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Abstract. We introduce complex singularity exponents of plurisubharmonic
functions and prove a general semi-continuity result for them. This concept
contains as a special case several similar concepts which have been considered
e.g. by Arnold and Varchenko, mostly for the study of hypersurface singularities.
The plurisubharmonic version is somehow based on a reduction to the algebraic
case, but it also takes into account more quantitative informations of great interest
for complex analysis and complex differential geometry. We give as an application
a new derivation of criteria for the existence of Kähler-Einstein metrics on certain
Fano orbifolds, following Nadel’s original ideas (but with a drastic simplication
in the technique, once the semi-continuity result is taken for granted). In this
way, 3 new examples of rigid Kähler-Einstein Del Pezzo surfaces with quotient
singularities are obtained.

Résumé. Nous introduisons les exposants de singularités complexes des fonctions
plurisousharmoniques et démontrons un théorème de semi-continuité général pour
ceux-ci. Le concept étudié contient comme cas particulier des concepts voisins
qui ont été considérés par exemple par Arnold et Varchenko, principalement pour
l’étude des singularités d’hypersurfaces. La version plurisousharmonique repose
en définitive sur une réduction au cas algébrique, mais elle prend aussi en compte
des informations quantitatives d’un grand intérêt pour l’analyse complexe et la
géométrie différentielle complexe. Nous décrivons en application une nouvelle
approche des critères d’existence de métriques Kähler-Einstein pour les variétés de
Fano, en nous inspirant des idées originales de Nadel – mais avec des simplifications
importantes de la technique, une fois que le résultat de semi-continuité est utilisé
comme outil de base. Grâce à ces critères, nous obtenons trois nouveaux exemples
de surfaces de Del Pezzo à singularités quotients, rigides, possédant une métrique
de Kähler-Einstein.
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§0. Introduction

The purpose of this work is to show how complex analytic methods (and more
specifically L2 estimates for ∂) can provide effective forms of results related to
the study of complex singularities. We prove in particular a strong form of the
semi-continuity theorem for “complex singularity exponents” of plurisubharmonic
(psh) functions. An application to the existence of Kähler-Einstein metrics on
certain Fano orbifolds will finally be given as an illustration of this result.

We introduce the following definition as a quantitative way of measuring singu-
larities of a psh function ϕ (the basic definition even makes sense for an arbitrary
measurable function ϕ, though it is unlikely to have any good properties in that
case). Our approach is to look at the L1 integrability of exp(−2cϕ) in terms of
the Lebesgue measure in some local coordinates. Several other types of analytic or
algebraic objects (holomorphic functions, coherent ideal sheaves, divisors, currents,
etc) can be treated as special cases of this formalism.

0.1. Definition. Let X be a complex manifold and ϕ be a plurisubharmonic (psh)
function on X. For any compact set K ⊂ X, we introduce the “complex singularity

exponent” of ϕ on K to be the nonnegative number

cK(ϕ) = sup
{
c > 0 : exp(−2cϕ) is L1 on a neighborhood of K

}
,

and we define the “Arnold multiplicity” to be λK(ϕ) = cK(ϕ)−1 :

λK(ϕ) = inf
{
λ > 0 : exp(−2λ−1ϕ) is L1 on a neighborhood of K

}
.

If ϕ ≡ −∞ near some connected component of K, we put of course cK(ϕ) = 0,
λK(ϕ) = +∞.
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The singularity exponent cK(ϕ) only depends on the singularities of ϕ, namely
on the behavior of ϕ near its −∞ poles. Let T be a closed positive current of
bidegree (1, 1) on X . Since cK(ϕ) remains unchanged if we replace ϕ with ψ such
that ψ − ϕ is bounded, we see that it is legitimate to define

(0.1.1) cK(T ) = cK(ϕ), λK(T ) = λK(ϕ)

whenever ϕ is a (local) potential of T , i.e. a psh function ϕ such that ddcϕ = T ,
where dc = (2πi)−1(∂ − ∂). In particular, if D is an effective integral divisor,
we have cK([D]) = cK(log |g|) where [D] is the current of integration over D
and g is a (local) generator of O(−D). When f is a holomorphic function, we
write simply cK(f), λK(f) instead of cK(log |f |), λK(log |f |). For a coherent ideal
sheaf I = (g1, . . . , gN ) we define in a similar way cK = cK(log(|g1| + · · ·+ |gN |)).
It is well known that cK(f) is a rational number, equal to the largest root of
the Bernstein-Sato polynomial of |f |2s on a neighborhood of K ([Lin89], see also
[Kol97]); similarly cK(I) ∈ Q+ for any coherent ideal sheaf. Our main result
consists in the following semi-continuity theorem.

0.2. Main Theorem. Let X be a complex manifold. Let Z
1,1
+ (X) denote the space

of closed positive currents of type (1, 1) on X, equipped with the weak topology, and

let P(X) be the set of locally L1 psh functions on X, equipped with the topology

of L1 convergence on compact subsets (= topology induced by the weak topology).
Then

(1) The map ϕ 7→ cK(ϕ) is lower semi-continuous on P(X), and the map

T 7→ cK(T ) is lower semi-continuous on Z
1,1
+ (X).

(2) (“Effective version”). Let ϕ ∈ P(X) be given. If c < cK(ϕ) and ψ converges to

ϕ in P(X), then e−2cψ converges to e−2cϕ in L1 norm over some neighborhood

U of K.

As a special case, one gets:

(3) The map O(X) ∋ f 7→ cK(f) is lower semi-continuous with respect to the

topology of uniform convergence on compact sets (uniform convergence on a

fixed neighborhood of K is of course enough). Moreover, if c < cK(f) and

g converges to f in O(X), then |g|−2c converges to |f |−2c in L1 on some

neighborhood U of K.

In spite of their apparent simplicity, the above statements reflect rather
strong semi-continuity properties of complex singularities under “variation of
parameters”. Such properties have been used e.g. by Angehrn-Siu [AnSi95] in
their approach of the Fujita conjecture, and our arguments will borrow some of
their techniques in section § 3.

Theorem 0.2 is by nature a purely local result, which is easily seen to be
equivalent to the special case when K = {x} is a single point and X is a small ball
centered at x. The proof is made in several steps. The “analytic part” consists in a
reduction of (1) and (2) to (3), and in the proof of the effective estimates leading to
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the convergence statements in (2) and (3) [by contrast, the qualitative part of (3)
can be obtained in a purely algebraic way]. The reduction to the holomorphic case
(3) is based on the fact that plurisubharmonic functions can be very accurately
approximated (both from the point of view of singularities and of L1

loc topology)
by special functions of the form

(0.2.4) α log(|g1| + · · · + |gN |), α > 0,

where the gj are holomorphic functions. The existence of approximations as in
(0.2.4) depends in an essential way on the Ohsawa-Takegoshi L2 extension theorem
([OhT87], [Ohs88]), see [Dem92, 93] and §2, §4. One is then reduced to the proof
for a single holomorphic function (that is, to a psh function of the form log |f |), by
taking a suitable generic linear combination f =

∑
αjgj . Another essential idea is

to truncate the Taylor expansion of f at x at some order k. It can then be shown
that this affects cx(f) only by a perturbation that is under uniform control. In
fact, the singularity exponent cx(f) is subadditive on holomorphic functions:

(0.2.5) cx(f + g) 6 cx(f) + cx(g), ∀f, g ∈ OX,x.

If pk is the truncation at order k of the Taylor series, one deduces immediately
from (0.2.5) that

(0.2.6) |cx(f) − cx(pk)| 6
n

k + 1
.

In this way, the proof is reduced to the case of polynomials of given degree. Such
polynomials only depend on finitely many coefficients, thus the remaining lower
semi-continuity property to be proved is that of the function t 7→ cx(Pt) when
Pt is a family of polynomials depending holomorphically on some parameters t =
(t1, . . . , tN ). This is indeed true, as was already observed by Varchenko [Var82, 83].
An algebraic proof can be given by using a log resolution of singularities with
parameters. Here, however, a special attention to effective estimates must be paid
to prove the convergence statements in (2) and (3). For instance, it is necessary
to get as well an effective version of (0.2.6); the Ohsawa-Takegoshi L2 extension
theorem is again crucial in that respect.

As a consequence of our main theorem, we give a more natural proof of the
results of Siu [Siu87, 88], Tian [Tia87] and Nadel [Nad89, 90] on the existence
of Kähler-Einstein metric on Fano manifolds admitting a sufficiently big group of
symmetries. The main point is to have sufficient control on the “multiplier ideal
sheaves” which do appear in case the Kähler-Einstein metric fails to exist. This
can be dealt with much more easily through our semi-continuity theorem, along
the lines suggested in Nadel’s note [Nad89] (possibly because of the lack of such
semi-continuity results, the detailed version [Nad90] relies instead on a rather
complicated process based on a use of “uniform” L2 estimates for sequences of
Koszul complexes; all this disappears here, thus providing a substantially shorter
proof). We take the opportunity to adapt Nadel’s result to Fano orbifolds. This is
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mostly a straightforward extension, except that we apply intersection inequalities
for currents rather than the existence of a big finite group of automorphisms to
derive sufficient criteria for the existence of Kähler-Einstein metrics. In this way,
we produce 3 new “exotic examples” of rigid Del Pezzo surfaces with quotient
singularities which admit a Kähler-Einstein orbifold metric.

We would like to thank R.R. Simha for useful discussions which got us started
with the idea of simplifying Nadel’s approach. We also thank Mongi Blel for
sharing several viewpoints on the semicontinuity properties of psh functions, and
Jeff McNeal for pointing out a slight inaccuracy in our original calculation of
volumes of analytic tubes.

§1. Complex singularity exponent and Arnold multiplicity

Let X be a complex manifold and ϕ a psh function of x. The concepts of
“complex singularity exponent” cK(ϕ) and “Arnold multiplicity” λK(ϕ) of ϕ along
a compact set K ⊂ X have been defined in 0.1. An equivalent definition can be
given in terms of asymptotic estimates for the volume of sublevel sets {ϕ < log r}.

1.1. Variant of the definition. Let K ⊂ X be a compact set, U ⋐ X a

relatively compact neighborhood of K, and let µU be the Riemannian measure on

U associated with some choice of hermitian metric ω on X. Then

cK(ϕ) = sup
{
c > 0 ; r−2cµU ({ϕ< log r}) is bounded as r → 0, for some U ⊃ K

}
.

The equivalence with the earlier Definition 0.1 follows immediately from the
elementary inequalities

r−2cµU ({ϕ < log r}) 6

∫

U

e−2cϕ dVω 6 µU (U) +

∫ 1

0

2c r−2cµU ({ϕ < log r})
dr

r
,

A first important observation is that cK(ϕ) and λK(ϕ) depend only on the local
behavior of ϕ:

1.2. Proposition. Given a point x ∈ X, we write cx(ϕ) instead of c{x}(ϕ). Then

cK(ϕ) = inf
x∈K

cx(ϕ), λK(ϕ) = sup
x∈K

λx(ϕ).

The statement is clear from the Borel-Lebesgue Lemma. When x is a pole,
that is, when ϕ(x) = −∞, the Arnold multiplicity λx(ϕ) actually measures the
“strength” of the singularity of ϕ in a neighborhood of x. (It actually “increases”
with the singularity, and if x is not a pole, we have cx(ϕ) = +∞, λx(ϕ) = 0 ; see
Prop. 1.4 below.) We now deal with various interesting special cases:

1.3. Notation.

(1) If f is a holomorphic function on X, we set cK(f) = cK(log |f |).
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(2) If I ⊂ OX is a coherent ideal sheaf, generated by functions (g1, . . . , gN) on a

neighborhood of K, we put

cK(I) = cK
(
log(|g1| + · · ·+ |gN |)

)
.

(3) If T is a closed positive current of bidegree (1, 1) on X which can be written

as T = ddcϕ on a neighborhood of K, we set cK(T ) = cK(ϕ).

(If no global generators exist in (2) or no global potential ϕ exists in (3), we just

split K in finitely many pieces and take the infimum, according to Prop. (1.2)).

(4) If D is an effective divisor with rational or real coefficients, we set

cK(D) = cK([D]) = cK(O(−D)) = cK(g) = cK(log |g|)

where D is the current of integration over D and g is a local generator of the

principal ideal sheaf O(−D).

No confusion should arise from the above definitions, especially since cK(I)
does not depend on the choice of generators of I. We use similar conventions of
notation for λK(ϕ). The number

cx(f) = sup
{
c ; |f |−2c is L1 on a neighborhood of x

}
= λx(f)−1

is clearly a measure of the singularities of the hypersurface {f = 0} at point x.
This number came up in the literature many times under different names. By
[Lin89], cx(f) is the largest root of the Bernstein-Sato polynomial associated
to the germ of f around p. If x is an isolated singularity of {f = 0}, then
cx(f) = min{1, βC(fx)} where βC(fx) is the complex singular index as defined
in [ArGV84], vol.II, Sec. 13.1.5; the same thing is called “complex singularity
exponent” in [Var92]. See [Kol97] for a discussion of these questions and for
related results.

1.4. Elementary properties. Let I, J be coherent ideals on X and let ϕ, ψ be

psh functions. Denote by x a point in X and let K ⊂ X be a compact subset.

(1) The function x 7→ cx(ϕ) is lower semi-continuous for the holomorphic Zariski

topology ;

(2) If ϕ 6 ψ, then cK(ϕ) 6 cK(ψ) ;
If I ⊂ J, then cK(I) 6 cK(J).

(3) λK(ϕ+ ψ) 6 λK(ϕ) + λK(ψ) ;

λK(IJ) 6 λK(I) + λK(J).

(4) λK(αϕ) = αλK(ϕ) for all α ∈ R+ ;
λK(Im) = mλK(I) for all integers m ∈ N.

(5) Let I = (g1, . . . , gN ) and let

I =
{
f ∈ OΩ,x , x ∈ Ω ; ∃C > 0, |f | 6 Cmax |gj| near x

}
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be the integral closure of I. Then cK(I) = cK(I).

(6) If the zero variety germ V (Ix) contains a p-codimensional irreducible compo-

nent, then cx(I) 6 p, i.e. λx(I) > 1/p.

(7) If IY is the ideal sheaf of a p-codimensional subvariety Y ⊂ Ω, then cx(IY ) = p
at every nonsingular point of Y .

(8) Define the vanishing order ordx(I) of I at x to be the supremum of all integers

k such that Ix ⊂ m
k
x, where mx ⊂ Ox is the maximal ideal. Then

1

n
ordx(I) 6 λx(I) 6 ordx(I).

More generally, if νx(ϕ) is the Lelong number of ϕ at x, then

1

n
νx(ϕ) 6 λx(ϕ) 6 νx(ϕ).

Proof. (1) Fix a point x0 and a relatively compact coordinate ball B := B(x0, r) ⋐

X . For every c > 0, let Hcϕ(B) be the Hilbert space of holomorphic functions on
B with finite weighted L2 norm

‖f‖2
c =

∫

B

|f |2e−2cϕdV

where dV is the Lebesgue volume element in Cn, n = dimC X . A fundamental
consequence of Hörmander’s L2 estimates (Hörmander-Bombieri-Skoda theorem
[Hör66], [Bom70], [Sko75]) states that there is an element f ∈ Hcϕ(B) with
f(x) = 1 whenever e−2cϕ is L1 on a neighborhood of x. Hence

{
x ∈ B ; cx(ϕ) 6 c0

}
∩B =

⋂

f ∈
⋃

c>c0
Hcϕ(B)

f−1(0)

is an analytic set. This proves the holomorphic Zariski lower semi-continuity.

All other properties are direct consequences of the definitions and do not
require “hard” analysis: (2), (4), (5) are immediate; (3) is a consequence of the
Hölder inequality; (6,7) follow from the fact that the function (

∑
j6p |zj |

2)−c is
locally integrable along z1 = · · · = zp = 0 if and only if c < p ; Finally, (8) is a
well-known result of Skoda [Sko72], depending on the basic properties of Lelong
numbers and a use of standard kernel techniques.

In the case of an ideal sheaf, the following lemma reduces the computation of
cx(I) to the case of a principal ideal (possibly after raising I to some power Im).

1.5. Proposition. Let (g1, . . . , gp) be holomorphic functions defined on an open

set Ω ⊂ Cn and let x ∈ V (g1, . . . , gp). Then

cx(α1g1 + · · ·+ αpgp) 6 min
{
cx(g1, . . . , gp) , 1

}
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for all coefficients (α1, . . . , αp) ∈ Cp. Moreover, the equality occurs for all

(α1, . . . , αp) in the complement of a set of measure zero in Cp. In particular,

if I is an arbitrary ideal and cx(I) 6 1, there is a principal ideal (f) ⊂ I such that

cx(f) = cx(I).

Proof. The inequality is obvious, since cx(α1g1 + · · ·+αpgp) 6 1 by (1.4.6) on the
one hand, and

∣∣α1g1 + · · · + αpgp
∣∣−2c

>

(∑
|αj|

2
)−c(∑

|gj|
2
)−c

on the other hand. Now, fix c < min{cx(g1, . . . , gp) , 1}. There is a neighborhood
Uc of x on which

∫

|α|=1

dσ(α)

∫

Uc

∣∣α1g1(z) + · · ·+ αpgp(z)
∣∣−2c

dV (z)

= Ac

∫

Uc

(∑
|gj(z)|

2
)−c

dV (z) < +∞,(1.5.1)

where dσ is the euclidean area measure on the unit sphere S2n−1 ⊂ Cn and Ac > 0
is a constant. The above identity follows from the formula

∫

|α|=1

|α ·w|−2cdσ(α) = Ac|w|
−2c,

which is obvious by homogeneity, and we have Ac < +∞ for c < 1. The finiteness
of the right hand side of (1.5.1) implies that the left hand side is finite for all values
α in the complement CprNc of a negligible set. Therefore cx(α1g1+· · ·+αpgp) > c,
and by taking the supremum over an increasing sequence of values cν converging
to min{cx(g1, . . . , gp) , 1}, we conclude that the equality holds in Proposition 1.5
for all α ∈ Cp r

⋃
Ncν

.

1.6. Remark. It follows from Theorem 3.1 below that the exceptional set of values
(α1, . . . , αp) occurring in Prop. 1.5 is in fact a closed algebraic cone in Cp.

The singularity exponent cK(I) of a coherent ideal sheaf I ⊂ OX can be

computed by means of a “log resolution” of I, that is, a composition µ : X̃ → X
of blow-ups with smooth centers such that µ⋆I = O

X̃
(−D) is an invertible sheaf

associated with a normal crossing divisor D in X̃ (such a log resolution always
exists by Hironaka [Hir64]). The following proposition is essentially well known
(see e.g. [Kol95a] 10.7).

1.7. Proposition. Let X be a complex manifold, I ⊂ OX a coherent ideal sheaf,

and let µ : X̃ → X be a modification (= proper bimeromorphic morphism) such

that µ⋆I = O
X̃

(−D) is an invertible sheaf. Assume that X̃ is normal and let
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Ei ⊂ X̃ denote either an exceptional divisor of µ or an irreducible component

of D. Write

K
X̃

= µ⋆KX +
∑

aiEi and D =
∑

biEi,

where ai = 0 if Ei is not a component of the exceptional divisor of µ (resp. bi = 0
if Ei is not a component of D). Then:

(1) cK(I) 6 min
i :µ(Ei)∩K 6=∅

{
ai + 1

bi

}
.

(2) Equality holds if X̃ is smooth and
∑
Ei is a divisor with normal crossings.

(3) If g = (g1, . . . , gN) are generators of I in a neighborhood of K, then for any

sufficiently small neighborhood U of K there is a volume estimate

C1r
2c

6 µU ({|g| < r}) 6 C2r
2c| log r|n−1, ∀r < r0

with n = dimC X, c = cK(I) and C1, C2, r0 > 0.

Proof. Since the question is local, we may assume that I is generated by
holomorphic functions g1, . . . , gN ∈ O(X). Then (1) and (2) are straightforward
consequences of the Jacobian formula for a change of variable: if U is an open set
in X , the change z = µ(ζ) yields

∫

z∈U

|g(z)|−2cdV (z) =

∫

ζ∈µ−1(U)

|g ◦ µ(ζ)|−2c|Jµ(ζ)|
2dṼ (ζ)

where Jµ is the Jacobian of µ, and dV , dṼ are volume elements of X , X̃

respectively (embed X̃ in some smooth ambient space if necessary). Now, if hi is

a generator of O(−Ei) at a smooth point x̃ ∈ X̃, the divisor of Jµ is by definition∑
aiEi and µ⋆I = O(−

∑
biEi). Hence, up to multiplicative bounded factors,

|Jµ|
2 ∼

∏
|hi|

2ai , |g ◦ µ|2 ∼
∏

|hi|
2bi near x̃,

and |g ◦ µ|−2c|Jµ|
2 is L1 near x̃ if and only if

∏
|hi|

−2(cbi−ai) is L1. A necessary
condition is that cbi − ai < 1 whenever Ei ∋ x̃. We therefore get the necessary
condition c < mini :µ(Ei)∩K 6=∅{(ai + 1)/bi}, and this condition is necessary and
sufficient if

∑
Ei is a normal crossing divisor.

For (3), we choose (X̃,O(−D)) to be a (nonsingular) log resolution of I. The
volume µU ({|g| < r}) is then given by integrals of the form

(1.7.4)

∫

µ−1(U)∩{ζ∈Ũα,
∏

|hi|bi<r}

∏
|hi(ζ)|

2aidV (ζ)

over suitable coordinate charts Ũα ⊂ X̃ . An appropriate change of variable ζ 7→ w,
wi = hbi

i (ζ), wj = ζkj
(where i runs over the set of indices such that bi > 0 and
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j over a disjoint set of indices) and a use of a partition of unity leads to estimate
(1.7.4) by a linear combination of integrals of the form

∫

P (r)

∏
|wi|

2(ai+1)/bi−2dV (w) where P (r) = {max |wi| < 1,
∏

|wi| < r}

(we assume here that a partial integration with respect to the wj ’s has already
been performed). The lower bound C1r

2c is obtained by restricting the domain of
integration to a neighborhood of a point in the unit polydisk such that only one
coordinate wi vanishes, precisely for i equal to the index achieving the minimum
of (ai + 1)/bi. The upper bound C2r

2c| log r|n−1, c = min(ai + 1)/bi, is obtained
by using the inequalities

∏
|wi|

2(ai+1)/bi−2
6

(∏
|wi|

)2c−2

6 r2c−2, ∀w ∈ P (r),

µ(P (r)) =

∫

{max(|w1|,...,|wn−1|)<1}

π min
( r2

|w1|2 · · · |wn−1|2
, 1

) n−1∏

i=1

dV (wi)

6 π

∫

{∃i ; |wi|<r}

n−1∏

i=1

dV (wi) + πr2
∫

{∀i ; r6|wi|<1}

n−1∏

i=1

dV (wi)

|wi|2

6 C2r
2| log r|n−1.

It should be observed that much finer estimates are known to exist; in fact, one can
derive rather explicit asymptotic expansions of integrals obtained by integration
along the fibers of a holomorphic function (see [Bar82]).

§2. L
2 extension theorem and inversion of adjunction

Our starting point is the following special case of the fundamental L2 extension
theorem due to Ohsawa-Takegoshi ([OhT87], [Ohs88], see also [Man93]).

2.1. Theorem ([OhT87], [Ohs88], [Man93]). Let Ω ⊂ Cn be a bounded pseudo-

convex domain, and let L be an affine linear subspace of Cn of codimension p > 1
given by an orthonormal system s of affine linear equations s1 = · · · = sp = 0. For

every β < p, there exists a constant Cβ,n,Ω depending only on β, n and the diame-

ter of Ω, satisfying the following property. For every ϕ ∈ P(Ω) and f ∈ O(Ω ∩ L)
with

∫
Ω∩L |f |2e−ϕdVL < +∞, there exists an extension F ∈ O(Ω) of f such that

∫

Ω

|F |2|s|−2βe−ϕdVCn 6 Cβ,n,Ω

∫

Ω∩L

|f |2e−ϕdVL,

where dVCn and dVL are the Lebesgue volume elements in Cn and L respectively.

In the sequel, we use in an essential way the fact that β can be taken arbitrarily
close to p. It should be observed, however, that the case β = 0 is sufficient to
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imply the general case. In fact, supposing L = {z1 = · · · = zp = 0}, a substitution
(ϕ,Ω) 7→ (ϕk,Ωk) with

ϕk(z1, . . . , zn) = ϕ(zk1 , . . . , z
k
p , zp+1, . . . , zn),

Ωk =
{
z ∈ Cn ; (zk1 , . . . , z

k
p , zp+1, . . . , zn) ∈ Ω

}

shows that the estimate with β = 0 implies the estimate with β = p(1− 1/k) (use
the change of variable ζ1 = zk1 , . . . , ζp = zkp , ζj = zj for j > p, together with the
Jacobian formula

dV (z) =
Const

|ζ1|2(1−1/k) · · · |ζp|2(1−1/k)
dV (ζ),

and take the “trace” of the solution Fk on Ωk to get the solution F on Ω). The
L2 extension theorem readily implies the following important monotonicity result.

2.2. Proposition. Let ϕ ∈ P(X) be a psh function on a complex manifold X,

and let Y ⊂ X be a complex submanifold such that ϕ|Y 6≡ −∞ on every connected

component of Y . Then, if K is a compact subset of Y , we have

cK(ϕ|Y ) 6 cK(ϕ).

(Here, of course, cK(ϕ) is computed on X, i.e., by means of neighborhoods of K
in X).

Proof. By Prop. 1.2, we may assume that K = {y} is a single point in Y . Hence,
after a change of coordinates, we can suppose that X is an open set in Cn and
that Y is an affine linear subspace. Let c < cy(ϕ|Y ) be given. There is a small
ball B = B(y, r) such that

∫
B∩Y e

−2cϕdVY < +∞. By the L2 extension theorem
applied with β = 0, Ω = B, L = Y and f(z) = 1, we can find a holomorphic
function F on B such that F (z) = 1 on B ∩ Y and

∫
B
|F |2e−2cϕdVB < +∞. As

F (y) = 1, we infer cy(ϕ) > c and the conclusion follows. It should be observed
that an algebraic proof exists when ϕ is of the form log |g|, g ∈ O(X) ; however
that proof is rather involved. This is already a good indication of the considerable
strength of the L2 extension theorem (which will be crucial in several respects in
the sequel).

We now show that the inequality given by Proposition 2.2 can somehow be
reversed (Theorem 2.5 below). For this, we need to restrict ourselves to a class of
psh functions which admit a “sufficiently good local behavior” (such restrictions
were already made in [Dem87], [Dem93a] to accommodate similar difficulties).

2.3. Definition. Let X be a complex manifold. We denote by Ph(X) the class of

all plurisubharmonic functions ϕ on X such that eϕ is locally Hölder continuous

on X, namely such that for every compact set K ⊂ X there are constants

C = CK > 0, α = αK > 0 with

|eϕ(x) − eϕ(y)| 6 C d(x, y)α, ∀x, y ∈ K,



12 J.-P. Demailly, J. Kollár, Semi-continuity of complex singularity exponents

where d is some Riemannian metric on X. We say for simplicity that such a

function is a Hölder psh function.

2.4. Example. We are mostly interested in the case of functions of the form

ϕ = max
j

log
(∑

k

∏

l

|fj,k,l|
αj,k,l

)

with fj,k,l ∈ O(X) and αj,k,l > 0. Such functions are easily seen to be Hölder
psh. Especially, if D =

∑
αjDj is an effective real divisor, the potential

ϕ =
∑
αj log |gj| associated with [D] is a Hölder psh function.

2.5. Theorem. Let H be a smooth hypersurface of X and let T be a closed

positive current of type (1, 1) on X such that its local potential functions ϕ are

Hölder psh functions with ϕ|H 6≡ −∞. We set in this case (somewhat abusively)
T|H = ddcϕ|H . Then for any compact set K ⊂ H, we have

cK([H] + T ) > 1 ⇔ cK(T|H) > 1.

In the algebraic setting (that is, when T = [D] is defined by an effective
divisor D =

∑
αjDj), the above result is known as “inversion of adjunction”, see

Kollár et al. [K&al92], 17.7. One says that the pair (X,D) is lc (= log canonical) if
cK(D) > 1 for every compact set K ⊂ X , i.e., if the product

∏
|gj|

−2cαj associated
with the generators gj of O(−Dj) is locally L1 for every c < 1. The result can
then be rephrased as

(2.5.1) (X,H +D) is lc ⇔ (H,D|H) is lc.

Proof of Theorem 2.5. Since the result is purely local, we may assume that
X = D(0, r)n is a polydisk in Cn, that H is the hyperplane zn = 0 and K = {0}.
We must then prove the equivalence

∀c < 1, ∃U ∋ 0, exp
(
− 2c(log |zn| + ϕ(z))

)
∈ L1(U)

⇔ ∀c′ < 1, ∃U ′ ∋ 0, exp
(
− 2c′ϕ(z′, 0)

)
∈ L1(U ′),

where z = (z′, zn) ∈ Cn and U , U ′ are neighborhoods of 0 in Cn, Cn−1 respectively.

First assume that (|zn|e
ϕ(z))−2c ∈ L1(U). As eϕ is Hölder continuous, we get

e2cϕ(z)
6 (eϕ(z′,0) + C1|zn|

α)2c 6 C2(e
2cϕ(z′,0) + |zn|

2cα)

on a neighborhood of 0, for some constants C1, C2, α > 0. Therefore the function

1

|zn|2c(|zn|2cα + e2cϕ(z′,0))
6 C−1

2 (|zn|e
ϕ(z))−2c
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is in L1(U). Suppose that U = U ′ × D(0, rn) is a small polydisk. A partial
integration with respect to zn on a family of disks |zn| < ρ(z′) with ρ(z′) =
ε exp(α−1ϕ(z′, 0)) (and ε > 0 so small that ρ(z′) 6 rn for all z′ ∈ U ′) shows that

∫

U

dV (z)

|zn|2c(|zn|2cα + e2cϕ(z′,0))
> Const

∫

U ′

dV (z′)

e(2c−2(1−c)α−1)ϕ(z′,0)
.

Hence exp(−2c′ϕ(z′, 0)) ∈ L1(U ′) with c′ = c − (1 − c)α−1 arbitrarily close to 1.
Conversely, if the latter condition holds, we apply the Ohsawa-Takegoshi extension
theorem to the function f(z′) = 1 on L = H = {zn = 0}, with the weight
ψ = 2c′ϕ and β = c′ < 1. Since F (z′, 0) = 1, the L2 condition implies the desired
conclusion.

2.6. Remark. As the final part of the proof shows, the implication

cK([H] + T ) > 1 ⇐ cK(T|H) > 1.

is still true for an arbitrary (not necessarily Hölder) psh function ϕ. The
implication ⇒, however, is no longer true. A simple counterexample is provided
in dimension 2 by H = {z2 = 0} and T = ddcϕ with

ϕ(z1, z2) = max
(
λ log |z1|, −

√
− log |z2|

)
, λ > 1

on the unit bidisk D(0, 1)2 ⊂ C2. Then c0([H] + T ) = c0([H]) = 1 but
c0(T|H) = c0(λ log |z1|) = 1/λ.

2.7. Proposition. Let X, Y be complex manifolds of respective dimensions n, m,

let I ⊂ OX , J ⊂ OY be coherent ideals, and let K ⊂ X, L ⊂ Y be compact sets.

Put I ⊕ J := pr⋆1 I + pr⋆2 J ⊂ OX×Y . Then

cK×L(I ⊕ J) = cK(I) + cL(J).

Proof. By Prop. 1.2, it is enough to show that c(x,y)(I ⊕ J) = cx(I) + cy(J) at
every point (x, y) ∈ X × Y . Without loss of generality, we may assume that
X ⊂ Cn, Y ⊂ Cm are open sets and (x, y) = (0, 0). Let g = (g1, . . . , gp), resp.
h = (h1, . . . , hq), be systems of generators of I (resp. J) on a neighborhood of 0.
Set

ϕ = log
∑

|gj |, ψ = log
∑

|hk|.

Then I ⊕ J is generated by the p+ q-tuple of functions

g ⊕ h = (g1(x), . . . gp(x), h1(y), . . . , hq(y))

and the corresponding psh function Φ(x, y) = log
(∑

|gj(x)| +
∑

|hk(y)|
)

has
the same behavior along the poles as Φ′(x, y) = max(ϕ(x), ψ(y)) (up to a term
O(1) 6 log 2). Now, for sufficiently small neighborhoods U , V of 0, we have

µU×V

({
max(ϕ(x), ψ(y)) < log r

})
= µU

(
{ϕ < log r} × µV ({ψ < log r}

)
,
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hence Prop. 1.7 (3) implies
(2.7.1)

C1r
2(c+c′)

6 µU×V

({
max(ϕ(x), ψ(y)) < log r

})
6 C2r

2(c+c′) | log r|n−1+m−1

with c = c0(ϕ) = c0(I) and c′ = c0(ψ) = c0(J). From this, we infer

c(0,0)(I ⊕ J) = c+ c′ = c0(I) + c0(J).

2.8. Example. As c0(z
m
1 ) = 1/m, an application of Proposition 2.7 to a quasi-

homogeneous ideal I = (zm1
1 , . . . , z

mp
p ) ⊂ OCn,0 yields the value

c0(I) =
1

m1
+ · · ·+

1

mp
.

Using Proposition 2.7 and the monotonicity property, we can now prove the
fundamental subadditivity property of the singularity exponent.

2.9. Theorem. Let f , g be holomorphic on a complex manifold X. Then, for

every x ∈ X,

cx(f + g) ≤ cx(f) + cx(g).

More generally, if I and J are coherent ideals, then

cx(I + J) ≤ cx(I) + cx(J).

Proof. Let ∆ be the diagonal in X ×X . Then I + J can be seen as the restriction
of I ⊕ J to ∆. Hence Prop. 2.2 combined with 2.7 implies

cx(I + J) = c(x,x)((I ⊕ J)|∆) 6 c(x,x)(I ⊕ J) = cx(I) + cx(J).

Since (f + g) ⊂ (f) + (g), inequality 1.4 (2) also shows that

cx(f + g) 6 cx((f) + (g)) 6 cx(f) + cx(g).

2.10. Remark. If f(x1, . . . , xn), resp. g(y1, . . . , yn), are holomorphic near 0 ∈ Cn,
resp. 0 ∈ Cm, and such that f(0) = g(0) = 0, we have the equality

c0(f(x1, . . . , xn) + g(y1, . . . , ym)) = min{1, c0(f) + c0(g)}.

This result is proved in [AGV84], vol. II, sec. 13.3.5 in the case of isolated
singularities. Another proof, using the computation of c0 via a resolution as in
Prop. 1.7, is given in [Kol97]. It can also be reduced to Proposition 2.7 through a
log resolution of either f or g.
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§3. Semi-continuity of holomorphic singularity exponents

We first give a new proof (in the spirit of this work) of the semi-continuity theo-
rem of Varchenko [Var82] concerning leading zeroes of Bernstein-Sato polynomials
attached to singularities of holomorphic functions (see also Lichtin [Lin87]).

3.1. Theorem ([Var82]). Let X be a complex manifold and S a reduced complex

space. Let f(x, s) be a holomorphic function on X ×S. Then for any x0 ∈ X, the

function s 7→ cx0
(f|X×{s}) is lower semi-continuous for the holomorphic Zariski

topology on S. It even satisfies the following much stronger property: for any

s0 ∈ S, one has

(3.1.1) cx0
(f|X×{s}) > cx0

(f|X×{s0})

on a holomorphic Zariski neighborhood of s0 (i.e. the complement in S of an

analytic subset of S disjoint from s0).

Proof. Observe that if f|X×{s0} is identically zero, then cx0
(f|X×{s0}) = 0 and there

is nothing to prove; thus we only need to consider those s such that f|X×{s} 6≡ 0.
We may of course assume that X = B is a ball in Cn and x0 = 0. Let Y = B×S,
D = div f and µ : Ỹ → Y a log resolution of (Y,D). After possibly shrinking
B a little bit, there is a Zariski dense open set S1 ⊂ S such that if s ∈ S1, the
corresponding fiber

µs : Ỹs → B × {s}

is a log resolution of (B, div f|B×{s}). Moreover, we may assume that the numerical

invariants ai, bi attached to µs : Ỹs → B as in Prop. 1.7 also do not depend on s.
In particular, by (1.7.2), c0(f|B×{s}) is independent of s ∈ S1.

By induction on the dimension of S, we obtain a stratification S =
⋃
Si (where

each Si is a Zariski dense open subset of a closed complex subspace of S) such
that c0(f|B×{s}) only depends on the stratum containing s. Thus (3.1.1) reduces to
semi-continuity with respect to the classical topology (considering a 1-dimensional
base is enough, so we may assume the base to be nonsingular as well). If we put
ϕ = log |f |, this is a special case of the following Lemma, which is essentially
equivalent to the Main Theorem of [PS99]. Here, we would like to point out that
this result (which we knew as early as end of 1995) can be obtained as a direct
consequence of the Ohsawa-Takegoshi theorem [OhT87].

3.2. Lemma. Let Ω ⊂ Cn and S ⊂ Cp be bounded pseudoconvex open sets. Let

ϕ(x, s) be a Hölder psh function on Ω × S and let K ⊂ Ω be a compact set. Then

(1) s 7→ cK(ϕ(•, s)) is lower semi-continuous for the classical topology on S.

(2) If s0 ∈ S and c < cK(ϕ(•, s0)), there exists a neighborhood U of K and a

uniform bound ∫

U

e−2cϕ(x,s)dV (x) 6 M(c)

for s in a neighborhood of s0.
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Proof. We use the L2 extension theorem of [OhT87], following an idea of Angehrn-
Siu [AnSi95]. However, the “effective” part (2) requires additional considerations.
Notice that it is enough to prove (2), since (1) is a trivial consequence. By shrinking
Ω and S, we may suppose that eϕ is Hölder continuous of exponent α on the whole
of Ω × S and that ∫

Ω

e−2cϕ(x,s0)dV (x) < +∞.

Let k be a positive integer. We set

ψk,s(x, t) = 2c ϕ(x, s+ (kt)k(s0 − s)) on Ω ×D,

where D ⊂ C is the unit disk. Then ψ is well defined on Ω×D if s is close enough
to s0. Since ψ(x, 1/k) = ϕ(x, s0), we obtain by Theorem 2.1 the existence of a
holomorphic function Fk,s(x, t) on Ω ×D such that Fk,s(x, 1/k) = 1 and

(3.2.3)

∫

Ω×D

|Fk,s(x, t)|
2e−ψk,s(x,t)dV (x)dV (t) 6 C1

with C1 independent of k, s for |s − s0| < δk−k. As ψk,s admits a global upper
bound independent of k, s, the family (Fk,s) is a normal family. It follows from the
equality Fk,s(x, 1/k) = 1 that there is a neighborhood U of K and a neighborhood
D(0, ε) of 0 in C such that |Fk,s| > 1/2 on U × D(0, ε) if k is large enough. A
change of variable t = k−1τ1/k in (3.2.3) then yields

∫

U×D(0,(kε)k)

e−2cϕ(x,s+τ(s0−s))

|τ |2(1−1/k)
dV (x)dV (τ) 6 4k4C1.

As in the proof of Theorem 2.5, we get by the Hölder continuity of eϕ an upper
bound

e2cϕ(x,s+τ(s0−s)) 6 C2(e
2cϕ(x,s) + |τ |2cα)

with a constant C2 independent of s. Hence, for k > 1/ε, we find

∫

U×D

1(
e2cϕ(x,s) + |τ |2cα

)
|τ |2(1−1/k)

dV (x)dV (τ) 6 C3(k).

By restricting the integration to a family of disks |τ | < C4e
α−1ϕ(x,s) (with C4 so

small that the radius is 6 1), we infer

∫

U

e−2(c−1/kα)ϕ(x,s)dV (x) 6 C5(k).

Since c−1/kα can be taken arbitrarily close to cK(ϕ), this concludes the proof.

We can now prove the qualitative part of the semi-continuity theorem, in the
holomorphic case.
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3.3. Theorem. Let X be a complex manifold and K ⊂ X a compact subset.

Then f 7→ cK(f) is lower semi-continuous on O(X) with respect to the topology

of uniform convergence on compact subsets. More explicitly, for every nonzero

holomorphic function f , for every compact set L containing K in its interior and

every ε > 0, there is a number δ = δ(f, ǫ,K, L) > 0 such that

(3.3.1) sup
L

|g − f | < δ ⇒ cK(g) > cK(f) − ε.

Proof. As a first step we reduce (3.3.1) to the special case when K is a single
point. Assume that (3.3.1) fails. Then there is a sequence of holomorphic functions
fi ∈ O(X) converging uniformly to f on L, such that

cK(fi) < cK(f) − ε.

By Prop. 1.2 we can choose for each i a point ai ∈ K such that cai
(fi) < cK(f)−ε.

By passing to a subsequence we may assume that the points ai converge to a point
a ∈ K. Take a local coordinate system on X in a neighborhood of a. Consider
the functions Fi defined by

Fi(x) = fi(x+ ai − a)

on a small coordinate ball B(a, r) ⊂ L◦. These functions are actually well defined
for i large enough (choose ε so that B(a, r+ε) ⊂ L and i so large that |ai−a| < ε).
Then Fi converges to f on B(a, r), but

ca(Fi) = cai
(fi) < cK(f) − ε 6 ca(f) − ε.

Therefore, to get a contradiction, we only need proving Theorem 3.3 in case
K = {a} is a single point. Again we can change notation and assume that X
is the unit ball and that our point is the origin 0.

In the second step we reduce the lower semi-continuity of c0(f) to polynomials
of bounded degree. For a given holomorphic function f let Pk denote the
degree 6 k part of its Taylor series. The subbaditivity property of Theorem 2.9
implies |c0(f) − c0(pk)| 6 c0(f − pk). As |f(z) − pk(z)| = O(|z|k+1), the function
|f − pk|

−2c is not integrable for c > n/(k + 1). From this, it follows that
c0(f − pk) 6 n/(k + 1), hence

(3.3.2) |c0(f) − c0(pk)| 6
n

k + 1
.

Now, if (fi) converges uniformly to f on a given neighborhood U ⊂ Cn of 0, the
degree 6 k part pi,k converges to pk in the finite dimension space C[z1, . . . , zn]k of
polynomials of total degree 6 k. Let us view polynomials

P (z, s) =
∑

|α|6k

sαz
α ∈ C[z1, . . . , zn]k
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as functions of their coefficients s = (sα). By Theorem 3.1, we know that the
function s 7→ c0(P (•, s)) is lower semi-continuous. Hence we get

c0(pi,k) > c0(pk) −
ε

2
for i > i(k, ε) large enough,

and thanks to (3.3.2) this implies

c0(fi) > c0(f) −
ε

2
−

2n

k + 1
> c0(f) − ε

by choosing k > 4n/ε.

In fact, we would like to propose the following much stronger lower semi-
continuity conjecture:

3.4. Conjecture. Notation as in Theorem 3.3. For every nonzero holomorphic

function f , there is a number δ = δ(f,K, L) > 0 such that

sup
L

|g − f | < δ ⇒ cK(g) > cK(f).

3.5. Remark. There is an even more striking conjecture about the numbers
cK(f), namely, that the set

C = {c0(f)|f ∈ OCn,0} ⊂ R

satisfies the ascending chain condition (cf. [Sho92]; [K&al92], 18.16): any conver-
gent increasing sequence in C should be stationary. This conjecture and Theo-
rem 3.3 together would imply the stronger form 3.4. Notice on the other hand
that there do exist non stationary decreasing sequences in C by (1.4.8)*.

§4. Multiplier ideal sheaves and holomorphic approxima-

tions of psh singularities

The most important concept relating psh functions to holomorphic objects is
the concept of multiplier ideal sheaf, which was already considered implicitly in
the work of Bombieri [Bom70], Skoda [Sko72] and Siu [Siu74]. The precise final
formalization has been fixed by Nadel [Nad89].

4.1. Theorem and definition ([Nad89, 90], see also [Dem89, 93a]). If ϕ ∈ P(X)
is a psh function on a complex manifold X, the multiplier ideal sheaf I(ϕ) ⊂ OX
is defined by

Γ(U, I(ϕ)) =
{
f ∈ OX(U) ; |f |2e−2ϕ ∈ L1

loc(U)
}

* It has been recently observed by Phong and Sturm [PS00], in their study of integrals of

the form
∫

|f |−s, that the ascending chain condition holds in complex dimension 2. Algebraic

geometers seem to have been aware for some time of the corresponding algebraic geometric

statement.



§4. Multiplier ideal sheaves and holomorphic approximations of psh singularities 19

for every open set U ⊂ X. Then I(ϕ) is a coherent ideal sheaf in OX .

The proof that I(ϕ) is coherent is a rather simple consequence of Hörmander’s
L2 estimates, together with the strong Noetherian property of coherent sheaves and
the Krull lemma. When the psh function ϕ is defined from holomorphic functions
as in 2.4, it is easy to see that I(ϕ) can be computed in a purely algebraic way
by means of log resolutions. The concept of multiplier ideal sheaf plays a very
important role in algebraic geometry, e.g. in Nadel’s version of the Kawamata-
Viehweg vanishing theorem or in Siu’s proof [Siu93] of the big Matsusaka theorem.

We now recall the technique employed in [Dem92] and [Dem93b] to produce
effective bounds for the approximation of psh functions by logarithms of holo-
morphic functions. The same technique produces useful comparison inequalities
for the singularity exponents of a psh function and its associated multiplier ideal
sheaves.

4.2. Theorem. Let ϕ be a plurisubharmonic function on a bounded open set Ω ⊂
Cn. For every real number m > 0, let Hmϕ(Ω) be the Hilbert space of holomorphic

functions f on Ω such that
∫
Ω
|f |2e−2mϕdV < +∞ and let ψm = 1

2m log
∑

|gm,k|
2

where (gm,k) is an orthonormal basis of Hmϕ(Ω). Then:

(1) There are constants C1, C2 > 0 independent of m and ϕ such that

ϕ(z) −
C1

m
6 ψm(z) 6 sup

|ζ−z|<r
ϕ(ζ) +

1

m
log

C2

rn

for every z ∈ Ω and r < d(z, ∂Ω). In particular, ψm converges to ϕ pointwise

and in L1
loc topology on Ω when m→ +∞ and

(2) The Lelong numbers of ϕ and ψm are related by

ν(ϕ, z) −
n

m
6 ν(ψm, z) 6 ν(ϕ, z) for every z ∈ Ω.

(3) For every compact set K ⊂ Ω, the Arnold multiplicity of ϕ, ψm and of the

multiplier ideal sheaves I(mϕ) are related by

λK(ϕ) −
1

m
6 λK(ψm) =

1

m
λK(I(mϕ)) 6 λK(ϕ).

Proof. (1) Note that
∑

|gm,k(z)|
2 is the square of the norm of the evaluation linear

form f 7→ f(z) on Hmϕ(Ω). As ϕ is locally bounded above, the L2 topology is
actually stronger than the topology of uniform convergence on compact subsets
of Ω. It follows that the series

∑
|gm,k|

2 converges uniformly on Ω and that its
sum is real analytic. Moreover we have

ψm(z) = sup
f∈B(1)

1

m
log |f(z)|
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where B(1) is the unit ball of Hmϕ(Ω). For r < d(z, ∂Ω), the mean value inequality
applied to the psh function |f |2 implies

|f(z)|2 6
1

πnr2n/n!

∫

|ζ−z|<r

|f(ζ)|2dλ(ζ)

6
1

πnr2n/n!
exp

(
2m sup

|ζ−z|<r
ϕ(ζ)

)∫

Ω

|f |2e−2mϕdλ.

If we take the supremum over all f ∈ B(1) we get

ψm(z) 6 sup
|ζ−z|<r

ϕ(ζ) +
1

2m
log

1

πnr2n/n!

and the right hand inequality in (1) is proved. Conversely, the Ohsawa-Takegoshi
extension theorem applied to the 0-dimensional subvariety {z} ⊂ Ω shows that for
any a ∈ C there is a holomorphic function f on Ω such that f(z) = a and

∫

Ω

|f |2e−2mϕdλ 6 C3|a|
2e−2mϕ(z),

where C3 only depends on n and diam Ω. We fix a such that the right hand side
is 1. This gives the left hand inequality

(4.2.4) ψm(z) >
1

m
log |a| = ϕ(z) −

logC3

2m
.

(2) The above inequality (4.2.4) implies ν(ψm, z) 6 ν(ϕ, z). In the opposite
direction, we find

sup
|x−z|<r

ψm(x) 6 sup
|ζ−z|<2r

ϕ(ζ) +
1

m
log

C2

rn
.

Divide by log r and take the limit as r tends to 0. The quotient by log r of the
supremum of a psh function over B(x, r) tends to the Lelong number at x. Thus
we obtain

ν(ψm, x) > ν(ϕ, x) −
n

m
.

(3) Inequality (4.2.4) already yields λK(ψm) 6 λK(ϕ). Moreover, the multiplier
ideal sheaf I(mϕ) is generated by the sections in Hmϕ(Ω) (as follows from the proof
that I(mϕ) is coherent), and by the strong Noetherian property, it is generated
by finitely many functions (gm,k)06k6k0(m) on every relatively compact open set
Ω′ ⋐ Ω. It follows that we have a lower bound of the form

(4.2.5) ψm(z) − C4 6
1

2m
log

∑

06k6k0(m)

|gm,k|
2

6 ψm(z) on Ω′.
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By choosing Ω′ ⊃ K, we infer λK(ψm) = 1
m λK(I(mϕ). If λ > λK(ψm), i.e.,

1/mλ < cK(I(mϕ)), and if U ⊂ Ω′ is a sufficiently small open neighborhood of K,
the Hölder inequality for the conjugate exponents p = 1+mλ and q = 1+(mλ)−1

yields

∫

U

e−2mp−1ϕdV =

∫

U

( ∑

06k6k0(m)

|gm,k|
2e−2mϕ

)1/p( ∑

06k6k0(m)

|gm,k|
2
)−1/qmλ

dV

6 (k0(m) + 1)1/p




∫

U

( ∑

06k6k0(m)

|gm,k|
2
)−1/mλ

dV




1/q

< +∞.(4.2.6)

(
The estimate in the last line uses the fact that

∫

U

|gm,k|
2e−2mϕdV 6

∫

Ω

|gm,k|
2e−2mϕdV = 1.

)

This implies cK(ϕ) > mp−1, i.e., λK(ϕ) 6 p/m = λ+ 1/m. As λ > λK(ψm) was
arbitrary, we get λK(ϕ) 6 λK(ψm) + 1/m and (3) follows.

The “approximation theorem” 4.2 allows to extend some results proved for
holomorphic functions to the case of psh functions. For instance, we have:

4.3. Proposition. Let ϕ ∈ P(X), ψ ∈ P(Y ) be psh functions on complex

manifolds X, Y , and let K ⊂ X, L ⊂ Y be compact subsets. Then:

(1) For all positive real numbers c′, c′′ with c′ > cK(ϕ) > c′′ (if any) and every

sufficiently small neighborhood U of K, there is an estimate

C1r
2c′

6 µU ({ϕ < log r}) 6 C2r
2c′′, ∀r < r0

for some r0 > 0 and C1 = C1(c
′), C2 = C2(c

′′).

(2) cK×L

(
max(ϕ(x), ψ(y)

)
= cK(ϕ) + cL(ψ).

(3) If X = Y , then cx(max(ϕ, ψ)) 6 cx(ϕ) + cx(ψ) for all x ∈ X.

Proof. (1) The upper estimate is clear, since

r−2c′′µU ({ϕ < log r}) 6

∫

U

e−2c′′ϕdV < +∞

for U ⊂ K sufficiently small. In the other direction, we have an estimate

µU ({ψm < log r}) > C1,mr
2cK(ψm)

by Proposition 1.7 (3) and (4.2.5). As ϕ 6 ψm+C2,m for some constant C2,m > 0,
we get

{ϕ < log r} ⊃ {ψm < log r − C2,m},
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and as cK(ψm) converges to cK(ϕ) by 4.2 (3), the lower estimate of µU ({ϕ < log r})
follows.

(2), (3) can be derived from (1) exactly as for the holomorphic case in Prop. 2.7
and Theorem 2.9. It should be observed that 4.3 (1) expresses a highly non trivial
“regularity property” of the growth of volumes µU ({ϕ < log r}) when ϕ is a psh
function (when ϕ is an arbitrary measurable function, v(r) = µU ({ϕ < log r}) is
just an arbitrary increasing function with limr→0 v(r) = 0).

4.4. Remark. In contrast with the holomorphic case 1.7 (3), the upper estimate
µU ({ϕ < log r}) 6 C2r

2c′′ does not hold with c′′ = cK(ϕ), when ϕ is an arbitrary
psh function. A simple example is given by ϕ(z) = χ◦ log |z| where χ : R → R is a
convex increasing function such that χ(t) ∼ t as t→ −∞, but eχ(r) 6∼ r as r → 0,
e.g. such that χ(t) = t− log |t|) when t < 0. On the other hand, the lower estimate
µU ({ϕ < log r}) > C1r

2c′ seems to be still true with c′ = cK(ϕ), although we
cannot prove it.

§5. Semi-continuity of psh singularity exponents

We are now in a position to prove our main semi-continuity theorem.

5.1. Proof of Theorem 0.2. Let Ω ⊂ Cn be a bounded pseudoconvex open set and
let ϕj ∈ P(Ω) be a sequence of psh functions converging to a limit ϕ ∈ P(Ω) in the
weak topology of distributions. In fact, this already implies that ϕj → ϕ almost
everywhere and in L1

loc topology; to see this, we observe that the coefficients of
Tj := ddcϕj are measures converging to those of T = ddcϕ in the weak topology
of measures; moreover ϕj and ϕ can be recovered from Tj and T by an integral
formula involving the Green kernel; we then use the well known fact that integral
operators involving a L1 kernel define continuous (and even compact) operators
from the space of positive measures equipped with the weak topology, towards the
space of L1 functions with the strong L1 topology.

Fix a compact set K ⊂ Ω. By the process described in Theorem 4.2, we get
for each m ∈ N⋆ an orthonormal basis (gj,m,k)k∈N of Hmϕj

(Ω), such that

(5.1.1) ϕj(z) −
C1

m
6

1

2m
log

∑

k∈N

|gj,m,k|
2

6 sup
|ζ−z|<r

ϕj(ζ) +
1

m
log

C2

rn

for every z ∈ Ω and r < d(z, ∂Ω). In particular, all sequences (gj,m,k)j∈N are
uniformly bounded from above on every compact subset of Ω. After possibly
extracting a subsequence, we may assume that all gj,m,k converge to a limit
gm,k ∈ O(Ω) when j → +∞. Thanks to (5.1.1) we find in the limit

ϕ(z) −
C1

m
6

1

2m
log

∑

k∈N

|gm,k|
2

6 sup
|ζ−z|<r

ϕ(ζ) +
1

m
log

C2

rn
.

Fix a relatively compact open subset Ω′ ⋐ Ω containing K. By the strong
Noetherian property already used for (4.2.5), there exist an integer k0(m) and
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a constant C4(m) > 0 such that

ϕ(z) − C4(m) 6
1

2m
log

∑

06k6k0(m)

|gm,k|
2 on Ω′.

Now, for c < cK(ϕ), there is a neighborhood U of K on which

∫

U

( ∑

06k6k0(m)

|gm,k|
2
)−c/m

dV 6 e2cC4(m)

∫

U

e−2cϕdV < +∞.

Take (without loss of generality) m > 2cK(ϕ). Then c/m < 1/2 and Formula 1.5.1
shows that there is a linear combination

∑
06k6k0(m) αm,kgm,k with α = (αm,k)

in the unit sphere of Ck0(m)+1, such that

∫

U

∣∣∣
∑

06k6k0(m)

αm,kgm,k

∣∣∣
−2c/m

dV 6 C5(m)

∫

U

e−2cϕdV < +∞,

where C5(m) is a constant depending possibly on m. By construction,

fj,m =
∑

06k6k0(m)

αk,mgj,m,k

is an element of the unit sphere in Hmϕj
(Ω), and fj,m converges uniformly on Ω

to fm =
∑
αm,kgm,k such that

∫
U
|fm|

−2c/mdV < +∞. By Lemma 5.2 below, for

any c′ < c andK ⊂ U ′ ⋐ U , we have a uniform bound
∫
U ′

|fj,m|
−2c′/mdV 6 C6(m)

for j > j0 large enough. Since
∫
Ω
|fj,m|

2e−2mϕjdV = 1, the Hölder inequality for
conjugate exponents p = 1 +m/c′, q = 1 + c′/m yields

∫

U ′

e−2mc′/(m+c′)ϕjdV =

∫

U ′

(
|fj,m|

2e−2mϕj
)c′/(m+c′)

|fj,m|
−2c′/(m+c′)dV

6

(∫

U ′

|fj,m|
−2c′/mdV

)m/(m+c′)

6 C7(m)

for j > j0. Since c, c′ are arbitrary with c′ < c < cK(ϕ), the exponent mc′/(m+c′)
can be taken to approach c as closely as we want as m gets large. Hence
cK(ϕj) > cK(ϕ) − ε for j > j0(ε) large enough. Moreover, by what we have
seen above, if c < cK(ϕ) is fixed and 0 < δ < cK(ϕ)/c− 1, there exists j1(δ) such
that the sequence (e−2cϕj )j>j1(δ) is contained in a bounded set of L1+δ(U), where
U is a small neighborhood of K. Therefore

∫

U∩{e−2cϕj>M}

e−2cϕjdV 6 C8M
−δ

for j > j1(δ), with a constant C8 independent of j. Since e−2cϕj converges
pointwise to e−2cϕ on Ω, an elementary argument based on Lebesgue’s bounded
convergence theorem shows that e−2cϕj converges to e−2cϕ in L1(U).
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To complete the proof, we need only proving the following effective estimate
for holomorphic functions, which is a special case of part (3) in the Main Theorem.

5.2. Lemma. Let Ω ⊂ Cn be a bounded pseudoconvex open set, and let fi ∈ O(Ω)
be a sequence of holomorphic functions converging uniformly to f ∈ O(Ω) on

every compact subset. Fix a compact set K ⊂ Ω and c < cK(f). Then there is a

neighborhood U of K and a uniform bound C > 0 such that

∫

U

|fi|
−2cdV 6 C

for i > i0 sufficiently large.

Proof. We already know by Theorem 3.3 that
∫
U
|fi|

−2cdV < +∞ for U small
enough and i large. Unfortunately, the proof given in Theorem 3.3 is not effective
because it depends (through the use of Hironaka’s theorem in the proof of estimates
1.7 (3) and (2.7.1)) on the use of a sequence of log resolutions on which we
have absolutely no control. We must in fact produce an effective version of
inequality (3.3.2).

The result of Lemma 5.2 is clearly local. Fix a point x0 ∈ K (which we assume
to be 0 for simplicity), real numbers c′, c′′ with c < c′′ < c′ < cK(f) 6 c0(f) and
an integer k so large that

c < c′′ −
n

k + 1
< c′′ < c′ < c0(f) −

n

k + 1
.

Let pk be the truncation at order k of the Taylor series of f at the origin. As
c0(pk) > c0(f) − n

k+1 > c′ by (3.3.2), there is a small ball B′ = B(0, r′0) such that

∫

B′

|pk|
−2c′dV < +∞.

Since the truncations pi,k of fi,k converge uniformly to pk on Cn as i → +∞,
Lemma 3.2 applied to the universal family of polynomials P (z, s) =

∑
|α|6k sαz

α

shows that for any ball B′′ ⋐ B′, there is a constant M > 0 and an integer i0 such
that ∫

B′′

|pi,k|
−2c′′dV 6 M for i > i0.

Let us write pi,k = fi − gi,k where gi,k consists of the sum of terms of degree > k
in the Taylor expansion of fi at the origin. By the Ohsawa-Takegoshi theorem
applied with the weight function ψ(x, y) = 2c log |fi(x)− gi,k(y)| on B′′ ×B′′ and
L = diagonal of Cn × Cn, there is a holomorphic function Fi on B′′ × B′′ such
that Fi(x, x) = 1 and

∫

B′′×B′′

|Fi(x, y)|
2|fi(x) − gi,k(y)|

−2c′′dV (x) dV (y) 6 C1
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with a constant C1 independent of i. The above L2 estimate shows that (Fi) is
bounded in L2 norm on B′′ ×B′′. Hence, there is a small ball B = B(0, r0) ⋐ B′′

such that |Fi(x, y)| > 1/2 on B ×B for all i > i0, and

(5.2.1)

∫

B×B

|fi(x) − gi,k(y)|
−2c′′dV (x) dV (y) 6 4C1.

Moreover, we have a uniform estimate |gi,k(y)| 6 C2|y|
k+1 on B with a constant

C2 independent of i. By integrating (5.2.1) with respect to y on the family of balls
|y| < (|fi(x)|/2C2)

1/(k+1), we find an estimate

(5.2.2)

∫

B

|fi(x)|
2n/(k+1)−2c′′dV (x) 6 C3.

As c′′ − n/(k + 1) > c, this is the desired estimate. It is interesting to observe
that the proof of the Main Theorem can now be made entirely independent of
Hironaka’s desingularization theorem. In fact, the only point where we used it is
in the inequality c0(pk) > c0(f) − n

k+1 , which we derived from Proposition 2.7.
The latter inequality can however be derived directly from the Ohsawa-Takegoshi
theorem through estimates for

∫
B×B |pk(x) + gk(y)|

−2cdV (x) dV (y).

5.3. Remark. It follows from the proof of Prop. 1.7 that the set of positive
exponents c such that |f |−2c is summable on a neighborhood of a compact set
K is always an open interval, namely ]0, cK(f)[. We conjecture that the same
property holds true more generally for an arbitrary psh function ϕ (“openness
conjecture”); the openness conjecture is indeed true in dimension 1, since we have
the well known necessary and sufficient criterion

e−2ϕ ∈ L1
loc(V (x0)) ⇔ ν(ϕ, x0) < 1

(as follows e.g. from [Sko72]). By using the Main Theorem, the openness conjecture
would imply the following stronger statement:

5.4. Strong openness conjecture. Let U ′ ⋐ U ⋐ X be relatively compact

open sets in a complex manifold X. Let ϕ be a psh function on X such that∫
U
e−ϕdV < +∞. Then there exists ε = ε(ϕ, U, U ′) such that for every ψ psh

on X

‖ψ − ϕ‖L1(U) < ε ⇒

∫

U ′

e−ψdV < +∞.

In other words, the integrability of e−ϕ near a given compact set K should be an

open property for the L1
loc (= weak) topology on P(X).

The main theorem only yields the weaker conclusion
∫

U ′

e−(1−δ)ψdV < +∞ for ‖ψ − ϕ‖L1(U) < ε = ε(ϕ, U, U ′, δ).
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§6. Existence of Kähler-Einstein metrics on Fano orbifolds

An orbifold is a complex variety X possessing only quotient singularities,
namely, every point x0 ∈ X has a neighborhood U isomorphic to a quotient
Ω/Φ where Φ = Φx0

is a finite group acting holomorphically on a smooth open
set Ω ⊂ Cn. Such an action can always be linearized, so we may assume that Φ
is a finite subgroup of GLn(C) and Ω a Φ-invariant neighborhood of 0 (with x0

being the image of 0). We may also assume that the elements of G distinct from
identity have a set of fixed points of codimension > 2 (otherwise, the subgroup
generated by these is a normal subgroup N of Φ, Ω/N is again smooth, and
Ω/Φ = (Ω/N)/(Φ/N)). The structure sheaf OX (resp. the m-fold canonical sheaf
K⊗m
X ) is then defined locally as the direct image by π : Ω → U ≃ Ω/Φ of the

subsheaf of Φ-invariant sections of the corresponding sheaf on Ω :

Γ(V,OX) = Γ(π−1(V ),OΩ)Φ, Γ(V,K⊗m
X ) = Γ(π−1(V ), K⊗m

Ω )Φ,

for all open subsets V ⊂ U . There is always an integer m0 (e.g. m0 = # Φ) such
that K⊗m0

Ω has Φ-invariant local generating sections, and then clearly K⊗m
X is an

invertible OX -module whenever m is divisible by the lowest common multiple µ
of the integers m0 occurring in the various quotients. Similarly, one can define
on U (and thus on X) the concepts of Kähler metrics, Ricci curvature form, etc,
by looking at corresponding Φ-invariant objects on Ω. We say that a compact
orbifold X is a Fano orbifold if K−µ

X is ample, which is the same as requiring

that K−µ
X admits a smooth hermitian metric with positive definite curvature. In

that case, we define the curvature of K−1
X to be 1/µ times the curvature of K−µ

X .
The integral of a differential form on X (say defined at least on Xreg) is always
computed upstairs, i.e.

∫
Ω/Φ

α = 1
#Φ

∫
Ω
π⋆α.

6.1. Definition. A compact orbifold X is said to be Kähler-Einstein if it possesses

a Kähler form ω = i
2π

∑
ωjkdzj ∧ dzk satisfying the Einstein condition

Ricci(ω) = λω

for some real constant λ, where where Ricci(ω) is the closed (1, 1)-form defined in

every coordinate patch by Ricci(ω) = − i
2π∂∂ log det(ωjk).

Since Ricci(ω) is the curvature form of K−1
X = detTX equipped with the

metric detω, a necessary condition for the existence of a Kähler-Einstein metric
with constant λ > 0 is that K−1

X is ample, i.e., that X is Fano. On the other
hand, it is well known that not all Fano orbifolds are Kähler-Einstein, even when
they are smooth; further necessary conditions are required, e.g. that the group
of automorphisms Aut(X)◦ is reductive ([Mat57], [Lic57]), and that the Futaki

invariants vanish [Fut83]; for instance P2 blown up in 2 points has a non reductive
group of automorphisms and therefore is not Kähler-Einstein.

It is usually much harder to prove that a concretely given Fano orbifold
is Kähler-Einstein. Siu [Siu87, 88], and slightly later Tian [Tia87] and Nadel
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[Nad89, 90], gave nice sufficient conditions ensuring the existence of a Kähler-
Einstein metric; these conditions always involve the existence of a sufficiently big
group of automorphisms. Our goal here is to reprove Nadel’s main result in a more
direct and conceptual way.

6.2. Technical setting. We first briefly recall the main technical tools and
notation involved (see e.g. [Siu87] for more details). The anticanonical line bundle
K−1
X is assumed to be ample. Therefore it admits a smooth hermitian metric h0

whose (1, 1)-curvature form θ0 = i
2πD

2
h0

is positive definite. Since θ0 ∈ c1(X), the
Aubin-Calabi-Yau theorem shows that there exists a Kähler metric ω0 ∈ c1(X)
such that Ricci(ω0) = θ0. [The Aubin-Calabi-Yau is still valid in the orbifold
case, because the proof depends only on local regularity arguments which can be
recovered by passing to a finite cover, and global integral estimates which still
make sense by the remark preceding Def. 6.1]. Since both θ0 and ω0 are in c1(X),
we have

(6.2.1) ω0 = θ0 +
i

2π
∂∂f for some f ∈ C∞(X).

We look for a new Kähler form ω = ω0 + i
2π∂∂ϕ in the same Kähler class as ω0,

such that Ricciω = ω. Since Ricci(ω0) = θ0, this is equivalent to

−
i

2π
∂∂ log(detω) = ω = θ0 +

i

2π
∂∂(ϕ+ f) = −

i

2π
∂∂ log(detω0) +

i

2π
∂∂(ϕ+ f),

that is,

∂∂
(

log
detω

detω0
+ ϕ+ f

)
= 0,

which in its turn is equivalent to the Monge-Ampère equation

(6.2.2) log
(ω0 + i

2π
∂∂ϕ)n

ωn0
+ ϕ+ f + C = 0

where C is a constant. Here, one can normalize ϕ so that ϕ is orthogonal to the
1-dimensional space of constant functions in L2(X,ω0), i.e.,

∫
X
ϕωn0 = 0. The

usual technique employed to solve (6.2.2) is the so-called “continuity method”.
The continuity method amounts to introducing an extra parameter t ∈ [0, 1] and
looking for a solution (ϕt, Ct) of the equation

(6.2.3) log
(ω0 + i

2π∂∂ϕt)
n

ωn0
+ t(ϕt + f) + Ct = 0,

∫

X

ϕtω
n
0 = 0

as t varies from 0 to 1. Clearly ϕ0 = 0, C0 = 0 is a solution for t = 0 and
(ϕ,C) = (ϕ1, C1) provides a solution of our initial equation (6.2.2). Moreover, the
linearization of the (nonlinear) elliptic differential operator occuring in (6.2.3) is
the operator

(6.2.4) (ψ,C) 7−→
1

2π
∆ωt

ψ + tψ + C
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where ωt is the Kähler metric ωt = ω0 + i
2π∂∂ϕt and ∆ωt

is the associated Laplace
operator (with negative eigenvalues). The equation (6.2.3) is easily seen to be
equivalent to

Ricci(ωt) = tωt + (1 − t)θ0.

From this we infer Ricci(ωt) > tωt for all t < 1, and it then follows from the
Bochner-Kodaira-Nakano identity that all nonzero eigenvalues of − 1

2π∆ωt
are > t

(this is clear directly for − 1
2π

∆ωt
acting on (0, 1)-forms, and one uses the fact that ∂

maps the λ-eigenspace Ep,q(λ) of − 1
2π∆ωt

in bidegree (p, q) into the corresponding
eigenspace Ep,q+1(λ)). Then, thanks to Schauder’s estimates, (6.2.4) induces an
isomorphism C

s+2
⊥ (X) ⊕ R → Cs(X) where s ∈ R+ r N and Cs(X) (resp. Cs⊥(X))

is the space of real functions (resp. real functions orthogonal to constants) of class
Cs on X . Let T ⊂ [0, 1] be the set of parameters t for which (6.2.3) has a smooth
solution. By elliptic regularity for (nonlinear) PDE equations, the existence of
a smooth solution is equivalent to the existence of a solution in Cs(X) for some
s > 2. It then follows by a standard application of the implicit function theorem
that T ∩ [0, 1[ is an open subset of the interval [0, 1[.

6.3. Sufficient condition for closedness. In order to obtain a solution for all
times t ∈ [0, 1], one still has to prove that T is closed. By the well-known theory
of complex Monge-Ampère equations ([Aub78], [Yau78]), a sufficient condition for
closedness is the existence of a uniform a priori C0-estimate ‖ϕ̃t‖C0 6 Const for the
family of functions ϕ̃t = tϕt+Ct, t ∈ T, occuring in the right hand side of (6.2.3).
A first observation is that

(6.3.1) sup
X
ϕt 6 Const, hence sup

X
ϕ̃t 6 Ct + Const,

as follows from the conditions
∫
X
ϕtω

n
0 = 0 and i

2π
∂∂ϕt > −ω0, by simple

considerations of potential theory. On the other hand, by [Siu88, Prop. 2.1] or
[Tia87, Prop. 2.3], we have the Harnack-type inequality

(6.3.2) sup
X

(−ϕ̃t) 6 (n+ ε) sup
X
ϕ̃t + Aε,

where ε > 0 and Aε is a constant depending only on ε. Hence supX(−ϕ̃t) 6

(n + ε)Ct + A′
ε and we thus only need controlling the constants Ct from above.

Now, equation (6.2.3) implies
∫

X

ωn0 =

∫

X

(
ω0 +

i

2π
∂∂ϕt

)n
=

∫

X

e−ϕ̃t−tfωn0 .

For γ ∈ ]0, 1[, we easily infer from this and (6.3.2) that
∫

X

ωn0 6 Const exp
(
(1 − γ) sup

X
(−ϕ̃t)

) ∫

X

e−γϕ̃tωn0

6 Constε e
(1−γ)(n+ε)Ct

∫

X

e−γϕ̃tωn0

6 Constε e
−(γ−(1−γ)(n+ε))Ct

∫

X

e−γtϕtωn0 .
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If γ ∈ ] n
n+1 , 1[ and ε is small enough, we conclude that Ct admits an upper bound

of the form

Ct 6 B′
γ log

∫

X

e−γtϕtωn0 +B′′
γ

where B′
γ and B′′

γ depend only on γ. Hence closedness of T is equivalent to the
uniform boundedness of the integrals

(6.3.3)

∫

X

e−γtϕtωn0 , t ∈ T,

for any choice of γ ∈ ] n
n+1 , 1[.

This yields the following basic existence criterion due to Nadel [Nad89, 90].

6.4. Existence criterion for Kähler-Einstein metrics. Let X be a Fano

orbifold of dimension n. Let G be a compact subgroup of the group of complex

automorphisms of X. Then X admits a G-invariant Kähler-Einstein metric,

unless K−1
X possesses a G-invariant singular hermitian metric h = h0e

−ϕ (h0 being

a smooth G-invariant metric and ϕ a G-invariant function in L1
loc(X)), such that

the following properties occur.

(1) h has a semipositive curvature current

Θh = −
i

2π
∂∂ logh = Θh0

+
i

2π
∂∂ϕ > 0.

(2) For every γ ∈ ] n
n+1

, 1[, the multiplier ideal sheaf I(γϕ) is nontrivial, (i.e.
0 6= I(γϕ) 6= OX).

According to the general philosophy of orbifolds, the orbifold concept of a
multiplier ideal sheaf I(γϕ) is that the ideal sheaf is to be computed upstairs on a
smooth local cover and take the direct image of the subsheaf of invariant functions
by the local isotropy subgroup; this ideal coincides with the multiplier ideal sheaf
computed downstairs only if we take downstairs the volume form which is the push
forward of an invariant volume form upstairs (which is in general definitely larger
than the volume form induced by a local smooth embedding of the orbifold).

Proof. Let us start with a G-invariant Kähler metric ω0 = i
2π∂∂ logh−1

0 , where h0

and ω0 have the same meaning as in 6.2; indeed, if h0 is not G-invariant, we can
average it by using the G-action, that is, we define a new metric (hG0 )−1 on KX

by putting

(hG0 )−1 =

∫

g∈G

g⋆h−1
0 dµ(g),

and we again have ωG0 := i
2π∂∂ log(hG0 )−1 > 0. Now, all ϕt can be taken to be G-

invariant. If the continuity process ceases to produce a solution ϕt at t = t0 ∈ [0, 1]
(thus, if t0 ∈ T r T), there exists a sequence tν ∈ T converging to t0 and (6.3.3)
implies limν→+∞

∫
X
e−γtνϕtνωn0 = +∞ for every γ ∈ ] n

n+1
, 1[. As the space of
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closed positive currents contained in a given cohomology class is compact for the
weak topology, one can extract a subsequence Θ(p) = ω0 + i

2π∂∂ϕtν(p)
converging

weakly to a limit Θ = ω0 + i
2π
∂∂ϕ > 0. The potential ϕ can be recovered from

Tr Θ by means of the Green kernel, and therefore, by the well-known properties of
the Green kernel, we infer that ϕtν(p)

converges to ϕ in L1(X). The semicontinuity
theorem in its effective version 0.2.2 shows that

∫

X

e−γt0ϕωn0 = +∞ for all γ ∈ ] n
n+1 , 1[,

and therefore
∫
X
e−γϕωn0 = +∞ for all γ ∈ ] n

n+1
, 1[. From this we conclude that

I(γϕ) 6= OX . The fact that I(γϕ) 6= 0 is clear since ϕ 6≡ −∞.

Before going further, we need Nadel’s vanishing theorem (a generalized version
of the well-known Kawamata-Viehweg vanishing theorem. It is known to be a
rather simple consequence of Hörmander’s L2 estimates, see e.g. [Dem89], [Nad89],
[Dem93b] or [Dem94]).

6.5. Nadel vanishing theorem. Let (X,ω) be a Kähler orbifold and let L be a

holomorphic orbifold line bundle over X equipped with a singular hermitian metric

h of weight ϕ with respect to a smooth metric h0 (i.e. h = h0e
−ϕ). Assume that

the curvature form Θh(L) = i
2πD

2
h is positive definite in the sense of currents, i.e.

Θh(L) > εω for some ε > 0. If KX ⊗ L is an invertible sheaf on X, we have

Hq
(
X,KX ⊗ L⊗ I(ϕ)

)
= 0 for all q > 1.

Recall that an “orbifold line bundle” L, is a rank 1 sheaf which is locally an
invariant direct image of an invertible sheaf on Ω by the local quotient maps
Ω → Ω/Φ ; L itself need not be invertible; similarly, ⊗ is meant to be the orbifold
tensor product, i.e., we take the tensor product upstairs on Ω and take the direct
image of the subsheaf of invariants. The proof is obtained by the standard L2

estimates applied on Xreg with respect to an orbifold Kähler metric on X . It is
crucial that KX ⊗L be invertible on X , otherwise the set of holomorphic sections
of KX ⊗ L satisfying the L2 estimate with respect to the weight e−ϕ might differ
from the orbifold tensor product KX ⊗ L ⊗ I(ϕ) [and also, that tensor product
might be equal to KX ⊗ L even though I(ϕ) is non trivial].

6.6. Corollary. Let X, G, h and ϕ be as in Criterion 6.4. Then, for all

γ ∈ ] n
n+1 , 1[,

(1) the multiplier ideal sheaf I(γϕ) satisfies

Hq(X, I(γϕ)) = 0 for all q > 1.

(2) the associated subscheme Vγ of structure sheaf OVγ
= OX/I(γϕ) is nonempty,

distinct from X, G-invariant and satisfies

Hq(Vγ ,OVγ
) =

{
C for q = 0,
0 for q > 1.
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Proof. Apply Nadel’s vanishing theorem to L = K−1
X equipped with the singular

hermitian metric hγ = h0e
−γϕ. Then Θhγ

= γΘh + (1 − γ)Θh0
> (1 − γ)ω0 > 0,

and (1) follows. Finally, since X is Fano, we get

Hq(X,OX) = 0 for all q > 1,

by Kodaira vanishing for L = K−1
X . The exact sequence

0 → I(γϕ) → OX → OVγ
→ 0

immediately implies (2).

The strategy employed by Nadel [Nad90] to construct Kähler-Einstein metrics
is to rule out the existence of any G-invariant subscheme with the properties
described in 6.6 (2). Of course, this is easier to achieve if G is large. One uses
the following observations (assuming that the closedness property fails, so that all
subschemes Vγ are nontrivial).

6.7. Proposition. All subschemes Vγ are connected. Therefore, if G has no fixed

points, Vγ cannot be 0-dimensional.

Proof. The connectedness of Vγ is a straightforward consequence of the equality
H0(Vγ ,OVγ

) = C.

6.8. Proposition. If Vγ contains irreducible components Zj of codimension 1,
then the corresponding divisor Z =

∑
mjZj satisfies the numerical inequality

[Z] 6 γ[K−1
X ] in the sense that γ[K−1

X ]− [Z] can be represented by a closed positive

current. In particular, one always has the inequality

(−KX)n−1 · Z 6 γ(−KX)n.

If K−1
X generates the group W (X) of Weil divisors of X modulo numerical

equivalence, then Vγ must have codimension > 2.

In the smooth case we have of course W (X) = Pic(X), but in general Pic(X) is a
subgroup of finite index in W (X).

Proof. Consider the closed positive (1, 1) current Θh = ω0+ i
2π∂∂ϕ (which belongs

to the first Chern class c1(K
−1
X )), and let

Θh =
∑

λj [Zj] +R, λj > 0, R > 0

be the Siu decomposition of Θh (namely, the [Zj ] ’s are currents of integration
over irreducible divisors and R is a closed (1, 1)-current which has nonzero Lelong
numbers only in codimension 2). It is then easy to see that the subscheme Vγ
defined by I(γϕ) precisely has [Z] =

∑
⌊γλj⌋ [Zj ] as its 1-codimensional part

(here, ⌊ ⌋ denotes the integral part). Hence γΘh − [Z] > 0 as asserted. If K−1
X
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generates Pic(X), this implies Z = 0, since there cannot exist any nonzero effective
integral divisor numerically smaller than [K−1

X ].

When dimX = 3, G has no fixed points and K−1
X generates W (X), we are

only left with the case Vγ is of pure dimension 1. This case can sometimes be
ruled out by observing that certain groups cannot act effectively on the curve Vγ
(As H1(Vγ,OVγ

) = 0, Vγ is a tree of rational curves; see Nadel [Nad90, Th. 4.1,
4.2 and Cor. 4.1]).

Further a priori inequalities can be derived for certain components of the
multiplier ideal subschemes Vγ . Especially, for components of codimension 2, we
have the following simple bound, based on a use of a self-intersection inequality
for the current Θ = ω0 + i

2π
∂∂ϕ.

6.9. Proposition. Assume that W (X) is generated by K−1
X and that a is

a nonnegative number such that the orbifold vector bundle TX ⊗ O(−aKX) is

numerically effective. Then the codimension 2 components Zj of Vγ satisfy the

inequality ∑ 1

δj
νj(νj − 1)(−KX)n−2 · Zj 6 (1 + a)(−KX)n

where νj > 1/γ is the generic Lelong number of Θ = ω0 + i
2π∂∂ϕ along Zj, and

δj is the order of the local isotropy group of the orbifold at a generic point in Zj.
Especially, if γ is taken to be sufficiently close to n

n+1 , we have

∑
(−KX)n−2 · Zj 6

n2

n+ 1
δ(1 + a)(−KX)n

where δ is the maximum of the the orders of the isotropy groups.

Proof. Since Vγ is of codimension 2 for γ arbitrarily close to 1, the generic Lelong
number of ϕ must be 6 1 along all components of codimension 1 in the Lelong
sublevel sets Ec(ϕ) = Ec(Θ) [again, Lelong numbers and Lelong sublevel sets are
to be interpreted upstairs, on a smooth finite cover]. If a codimension 2 component
Zj occurs in I(γϕ), the generic Lelong number γνj of γϕ along that component
must be > 1, hence νj > 1/γ. We now apply the regularization theorem for
closed (1, 1)-currents ([Dem92], Main Theorem). For every c > 1 we obtain a
current Θh,c cohomologous to Θ (hence in the class c1(K

−1
X )), which is smooth on

X r Ec(Θ), thus smooth except on an analytic set of codimension > 2, such that
Θh,c > −(ca+ ε)ω0 and such that the Lelong numbers of Θh,c are shifted by c, i.e.
νx(Θh,c) = (νx(Θ) − c)+. The intersection product Θ ∧ (Θc + (ca + ε)ω0) is well
defined, belongs to the cohomology class (1 + ca + ε)(−KX)2 and is larger than∑

1
δj
νj(νj − c)[Zj] as a current. Hence, by taking the intersection with the class

(−KX)n−2 we get

∑ 1

δj
νj(νj − c)(−KX)n−2 · Zj 6 (1 + ca+ ε)(−KX)n.



§6. Existence of Kähler-Einstein metrics on Fano orbifolds 33

[The extra factor 1/δj occurs because we have to divide by δj to convert an integral
on a finite cover Ω to an integral on the quotient Ω/Φ]. As c tends to 1 + 0 and ε
tends to 0+, we get the desired inequality. The last observation comes from the
fact that I(Vγ) must be constant on some interval ] n

n+1 ,
n
n+1 +δ[, by the Noetherian

property of coherent sheaves.

6.10. Example. Let Pa = P3(a0, a1, a2, a3) be the weighted projective 3-space
with weights a0 6 a1 6 a2 6 a3 such that the components ai are relatively prime
3 by 3. It is equipped with an orbifold line bundle OX(1) which, in general, is not
locally free. Let t = a0 + a1 + a2 + a3 and

X =
{
P (x0, x1, x2, x3) = 0

}

be a generic surface of weighted degree d in Pa. It is known (see Fletcher [Fle89])
that X has an orbifold structure (i.e., is quasi-smooth in the terminology of
Dolgachev [Dol82]), if and only if the following conditions are satisfied:

(i) For all j, there exists a monomial xmj xk(j) of degree d ;

(ii) For all distinct j, k, either there exists a monomial xmj x
p
k of degree d, or there

exist monomials xm1
j xp1k xℓ1 , x

m2
j xp2k xℓ2 of degree d with ℓ1 6= ℓ2 ;

(iii)For all j, there exists a monomial of degree d which does not involve xj .

Moreover, −KX = OX(t− d) (and hence (−KX)2 = d(t− d)2/(a0a1a2a3)) if and
only if the following condition also holds:

(iv)For every j, k such that aj and ak are not relatively prime, there exists a
monomial xmj x

p
k of degree d.

We would like to use the conditions of Propositions 6.8 and 6.9 to show that X
carries a Kähler-Einstein metric.

Proposition 6.8 clearly applies if we can prove that (−KX) ·Z > 2
3 (−KX)2 for

every effective curve on X . This is not a priori trivial in the examples below since
the Picard numbers will always be bigger than 1. Using the torus action, every
curve on a weighted projective space can be degenerated to a sum of lines of the
form (xi = xj = 0). Thus (−KX) · Z is bounded from below by (t − d)/(a2a3).
Thus (−KX) · Z > 2

3
(−KX)2 holds if

t− d

a2a3
>

2

3

d(t− d)2

a0a1a2a3
, i.e. a0a1 >

2

3
d(t− d).

In the examples we give at the end, which all concern the case d = t − 1, this is
always satisfied.

In order to apply Proposition 6.9, we need to determine TX . We have exact
sequences

0 → OPa
→

⊕
OPa

(ai) → TPa
→ 0,

0 → TX → TPa|X → OX (d) → 0,
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and we get from there a surjective arrow

⊕
OX(ai) → OX(d)

given explicitly by the matrix (∂P/∂xi). From the above exact sequences, we find
a sequence of surjective arrows

⊕

i<j

OX (ai + aj) → OX (Λ2TPa|X) → TX ⊗ OX (d).

(Of course, formally speaking, we are dealing with orbifold vector bundles, which
can be considered as locally free sheaves only when we pass to a finite Galois
cover). Moreover, ⊕

i6=k 6=j

OX(ai + aj) → TX ⊗ OX(d)

is surjective over the open set where xk 6= 0. This proves that, as an orbifold vector
bundle, TX⊗OX(d−a0−a2) is nef if the line (x0 = x1 = 0) is not contained in X .

The maximal order δ of the isotropy groups is less than a3 – which is indeed
the maximum for Pa itself – resp. a2 if a3 divides d, since in that case a generic
surface of degree d does not pass through the point [0 : 0 : 0 : 1]. This shows that
we can take a = (d− a0 − a2)/(t− d) in Proposition 6.9, and as the Zj are points
and n = 2, we find the condition

1 6
4

3
a3

(
1 +

d− a0 − a2

t− d

)d(t− d)2

a0a1a2a3
,

with the initial a3 being replaced by a2 if a3 divides d. We thus compute the ratio

ρa =
4

3

d(t− d)(t− a0 − a2)

a0a1a2
if a3 6 | d,

ρa =
4

3

d(t− d)(t− a0 − a2)

a0a1a3
if a3|d,

and when ρa < 1 we can conclude that the Del Pezzo surface is Kähler-Einstein.
Clearly, this is easier to reach when t− d is small, and we concentrated ourselves
on the case d = t − 1. It is then easy to check that ρa is never less than 1 when
a0 = a1 = 1. On the other hand, a computer check seems to indicate that there is
only a finite list of weights with a0 > 2 satisfying the Fletcher conditions, which
all satisfy a0 6 14*. Among these, 2 cases lead to ρa < 1, namely

a = (11, 49, 69, 128), d = 256, ρa ≃ 0.875696, x17
0 x2 + x0x

5
1 + x1x

3
2 + x2

3 = 0,
a = (13, 35, 81, 128), d = 256, ρa ≃ 0.955311, x17

0 x1 + x0x
3
2 + x5

1x2 + x2
3 = 0.

* Added after proof: this has actually been shown to be true in [JK01].
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It turns out that there are no other monomials of degree d than those occurring
in the above equations. As a result, the above Kähler-Einstein Del Pezzo surfaces
are rigid as weighted hypersurfaces.

There are several ways to improve the estimates. For instance,

TX ⊗ OX(d− a1 − a2)

is nef except possibly along the irreducible components of the curve (x0 = 0) ⊂ X .
The restriction of the tangent bundle to these curves can be computed by hand.
This improvement is sufficient to conclude that Propositions 6.8 and 6.9 also apply
in one further case:

a = (9, 15, 17, 20), d = 60, x5
0x1 + x0x

3
2 + x4

1 + x3
3 = 0.

This is again a rigid weighted hypersurface. We would like to thank P. Boyer
and K. Galicki for pointing out a numerical error which had been committed in an
earlier version of this work, where a further (incorrect) example a = (11, 29, 39, 49),
d = 127 was claimed. In [BG00], it is shown that the three above examples lead
to the construction of non regular Sasakian-Einstein 5-manifolds.
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