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Abstract

In various computer vision applications, often we need

to convert an image in one style into another style for bet-

ter visualization, interpretation and recognition; for exam-

ples, up-convert a low resolution image to a high resolution

one, and convert a face sketch into a photo for matching,

etc. A semi-coupled dictionary learning (SCDL) model is

proposed in this paper to solve such cross-style image syn-

thesis problems. Under SCDL, a pair of dictionaries and a

mapping function will be simultaneously learned. The dic-

tionary pair can well characterize the structural domain-

s of the two styles of images, while the mapping function

can reveal the intrinsic relationship between the two styles’

domains. In SCDL, the two dictionaries will not be ful-

ly coupled, and hence much flexibility can be given to the

mapping function for an accurate conversion across styles.

Moreover, clustering and image nonlocal redundancy are

introduced to enhance the robustness of SCDL. The pro-

posed SCDL model is applied to image super-resolution and

photo-sketch synthesis, and the experimental results vali-

dated its generality and effectiveness in cross-style image

synthesis.

1. Introduction

In many computer vision and pattern recognition appli-

cations, people often have images of the same scene but

obtained from different sources, and consequently the con-

version between the images of different styles are required.

For example, in law enforcement we may need to compare

mug-shot photos to a sketch drawn by an artist based on the

verbal description of the suspect. In addition, a low resolu-

tion image/video captured by low-end devices often needs

to be up-converted to a higher resolution for better visual-

ization and interpretation. Researches on such cross-style

image synthesis problems can not only benefit the practical

applications (e.g., public security) but also help people un-
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derstand how the human visual system perceives the distinc-

tive information of the same scene across different sources.

In the past decades, image cross-style synthesis and

recognition have been attracting much attention. Since the

images under different styles, even describing the same

scene, can be very different, how to reveal the underlying

relations between the two styles is the key issue to be stud-

ied. In order to predict the unknown images in one style

from their counterparts in another style, statistical learning

approaches can be adopted to learn the underlying mapping

from example image pairs. Many image processing and

computer vision tasks can be considered as a cross-style

image synthesis problem, such as image super-resolution

[12, 15, 29, 21], artistic rendering [11, 8, 16], photo-sketch

synthesis [24, 26] and multi-modal biometrics [13, 22, 26],

etc. Various methods have been proposed to solve one of

the above mentioned tasks by using patch-based matching

[11, 26], coupled subspace learning [13, 16] and coupled

dictionary learning [27] techniques, etc. However, most of

these methods are limited in finding the complex mapping

function between styles, as well as limited in reconstructing

the style-specific local structures in the conversion process.

In this paper, we propose a simple yet more general mod-

el to solve the cross-style image synthesis problems. Specif-

ically, we learn a dictionary pair and a mapping function si-

multaneously. The pair of dictionaries aims to characterize

the two structural domains of the two styles, and the map-

ping function is to reveal the intrinsic relationship between

the two styles for synthesis. In the learning process, the two

dictionaries will not be fully coupled, allowing the map-

ping function much flexibility for accurate synthesis across

styles. We call the proposed model semi-coupled dictionary

learning (SCDL), and apply it to image super-resolution and

photo-sketch synthesis to validate its performance.

In real-world data, the mappings between different styles

can be complex, spatial-variant and nonlinear. It is not suf-

ficient to use a single mapping to describe the complex re-

lationship between different image styles. In order to im-

prove the robustness and stability of SCDL, we propose a

new model selection (clustering) method and integrate it in-



to SCDL. The model selection can effectively separate data

into different clusters so that in each cluster a stable linear

mapping between the two styles can be learned. Different

from the previous methods which do clustering in the signal

domain, the proposed model selection performs clustering

in the style-specific sparse domains, aiming at enhancing

the style conversion capability.

The rest of the paper is organized as follows. Section 2

reviews related works. Section 3 presents the SCDL frame-

work. Section 4 presents the algorithm. Section 5 conducts

experiments and Section 6 concludes the paper.

2. Related Works

Various cross-style image synthesis problems, such as

image analogies [11], texture synthesis [8, 16], and mul-

timodal face recognition [26, 13, 22], have been proposed

and studied. In this paper, we focus on the problems of im-

age super-resolution and photo-sketch synthesis, and thus

we mainly review the methods on these two applications.

Image super-resolution aims to reconstruct a high reso-

lution (HR) image from its low resolution (LR) counterpart.

There are mainly two categories of super-resolution meth-

ods. In the first category, the LR image is down-sampled

from a blurred version of the HR image [10]. The blur-

ring kernel is known (or can be estimated) and used in the

HR image reconstruction process. This is basically an in-

verse problem with an imaging model available. In the

second category, often the LR image is modeled as the di-

rectly down-sampled version of the HR image. We consid-

er the second case in this paper, and the super-resolution

problem can be viewed as an image interpolation problem

[12, 29, 15, 21]. Many image interpolation methods, in-

cluding the classical bi-cubic interpolator [12] and the edge

guided interpolators [15, 29], interpolate the missing HR

pixel as the weighted average of its local neighbors. The

difference between these methods lies in how the weights

are determined. In [29] the autoregressive model is used to

exploit the image local correlation for effective image inter-

polation. In [21], a series of linear inverse estimators of HR

image are computed based on different priors on the image

regularity. These estimators are then mixed in a frame over

patches of coefficients, providing a sparse signal represen-

tation under l1-norm minimization weighted by the signal

regularity in each patch.

In law enforcement, we may have to compare mug-shot

photos to a sketch drawn by an artist based on the verbal

description of the suspect. In addition, since near infrared

(NIR) imaging is robust to illumination changes, it is often

used in outdoor face image acquisition, and matching face

images under NIR and visible lights is necessary. Tang and

Wang [24] used eigentransform to learn mappings between

different image styles. Their method is based on two impor-

tant assumptions: transformation between different styles

can be approximated as a linear process, and faces can be

reconstructed from training samples by PCA. This method

works well in face hallucination [25]. However, due to the

limitations of PCA, the two assumptions can hardly hold

for image styles between which the mappings are highly

nonlinear. Another family of cross-style image modeling

methods is to construct a hidden subspace [22, 13]. This

subspace aims to maximize correlations of different image

styles so that images of different styles projected into the

subspace are highly correlated. One representative work is

canonical correlated analysis, which has been well used in

multi-modal face recognition tasks [14]. However, canoni-

cal correlated analysis aims at preserving correlation or dis-

criminative information instead of reconstructive informa-

tion, and it may not lead to highly accurate image recon-

struction across styles. To overcome these drawbacks, Lin

and Tang [16] proposed a novel coupled subspace learning

strategy to learn image mappings between different styles.

They first utilized correlative component analysis to find the

hidden spaces for each style to preserve correlative informa-

tion, and then learned a bidirectional transform between two

subspaces.

Natural image patches could be sparsely represented by

an over-complete dictionary of atoms. Recently, sparse

coding (or sparse representation) and dictionary learning

have proven to be very effective in image reconstruction

[20, 9, 6, 5], while the dictionary plays an important role

to successfully accomplish such tasks. Learning a dictio-

nary from example image patches has been attracting much

interest, and some representative methods have been pro-

posed, such as K-SVD [1], supervised dictionary learning

[19], online dictionary learning [17], etc. In [27], Yang

et al. used a coupled dictionary learning model for image

super-resolution. They assumed that there exist coupled

dictionaries of HR and LR images, which have the same

sparse representation for each pair of HR and LR patch-

es. After learning the coupled dictionary pair, the HR patch

is reconstructed on HR dictionary with sparse coefficients

coded by LR image patch over the LR dictionary. In our

proposed SCDL, this strong regularization of “same sparse

representation” is relaxed for cross-style image synthesis,

and a more stable cross-style mapping can be learned in the

sparse domain.

3. Semi-coupled dictionary learning

3.1. Problem formulation

The image cross-style synthesis problem can be formu-

lated as follows: given an image x of style sx, how to re-

cover the associated image y of style sy of the same scene?

The difficulties of this kind of problems vary with image

styles. Suppose that all the images in style sx form a space

X and images in style sy form a space Y , and there exists



Figure 1. Flowchart of the proposed semi-coupled dictionary learning (SCDL) based image cross-style synthesis.

a mapping f(·) from X to Y: y = f(x). If the mapping is

invertible and known, we can simply transform between x

and y. Unfortunately, in most cases this kind of transform

is invertible and hard to learn directly.

Since each pair of images indicate the same scene, it

is reasonable to assume that there exists a hidden space

where the styles can be converted to each other. There-

fore, some coupled subspace/dictionary learning methods

[16, 27] have been proposed, and they assume that in the

coupled subspace the representation coefficients of the im-

age pair should be strictly equal. However, this assumption

is too strong to address the flexibility of image structures

in different styles. In this paper, we relax this assumption

and assume that there exists a dictionary pair over which

the representations of two styles have a stable mapping. S-

ince the pair of dictionaries is not required to be fully cou-

pled, we call the proposed method semi-coupled dictionary

learning (SCDL). In SCDL, we employ dictionaries to seek

for the structural hidden spaces and the mapping. Once the

dictionary pair and mapping are learned, cross-style image

synthesis can be performed, and the synthesis procedures

are illustrated in Fig. 1.

Denote by X and Y the training datasets formed by the

image patch pairs of styles sx and sy . We propose to min-

imize the energy function below to find the desired semi-

coupled dictionaries as well as the desired mapping:

min{Dx,Dy,f(·)} Edata(Dx,X) + Edata(Dy,Y)

+γEmap(f(Λx),Λy) + λEreg(Λx,Λy, f(·),Dx,Dy)

(1)

where Edata(·, ·) is the data fidelity term to represent data

description error, Emap(·, ·) is the mapping fidelity term to

represent the mapping error between the coding coefficients

of two styles, and Ereg is the regularization term to regular-

ize the coding coefficients and mapping. Note that in the

proposed model, the coding coefficients of X and Y over

Dx and Dy will be related by a mapping f(·). The two dic-

tionaries (Dx and Dy) and the mapping function f(·) will

be jointly optimized.

One special but important case is that the mapping f(·)
is linear, and then the framework in Eq. 1 can be turned

into the following dictionary learning and ridge regression

problem:

min{Dx,Dy,W}‖X−DxΛx‖
2
F + ‖Y −DyΛy‖

2
F

+γ‖Λy −WΛx‖
2
F + λx‖Λx‖1 + λy‖Λy‖1 + λW ‖W‖2F

s.t. ‖dx,i‖l2 ≤ 1, ‖dy,i‖l2 ≤ 1, ∀i

(2)

where γ, λx, λy, λW are regularization parameters to bal-

ance the terms in the objective function and dx,i,dy,i are

the atoms of Dx and Dy , respectively. The objective func-

tion in Eq. 2 is not jointly convex to Dx,Dy,W. How-

ever, it is convex w.r.t. each of them if others are fixed.

Therefore, we can design an iterative algorithm to alterna-

tively optimize the variables. In [27], the mapping trans-

form W is predefined as an identity matrix and the coding

coefficients Λx and Λy are assumed the same. This mod-

el actually approximates f(·) as a conformal mapping on

the coupled dictionaries. However, for complex data with

invertible mapping, this model is limited to reconstruct the

image structures across different styles. In comparison, our

proposed SCDL model relaxes the coupling of dictionaries

by allowing mapping errors between coding coefficients.

3.2. Training

To tackle the energy-minimization in Eq. 2, we separate

the objective function into 3 sub-problems, namely sparse

coding for training samples, dictionary updating and map-

ping updating. First, we need to initialize the mapping W

and dictionary pair. W can be simply initialized as the i-

dentity matrix. There are many ways to initialize Dx and

Dy such as random matrix, PCA basis, DCT basis, etc. Us-

ing l1-minimization, the sparse codes Λx and Λy can then

be obtained. Note that mapping by W is assumed to be lin-

ear, and the bidirectional transform learning strategy can be

adopted to learn transforms from Λx to Λy and from Λy to

Λx simultaneously.

With some initialization of W and dictionary pair Dx and

Dy , we can calculate the sparse coding coefficients Λx and

Λy as follows:

min{Λx} ‖X−DxΛx‖
2
F + γ‖Λy −WxΛx‖

2
F + λx‖Λx‖1

min{Λy} ‖Y −DyΛy‖
2
F + γ‖Λx −WyΛy‖

2
F + λy‖Λy‖1

(3)



Eq. 3 is a multi-task lasso problem. Many l1-optimization

algorithms can solve it effectively, such as FISTA [2],

LARS [7], etc. In this paper, we choose LARS [7] as the

l1-optimization method for its efficiency and stability.

With Λx and Λy fixed, dictionary pair Dx and Dy can

be updated as follows:

min{Dx,Dy} ‖X−DxΛx‖
2
F + ‖Y −DyΛy‖

2
F

s.t. ∀i, ‖dx,i‖l2 ≤ 1, ‖dy,i‖l2 ≤ 1
(4)

Eq. 4 is a quadratically constrained quadratic program prob-

lem (QCQP) and we adopt a one-by-one update strategy

[28] to solve it.

With dictionary and coding coefficients fixed, we can

then update the mapping W:

min{W} ‖Λy −WΛx‖
2
F + (λW /γ) · ‖W‖2F (5)

Eq. 5 is a ridge regression problem and the solution can be

analytically derived as:

W = ΛyΛ
T
x (ΛxΛ

T
x + (λW /γ) · I)−1 (6)

where I is an identity matrix.

With SCDL, we can learn the dictionary pair Dx and Dy

on which the sparse coding coefficients of two styles have

stable bidirectional linear transformations. In Section 4 we

can further enhance its stability by clustering samples into

several clusters and exploiting the image nonlocal redun-

dancy of patches.

3.3. Synthesis

After learning the dictionaries Dx and Dy and the lin-

ear mapping W, for a given image x in style sx, we can

easily convert it into an image y of style sy by solving the

following optimization:

min{αx,i,αy,i} ‖xi −Dxαx,i‖
2
F + ‖yi −Dyαy,i‖

2
F

+γ‖αy,i −Wαx,i‖
2
F + λx‖αx,i‖1 + λy‖αy,i‖1

(7)

where xi is a patch of x and yi is the corresponding patch in

the intermediate estimate of y to be synthesized. Eq. 7 can

be solved by alternatively updating αx,i and αy,i. Finally,

each patch of y can be reconstructed as:

ŷi = Dyα̂y,i (8)

After all the patches are estimated, the estimation of the

desired image y can then be obtained.

In our synthesis method, an initial estimation of y is

needed. Depending on the problem, different strategies can

be adopted to initialize y. For example, in the problem of

image super-resolution, y can be simply initialized by bi-

cubic interpolation. In the problem of photo-sketch synthe-

sis, we can first code xi on Dx for coding vector αx,i, and

then initialize yi as DyWαx,i.

4. Enhanced algorithm

4.1. Clustering and model selection

Due to the complex structures in images of different

styles, learning only one pair of dictionaries and an asso-

ciated linear mapping function is often not enough to cover

all variations of image cross-style synthesis. For example,

in face sketch-photo synthesis the mapping may vary sig-

nificantly in different facial regions. Therefore multi-model

should be learned to enhance the robustness. Intuitively,

pre-clustering could be conducted to separate training data

into several groups so that the linear mapping in each group

can be more stably learned. Lin and Tang [16] proposed

a Coupled Gaussian Mixture Model to tackle this coupled

data clustering problem. They dealt with sample pairs as a

whole in the joint spaces and modeled them as mixtures of

several cluster centers. The objective function of the clus-

tering algorithm is [16]:

max{M,c}

∏n

i=1
P (ui,vi|Mc(i)) (9)

where

c(i) = argmax{k} P (ui,vi|Mk) (10)

and Mk indicates a coupled Gaussian model u ∼
N(mu,k,Σu,k) and v ∼ N(mv,k,Σv,k).

The clustering in [16] is actually performed according

to the concentration of data points. The objective function

simply assumes that joint data assembling closely in vec-

tor space share the same linear mapping between the two

styles. In this paper, we propose to conduct clustering in

the sparse domains spanned by the two dictionaries. In this

way, a linear mapping between the sparse codes of two im-

age styles can be more stably and accurately learned than

in the non-sparse original signal spaces. For easy calcula-

tion and modeling, we suppose that the model prediction

error is Gaussian distributed. Based on the above discus-

sions, we integrate a novel model selection procedure into

the proposed SCDL framework by optimizing the following

objective function:

max{W,c}

∏n

i=1
P (αx,i,αy,i|Wc(i))

=min{W,c}

∑n

i=1
‖αx,i −Wc(i)αy,i‖2

(11)

where c are model indices for samples and W are style

mappings in each cluster.

Our method focuses on concentration around super-

planes in the sparse coding domains instead of centroids in

the non-sparse original signal domains. Eq. 11 can be alter-

natively optimized by fixing one of the two sets of variables,

c or W. Therefore, a heuristic strategy which is similar to

K-Means clustering can be integrated in our SCDL frame-

work. In each iteration we update the clustering index of



Figure 2. Examples of cluster distributions in photo-sketch synthe-

sis. Each sub-figure shows the distribution of a cluster, while the

stronger color represents higher frequency.

each training sample based on model fitting error, and up-

date linear mappings according to the current clusters.

After integrating clustering into the learning of SCDL,

multiple dictionary pairs and mappings are learned. In the

synthesis stage, a model must be selected for a local image

patch. However, we only have the image in style sx, and

coupled clustering for model seeking cannot be conducted

directly. To solve this problem, we can initialize y, and then

determine the initial cluster index c(i) of each patch by:

min{c} ‖αx,i −Wc(i)α̂y,i‖2 (12)

where αx,i and α̂y,i are the sparse coding coefficients of

source style image patch xi and initial guess of target style

image patch yi. In image super-resolution this model selec-

tion is effective because y can be well initialized by bicubic

interpolator. However when dealing with cross-style face

synthesis, it is difficult to get a good enough initialization

of y. Based on the structure of face images, we found that

patches in different clusters have distinctive spatial distribu-

tion, as shown in Fig. 2. We see that the patches in differ-

ent clusters concentrate at different spatial locations. The

strong color means high frequency.

With this observation, we can have an empirical estima-

tion of the spatial distribution of each cluster in the face im-

ages. Initial model selection can then be transformed into a

MAP problem:

max{c} P (αx,i, α̂y,i|Wc)P (Li|c) (13)

where Li = (rowi, coli)
T are coordinates of patches xi in

spatial domain and distribution P (Li|c) is the prior proba-

bility from empirical observation on training data.The MAP

problem in Eq. 13 is a weighted distance minimum problem

that can be easily solved.

4.2. Exploiting nonlocal self­similarities

Recently many works have shown that the nonlocal re-

dundancies existing in natural images are very useful for

image restoration and a good combination of local sparsity

and nonlocal redundancy can greatly enhance the perfor-

mance of image reconstruction [3, 4, 18, 23]. Our synthe-

sis framework can also be enhanced by integrating nonlocal

similarities. For each local patch yi, we can search for it-

s similar patches in the whole image, and then predict this

patch as: ŷi =
∑L

i=1 b
l
iy

l
i, where yl

i is the lth most similar

patch to yi and bli is the nonlocal weight as defined in [3].

Consequently, the nonlocal based cross-style image synthe-

sis can be performed by:

argmin{yi} ESCDL + δ‖yi −
∑L

l=1
bliy

l
i‖

2
2 (14)

where ESCDL is the energy function defined in Eq. 7 and δ
is the balancing parameter.

4.3. Summary of algorithms

The proposed SCDL approach involves two algorithms:

the dictionary and mapping learning algorithm and the im-

age synthesis algorithm, which are summarized in the fol-

lowing Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Semi-Coupled Dictionary Learning

Input: Training datasets X and Y of two image styles.

Each corresponding pair indicates the same object. Initial

dictionary pair Dx and Dy , and initial mapping Wx and

Wy .

For each iteration Until convergence:

For each cluster

1. Fix other variables, update Λx and Λy by sparse

coding in Eq. 3.

2. Fix other variables, update Dx and Dy in Eq. 4.

3. Fix other variables, update Wx and Wy in Eq. 5.

Update clustering index of each pair by Eq. 13.

Output: Dx, Dy , Wx and Wy

Algorithm 2 Cross-style Image Synthesis

Input: Test image x, well trained dictionary pair Dx and

Dy , the learnt mapping Wx and Wy for two styles.

Initialization: Initialize y as discussions in 3.3. Initialize

clustering index of each patch according to Eq. 13.

For each iteration Until convergence:

1. Update y by the nonlocal based cross-style synthe-

sis in Eq. 14.

2. Update clustering index of each patch according to

Eq. 13.

Output: Synthesized image y.

5. Experiment results

The proposed SCDL model is simple yet general. It

can be adapted to solve various cross-style image synthe-



sis problems. In this paper, we apply it to image super-

resolution and photo-sketch synthesis to verify its effective-

ness.

It is crucial to select appropriate parameters for differ-

ent applications. In this paper, a combined line-search s-

trategy was used to select parameters for each application

according to the minimal energy after converge. The pa-

rameters selected in this way include those regularization

parameters λx, λx, λx, γ, δ. For the number of clusters in

pre-clustering, image patch size and the number of atom-

s in the dictionary, we empirically set them by experience.

The specific values of these parameters will be given in the

following experiments.

Due to the page limit, only partial experimental results

are shown. More results and the MATLAB source codes of

this paper can be found at http://www.comp.polyu.edu.hk/

∼cslzhang/SCDL.htm.

5.1. Image Super­resolution

As we discussed in Section 2, we consider the image

super-resolution problem where the low-resolution (LR)

image is directly down-sampled from the high-resolution

(HR) image. Since there is no blurring (or we can say that

the blur kernel is the Dirac delta function) before down-

sampling, the missing pixels have no direct connection with

the sampled pixels, making the super-resolution a highly

ill-posed problem. Fortunately, natural images have a rich

amount of local and nonlocal redundancy, and we can as-

sume that there exists a piecewise linear mapping between

the HR and LR image patches in the domains spanned by an

HR dictionary Dh and an LR dictionary Dl. With a train-

ing set Y of HR patches and the associated training set X

of LR patches, the model in Eq. 2 can be adapted to learn

the mapping W.

In our experiments, 500 thousand training patch pairs are

extracted from the Kodak PhotoCD dataset∗, which has no

relation with the testing images used in the experiments.

The patch size is 5 × 5. Pre-clustering is conducted and

cluster number is set to be 64. We choose nine widely

used testing images in the experiments. The regulariza-

tion parameter λx, λx, λx, γ, δ, are set to be 0.01, 0.01, 0.1,

0.1 and 0.25, respectively. The number of atoms in the

learned dictionary is set as 256 for each cluster. In the

reconstruction (i.e., synthesis) stage, bicubic interpolation

is used for the initialization of HR image. The represen-

tative and state-of-the-art image super-resolution methods,

including bicubic [12], SAI [29], SME [21] and ScSR [27],

are employed to compare with the proposed SCDL method.

All the codes are downloaded from the authors’ websites.

Note that in the implementation of ScSR, the Matlab func-

tion “imresize” is used to generate the LR image, which

actually involves a smooth filtering before down-sampling.

∗http://r0k.us/graphics/kodak/

We first do image super-resolution with scaling factor 2.

The PSNR results are listed in Table 1, while an example

(Butterfly) is shown in Fig. 3. For color images, we only

calculate PSNR measures for the luminance channel. From

Table 1 we can see that our proposed method outperforms

state-of-the-arts in most cases, and its PSNR is in average

0.26dB higher than SAI, which is the second best among all

competing methods. In particular, from Fig. 3 we can see

that although the SAI method can preserve well the image

edges, it will also over-smooth the edges to some extent.

For example, some fine structures in the wing of the But-

terfly are smoothed out by SAI, but interestingly such fine

structures can be partially preserved by the proposed SCDL

method.

We then do image super-resolution with scaling factor

3. Since the codes of SAI and SME can only do super-

resolution with scaling factor 2n, where n is an integer, we

only compare SCDL with bicubic and ScSR in this exper-

iment. The PSNR results are listed in Table 2, and an ex-

ample (Leaves) is shown in Fig. 4. Again, SCDL performs

much better than ScSR in terms of both PSNR and visual

perception quality.

5.2. Face synthesis between sketch and photo

The proposed SCDL can also be used for other appli-

cations such as sketch-photo/photo-sketch synthesis, which

have potential applications in law enforcement and enter-

tainment. Sketches which are often drawn by artists have

significantly different appearance from the original photos.

Here we conduct photo-sketch and sketch-photo face syn-

thesis on the CUFS Database [26], which consists of three

parts: 188 subjects from CUHK students, 295 subjects from

XM2TVS database and 123 subjects from the AR database.

Each subject has one photo image and one corresponding

sketch image drawn by artists. In our experiments we use

the 88 subjects from CUHK students for training and others

as testing samples.

As mappings between photo and sketch are highly non-

linear, we do synthesis on image patches. As artists prefer to

exaggerate some local structures of human faces, for similar

patches in photo their corresponding patches in sketch can

be very different. Therefore, we need to pre-cluster patch

pairs to learn multiple dictionary pairs and linear mappings

to address the complex relationship between photo and s-

ketch. In the synthesis, the initialization of sketch-photo

is made as explained in Section 3.3, and each patch pair is

clustered by Eq. 13. 50,000 pairs of patches are randomly

selected for training. The patch size is 10×10 and the clus-

ter number is 64. The number of atoms in the dictionary is

256. The regularization parameters, λx, λx, λx, γ, δ, are set

to be 0.015, 0.015, 0.15, 0.1 and 0.4, respectively.

Fig.5 shows the synthesis results for photo-sketch and

sketch-photo synthesis, respectively. Wang and Tang’s

http://www.comp.polyu.edu.hk/~cslzhang/SCDL.htm 
http://www.comp.polyu.edu.hk/~cslzhang/SCDL.htm 


Figure 3. Experimental results on image super-resolution (scaling factor: 2). From left to right: low resolution image, high resolution

ground-truth, and reconstructed images by Bicubic [12], ScSR [27], SAI [29], SME [21] and the proposed SCDL method.

Table 1. PSNR (dB) results on image super-resolution (scaling factor = 2)

Image Girl Butterfly Fence Starfish Parthenon House Foreman Cameraman Leaves Average

Bicubic[12] 33.83 27.68 24.52 30.22 27.08 32.15 35.56 25.36 26.85 29.25

SAI[29] 34.13 29.17 23.78 30.73 27.10 32.84 37.68 25.88 28.72 30.00

SME[21] 34.03 28.65 24.53 30.35 27.13 33.15 37.17 26.14 28.21 29.93

ScSR[27] 33.29 28.27 24.05 30.35 26.46 31.78 35.68 25.28 27.52 29.19

Proposed 34.25 29.62 24.76 30.94 27.32 33.21 37.26 26.06 28.92 30.26

Figure 4. Experimental results on image super-resolution (scaling factor: 3). From left to right: low resolution image, high resolution

ground-truth, and reconstructed images by Bicubic [12], ScSR [27] and the proposed SCDL method.

Table 2. PSNR (dB) results on image super-resolution (scaling factor = 3)

Image Girl Butterfly Fence Starfish Parthenon House Foreman Cameraman Leaves Average

Bicubic[12] 31.24 23.32 20.30 25.97 24.05 28.55 32.00 22.09 21.74 25.47

ScSR[27] 31.10 23.84 20.38 26.08 24.06 28.53 32.29 22.21 21.93 25.60

Proposed 31.90 24.61 20.96 26.60 24.68 29.25 33.37 22.89 22.64 26.32

method in [26] is used for comparison. The method in [26]

actually has two steps. In the first step, a nearest neigh-

bor searching based method is used to synthesize the pho-

to or sketch patches, as shown in the 2nd row of Fig. 5.

In the second step, patches will be optimized with an MR-

F post-processing framework, as shown in the 3rd row of

Fig. 5. The MRF post-processing significantly improves

the results of the first step, whereas we can still see some

artifacts (highlighted in the last row of Fig. 5) generated

in the incorrect patch matching process. Compared with

the final synthesis results reported in [26], our result seems

over-smoothed, as shown in the 4th row of Fig. 5. How-

ever, it should be noted that there is no complex MRF

post-processing in our method. We simply use the aver-

aging strategy for fusing overlapped patches. Our results

have a large room to improve by coupling with some post-

processing techniques.

6. Conclusions

In this paper, we proposed a novel semi-coupled dictio-

nary learning (SCDL) framework for cross-style image syn-

thesis. SCDL jointly optimizes the dictionary pair and the

mapping function in the sparse domain. The learned dictio-

nary pair can not only ensure the style-specific data fidelity

but also span the hidden spaces for stable mapping between

image styles. The proposed SCDL is adapted to applica-

tions of image super-resolution and photo-sketch synthesis,

and shows very competitive performance with state-of-the-

arts. In the future study, we will adapt SCDL to more types

of image synthesis tasks and extend it to cross-style image

recognition tasks.
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Figure 5. Sketch-photo (left two columns) and photo-sketch (right

two columns) synthesis. From top to bottom: input images, result-

s by Wang et al.’s method [26] without MRF post-processing, re-

sults by method [26] with MRF post-processing, results by SCDL,

ground-truths and zoom-in sub-images.
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