ′,Bx ′ ′)},

for a splitting of the coordinates x = (x ′, x ′′) and ξ = (ξ ′, ξ ′ ′), where x ′
=

(x1, . . . , xk), k ∈ {0, . . . , n}, and B is a real symmetric matrix. This implies that

the differential of the projection π : Λ → (x ′ ′, ξ ′) is bijective at γ and therefore

this map is a local diffeomorphism from a neighborhood of γ in Λ to the (x ′ ′, ξ ′)-

space. Therefore there exists a function S ∈ C∞
c (R

n; R) and an open neighborhood

U ⊂ T∗
R

n of γ such that Λ ∩ U = {( ∂S
∂ξ ′ , x

′ ′ ; ξ ′,− ∂S
∂x ′ ′ )} ∩ U . From this it easily

follows that

ϕ(x, ξ ′) = 〈x ′, ξ ′〉 − S(x ′ ′, ξ ′)

is a non-degenerate phase function such that Λ ∩U = Λϕ ∩U .

4.2 Semi-Classical Fourier Integral Operators

In this section we define semi-classical Fourier integral distributions and characterize

them in terms of oscillatory integrals.

The main definition is as follows.
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Definition 4.1 Let M be a smooth n-dimensional manifold and let Λ ⊂ T∗M be

a smooth closed Lagrangian submanifold with respect to the canonical symplectic

structure on T∗M. Let r ∈ R. Then the space Ir
h(M,Λ) of semi-classical Fourier

integral distributions of order r associated to Λ is defined as the set of all u ∈ D ′
h(M)

such that

(7)
( N∏

j=0

A j

)
(u) = OL2(M)(hN−r− n

4 ), h → 0,

for all N ∈ N0 and for all A j ∈ Ψ
0
h(1,M), j = 0, . . . ,N − 1, with compact wavefront

set near Λ and principal symbols vanishing on Λ, and any AN ∈ Ψ
0
h(1,M) with

compact wavefront set near Λ.

We are now naturally led to the following:

Definition 4.2 Let M1 and M2 be smooth manifolds, let π j : T∗M2 × T∗M1 →
T∗M j , j = 1, 2, denote the canonical projection and σ j the canonical symplectic

form on T∗M j , j = 1, 2. A continuous linear operator C∞
c (M1) → D ′

h(M2), whose

Schwartz kernel is an element of Ir
h(M2×M1,Λ) for some Lagrangian submanifold Λ

of (T∗M2×T∗M1, π
∗
2σ2 +π∗

1σ1) and some r ∈ R will be called a global semi-classical

Fourier integral operator of order r associated to Λ. We denote the space of these

operators by Ir
h(M2 × M1,Λ).

Remark The exotic looking numerology for the order needs to be explained. We

follow the same convention as that in the classical case and require that pseudodiffer-

ential operators with compactly supported symbols in S0
2n(1) have Schwartz kernels

in I0
h(R

n × R
n,N∗

∆), where ∆ is the diagonal in R
2n and N∗

∆ = {(x, ξ ; x,−ξ) :

(x, ξ) ∈ T∗
R

n} is the conormal bundle over ∆. Explicitly, suppose that

K(x, y) =
1

(2πh)n

∫
e

i
h
〈x−y,ξ〉c(x, ξ) dξ,

where c ∈ S0
2n(1) has compact support. Then

‖K‖L2(R2n) =
1

(2πh)
n
2

‖F
y
h K‖L2(R2n) =

1

(2πh)
n
2

‖c‖L2(R2n) ,

where F
y
h is the semi-classical Fourier transform in the y variable, which is consistent

with (7) with N = 0 and the order r = 0 (M = R
2n here).

We now have the following semi-classical analog of [7, vol. IV, Lemma 25.1.2].

Lemma 4.3 If u ∈ Ir
h(M,Λ), then Au ∈ Ir

h(M,Λ) for every A ∈ Ψ
0
h(1,M) with

compact wavefront set or A ∈ Ψ
0,k
h (T∗M), k ∈ R.

If u ∈ D ′
h(M) is such that for every (x0, ξ0) ∈ Λ there exists A ∈ Ψ

0
h(1,M) elliptic at

(x0, ξ0) with compact wavefront set and Au ∈ Ir
h(M,Λ), then u ∈ Ir

h(M,Λ). The same

conclusion holds if A ∈ Ψ
0,k
h (T∗M), k ∈ R.
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Proof To prove the first statement, let u ∈ Ir
h(M,Λ), and let A ∈ Ψ

0
h(1,M) have

compact wavefront set or A ∈ Ψ
0,k
h (T∗M), k ∈ R. Further, let A j ∈ Ψ

0
h(1,M),

j = 0, . . . ,N , N ∈ N, have compact wavefront sets near Λ and principal symbols

vanishing on Λ. Then ANA ∈ Ψ
0
h(1,M) and has compact wavefront set. Thus, using

Definition 4.1, we obtain that

( N∏

j=0

A j

)
(Au) =

(N−1∏

j=0

A j

)
(AN Au) = OL2(M)(hN−r− n

4 ), h → 0.

Therefore Au ∈ Ir
h(M,Λ).

To prove the converse, let B ∈ Ψ
0
h(1,M) have compact wavefront set and satisfy

(x0, ξ0) /∈ W Fh(BA − I). Then (x0, ξ0) /∈ W Fh(BAu − u). From the first part of

the proof, we have that BAu ∈ Ir
h(M,Λ). Now let P ∈ Ψ

0
h(1,M) have wavefront set

contained in a sufficiently small neighborhood of (x0, ξ0) ∈ Λ so that PBAu − Pu =

O(h∞) in C∞(M). Since again PBAu ∈ Ir
h(M,Λ), we have that (

∏N
l=0 Al)(Pu) =

OL2 (hN−r− n
4 ), h → 0, for any set of operators (Al)

N
l=0, N ∈ N0, as in (7). Thus

Pu ∈ Ir
h(M,Λ) for every P ∈ Ψ

0
h(1,M) with wavefront set contained in a sufficiently

small neighborhood of any point (x0, ξ0) ∈ Λ. The compactness of the wavefront sets

of the operators (Al)
N
l=0, N ∈ N, now allows us to find P j ∈ Ψ

0
h(1,M), j = 1, . . . , J,

J ∈ N, such that P ju ∈ Ir
h(M,Λ), j = 1, . . . , J, and

∑ J
j=1 P j ≡ 1 near

⋃N
l=0 W Fh(Al).

Using the calculus of semi-classical pseudodifferential operators, we further obtain

OL2(M)(hN−r− n
4 ) =

( N∏

l=0

Ak

)
(

J∑

j=1

P j)u =

( N∏

l=0

Ak

)
u + OL2(M)(h∞),

which completes the proof.

The proof in the case of an operator A ∈ Ψ
0,k
h (T∗M), k ∈ R, is analogous.

Lemma 4.3 reduces the study of distributions u ∈ Ir
h(M,Λ), r ∈ R, to the case

where W F
f
h (u) is contained in a small neighborhood of a point (x0, ξ0) ∈ Λ and the

support of u is close to x0. In this case, we can locally trivialize T∗M and assume

that M = R
n. Our next theorem characterizes semi-classical Fourier integral distri-

butions microlocally and, owing to the remark just made, it suffices to state it in the

setting of R
n.

Theorem 4.4 Let Λ ⊂ T∗
R

n be a Lagrangian submanifold and let γ ∈ Λ. Let ϕ
be a non-degenerate phase function in an open set V ⊂ R

n+m, m ∈ N0, such that

Λ = Λϕ in a neighborhood of γ. If a ∈ S
r+ m

2
+ n

4
n+m (1) is such that supp a ⋐ V , then

I(a, ϕ) ∈ Ir
h(R

n,Λ).

Conversely, if u ∈ Ir
h(R

n,Λ), then for every non-degenerate phase function ϕ defined

in an open set V ⊂ R
n+m, m ∈ N0, such that Λ = Λϕ near γ, there exists a ∈ S

r+ m
2

+ n
4

n+m (1)

with supp a ⋐ V such that u = I(a, ϕ) microlocally near γ.
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Proof Let γ have canonical coordinates (x0, ξ0) and let us first assume that Λ is

transverse to the section ξ = ξ0 at γ. Then there exists an open neighborhood U ⊂
T∗

R
n of γ such that πξ : Λ∩U ∋ (x, ξ) 7→ ξ ∈ R

n in canonical coordinates is a local

diffeomorphism. Let H ∈ C∞
b (R

n; R) be chosen such that, perhaps after adjusting

V , Λϕ = {(H ′(ξ), ξ) : ξ ∈ W} for some bounded open set W ⊂ R
n. For ξ ∈ R

n

consider

(8) Fh(I(a, ϕ))(ξ) =

∫∫
e

i
h

(ϕ(x,θ)−〈x,ξ〉)a(x, θ) dθdx.

For ξ 6∈ W , integration by parts in (x, θ) gives

(9) Fh(I(a, ϕ)) = O(h∞) in C∞
c (W c).

Now let ξ̄ ∈ W . Then the function Φ(x, θ; ξ̄) = ϕ(x, θ)−〈x, ξ̄〉 has a critical point

at (x̄(ξ̄), θ̄(ξ̄)), which is the inverse image in Cϕ under jϕ of the point (H ′(ξ̄), ξ̄).

To prove that the critical point is non-degenerate, let v be in the kernel of

Φ
′′
xθ(x̄(ξ̄), θ̄(ξ̄); ξ0) =

[
ϕ ′′

xx(x̄(ξ̄), θ̄(ξ̄)) ϕ ′′
xθ(x̄(ξ̄), θ̄(ξ̄))

ϕ ′′
θx(x̄(ξ̄), θ̄(ξ̄)) ϕ ′′

θθ(x̄(ξ̄), θ̄(ξ̄))

]
.

Then v ∈ ker(ϕ ′′
θx(x̄(ξ̄), θ̄(ξ̄))ϕ ′ ′

θθ(x̄(ξ̄), θ̄(ξ̄))) and therefore v ∈ T(x̄(ξ̄),θ̄(ξ̄))Cϕ. We

also have that v ∈ ker(ϕ ′ ′
xx(x̄(ξ̄), θ̄(ξ̄))ϕ ′ ′

xθ(x̄(ξ̄), θ̄(ξ̄))), and since jϕ and πξ are dif-

feomorphisms, it follows that v = 0. Hence

(10) the matrix Φ
′′
xθ(x̄(ξ̄), θ̄(ξ̄); ξ̄) is non-singular.

We can therefore apply the method of stationary phase to the integral (8) and obtain

(11) Fh(I(a, ϕ))(ξ̄) ∼ e
i
h
Φ(x̄(ξ̄),θ̄(ξ̄);ξ̄)

∞∑

k=0

hk+ n
2

+ m
2 (A2k(Dx,θ)a)(x̄(ξ̄), θ̄(ξ̄)),

where A2k(D) are differential operators of orders ≤ 2k, respectively.

The implicit function theorem and (10) now imply that, perhaps after shrink-

ing W around ξ̄, x̄ ∈ C∞(W ; R
n) and θ̄ ∈ C∞(W ; R

m). We further adjust W so

that x̄ ∈ C∞
b (W ; R

n) and θ̄ ∈ C∞
b (W ; R

m). Thus Φ
′
ξ(x̄(ξ), θ̄(ξ); ξ) = −H ′(ξ),

ξ ∈ W , and therefore, by adding a constant to H if necessary, we can assume that

Φ(x̄(ξ), θ̄(ξ) ; ξ) = −H(ξ) for ξ ∈ W . We also have that for every k,

A2k(Dx,θ)(a)(x̄( · ), θ̄( · )) ∈ S
r+ m

2
+ n

4
n (1).

Thus, with A ∈ S
r− n

4
n (1), A ∼

∑∞
k=0 hk+ n

2
+ m

2 (A2k(Dx,θ)a)(x̄( · ), θ̄( · )), A = O(h∞) in

S
r− n

4
n (1) outside W , we obtain from (9), (8), and (11) that

(12) Fh(I(a, ϕ))(ξ) = e−
iH(ξ)

h A(ξ).
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Now, the ideal of smooth functions vanishing on Λϕ is generated by the symbols

a j(x, ξ) = x j −H ′
ξ j

(ξ), j = 1, . . . , n. Since I(a, ϕ) has compact support, by adjusting

V without changing I(a, ϕ) we can assume that Λϕ is compact and we can choose

χ ∈ C∞
c (T∗

R
n) equal to 1 on a neighborhood of Λϕ. Then ã j = χa j ∈ S2n(1),

j = 1, . . . , n, vanish on Λϕ. By the calculus of pseudodifferential operators, we have

that Oph(ã j)I(a, ϕ) = Oph(a j)I(a, ϕ)+E j I(a, ϕ), where E jI(a, ϕ) = O(h∞), h → 0,

in Cc(R
n). Therefore

‖(Oph(ã j))α(I(a, ϕ))‖L2(Rn) = ‖(x − H ′(hD))α(I(a, ϕ))‖L2(Rn) + O(h∞).

Using Plancherel’s theorem, we now obtain

(13) ‖(Oph(ã j))α(I(a, ϕ))‖L2(Rn) =
1

(2πh)
n
2

‖(−hD − H ′)αFh(I(a, ϕ))‖L2(Rn)

and substituting (12) into (13), we further have that

‖(Oph(ã j))α(I(a, ϕ))‖L2(Rn) = O(h|α|−r− n
4 ), α ∈ N

n, h → 0.

Thus I(a, ϕ) ∈ Ir
h(R

n,Λ).

We remark here that the same argument will allow us in similar situations to use

symbols in condition (7) which do not belong to the class S0
2n(1) but vanish on the

Lagrangian submanifold Λ, and below we will do so without repeating this argument.

We now turn to proving the converse. Let U ,H,W , and V be chosen so that

(4) and (5) hold and W is bounded. Extend H to a function in C∞
b (R

n ; R). Let

P ∈ Ψ
0
h(1,R

n) satisfy (1) and set ũ = Pu. The symbols a j(x, ξ) = x j − H ′
ξ j

(ξ),

j = 1, . . . , n, vanish on Λϕ ∩U , and therefore we obtain from (7) that

‖(x − H ′(hD))α(ũ)‖L2(Rn) = O(h|α|−r− n
4 ), α ∈ N

n, h → 0

and hence, after taking the Fourier transform,

(14) ‖(−hD − H ′)αFh(ũ)‖L2(Rn) = O(h|α|+ n
4
−r), α ∈ N

n, h → 0.

Let v(ξ) = e
iH(ξ)

h Fh(ũ)(ξ). Substitution into (14) then gives

‖(hD)αv‖L2(Rn) = O(h|α|+ n
4
−r), α ∈ N

n, h → 0,

‖Dαv‖L2(Rn) = O(h
n
4
−r), α ∈ N

n.

Therefore, v ∈ S
r− n

4
n (1). Let Φ(x, θ; ξ) = ϕ(x, θ) − 〈x, ξ〉, ξ ∈ W , (x, θ) ∈ V .

Choose ξ̄ ∈ W and let (x̄(ξ̄), θ̄(ξ̄)) ∈ Cϕ be the critical point of Φ(·, ·· ; ξ̄). Let

M ⋐ V be a neighborhood of (x̄(ξ̄), θ̄(ξ̄)) such that sgn Φ
′ ′ is constant on M, and let

ψ ∈ C∞(M; R
n) be such that ψ(x, θ) = ϕ ′

x(x, θ) on Cϕ. Define

ã0(x, θ) =
1

(2πh)
n+m

2

(e−
iπ
4

sgn Φ
′ ′
xθ | det Φ ′′

xθ|
1
2 v) ◦ ψ(x, θ) for (x, θ) ∈ M.
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Then by the first part of the proof, we have that

e−
iH
h v − Fh(I(ã0, ϕ)) = O(h), h → 0, in S

r− n
4

n (1).

Iterating this process, we obtain a sequence of symbols ãl ∈ S
r+ m

2
+ n

4
n+m (1) with supp ãl ⊂

M, l ∈ N0, such that if we denote Us = I(
∑s

l=0 hlãl, ϕ), s ∈ N0, we have that

e−
iH
h v − Fh(Us) = O(hs+1), h → 0, in S

r− n
4

n (1).

Therefore, if we choose an asymptotic sum ã ∈ S
r+ m

2
+ n

4
n+m (1) of

∑∞
k=0 hkãk, we obtain

ũ = I(ã, ϕ)+O(h∞), h → 0, in C∞
c (R

n). It then follows that for some a ∈ S
r+ m

2
+ n

4
n+m (1)

with supp a ⋐ V we have u = I(a, ϕ) microlocally near γ.

We now consider the case of a general Lagrangian submanifold Λ ⊂ T∗
R

n. Our

strategy is to reduce this case to the one just studied by applying a symplectic trans-

formation to Λ that transforms it into a Lagrangian submanifold transverse to the

constant section through a point on Λ. More precisely, let γ ∈ Λ and assume that the

coordinates have been chosen in such a way that µ = T∗
γΛ has the form (6). Choose

a real symmetric matrix AΛ =

[
0k×k 0

0 DΛ(n−k)×(n−k)

]
such that

(15) det(B + DΛ) 6= 0.

Let Λ̃ = {(x, ξ + AΛx) : (x, ξ) ∈ Λ} and let γ̃ = (x0, ξ0 + AΛx0) = (x0, η0), where

(x0, ξ0) are the coordinates of γ. Then, if ϕ ∈ C∞(V ; R), V ⊂ R
n+m, m ∈ N0,

is a non-degenerate phase function which parameterizes Λ near γ, it is clear that

ϕ̃(x, θ) =
1
2
〈AΛx, x〉 + ϕ(x, θ) is a non-degenerate phase function which parameter-

izes Λ̃ near γ̃.

Let µ̃ = TeγΛ̃. It is easy to see that µ̃ = {(0, x ′ ′; ξ ′, (B + DΛ)x ′ ′)}. It then follows

from (15) that Λ̃ is transverse to the constant section η = η0 at γ̃.

Let u ∈ Ir
h(R

n,Λ) and let Al ∈ Ψ
0
h(1,R

n), l = 0, . . . ,N , be such that σ0(Al)|Λ = 0,

l = 0, . . . ,N − 1, and ess-supph σ(Al), l = 0, . . . ,N , is compact. From (7) we have

that

( N∏

l=0

e
i

2h
〈AΛ·,·〉Ale

− i
2h
〈AΛ··,··〉

)
e

i
2h
〈AΛ··,··〉u = OL2(Rn)(hN−r− n

4 ), h → 0.

We shall now prove that for a ∈ S0
2n(1) with ess-supph a compact, the operator

B = e
i

2h
〈AΛ·,·〉Oph(a)e−

i
2h
〈AΛ··,··〉

is a semi-classical pseudodifferential operator.

We let ā denote the Weyl symbol of Oph(a), i.e., ā ∈ S0
2n(1) is such that

Opw
h (ā)

def
=

1

(2πh)n

∫
e

i
h
〈x−y,ξ〉ā

( x + y

2
, ξ

)
dξ = Oph(a).
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Making the change of variable η = ξ + 1
2
AΛ(x + y), we obtain that

B = e
i

2h
〈AΛx,x〉Opw

h (ā)e−
i

2h
〈AΛ y,y〉

=
1

(2πh)n

∫
e

i
h
〈x−y,η〉ā

( x + y

2
, η − AΛ

x + y

2

)
dη.

Thus B ∈ Ψ
0
h(1,R

n) and its Weyl symbol b̄ satisfies b̄(x, ξ) = ā(x, ξ − AΛx).

We now recall that

(16) ā(x, ξ) = e−
ih
2

DxDξa(x, ξ) ∼
∑

α∈Nn

(−1)|α|h|α|

(2i)|α|α!
∂αξ ∂

α
x a(x, ξ)

in S0,−∞(T∗
R

n) and in S0
2n(1) (see [8, Remark 2.7.3]), and therefore ess-supph ā is

compact. Setting b = σ(B), we have similarly that ess-supph b is compact. Further-

more, as in (16), we obtain that

(17) b0(x, ξ) = b̄0(x, ξ) = a0(x, ξ − AΛx).

Thus Bl = e
i

2h
〈AΛ·,·〉Ale

− i
2h
〈AΛ··,··〉 ∈ Ψ

0
h(1,R

n), l = 0, . . . ,N , and W Fh(Bl), l =

0, . . . ,N , is compact. From (17) we also have that σ0(Bl)|eΛ = 0, l = 0, . . . ,N − 1.

We can now apply the first part of this proof and we have that Pe
i

2h
〈AΛ·,·〉u =

I(ã, ϕ̃), ã ∈ S
r+ m

2
+ n

4
n+m (1), where P ∈ Ψ

0
h(1,R

n) satisfies (1). Therefore u ≡ I(a, ϕ)

near γ for some a ∈ S
r+ m

2
+ n

4
n+m (1).

The converse follows from reversing this argument.

Remark Let u ∈ Ir
h(M,Λ). Then Theorem 4.4 and Lemma 4.3 imply that for any P ∈

Ψ
0
h(1,M) with compact wavefront set contained in a sufficiently small neighborhood

of a point ρ ∈ Λ, Pu is given by a finite sum of oscillatory integrals of the form I(a, ϕ)

for any non-degenerate phase function ϕ ∈ C∞(R
n+m) for some m ∈ N0 such that

Λ = Λϕ near ρ ∈ Λ and some a ∈ S
r+ m

2
+ n

4
n+m (1). Applying an integration by parts

argument to each of the oscillatory integrals I(α, ϕ) as in [6, Chapter 7], we then

have the following lemma.

Lemma 4.5 If u ∈ Ir
h(M,Λ) and P ∈ Ψ

0
h(1,M) has compact wavefront set contained

in a sufficiently small neighborhood of a point in Λ, then W F
f
h (Pu) ⊂ Λ.

5 Generalization of Egorov’s Theorem

We now prove a generalization of Egorov’s theorem to manifolds of unequal dimen-

sions. To state our result, we need the following notion of microlocal equivalence of

Fourier integral operators.

Definition 5.1 Let M j , j = 1, 2, be smooth manifolds, Λ ⊂ T∗M2 × T∗M1 a

Lagrangian submanifold, and T,T ′ ∈ Ir
h(M2 × M1,Λ) for some r ∈ R. For open



Semi-Classical Wavefront Set and Fourier Integral Operators 259

or closed sets U ⊂ T∗M1 and V ⊂ T∗M2, the operators T and T ′ are said to be

microlocally equivalent near V ×U if there exist open sets Ũ ⋐ T∗M1 and Ṽ ⋐ T∗M2

with U ⋐ Ũ and V ⋐ Ṽ such that for any A ∈ Ψ
0
h(1,M1) and B ∈ Ψ

0
h(1,M2) with

W Fh(A) ⊂ Ũ and W Fh(B) ⊂ Ṽ we have that

B(T − T ′)A = O(h∞) : D
′
h(M1) → C∞(M2).

We shall also write T ≡ T ′ near V ×U .

We remark again that this definition implicitly requires that W Fh(A) and W Fh(B)

have no infinite parts.

Lastly, we introduce the map υ : T∗M → T∗M, (x, ξ) 7→ (x,−ξ), for a smooth

manifold M.

Theorem 5.2 Let M j , j = 1, 2, be smooth manifolds with dim M j = n j , j = 1, 2.

Let σ j be the canonical symplectic form on T∗M j , and π j : T∗M2 × T∗M1 → T∗M j

the projection onto the j-th factor, j = 1, 2. Let Λ ⊂ T∗M2 × T∗M1 be a Lagrangian

submanifold of (T∗M2 × T∗M1, π
∗
2σ2 + π∗

1σ1) such that π1|Λ is an immersion. Let

F ∈ Ir
h(M2 × M1,Λ), r ∈ R, have a non-empty finite semi-classical wavefront set near

(ρ2, ρ1) ∈ Λ.

Then for every A ∈ Ψ
0
h(1,M2) with wavefront set contained in a sufficiently small

neighborhood of ρ2 there exists B ∈ Ψ
0
h(1,M1) with wavefront set contained in a suffi-

ciently small neighborhood of υ(ρ1) such that

AF ≡ FB near (ρ2, υ(ρ1)) and in1 (π1|Λ)∗υ∗σ0(B) = in2 (π2|Λ)∗σ0(A).

Remark Strictly speaking, we have not defined a symbol of a Fourier integral op-

erator given in Definition 4.1. However, the proof of Theorem 4.4 shows that the

non-vanishing of the amplitude given there is invariantly defined.

Proof By a partition of unity we can reduce the proof to the local case where M j ⊂

R
n j , T∗M j is trivial for j = 1, 2, F =

∫
e

i
h
ϕ(x,z,θ)u(x, z, θ; h) dθ, where ϕ is a non-

degenerate phase function in a neighborhood of (x0, z0, θ0) ∈ M2 × M1 × R
m for

some m ∈ N0 such that Λ ∩ U = Λϕ for an open set U with (x0, ξ0 ; z0, η0) ∈

Λ ∩ U , u ∈ S
n1+n2

4
+ m

2
+r

n1+n2+m (1) with compact support, u ∼
∑∞

k=0 hk−
n1+n2

4
− m

2
−ruk, uk ∈

S0
n1+n2+m(1), and A =

∫
Rn2

e
i
h
〈x−y,ξ〉a(x, ξ) dξ where a ∈ S0

2n2
(1) has compact support

and a ∼
∑∞

k=0 hkak, ak ∈ S0
2n2

(1), k ∈ N.

Let Φ(y, ξ ; x, z, θ) = 〈x − y, ξ〉 + ϕ(y, z, θ). Then Φ has a critical point (with

respect to the variables p = (y, ξ))

p0(x, z, θ) = (y0(x, z, θ), ξ0(x, z, θ)) = (x, ϕ ′
x(x, z, θ)).

The Hessian of Φ is

Φ
′′(y0(x, z, θ), ξ0(x, z, θ); x, z, θ) =

[
ϕ ′′

xx(x, z, θ) −I

−I 0

]
,
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and has determinant 1 and signature 0.

Let Ψ(w, η ; x, z, θ) = ϕ(x,w, θ) + 〈w − z, η〉. Then Ψ has a critical point (with

respect to the variables q = (w, η))

q0(x, z, θ) = (w0(x, z, θ), η0(x, z, θ)) = (z,−ϕ ′
z(x, z, θ)).

The Hessian of Ψ is

Ψ
′ ′(w0(x, z, θ), η0(x, z, θ); x, z, θ) =

[
ϕ ′′

zz(x, z, θ) I

I 0

]
,

and has determinant 1 and signature 0.

We define

gp0(x,z,θ)(p) = Φ(p; x, z, θ) − Φ(po(x, z, θ); x, z, θ)

−
〈Φ ′′(p0(x, z, θ); x, z, θ)(p − p0(x, z, θ)), p − p0(x, z, θ)〉

2

and

fq0(x,z,θ)(q) = Ψ(q; x, z, θ) − Ψ(qo(x, z, θ); x, z, θ)

−
〈Ψ ′′(q0(x, z, θ); x, z, θ)(q − q0(x, z, θ)), q − q0(x, z, θ)〉

2
.

For j ∈ N0 and cl ∈ C∞
c (R

2n2 ), set

(Ll
j (clu))(x, z, θ) =

∑

ν−µ= j

∑

2ν≥3µ

〈(Φ ′ ′(p0(x, z, θ); x, z, θ))−1D,D〉ν

i j2νµ!ν!

(
g
µ
p0(x,z,θ)(·, ··)cl(x, ··)u(·, z, θ)

)
(p0(x, z, θ)).

For j ∈ N0 and cr ∈ C∞
c (R

2n1 ), set

(Lr
j (ucr))(x, z, θ) =

∑

ν−µ= j

∑

2ν≥3µ

〈(Ψ ′ ′(q0(x, z, θ); x, z, θ))−1D,D〉ν

i j2νµ!ν!

(
f
µ

q0(x,z,θ)(·, ··)cr(·, ··)u(x, ·, θ)
)

(q0(x, z, θ)).

Now, since π1|Λ is an immersion, it follows from the inverse function theorem,

that there exists κ ∈ C∞(T∗
R

n1 ; T∗
R

n2 ×T∗
R

n1 ), such that κ ◦π1|Λ = id|Λ. Now let

b0 ∈ C∞
c (R

2n1 ) be supported near υ(ρ1) and satisfy b0 = in2−n1υ∗κ∗(π2|Λ)∗a0. Then

in2 j∗ϕ(π2|Λ)∗a0−in1 j∗ϕ(π1|Λ)∗υ∗b0 vanishes on Cϕ. Sinceϕ is a non-degenerate phase

function, by the implicit function theorem we have that the functions {ϕ ′
θ1
, . . . , ϕ ′

θm
}

participate in a coordinate system {w1, . . . ,wn1+n2+m} on R
n1+n2+m near (x0, z0, θ0) in
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which Cϕ ≡ {(w1, . . . ,wn1+n2+m) : w1 = · · · = wm = 0}. Therefore, by Taylor’s

theorem, it follows that there exist c0
j ∈ S0

n1+n2+m(1), j = 1, . . . ,m, with compact

support, such that

in2 j∗ϕ(π2|Λ)∗a0 − in1 j∗ϕ(π1|Λ)∗υ∗b0 =

m∑

j=1

ϕ ′
θ j

c0
j

near (x0, z0, θ0).

For every k > 0 we now choose bk ∈ S0
2n1

(1) with compact support in such a way

that

(
in2

∑

α+β+γ=k

Ll
α(aγuβ) − in1

∑

α+β+γ=k,

Lr
α(uβbγ) −

m∑

l=1

Dθl
(ck−1

l u0)
)

∣∣
Cϕ

= 0

and choose ck
l ∈ S0

n1+n2+m(1), l = 1, . . . ,m, with compact support such that

in2

∑

α+β+γ=k

Ll
α(aγuβ) − in1

∑

α+β+γ=k,

Lr
α(uβbγ) −

m∑

l=1

Dθl
(ck−1

l u0) =

m∑

l=1

ϕ ′
θl

ck
l u0.

Lastly, let b ∈ S0
2n1

(1) be such that b ∼
∑∞

j=0 h jb j and set B = Oph(b). We shall

prove that AF ≡ FB near (ρ2, υ(ρ1)).

For that, in the integrals

AF(x, z) =
1

(2πh)n2

∫∫
e

i
h
〈x−y,ξ〉a(x, ξ)e

i
h
ϕ(y,z,θ)u(y, z, θ) dθdydξ,

FB(x, z) =
1

(2πh)n2

∫∫
e

i
h
ϕ(x,w,θ)u(x,w, θ)e

i
h
〈w−z,η〉b(w, η) dθdwdη.

we apply the method of stationary phase (see [7, Theorem 7.7.5]) in the (y, ξ) and

the (w, η) variables, respectively, to obtain

AF(x, z) ∼ in2

∞∑

t=0

ht−
n1+n2

4
−m

2
−r

∑

α+β+γ=t

∫
e

i
h
ϕ(x,z,θ)(Ll

α(aγuβ))(x, z, θ) dθ,

FB(x, z) ∼ in1

∞∑

t=0

ht−
n1+n2

4
− m

2
−r

∑

α+β+γ=t

∫
e

i
h
ϕ(x,z,θ)(Lr

α(uβbγ))(x, z, θ) dθ.

Therefore

(AF − FB)(x, z) ∼

∞∑

t=0

ht−
n1+n2

4
− m

2
−rdt (x, z)
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with

dt (x, z) =

∫
e

i
h
ϕ(x,z,θ)

∑

α+β+γ=t

[in2 (Ll
α(aγuβ))(x, z, θ) − in1 (Lr

α(uβbγ))(x, z, θ)] dθ,

for t ∈ N0.

By the choice of b0 we now have

d0(x, z) =

∫
e

i
h
ϕ(x,z,θ)u0(x, z, θ)[in2 a0(x, ϕ ′

x(x, z, θ)) − in1 b0(z,−ϕ ′
z(x, z, θ))] dθ

=

∫
e

i
h
ϕ(x,z,θ)

m∑

j=1

ϕ ′
θ j

(x, z, θ)c0
j (x, z, θ)u0(x, z, θ) dθ

= −h

∫
e

i
h
ϕ(x,z,θ)

m∑

j=1

Dθ j
(c0

j (x, z, ·)u0(x, z, ·))(θ) dθ,

using integration by parts.

By the choice of the symbol b1 and the functions c1
l , l = 1, . . . ,m, we then obtain,

as above,

d0(x, z) + hd1(x, z) = −h2

∫
e

i
h
ϕ(x,z,θ)

m∑

j=1

Dθ j
(c1

j (x, z, ·)u0(x, z, ·))(θ) dθ.

Iterating this argument, we have from the choice of the symbols b ′
ks that

AF ≡ FB near (ρ2, υ(ρ1)).
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1994.

[4] J. Duistermaat, Fourier Integral Operators. Progress in Mathematics 130, Birkhäuser Boston,
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