## Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: $325-339$
(C) TÜBİTAK
doi:10.3906/mat-1306-46

# Semi-cotangent bundle and problems of lifts 

Furkan YILDIRIM, Arif SALIMOV*

Department of Mathematics, Faculty of Science, Atatürk University, Erzurum Turkey

Received: 23.06.2013 • Accepted: 03.10.2013 • Published Online: 27.01.2014 • Printed: 24.02 .2014


#### Abstract

Using the fiber bundle M over a manifold B , we define a semi-cotangent (pull-back) bundle $\mathrm{t}^{*} \mathrm{~B}$, which has a degenerate symplectic structure. We consider lifting problem of projectable geometric objects on $M$ to the semi-cotangent bundle. Relations between lifted objects and a degenerate symplectic structure are also presented.


Key words: Vector field, complete lift, basic 1-form, semi-cotangent bundle

## 1. Introduction

Let $M_{n}$ be an $n$-dimensional differentiable manifold of class $C^{\infty}$ and $\pi_{1}: M_{n} \rightarrow B_{m}$ the differentiable bundle determined by a submersion $\pi_{1}$. Suppose that $\left(x^{i}\right)=\left(x^{a}, x^{\alpha}\right), a, b, \ldots=1, \ldots, n-m ; \alpha, \beta, \ldots=$ $n-m+1, \ldots, n ; i, j, \ldots=1,2, \ldots, n$ is a system of local coordinates adapted to the bundle $\pi_{1}: M_{n} \rightarrow B_{m}$, where $x^{\alpha}$ are coordinates in $B_{m}$, and $x^{a}$ are fiber coordinates of the bundle $\pi_{1}: M_{n} \rightarrow B_{m}$. If ( $\left.x^{a^{\prime}}, x^{\alpha^{\prime}}\right)$ is another system of local adapted coordinates in the bundle, then we have

$$
\left\{\begin{array}{c}
x^{a^{\prime}}=x^{a^{\prime}}\left(x^{b}, x^{\beta}\right),  \tag{1.1}\\
x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{\beta}\right) .
\end{array}\right.
$$

The Jacobian of (1.1) has components

$$
\left(A_{j}^{i^{\prime}}\right)=\left(\frac{\partial x^{i^{\prime}}}{\partial x^{j}}\right)=\left(\begin{array}{cc}
A_{b}^{a^{\prime}} & A_{\beta}^{a^{\prime}} \\
0 & A_{\beta}^{\alpha^{\prime}}
\end{array}\right)
$$

Let $T_{x}^{*}\left(B_{m}\right)\left(x=\pi_{1}(\widetilde{x}), \widetilde{x}=\left(x^{a}, x^{\alpha}\right) \in M_{n}\right)$ be the cotangent space at a point $x$ of $B_{m}$. If $p_{\alpha}$ are components of $p \in T_{x}^{*}\left(B_{m}\right)$ with respect to the natural coframe $\left\{d x^{\alpha}\right\}$, i.e. $p=p_{i} d x^{i}$, then by definition the set of all points $\left(x^{I}\right)=\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right), x^{\bar{\alpha}}=p_{\alpha}, \bar{\alpha}=\alpha+m, I=1, \ldots, n+m$ is a semi-cotangent bundle $t^{*}\left(B_{m}\right)$ over the manifold $M_{n}$.

The semi-cotangent bundle $t^{*}\left(B_{m}\right)$ has the natural bundle structure over $B_{m}$, its bundle projection $\pi: t^{*}\left(B_{m}\right) \rightarrow B_{m}$ being defined by $\pi:\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right) \rightarrow\left(x^{\alpha}\right)$. If we introduce a mapping $\pi_{2}: t^{*}\left(B_{m}\right) \rightarrow M_{n}$ by $\pi_{2}:\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right) \rightarrow\left(x^{a}, x^{\alpha}\right)$, then $t^{*}\left(B_{m}\right)$ has a bundle structure over $M_{n}$. It is easily verified that $\pi=\pi_{1} \circ \pi_{2}$.

[^0]On the other hand, let now $\pi: E \rightarrow B$ be a fiber bundle and let $f: B^{\prime} \rightarrow B$ be a differentiable map. It is well known that the pull-back (induced) bundle or Whitney product is defined by the total space (see, for example $[2,3,6]$ )

$$
f^{*} E=\left\{\left(b^{\prime}, e\right) \in B^{\prime} \times E \mid f\left(b^{\prime}\right)=\pi(e)\right\} \subset B^{\prime} \times E
$$

and the projection map $\pi^{\prime}: f^{*} E \rightarrow B^{\prime}$ is given by the projection onto the first factor, i.e.

$$
\pi^{\prime}\left(b^{\prime}, e\right)=b^{\prime}
$$

The generalization of pull-back bundles to higher order cases is known as Pontryagin bundles [4].
From the above definition it follows that the semi-cotangent bundle $\left(t^{*}\left(B_{m}\right), \pi_{2}\right)$ is a pull-back bundle of the cotangent bundle over $B_{m}$ by $\pi_{1}$.

To a transformation (1.1) of local coordinates of $M_{n}$, there corresponds on $t^{*}\left(B_{m}\right)$ the coordinate transformation

$$
\left\{\begin{align*}
x^{a^{\prime}} & =x^{a^{\prime}}\left(x^{b}, x^{\beta}\right)  \tag{1.2}\\
x^{\alpha^{\prime}} & =x^{\alpha^{\prime}}\left(x^{\beta}\right) \\
x^{\bar{\alpha}^{\prime}} & =\frac{\partial x^{\beta}}{\partial x^{\alpha^{\prime}}} x^{\bar{\beta}}
\end{align*}\right.
$$

The Jacobian of (1.2) is given by

$$
\bar{A}=\left(A_{J}^{I^{\prime}}\right)=\left(\begin{array}{ccc}
A_{b}^{a^{\prime}} & A_{\beta}^{a^{\prime}} & 0  \tag{1.3}\\
0 & A_{\beta}^{\alpha^{\prime}} & 0 \\
0 & p_{\sigma} A_{\beta}^{\beta} A_{\beta^{\prime} \alpha^{\prime}}^{\alpha} & A_{\alpha^{\prime}}^{\beta}
\end{array}\right)
$$

where

$$
A_{\beta^{\prime} \alpha^{\prime}}^{\alpha}=\frac{\partial^{2} x^{\alpha}}{\partial x^{\beta^{\prime}} \partial x^{\alpha^{\prime}}}
$$

It is easily verified that the condition $\operatorname{Det} \bar{A} \neq 0$ is equivalent to the non-vanishing of the diagonal matrices:

$$
\operatorname{Det}\left(A_{b}^{a^{\prime}}\right) \neq 0, \quad \operatorname{Det}\left(A_{\beta}^{\alpha^{\prime}}\right) \neq 0, \quad \operatorname{Det}\left(A_{\alpha^{\prime}}^{\beta}\right) \neq 0
$$

Also, $\operatorname{dim} t^{*}\left(B_{m}\right)=n+m$. In the special case $n=m, t^{*}\left(B_{m}\right)$ is a cotangent bundle $T^{*}\left(M_{n}\right)[8, \mathrm{p}$. 224].

We note that semi-tangent bundles and their properties were studied in $[1,5,7]$. The main purpose of this paper is to study semi-cotangent bundles and some of their lift problems.

We denote by $\Im_{q}^{p}\left(B_{m}\right)$ the module over $F\left(B_{m}\right)$ of all tensor fields of type $(p, q)$ on $B_{m}$, where $F\left(B_{m}\right)$ denotes the ring of real-valued $C^{\infty}$-functions on $B_{m}$.

## 2. Basic 1-form in the semi-cotangent bundle

Let us consider a 1-form $p$ in $\pi^{-1}(U) \in t^{*}\left(B_{m}\right), U \subset B_{m}$, whose components are $\left(0, p_{\alpha}, 0\right)$. Taking account of (1.3), we easily see that $p=\bar{A} p^{\prime}$, where

$$
p=\left(0, p_{\alpha}, 0\right), p^{\prime}=\left(0, p_{\alpha^{\prime}}, 0\right)
$$

We call the 1-form $p$ a basic 1 -form on $t^{*}\left(B_{m}\right)$.
The exterior differential $d p$ of the basic 1 -form $p$ is the 2 -form given by

$$
d p=d p_{\alpha} \wedge d x^{\alpha}
$$

Hence, if we write $d p=\omega=\frac{1}{2} \omega_{A B} d x^{A} \wedge d x^{B}$, then we have

$$
\omega=\left(\omega_{A B}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\delta_{\beta}^{\alpha} \\
0 & \delta_{\alpha}^{\beta} & 0
\end{array}\right)
$$

where $A=(a, \alpha, \bar{\alpha}), B=(b, \beta, \bar{\beta})$. Since $d \omega=d^{2} p=0$, we have:

Theorem 1 The semi-cotangent bundle $t^{*}\left(B_{m}\right)$ has a degenerate symplectic structure $\omega$.

## 3. Vertical lift of 1-form

If $f$ is a function on $B_{m}$, we write ${ }^{v v} f$ for the function on $t^{*}\left(B_{m}\right)$ obtained by forming the composition of $\pi: t^{*}\left(B_{m}\right) \rightarrow B_{m}$ and ${ }^{v} f=f \circ \pi_{1}$, so that

$$
\begin{equation*}
{ }^{v v} f={ }^{v} f \circ \pi_{2}=f \circ \pi_{1} \circ \pi_{2}=f \circ \pi \tag{3.1}
\end{equation*}
$$

Then we have

$$
{ }^{v v} f\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)=f\left(x^{\alpha}\right)
$$

Thus, the value ${ }^{v v} f$ is constant along each fiber of $\pi: t^{*}\left(B_{m}\right) \rightarrow B_{m}$. We call ${ }^{v v} f$ the vertical lift of the function $f$.

Let $\widetilde{X} \in \Im_{0}^{1}\left(t^{*}\left(B_{m}\right)\right)$ be a vector field such that $\widetilde{X}\left({ }^{v v} f\right)=0$ for all functions $f \in \Im_{0}^{0}\left(B_{m}\right)$. Then we say that $\widetilde{X}$ is a vertical vector field on $t^{*}\left(B_{m}\right)$. If $\left(\begin{array}{c}\widetilde{X}^{a} \\ \widetilde{X}^{\alpha} \\ \widetilde{X}^{\bar{\alpha}}\end{array}\right)$ are components of $\widetilde{X}$ with respect to the induced coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$, then for the vertical vector field we have

$$
\begin{aligned}
\widetilde{X}^{a} \partial_{a}{ }^{v v} f+\widetilde{X}^{\alpha} \partial_{\alpha}{ }^{v v} f+\widetilde{X}^{\bar{\alpha}} \partial_{\bar{\alpha}}{ }^{v v} f & =0 \\
\widetilde{X}^{\alpha} \partial_{\alpha}{ }^{v v} f & =0 \\
\widetilde{X}^{\alpha} & =0
\end{aligned}
$$

Thus, the vertical vector field $\widetilde{X}$ on $t^{*}\left(B_{m}\right)$ has components

$$
\widetilde{X}=\left(\widetilde{X}^{A}\right)=\left(\begin{array}{c}
\tilde{X}^{a} \\
0 \\
\tilde{X}^{\bar{\alpha}}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$.

Let $\omega$ be a 1 -form with local components $\omega_{\alpha}$ on $B_{m}$, so that $\omega$ is a 1-form with local expression $\omega=\omega_{\alpha} d x^{\alpha}$. On putting

$$
{ }^{v v} \omega=\left(\begin{array}{c}
0  \tag{3.2}\\
0 \\
\omega_{\alpha}
\end{array}\right)
$$

we have a vector field ${ }^{v v} \omega$ on $t^{*}\left(B_{m}\right)$. In fact, from (1.3) we easily see that $\left({ }^{v v} \omega\right)^{\prime}=\bar{A}\left({ }^{v v} \omega\right)$. The vector field thus introduced is called the vertical lift of the 1 -form $\omega$ to $t^{*}\left(B_{m}\right)$. Clearly, we have

$$
{ }^{v v} \omega\left({ }^{v v} f\right)=0
$$

for any $f \in \Im_{0}^{0}\left(B_{m}\right)$, so that ${ }^{v v} \omega$ is a vertical vector field. In particular, if $\omega=p$, then ${ }^{v v} p$ is a Liouville covector field on $t^{*}\left(B_{m}\right)$.

From (3.2) we have:
Theorem 2 For any 1 -forms $\omega, \theta$ and function $f$ on $B_{m}$,
(i) ${ }^{v v}(\omega+\theta)={ }^{v v} \omega+{ }^{v v} \theta$,
(ii) ${ }^{v v}(f \omega)={ }^{v v} f{ }^{v v} \omega$.

For the natural coframe $d x^{\alpha}$ in each $U$, from (3.2) we have in $\pi^{-1}(U)$

$$
{ }^{v v}\left(d x^{\alpha}\right)=\frac{\partial}{\partial p_{\alpha}}
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$.

## 4. $\gamma$-Operator

Let $X$ be a vector field on $B_{m}$. We define a function $\gamma X$ on $t^{*}\left(B_{m}\right)$ by

$$
\begin{equation*}
\gamma X=p_{\beta} X^{\beta} \tag{4.1}
\end{equation*}
$$

For any $F \in \Im_{1}^{1}\left(B_{m}\right)$, if we take account of (1.3), we can prove that $(\gamma F)^{\prime}=\bar{A}(\gamma F)$ where $\gamma F$ is a vector field defined by

$$
\gamma F=\left(\gamma F^{A}\right)=\left(\begin{array}{c}
0  \tag{4.2}\\
0 \\
p_{\beta} F_{\alpha}^{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$. Then we have

$$
(\gamma F)^{v v}(f)=0
$$

for any $f \in \Im_{0}^{0}\left(B_{m}\right)$, i.e. $\gamma F$ is a vertical vector field on $t^{*}\left(B_{m}\right)$.
Let $T \in \Im_{2}^{1}\left(B_{m}\right)$. On putting

$$
\gamma T=\left(\gamma T_{B}^{A}\right)=\left(\begin{array}{ccc}
0 & 0 & 0  \tag{4.3}\\
0 & 0 & 0 \\
0 & p_{\varepsilon} T_{\beta \alpha}^{\varepsilon} & 0
\end{array}\right)
$$

## YILDIRIM and SALIMOV/Turk J Math

we easily see that $\gamma T_{B^{\prime}}^{A^{\prime}}=A_{A}^{A^{\prime}} A_{B^{\prime}}^{B} \gamma T_{B}^{A}$, where $\left.\overline{(A}\right)^{-1}=\left(A_{B^{\prime}}^{B}\right)$ is the inverse matrix of $\bar{A}$.
If $\omega \in \Im_{1}^{0}\left(B_{m}\right)$ and $T \in \Im_{2}^{1}\left(B_{m}\right)$, then

$$
(\gamma T)\left({ }^{v v} \omega\right)=0
$$

## 5. Complete lift of vector fields

We now denote by $\Im_{q}^{p}\left(M_{n}\right)$ the module over $F\left(M_{n}\right)$ of all tensor fields of type $(p, q)$ on $M_{n}$, where $F\left(M_{n}\right)$ denotes the ring of real-valued $C^{\infty}$-functions on $M_{n}$.

Let $\widetilde{X} \in \Im_{0}^{1}\left(M_{n}\right)$ be a projectable vector field [7] with projection $X=X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$ i.e. $\widetilde{X}=\widetilde{X}^{a}\left(x^{a}, x^{\alpha}\right) \partial_{a}+$ $X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$. On putting

$$
{ }^{c c} \widetilde{X}=\left(\begin{array}{c}
\widetilde{X}^{a}  \tag{5.1}\\
X^{\alpha} \\
-p_{\varepsilon}\left(\partial_{\alpha} X^{\varepsilon}\right)
\end{array}\right)
$$

we easily see that ${ }^{c c} \widetilde{X}^{\prime}=\bar{A}\left({ }^{c c} \widetilde{X}\right)$. The vector field ${ }^{c c} \widetilde{X}$ is called the complete lift of $\widetilde{X}$ to the semi-cotangent bundle $t^{*}\left(B_{m}\right)$.

A vector field $X$ on a semi-cotangent bundle $t^{*}\left(B_{m}\right)$ with the degenerate symplectic structure $\omega=d p$ is called a Hamiltonian vector field if $\iota_{X} \omega=d H$ for same $C^{\infty}$-function $H$ on $t^{*}\left(B_{m}\right)$, i.e. if the interior product $\iota_{X} \omega$ is exact. $X$ is called a symplectic vector field if $L_{X} \omega=0$, i.e. if $\iota_{X} \omega$ is closed. It is well known that, locally, symplectic vector fields are Hamiltonian. Using $L_{X}=d \circ \iota_{X}+\iota_{X} \circ d$ (Cartan's magic formula), we have

$$
L_{c c_{X}} d p=\left(d \circ \iota c c_{X}\right) d p+\left(\iota c c_{X} \circ d\right) d p=d_{c c_{X}}(\iota(d p))+\iota c c_{X}\left(d^{2} p\right)=d\left(\iota c c_{X}(d p)\right)
$$

for complete lift ${ }^{c c} X$. From here we see that ${ }^{c c} X$ is a Hamiltonian vector field (only locally) if $L_{c c} X d p=0$, i.e.

$$
{ }^{c c} X^{A} \partial_{A} \omega_{K L}+\left(\partial_{K}\left({ }^{c c} X^{A}\right)\right) \omega_{A L}+\left(\partial_{L}\left({ }^{c c} X^{A}\right)\right) \omega_{K A}=0
$$

Using (5.1) and coordinates of $\omega=d p$, from the last equation, we have the identity $0=0$. Thus, we have:

Theorem 3 The complete lift ${ }^{c c} \widetilde{X}$ of projectable vector field $\tilde{X}$ to a semi-cotangent bundle is Hamiltonian with the degenerate symplectic structure $\omega=d p$.

We have from (5.1)

$$
{ }^{c c} \widetilde{X}^{v v} f={ }^{v v}(X f)
$$

for any $f \in \Im_{0}^{0}\left(B_{m}\right)$ and projectable vector field $\widetilde{X} \in \Im_{0}^{1}\left(M_{n}\right)$.
We also have from (3.2) and (5.1)

$$
\begin{aligned}
{ }^{c c}(\widetilde{X}+\widetilde{Y}) & ={ }^{c c} \widetilde{X}+{ }^{c c} \widetilde{Y} \\
{ }^{c c}(f \widetilde{X}) & ={ }^{v v} f\left({ }^{c c} \widetilde{X}\right)-(\gamma X)^{v v}(d f),
\end{aligned}
$$

for any $f \in \Im_{0}^{0}\left(B_{m}\right)$ and $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$.

Theorem 4 Let $\widetilde{X}$ and $\widetilde{Z}$ be projectable vector fields on $M_{n}$ with projections $X$ and $Z$ on $B_{m}$, respectively. If $f \in \Im_{0}^{0}\left(B_{m}\right), \omega \in \Im_{1}^{0}\left(B_{m}\right)$, and $F \in \Im_{1}^{1}\left(B_{m}\right)$, then
(i) ${ }^{v v} \omega^{v v} f=0$,
(ii) ${ }^{v v} \omega(\gamma Z)={ }^{v v}(\omega(Z))$,
(iii) $(\gamma F)\left({ }^{v v} f\right)=0$,
(iv) $(\gamma F) \gamma Z=\gamma(F Z)$,
(v) ${ }^{c c} \widetilde{X}(\gamma Z)=\gamma[X, Z]$,
(vi) ${ }^{c c} \widetilde{X}^{v v} f={ }^{v v}(X f)$.

Proof $(i)$ If $\omega \in \Im_{1}^{0}\left(B_{m}\right)$, then, by (3.1) and (3.2), we find

$$
\begin{aligned}
{ }^{v v} \omega^{v v} f & ={ }^{v v} \omega^{I} \partial_{I}\left({ }^{v v} f\right) \\
& ={ }^{v v} \omega^{a} \partial_{a}\left({ }^{v v} f\right)+{ }^{v v} \omega^{\alpha} \partial_{\alpha}\left({ }^{v v} f\right)+{ }^{v v} \omega^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} f\right) \\
& =0 .
\end{aligned}
$$

Thus, we have $(i)$ of Theorem 4.
(ii) If $\omega \in \Im_{1}^{0}\left(B_{m}\right)$ and $\widetilde{Z}$ is a projectable vector field on $M_{n}$ with projection $Z \in \Im_{0}^{1}\left(B_{m}\right)$, then we have by (3.2) and (4.1):

$$
\begin{aligned}
{ }^{v v} \omega(\gamma Z) & ={ }^{v v} \omega^{I} \partial_{I}(\gamma Z) \\
& ={ }^{v v} \omega^{a} \partial_{a}\left(p_{\beta} Z^{\beta}\right)+{ }^{v v} \omega^{\alpha} \partial_{\alpha}\left(p_{\beta} Z^{\beta}\right)+{ }^{v v} \omega^{\bar{\alpha}} \partial_{\bar{\alpha}}\left(p_{\beta} Z^{\beta}\right) \\
& =\omega_{\alpha} Z^{\alpha}={ }^{v v}(\omega(Z))
\end{aligned}
$$

Thus, we have ${ }^{v v} \omega(\gamma Z)={ }^{v v}(\omega(Z))$.
(iii) If $F \in \Im_{1}^{1}\left(B_{m}\right)$, then we have by (3.1) and (4.2):

$$
\begin{aligned}
(\gamma F)\left({ }^{v v} f\right) & =(\gamma F)^{I} \partial_{I}\left({ }^{v v} f\right) \\
& =(\gamma F)^{a} \partial_{a}\left({ }^{v v} f\right)+(\gamma F)^{\alpha} \partial_{\alpha}\left({ }^{v v} f\right)+(\gamma F)^{\alpha} \partial_{\bar{\alpha}}\left({ }^{v v} f\right) \\
& =0
\end{aligned}
$$

Thus, we have (iii) of Theorem 4.
(iv) If $F \in \Im_{1}^{1}\left(B_{m}\right)$, and $\widetilde{Z}$ is a projectable vector field on $M_{n}$, then we have by (4.1) and (4.2):

$$
\begin{aligned}
(\gamma F) \gamma Z & =(\gamma F)^{I} \partial_{I}(\gamma Z) \\
& =(\gamma F)^{a} \partial_{a}\left(p_{\beta} Z^{\beta}\right)+(\gamma F)^{\alpha} \partial_{\alpha}\left(p_{\beta} Z^{\beta}\right)+(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left(p_{\beta} Z^{\beta}\right) \\
& =p_{\beta} F_{\alpha}^{\beta} \partial_{\bar{\alpha}}\left(p_{\beta} Z^{\beta}\right) \\
& =p_{\beta} F_{\alpha}^{\beta} Z^{\alpha}=p_{\beta}(F Z)^{\beta}=\gamma(F Z)
\end{aligned}
$$

and hence equation (iv) of Theorem 4.
$(v)$ If $\widetilde{X}$ and $\widetilde{Z}$ are projectable vector fields on $M_{n}$, then taking account of (4.1) and (5.1), we have:

$$
\begin{aligned}
{ }^{c c} \tilde{X}(\gamma Z) & ={ }^{c c} X^{I} \partial_{I}(\gamma Z) \\
& ={ }^{c c} X^{a} \partial_{a}\left(p_{\beta} Z^{\beta}\right)+{ }^{c c} X^{\alpha} \partial_{\alpha}\left(p_{\beta} Z^{\beta}\right)+{ }^{c c} X^{\bar{\alpha}} \partial_{\bar{\alpha}}\left(p_{\beta} Z^{\beta}\right) \\
& =X^{\alpha} \partial_{\alpha}\left(p_{\beta} Z^{\beta}\right)-p_{\beta}\left(\partial_{\alpha} X^{\beta}\right) Z^{\alpha} \\
& =p_{\beta}\left(X^{\alpha} \partial_{\alpha} Z^{\beta}-Z^{\alpha} \partial_{\alpha} X^{\beta}\right) \\
& =p_{\beta}[X, Z]^{\beta}=\gamma[X, Z]
\end{aligned}
$$

which proves $(v)$ of Theorem 4.
(vi) We shall prove the last equation. If $\widetilde{X}$ is a projectable vector field on $M_{n}$, then we have by (3.1) and (5.1):

$$
\begin{aligned}
{ }^{c c} \tilde{X}^{v v} f & ={ }^{c c} X^{I} \partial_{I}\left({ }^{v v} f\right) \\
& ={ }^{c c} X^{a} \partial_{a}\left({ }^{v v} f\right)+{ }^{c c} X^{\alpha} \partial_{\alpha}\left({ }^{v v} f\right)+{ }^{c c} X^{\bar{\alpha}} \partial_{\bar{\alpha}\left({ }^{v v} f\right)} \\
& =X^{\alpha} \partial_{\alpha} f={ }^{v v}(X f),
\end{aligned}
$$

which gives equation $(v i)$ of Theorem 4.

Theorem 5 Let $\widetilde{X}$ and $\widetilde{Y}$ be projectable vector fields on $M_{n}$ with projection $X \in \Im_{0}^{1}\left(B_{m}\right)$ and $Y \in \Im_{0}^{1}\left(B_{m}\right)$. For the Lie product, we have
(i) $\left[{ }^{v v} \omega,{ }^{v v} \theta\right]=0$,
(ii) $\left[{ }^{v v} \omega, \gamma F\right]={ }^{v v}(\omega \circ F)$,
(iii) $[\gamma F, \gamma G]=\gamma[F, G]$,
(iv) $\left[{ }^{[c} \widetilde{X},{ }^{v v} \omega\right]={ }^{v v}\left(L_{X} \omega\right)$,
(v) $\left[{ }^{[c} \tilde{X}, \gamma F\right]=\gamma\left(L_{X} F\right)$,
(vi) $\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]={ }^{c c} \widetilde{[X, Y]}$
for any $\omega, \theta \in \Im_{1}^{0}\left(B_{m}\right)$ and $F, G \in \Im_{1}^{1}\left(B_{m}\right)$, where $\omega \circ F$ is a 1 -form defined by $(\omega \circ F)(Z)=\omega(F Z)$ for any $Z \in \Im_{0}^{1}\left(B_{m}\right)$ and $L_{X}$ is the operator of Lie derivation with respect to $X$.
Proof (i) If $\omega, \theta \in \Im_{1}^{0}\left(B_{m}\right)$ and $\left(\begin{array}{c}{\left[{ }^{v v} \omega,{ }^{v v} \theta\right]^{b}} \\ {\left[{ }^{v v} \omega,{ }^{v v} \theta\right]^{\beta}} \\ {\left[{ }^{v v} \omega,^{v v} \theta\right]^{\beta}}\end{array}\right)$ are components of $\left[{ }^{v v} \omega,{ }^{v v} \theta\right]^{J}$ with respect to the coordinates
$\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t^{*}\left(B_{m}\right)$, then we have

$$
\begin{aligned}
{\left[{ }^{v v} \omega,^{v v} \theta\right]^{J}=} & { }^{v v} \omega^{I} \partial_{I}\left({ }^{v v} \theta^{J}\right)-{ }^{v v} \theta^{I} \partial_{I}\left({ }^{v v} \omega^{J}\right) \\
= & { }^{v v} \omega^{a} \partial_{a}\left({ }^{v v} \theta^{J}\right)+{ }^{v v} \omega^{\alpha} \partial_{\alpha}\left({ }^{v v} \theta^{J}\right)+{ }^{v v} \omega^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} \theta^{J}\right) \\
& -{ }^{v v} \theta^{a} \partial_{a}\left({ }^{v v} \omega^{J}\right)-{ }^{v v} \theta^{\alpha} \partial_{\alpha}\left({ }^{v v} \omega^{J}\right)-{ }^{v v} \theta^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} \omega^{J}\right) \\
= & \omega_{\alpha} \partial_{\bar{\alpha}}\left({ }^{v v} \theta^{J}\right)-\theta_{\alpha} \partial_{\bar{\alpha}}\left({ }^{v v} \omega^{J}\right)
\end{aligned}
$$

Firstly, if $J=b$, we have

$$
\left[{ }^{v v} \omega,^{v v} \theta\right]^{b}=\omega_{\alpha} \partial_{\bar{\alpha}}{ }^{v v} \theta^{b}-\theta_{\alpha} \partial_{\bar{\alpha}}{ }^{v v} \omega^{b}=0
$$

because of (3.2). Secondly, if $J=\beta$, we have

$$
\left[{ }^{v v} \omega,{ }^{v v} \theta\right]^{\beta}=\omega_{\alpha} \partial_{\bar{\alpha}}{ }^{v v} \theta^{\beta}-\theta_{\alpha} \partial_{\bar{\alpha}}{ }^{v v} \omega^{\beta}=0
$$

because of (3.2). Thirdly, let $J=\bar{\beta}$. Then we have

$$
\begin{aligned}
\left.{ }^{[v v} \omega,^{v v} \theta\right]^{\bar{\beta}} & =\omega_{\alpha} \partial_{\bar{\alpha}}{ }^{v v} \theta^{\bar{\beta}}-\theta_{\alpha} \partial_{\bar{\alpha}^{v v}} \omega^{\bar{\beta}} \\
& =\omega_{\alpha} \partial_{\bar{\alpha}} \theta_{\beta}-\theta_{\alpha} \partial_{\bar{\alpha}} \omega_{\beta}=0
\end{aligned}
$$

by (3.2). Thus, we have $(i)$ of Theorem 5 .
(ii) If $\omega \in \Im_{1}^{0}\left(B_{m}\right), \quad F \in \Im_{1}^{1}\left(B_{m}\right)$ and $\left(\begin{array}{c}{\left[{ }^{v v} \omega, \gamma F\right]^{b}} \\ \left.{ }^{[v} \omega, \gamma F\right]^{\beta} \\ {\left[{ }^{v v} \omega, \gamma F\right]^{\bar{\beta}}}\end{array}\right)$ are components of $\left[{ }^{v v} \omega, \gamma F\right]^{J}$ with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t^{*}\left(B_{m}\right)$, then we have by (3.2) and (4.2)

$$
\begin{aligned}
\left.{ }^{[v v} \omega, \gamma F\right]^{J}= & { }^{v v} \omega^{I} \partial_{I}(\gamma F)^{J}-(\gamma F)^{I} \partial_{I}\left({ }^{v v} \omega\right)^{J} \\
= & { }^{v v} \omega^{a} \partial_{a}(\gamma F)^{J}+{ }^{v v} \omega^{\alpha} \partial_{\alpha}(\gamma F)^{J}+{ }^{v v} \omega^{\bar{\alpha}} \partial_{\bar{\alpha}}(\gamma F)^{J} \\
& -(\gamma F)^{a} \partial_{a}\left({ }^{v v} \omega\right)^{J}-(\gamma F)^{\alpha} \partial_{\alpha}\left({ }^{v v} \omega\right)^{J}-(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} \omega\right)^{J} \\
= & { }^{v v} \omega^{\bar{\alpha}} \partial_{\bar{\alpha}}(\gamma F)^{J}-(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} \omega\right)^{J} \\
= & \omega_{\alpha} \partial_{\bar{\alpha}}(\gamma F)^{J}-p_{\varepsilon} F_{\beta}^{\varepsilon} \partial_{\bar{\alpha}}\left({ }^{v v} \omega\right)^{J}
\end{aligned}
$$

Firstly, if $J=b$, we have

$$
\left[{ }^{v v} \omega, \gamma F\right]^{b}=\omega_{\alpha} \partial_{\bar{\alpha}}(\gamma F)^{b}-p_{\varepsilon} F_{\beta}^{\varepsilon} \partial_{\bar{\alpha}}^{v v} \omega^{b}=0
$$

because of (3.2) and (4.2). Secondly, if $J=\beta$, we have

$$
\left[{ }^{v v} \omega, \gamma F\right]^{\beta}=\omega_{\alpha} \partial_{\bar{\alpha}}(\gamma F)^{\beta}-p_{\varepsilon} F_{\beta}^{\varepsilon} \partial_{\bar{\alpha}}^{v v} \omega^{\beta}=0
$$

because of (3.2) and (4.2). Thirdly, let $J=\bar{\beta}$. Then we have

$$
\begin{aligned}
\left.{ }^{{ }^{v}} \omega, \gamma F\right]^{\bar{\beta}} & =\omega_{\alpha} \partial_{\bar{\alpha}}(\gamma F)^{\bar{\beta}}-p_{\varepsilon} F_{\beta}^{\varepsilon} \partial_{\bar{\alpha}}\left({ }^{v v} \omega\right)^{\bar{\beta}} \\
& =\omega_{\alpha} \partial_{\bar{\alpha}} p_{\varepsilon} F_{\beta}^{\varepsilon}-p_{\varepsilon} F_{\beta}^{\varepsilon} \partial_{\bar{\alpha}} \omega_{\beta} \\
& =\omega_{\alpha} F_{\beta}^{\alpha}=(\omega \circ F)_{\beta}
\end{aligned}
$$

by (3.2) and (4.2). On the other hand, the vertical lift ${ }^{v v}(\omega \circ F)$ of $(\omega \circ F)$ has components of the form

$$
{ }^{v v}(\omega \circ F)=\left(\begin{array}{c}
0 \\
0 \\
(\omega \circ F)_{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t^{*}\left(B_{m}\right)$. Thus, we have (ii) of Theorem 5.
(iii) If $F, G \in \Im_{1}^{1}\left(B_{m}\right)$ and $\left(\begin{array}{c}{[\gamma F, \gamma G]^{b}} \\ {[\gamma F, \gamma G]^{\beta}} \\ {[\gamma F, \gamma G]^{\beta}}\end{array}\right)$ are components of $[\gamma F, \gamma G]^{J}$ with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t^{*}\left(B_{m}\right)$, then we have by (4.2)

$$
\begin{aligned}
{[\gamma F, \gamma G]^{J}=} & (\gamma F)^{I} \partial_{I}(\gamma G)^{J}-(\gamma G)^{I} \partial_{I}(\gamma F)^{J} \\
= & (\gamma F)^{a} \partial_{a}(\gamma G)^{J}+(\gamma F)^{\alpha} \partial_{\alpha}(\gamma G)^{J}+(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}(\gamma G)^{J} \\
& -(\gamma G)^{a} \partial_{a}(\gamma F)^{J}-(\gamma G)^{\alpha} \partial_{\alpha}(\gamma F)^{J}-(\gamma G)^{\bar{\alpha}} \partial_{\bar{\alpha}}(\gamma F)^{J} \\
= & (\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}(\gamma G)^{J}-(\gamma G)^{\bar{\alpha}} \partial_{\bar{\alpha}}(\gamma F)^{J} \\
= & p_{\varepsilon} F_{\alpha}^{\varepsilon} \partial_{\bar{\alpha}}(\gamma G)^{J}-p_{\varepsilon} G_{\alpha}^{\varepsilon} \partial_{\bar{\alpha}}(\gamma F)^{J}
\end{aligned}
$$

Firstly, if $J=b$, we have

$$
[\gamma F, \gamma G]^{b}=p_{\varepsilon} F_{\alpha}^{\varepsilon} \partial_{\bar{\alpha}}(\gamma G)^{b}-p_{\varepsilon} G_{\alpha}^{\varepsilon} \partial_{\bar{\alpha}}(\gamma F)^{b}=0
$$

because of (4.2). Secondly, if $J=\beta$, we have

$$
[\gamma F, \gamma G]^{\beta}=p_{\varepsilon} F_{\alpha}^{\varepsilon} \partial_{\bar{\alpha}}(\gamma G)^{\beta}-p_{\varepsilon} G_{\alpha}^{\varepsilon} \partial_{\bar{\alpha}}(\gamma F)^{\beta}=0
$$

by (4.2). Thirdly, let $J=\bar{\beta}$. Then we have

$$
\begin{aligned}
{[\gamma F, \gamma G]^{\bar{\beta}} } & =p_{\varepsilon} F_{\alpha}^{\varepsilon} \partial_{\bar{\alpha}}(\gamma G)^{\bar{\beta}}-p_{\varepsilon} G_{\alpha}^{\varepsilon} \partial_{\bar{\alpha}}(\gamma F)^{\bar{\beta}} \\
& =p_{\varepsilon} F_{\alpha}^{\varepsilon} \partial_{\bar{\alpha}} p_{\varepsilon} G_{\beta}^{\varepsilon}-p_{\varepsilon} G_{\alpha}^{\varepsilon} \partial_{\bar{\alpha}} p_{\varepsilon} F_{\beta}^{\varepsilon} \\
& =p_{\varepsilon} F_{\alpha}^{\varepsilon} G_{\beta}^{\alpha}-p_{\varepsilon} G_{\alpha}^{\varepsilon} F_{\beta}^{\alpha} \\
& =p_{\varepsilon}\left(F_{\alpha}^{\varepsilon} G_{\beta}^{\alpha}-G_{\alpha}^{\varepsilon} F_{\beta}^{\alpha}\right) \\
& =p_{\varepsilon}[F, G]_{\beta}^{\varepsilon}
\end{aligned}
$$

because of (4.2). It is well known that $\gamma[F, G]$ have components

$$
\gamma[F, G]=\left(\begin{array}{c}
0 \\
0 \\
p_{\varepsilon}[F, G]_{\beta}^{\varepsilon}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t^{*}\left(B_{m}\right)$. Thus, we have (iii) of Theorem 5 .
(iv) If $\omega \in \Im_{1}^{0}\left(B_{m}\right), \widetilde{X}$ is a projectable vector field on $M_{n}$ with projection $X \in \Im_{0}^{1}\left(B_{m}\right)$, and $\left(\begin{array}{l}{\left[{ }^{c c} \widetilde{X},{ }^{v v} \omega\right]^{b}} \\ {\left[{ }^{c c} \widetilde{X},{ }^{v v} \omega\right]^{\beta}} \\ {\left[{ }^{c c} \widetilde{X},{ }^{v v} \omega\right]^{\bar{\beta}}}\end{array}\right)$ are components of $\left[{ }^{c c} \widetilde{X},{ }^{v v} \omega\right]^{J}$ with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t^{*}\left(B_{m}\right)$, then
we have

$$
\left[{ }^{c c} \widetilde{X},{ }^{v v} \omega\right]^{J}=\left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{(v v} \omega\right)^{J}-\left({ }^{v v} \omega\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{J} .
$$

Firstly, if $J=b$, we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X},{ }^{v v} \omega\right]^{b} } & =\left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{v v} \omega\right)^{b}-\left({ }^{v v} \omega\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{b} \\
& =-\left({ }^{v v} \omega\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{X}\right)^{b}-\left({ }^{v v} \omega\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{b}-\left({ }^{v v} \omega\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}\right)^{b} \\
& =-\left({ }^{v v} \omega\right)^{\alpha} \partial_{\bar{\alpha}} \widetilde{X}^{b} \\
& =0
\end{aligned}
$$

because of (3.2) and (5.1). Secondly, if $J=\beta$, we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X},{ }^{v v} \omega\right]^{\beta} } & =\left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{v v} \omega\right)^{\beta}-\left({ }^{v v} \omega\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{\beta} \\
& =-\left({ }^{v v} \omega\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{X}\right)^{\beta}-\left({ }^{v v} \omega\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{\beta}-\left({ }^{v v} \omega\right)^{\bar{\alpha}} \partial_{\bar{\alpha}( }\left({ }^{c c} \widetilde{X}\right)^{\beta} \\
& =-\left({ }^{v v} \omega\right)^{\bar{\alpha}} \partial_{\bar{\alpha}} \widetilde{X}{ }^{\beta} \\
& =0
\end{aligned}
$$

by (3.2) and (5.1). Thirdly, let $J=\bar{\beta}$. Then we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X},{ }^{v v} \omega\right]^{\bar{\beta}}=} & \left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{v v} \omega\right)^{\bar{\beta}}-\left({ }^{v v} \omega\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}} \\
= & \left({ }^{c c} \widetilde{X}\right)^{a} \partial_{a}\left({ }^{v v} \omega\right)^{\bar{\beta}}+\left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha}\left({ }^{v v} \omega\right)^{\bar{\beta}}+\left({ }^{c c} \widetilde{X}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} \omega\right)^{\bar{\beta}} \\
& -\left({ }^{v v} \omega\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}}-\left({ }^{v v} \omega\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}}-\left({ }^{v v} \omega\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}} \\
= & \left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha}\left({ }^{v v} \omega\right)^{\bar{\beta}}-\left({ }^{v v} \omega\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}} \\
= & X^{\alpha} \partial_{\alpha} \omega_{\beta}+\omega_{\alpha} \partial_{\bar{\alpha}} p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right) \\
= & X^{\alpha} \partial_{\alpha} \omega_{\beta}+\left(\partial_{\beta} X^{\alpha}\right) \omega_{\alpha} \\
= & \left(L_{X} \omega\right)_{\beta}
\end{aligned}
$$

because of (3.2) and (5.1). On the other hand, the vertical lift ${ }^{v v}\left(L_{X} \omega\right)$ of $\left(L_{X} \omega\right)$ has components of the form

$$
{ }^{v v}\left(L_{X} \omega\right)=\left(\begin{array}{c}
0 \\
0 \\
\left(L_{X} \omega\right)_{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t^{*}\left(B_{m}\right)$. Thus, we have $(i v)$ of Theorem 5.
(v) If $F \in \Im_{1}^{1}\left(B_{m}\right), \widetilde{X}$ is a projectable vector field on $M_{n}$ with projection $X \in \Im_{0}^{1}\left(B_{m}\right)$, and $\left(\begin{array}{c}{\left[{ }^{c c} \widetilde{X}, \gamma F\right]^{b}} \\ {\left[{ }^{c} \widetilde{X}, \gamma F\right]^{\beta}} \\ {\left[{ }^{c} \widetilde{X}, \gamma F\right]^{\beta}}\end{array}\right)$ are components of $\left[{ }^{c c} \tilde{X}, \gamma F\right]^{J}$ with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t^{*}\left(B_{m}\right)$, then we have

$$
\left.\left[{ }^{c c} \widetilde{X}, \gamma F\right]^{J}=\left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}(\gamma F)^{J}-(\gamma F)^{I} \partial_{I}{ }^{c c} \widetilde{X}\right)^{J} .
$$

For $J=b$, we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X}, \gamma F\right]^{b} } & =\left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}(\gamma F)^{b}-(\gamma F)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{b} \\
& =-(\gamma F)^{a} \partial_{a}\left({ }^{c c} \widetilde{X}\right)^{b}-(\gamma F)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{b}-(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}\right)^{b}=0
\end{aligned}
$$

because of (4.2) and (5.1). For $J=\beta$, we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X}, \gamma F\right]^{\beta} } & =\left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}(\gamma F)^{\beta}-(\gamma F)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{\beta} \\
& =-(\gamma F)^{a} \partial_{a} X^{\beta}-(\gamma F)^{\alpha} \partial_{\alpha} X^{\beta}-(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}} X^{\beta}=0
\end{aligned}
$$

by (4.2) and (5.1). For $J=\bar{\beta}$ we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X}, \gamma F\right]^{\bar{\beta}}=} & \left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}(\gamma F)^{\bar{\beta}}-(\gamma F)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}} \\
= & \left({ }^{c c} \widetilde{X}\right)^{a} \partial_{a}(\gamma F)^{\bar{\beta}}+\left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha}(\gamma F)^{\bar{\beta}}+\left({ }^{c c} \widetilde{X}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}(\gamma F)^{\bar{\beta}} \\
& -(\gamma F)^{a} \partial_{a}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}}-(\gamma F)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}}-(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}} \\
= & \widetilde{X}^{a} \partial_{a} p_{\varepsilon} F_{\beta}^{\varepsilon}+X^{\alpha} \partial_{\alpha} p_{\varepsilon} F_{\beta}^{\varepsilon}-p_{\varepsilon}\left(\partial_{\alpha} X^{\varepsilon}\right) \partial_{\bar{\alpha}} p_{\varepsilon} F_{\beta}^{\varepsilon}+p_{\varepsilon} F_{\alpha}^{\varepsilon} \partial_{\bar{\alpha}} p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right) \\
= & X^{\alpha} \partial_{\alpha} p_{\varepsilon} F_{\beta}^{\varepsilon}-p_{\varepsilon}\left(\partial_{\alpha} X^{\varepsilon}\right) F_{\beta}^{\alpha}+p_{\varepsilon} F_{\alpha}^{\varepsilon}\left(\partial_{\beta} X^{\alpha}\right) \\
= & p_{\varepsilon}\left(X^{\alpha} \partial_{\alpha} F_{\beta}^{\varepsilon}-\partial_{\alpha} X^{\varepsilon} F_{\beta}^{\alpha}+\partial_{\beta} X^{\alpha} F_{\alpha}^{\varepsilon}\right) \\
= & p_{\varepsilon}\left(L_{X} F\right)_{\beta}^{\varepsilon}
\end{aligned}
$$

because of (4.2) and (5.1). It is well known that $\gamma\left(L_{X} F\right)$ have components

$$
\gamma\left(L_{X} F\right)=\left(\begin{array}{c}
0 \\
0 \\
p_{\varepsilon}\left(L_{X} F\right)_{\beta}^{\varepsilon}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t^{*}\left(B_{m}\right)$. Thus, we have $(v)$ of Theorem 5 .
(vi) If $\tilde{X}$ and $\tilde{Y}$ are projectable vector fields on $M_{n}$ with projection

$$
X, Y \in \Im_{0}^{1}\left(B_{m}\right) \text { and }\left(\begin{array}{l}
{\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]^{b}} \\
{\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]^{\beta}} \\
{\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]^{\bar{\beta}}}
\end{array}\right) \text { are components of }\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]^{J} \text { with respect to the coordinates }
$$

$\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t^{*}\left(B_{m}\right)$, then we have

$$
\left[{ }^{c c} \widetilde{X},{ }^{c c} \tilde{Y}\right]^{J}=\left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{c c} \tilde{Y}\right)^{J}-\left({ }^{c c} \tilde{Y}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{J}
$$

Firstly, if $J=b$, we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X},{ }^{c c} \tilde{Y}\right]^{b}=} & \left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{Y}\right)^{b}-\left({ }^{c c} \tilde{Y}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{b} \\
= & \left({ }^{c c} \widetilde{X}\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{Y}\right)^{b}+\left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{b}+\left({ }^{c c} \widetilde{X}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \tilde{Y}\right)^{b} \\
& -\left({ }^{c c} \tilde{Y}\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{X}\right)^{b}-\left({ }^{c c} \tilde{Y}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{b}-\left({ }^{c c} \tilde{Y}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}\right)^{b} \\
= & \left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{b}-\left({ }^{c c} \widetilde{Y}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{b} \\
= & X^{\alpha} \partial_{\alpha} \widetilde{Y}^{b}-Y^{\alpha} \partial_{\alpha} \widetilde{X}^{b} \\
= & \widetilde{[X, Y]}^{b}
\end{aligned}
$$

because of (5.1). Secondly, if $J=\beta$, we have

$$
\begin{aligned}
{\left[{ }^{c c} \tilde{X},{ }^{c c} \tilde{Y}\right]^{\beta}=} & \left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{c c} \tilde{Y}\right)^{\beta}-\left({ }^{c c} \tilde{Y}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{\beta} \\
= & \left({ }^{c c} \widetilde{X}\right)^{a} \partial_{a}\left({ }^{c c} \tilde{Y}\right)^{\beta}+\left({ }^{c c} \tilde{X}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \tilde{Y}\right)^{\beta}+\left({ }^{c c} \tilde{X}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \tilde{Y}\right)^{\beta} \\
& -\left({ }^{c c} \tilde{Y}\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{X}\right)^{\beta}-\left({ }^{c c} \tilde{Y}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{\beta}-\left({ }^{c c} \tilde{Y}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}\right)^{\beta} \\
= & \left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \tilde{Y}\right)^{\beta}-\left({ }^{c c} \tilde{Y}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{\beta} \\
= & X^{\alpha} \partial_{\alpha} Y^{\beta}-Y^{\alpha} \partial_{\alpha} X^{\beta} \\
= & {[X, Y]^{\beta} }
\end{aligned}
$$

by (5.1). Thirdly, let $J=\bar{\beta}$. Then we have

$$
\begin{aligned}
{\left[{ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right]^{\bar{\beta}}=} & \left({ }^{c c} \widetilde{X}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}-\left({ }^{c c} \widetilde{Y}\right)^{I} \partial_{I}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}} \\
= & \left({ }^{c c} \widetilde{X}\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}+\left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}+\left({ }^{c c} \widetilde{X}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}} \\
& -\left({ }^{c c} \widetilde{Y}\right)^{a} \partial_{a}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}}-\left({ }^{c c} \widetilde{Y}\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}}-\left({ }^{c c} \widetilde{Y}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} \widetilde{X}\right)^{\bar{\beta}} \\
= & -\left({ }^{c c} \widetilde{X}\right)^{a} \partial_{a} p_{\varepsilon}\left(\partial_{\beta} Y^{\varepsilon}\right)-\left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha} p_{\varepsilon}\left(\partial_{\beta} Y^{\varepsilon}\right)-\left({ }^{c c} \widetilde{X}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}} p_{\varepsilon}\left(\partial_{\beta} Y^{\varepsilon}\right) \\
& +\left({ }^{c c} \widetilde{Y}\right)^{a} \partial_{a} p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right)+\left({ }^{c c} \widetilde{Y}\right)^{\alpha} \partial_{\alpha} p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right)+\left({ }^{c c} \widetilde{Y}\right)^{\bar{\alpha}} \partial_{\bar{\alpha}} p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right) \\
= & -\left({ }^{c c} \widetilde{X}\right)^{\alpha} \partial_{\alpha} p_{\varepsilon}\left(\partial_{\beta} Y^{\varepsilon}\right)-\left({ }^{c c} \widetilde{X}\right)^{\bar{\alpha}}\left(\partial_{\beta} Y^{\alpha}\right)+\left({ }^{c c} \tilde{Y}\right)^{\alpha} \partial_{\alpha} p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right)+\left({ }^{c c} \widetilde{Y}\right)^{\bar{\alpha}}\left(\partial_{\beta} X^{\alpha}\right) \\
= & -X^{\alpha} \partial_{\alpha} p_{\varepsilon}\left(\partial_{\beta} Y^{\varepsilon}\right)+p_{\varepsilon} \partial_{\alpha} X^{\varepsilon}\left(\partial_{\beta} Y^{\alpha}\right)+Y^{\alpha} \partial_{\alpha} p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right)-p_{\varepsilon} \partial_{\alpha} Y^{\varepsilon}\left(\partial_{\beta} X^{\alpha}\right) \\
= & p_{\varepsilon}\left(-X^{\alpha} \partial_{\alpha} \partial_{\beta} Y^{\varepsilon}+\partial_{\beta} Y^{\alpha} \partial_{\alpha} X^{\varepsilon}+Y^{\alpha} \partial_{\alpha} \partial_{\beta} X^{\varepsilon}-\partial_{\beta} X^{\alpha} \partial_{\alpha} Y^{\varepsilon}\right) \\
= & -p_{\varepsilon}\left(\partial_{\beta}\left(X^{\alpha} \partial_{\alpha} Y^{\varepsilon}-Y^{\alpha} \partial_{\alpha} X^{\varepsilon}\right)\right) \\
= & -p_{\varepsilon}\left(\partial_{\beta}[X, Y]^{\varepsilon}\right)
\end{aligned}
$$

because of (5.1). It is well known that ${ }^{c c} \widetilde{[X, Y]}$ have components

$$
{ }^{c c} \widetilde{[X, Y]}=\left(\begin{array}{c}
\widetilde{[X, Y]}^{b} \\
{[X, Y]^{\beta}} \\
-p_{\varepsilon}\left(\partial_{\beta}[X, Y]^{\varepsilon}\right)
\end{array}\right)
$$

with respect to the coordinates $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t^{*}\left(B_{m}\right)$. Thus, we have (vi) of Theorem 5 .

Theorem 6 Let $\widetilde{X}$ be a projectable vector field on $M_{n}$. If $\omega \in \Im_{1}^{0}\left(B_{m}\right), F \in \Im_{1}^{1}\left(B_{m}\right)$, and $S, T \in \Im_{2}^{1}\left(B_{m}\right)$, then
(i) $(\gamma S)^{c c} \widetilde{X}=\gamma\left(S_{X}\right)$,
(ii) $(\gamma S)\left({ }^{v v} \omega\right)=0$,
(iii) $(\gamma S)(\gamma F)=0$,
(iv) $(\gamma S)(\gamma T)=0$,
where $S_{X}$ is tensor field of type $(1,1)$ on $B_{m}$ defined by $S_{X}(Z)=S(X, Z)$ for any $Z \in \Im_{0}^{1}\left(B_{m}\right)$.
Proof (i) Using (4.3) and (5.1), we have

$$
\begin{aligned}
(\gamma S)^{c c} \widetilde{X} & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & p_{\sigma} S_{\beta \alpha}^{\sigma} & 0
\end{array}\right)\left(\begin{array}{c}
\widetilde{X}^{a} \\
X^{\alpha} \\
-p_{\varepsilon}\left(\partial_{\alpha} X^{\varepsilon}\right)
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
0 \\
p_{\sigma} S_{\beta \alpha}^{\sigma} X^{\alpha}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
p_{\sigma}\left(S_{X}\right)_{\beta}^{\sigma}
\end{array}\right)=\gamma\left(S_{X}\right)
\end{aligned}
$$

Similarly, we have

$$
(\gamma S)\left({ }^{v v} \omega\right)=0, \quad(\gamma S)(\gamma F)=0, \quad(\gamma S)(\gamma T)=0
$$

## 6. Complete lift of affinor fields

Let $\widetilde{F} \in \Im_{1}^{1}\left(M_{n}\right)$ be a projectable affinor field [7] with projection $F=F_{\beta}^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha} \otimes d x^{\beta}$, i.e. $\widetilde{F}$ has components

$$
\widetilde{F}=\left(\widetilde{F}_{j}^{i}\right)=\left(\begin{array}{cc}
\widetilde{F}_{b}^{a}\left(x^{a}, x^{\alpha}\right) & \widetilde{F}_{\beta}^{a}\left(x^{a}, x^{\alpha}\right) \\
0 & F_{\beta}^{\alpha}\left(x^{\alpha}\right)
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}\right)$. On putting

$$
{ }^{c c} \widetilde{F}=\left({ }^{c c} \widetilde{F}_{J}^{I}\right)=\left(\begin{array}{ccc}
\widetilde{F}_{b}^{a} & \widetilde{F}_{\beta}^{a} & 0  \tag{6.1}\\
0 & F_{\beta}^{\alpha} & 0 \\
0 & p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) & F_{\alpha}^{\beta}
\end{array}\right)
$$

we easily see that ${ }^{c c} \widetilde{F}_{J^{\prime}}^{I^{\prime}}=A_{I}^{I^{\prime}} A_{J^{\prime}}^{J}{ }^{c c} \widetilde{F}_{J}^{I}$.
We call ${ }^{c c} \widetilde{F}$ the complete lift of the tensor field $\widetilde{F}$ of type $(1,1)$ to $t^{*}\left(B_{m}\right)$.
Proof For simplicity we take only ${ }^{c c} F_{\beta^{\prime}}^{\bar{\alpha}^{\prime}}$. In fact,

$$
\begin{aligned}
& \left.{ }^{c c} F_{\beta^{\prime}}^{\bar{\alpha}^{\prime}}=A_{\alpha}^{\overline{\alpha^{\prime}}} A_{\beta^{\prime}}^{\beta}\left({ }^{c c} F_{\beta}^{\alpha}\right)+A_{\bar{\alpha}}^{\overline{\alpha^{\prime}}} A_{\beta^{\prime}}^{\beta}{ }^{c c} F_{\beta}^{\bar{\alpha}}\right)+A_{\bar{\alpha}}^{\overline{\alpha^{\prime}}} A_{\beta^{\prime}}^{\bar{\beta}}\left({ }^{c c} F_{\bar{\beta}}^{\bar{\alpha}}\right) \\
& =p_{\varepsilon} A_{\alpha}^{\gamma} A_{\gamma^{\prime}}^{\varepsilon} A_{\beta^{\prime}}^{\beta} F_{\beta}^{\alpha}+A_{\alpha^{\prime}}^{\alpha} A_{\beta^{\prime}}^{\beta} p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right)+A_{\alpha^{\prime}}^{\alpha}\left(p_{\varepsilon^{\prime}} A_{\beta^{\prime}}^{\theta} A_{\theta}^{\varepsilon^{\prime}}{ }_{\beta}\right) F_{\alpha}^{\beta} \\
& =-p_{\varepsilon}\left(\partial_{\gamma} A_{\alpha}^{\gamma}\right) A_{\alpha^{\prime}}^{\varepsilon} A_{\beta^{\prime}}^{\beta} F_{\beta}^{\alpha}+p_{\sigma} A_{\alpha^{\prime}}^{\alpha} A_{\beta^{\prime}}^{\beta}\left(\partial_{\beta} F_{\alpha}^{\sigma}\right)-p_{\sigma} A_{\alpha^{\prime}}^{\alpha} A_{\beta^{\prime}}^{\beta} \partial_{\alpha} F_{\beta}^{\sigma}+p_{\varepsilon^{\prime}} A_{\beta^{\prime}}^{\theta} A_{\theta}^{\varepsilon^{\prime}}{ }_{\beta} F_{\alpha^{\prime}}^{\beta} \\
& =-p_{\varepsilon}\left(\partial_{\gamma} A_{\alpha}^{\gamma}\right) A_{\alpha^{\prime}}^{\varepsilon} F_{\beta^{\prime}}^{\alpha}+p_{\sigma} A_{\alpha^{\prime}}^{\alpha} \partial_{\beta^{\prime}} F_{\alpha}^{\sigma}-p_{\sigma} A_{\beta^{\prime}}^{\beta} A_{\alpha^{\prime}}^{\alpha} \partial_{\alpha} F_{\beta}^{\sigma}-p_{\varepsilon^{\prime}}\left(\partial_{\beta} A_{\beta^{\prime}}^{\theta}\right) A_{\theta}^{\varepsilon^{\prime}} F_{\alpha^{\prime}}^{\beta} \\
& =-p_{\alpha^{\prime}}\left(\partial_{\gamma} A_{\alpha}^{\gamma}\right) F_{\beta^{\prime}}^{\alpha}+p_{\sigma} \partial_{\beta^{\prime}} F_{\alpha^{\prime}}^{\sigma}-p_{\sigma} A_{\beta^{\prime}}^{\beta} \partial_{\alpha^{\prime}} F_{\beta}^{\sigma}-p_{\theta}\left(\partial_{\beta} A_{\beta^{\prime}}^{\theta}\right) F_{\alpha^{\prime}}^{\beta} \\
& =-p_{\alpha^{\prime}} \partial_{\alpha} F_{\beta^{\prime}}^{\alpha}+p_{\sigma} \partial_{\beta^{\prime}} F_{\alpha^{\prime}}^{\sigma}-p_{\sigma} \partial_{\alpha^{\prime}} F_{\beta^{\prime}}^{\sigma}-p_{\alpha^{\prime}} A_{\theta}^{\alpha^{\prime}} A_{\beta}^{\alpha} A_{\beta^{\prime}}^{\alpha^{\prime}} A_{\alpha}^{\beta} A_{\alpha^{\prime}}^{\beta^{\prime}}\left(\partial_{\beta} A_{\beta^{\prime}}^{\theta}\right) F_{\alpha^{\prime}}^{\beta} \\
& =-p_{\alpha^{\prime}} \partial_{\alpha} F_{\beta^{\prime}}^{\alpha}+p_{\sigma}\left(\partial_{\beta^{\prime}} F_{\alpha^{\prime}}^{\sigma}-\partial_{\alpha^{\prime}} F_{\beta^{\prime}}^{\sigma}\right)-p_{\alpha^{\prime}} A_{\theta}^{\alpha^{\prime}} A_{\alpha}^{\beta} A_{\alpha^{\prime}}^{\beta^{\prime}}\left(\partial_{\beta} A_{\beta^{\prime}}^{\theta}\right) F_{\beta^{\prime}}^{\alpha} \\
& =-p_{\alpha^{\prime}} \partial_{\alpha} F_{\beta^{\prime}}^{\alpha}+p_{\sigma^{\prime}}\left(\partial_{\beta^{\prime}} F_{\alpha^{\prime}}^{\sigma^{\prime}}-\partial_{\alpha^{\prime}} F_{\beta^{\prime}}^{\sigma^{\prime}}\right)+p_{\alpha^{\prime}} A_{\theta}^{\alpha^{\prime}} A_{\beta^{\prime}}^{\theta} A_{\alpha^{\prime}}^{\beta^{\prime}}\left(\partial_{\beta} A_{\alpha}^{\beta}\right) F_{\beta^{\prime}}^{\alpha} \\
& =-p_{\alpha^{\prime}} \partial_{\alpha} F_{\beta^{\prime}}^{\alpha}+p_{\sigma^{\prime}}\left(\partial_{\beta^{\prime}} F_{\alpha^{\prime}}^{\sigma^{\prime}}-\partial_{\alpha^{\prime}} F_{\beta^{\prime}}^{\sigma^{\prime}}\right)+p_{\alpha^{\prime}} A_{\theta}^{\alpha^{\prime}} A_{\beta^{\prime}}^{\theta} A_{\alpha^{\prime}}^{\beta^{\prime}} \partial_{\alpha} F_{\beta^{\prime}}^{\alpha} \\
& =-p_{\alpha^{\prime}} \partial_{\alpha} F_{\beta^{\prime}}^{\alpha}+p_{\sigma^{\prime}}\left(\partial_{\beta^{\prime}} F_{\alpha^{\prime}}^{\sigma^{\prime}}-\partial_{\alpha^{\prime}} F_{\beta^{\prime}}^{\sigma^{\prime}}\right)+p_{\alpha^{\prime}} \partial_{\alpha} F_{\beta^{\prime}}^{\alpha} \\
& =p_{\sigma^{\prime}}\left(\partial_{\beta^{\prime}} F_{\alpha^{\prime}}^{\sigma^{\prime}}-\partial_{\alpha^{\prime}} F_{\beta^{\prime}}^{\sigma^{\prime}}\right) \text {. }
\end{aligned}
$$

Thus, we have ${ }^{c c} F_{\beta^{\prime}}^{\alpha^{\prime}}=p_{\sigma^{\prime}}\left(\partial_{\beta^{\prime}} F_{\alpha^{\prime}}^{\sigma^{\prime}}-\partial_{\alpha^{\prime}} F_{\beta^{\prime}}^{\sigma^{\prime}}\right)$. Similarly, we can easily find other components of ${ }^{c c} \widetilde{F}_{J^{\prime}}^{J^{\prime}}$.

Theorem 7 Let $\widetilde{F}, \widetilde{G}$, and $\widetilde{X}$ be projectable affinor and vector fields on $M_{n}$ with projections $F, G$, and $X$ on $B_{m}$, respectively. If $\omega \in \Im_{1}^{0}\left(B_{m}\right)$, then
(i) ${ }^{c c} \widetilde{F}(\gamma G)=\gamma(G \circ F)$,
(ii) ${ }^{c c} \widetilde{F}^{v v} \omega={ }^{v v}(\omega \circ F)$,
(iii) ${ }^{c c} \widetilde{F}^{c c} \widetilde{X}={ }^{c c} \widetilde{(F X)}+\gamma\left(L_{X} F\right)$.

Proof (i) If $\widetilde{F}$ and $\widetilde{G}$ are projectable affinor fields on $M_{n}$, then we have by (4.2) and (6.1)

$$
\begin{aligned}
{ }^{c c} \widetilde{F}(\gamma G) & =\left(\begin{array}{ccc}
\widetilde{F}_{b}^{a} & \widetilde{F}_{\beta}^{a} & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) & F_{\alpha}^{\beta}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
p_{\varepsilon} G_{\beta}^{\varepsilon}
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
0 \\
p_{\varepsilon} G_{\beta}^{\varepsilon} F_{\alpha}^{\beta}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
p_{\varepsilon}(G \circ F)_{\alpha}^{\varepsilon}
\end{array}\right)=\gamma(G \circ F) .
\end{aligned}
$$

Thus, we have ${ }^{c c} \widetilde{F}(\gamma G)=\gamma(G \circ F)$.
(ii) If $\omega \in \Im_{1}^{0}\left(B_{m}\right)$, and $\widetilde{F}$ is a projectable affinor field on $M_{n}$, then we get by (3.2) and (6.1):

$$
{ }^{c c} \widetilde{F}^{v v} \omega=\left(\begin{array}{ccc}
\widetilde{F}_{b}^{a} & \widetilde{F}_{\beta}^{a} & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) & F_{\alpha}^{\beta}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
\omega_{\beta}
\end{array}\right)
$$

$$
=\left(\begin{array}{c}
0 \\
0 \\
\omega_{\beta} F_{\alpha}^{\beta}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
(\omega \circ F)_{\alpha}
\end{array}\right)={ }^{v v}(\omega \circ F),
$$

which gives ${ }^{c c} \widetilde{F}{ }^{v v} \omega={ }^{v v}(\omega \circ F)$.
(iii) If $\widetilde{F}$ and $\widetilde{X}$ are projectable affinor and vector fields on $M_{n}$, respectively.

Then we have by (5.1) and (6.1):

$$
\begin{aligned}
&{ }^{c c} \widetilde{F}^{c c} \widetilde{X}=\left(\begin{array}{ccc}
\widetilde{F}_{b}^{a} & \widetilde{F}_{\beta}^{a} & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) & F_{\alpha}^{\beta}
\end{array}\right)\left(\begin{array}{c}
\widetilde{X}^{b} \\
X^{\beta} \\
-p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right)
\end{array}\right) \\
&=\left(\begin{array}{c}
\widetilde{F}_{b}^{a} \widetilde{X}^{b}+\widetilde{F}_{\beta}^{a} X^{\beta} \\
F_{\beta}^{\alpha} X^{\beta} \\
p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) X^{\beta}-p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right) F_{\alpha}^{\beta}
\end{array}\right) \\
&=\left(\begin{array}{c}
\widetilde{(F X)}{ }^{a} \\
(F X)^{\alpha} \\
-p_{\sigma} \partial_{\alpha}(F X)^{\sigma}
\end{array}\right)+\binom{0}{p_{\sigma}\left(X^{\beta} \partial_{\beta} F_{\alpha}^{\sigma}-\left(\partial_{\alpha} X^{\beta}\right) F_{\beta}^{\sigma}-\left(\partial_{\beta} X^{\sigma}\right) F_{\alpha}^{\beta}\right)} \\
&=\left(\begin{array}{c}
\widetilde{(F X)} \\
(F X)^{\alpha} \\
-p_{\sigma} \partial_{\alpha}(F X)^{\sigma}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
p_{\sigma}\left(L_{X} F\right)_{\alpha}^{\sigma}
\end{array}\right)={ }^{c c} \widetilde{(F X)}+\gamma\left(L_{X} F\right), \\
& \text { which gives }{ }^{c c} \widetilde{F}^{c c} \widetilde{X}={ }^{c c} \widetilde{(F X)}+\gamma\left(L_{X} F\right) .
\end{aligned}
$$

## Acknowledgment

The authors are grateful to the referee for his/her valuable comments and suggestions. This paper was supported by TÜBİTAK project TBAG-112T111.

## References

[1] Duc TV. Structure presque-transverse. J Diff Geom 1979; 14: 215-219.
[2] Husemöller D. Fibre Bundles. New York, NY, USA: Springer, 1994.
[3] Lawson HB, Michelsohn ML. Spin Geometry. Princeton, NJ, USA: Princeton University Press, 1989.
[4] Pontryagin LS. Characteristic classes of differentiable manifolds. Trans Amer Math Soc 1962; 7: 279-331.
[5] Salimov AA, Kadıoğlu E. Lifts of derivations to the semitangent bundle. Turk J Math 2000; 24: 259-266.
[6] Steenrod N. The Topology of Fibre Bundles. Princeton, NJ, USA: Princeton University Press, 1951.
[7] Vishnevskii VV. Integrable affinor structures and their plural interpretations. J Math Sci (New York) 2002; 108: 151-187.
[8] Yano K, Ishihara S. Tangent and Cotangent Bundles. New York, NY, USA: Marcel Dekker, 1973.


[^0]:    *Correspondence: asalimov@atauni.edu.tr
    2010 AMS Mathematics Subject Classification: 53A45, 53C55.

