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Abstract

One of the main challenges in data clustering is to define an appropriate similar-
ity measure between two objects. Crowdclustering addresses this challenge by
defining the pairwise similarity based on the manual annotations obtained through
crowdsourcing. Despite its encouraging results, a key limitation of crowdclus-
tering is that it can only cluster objects when their manual annotations are avail-
able. To address this limitation, we propose a new approach for clustering, called
semi-crowdsourced clustering that effectively combines the low-level features of
objects with the manual annotations of a subset of the objects obtained via crowd-
sourcing. The key idea is to learn an appropriate similarity measure, based on the
low-level features of objects and from the manual annotations of only a small por-
tion of the data to be clustered. One difficulty in learning the pairwise similarity
measure is that there is a significant amount of noise and inter-worker variations in
the manual annotations obtained via crowdsourcing. We address this difficulty by
developing a metric learning algorithm based on the matrix completion method.
Our empirical study with two real-world image data sets shows that the proposed
algorithm outperforms state-of-the-art distance metric learning algorithms in both
clustering accuracy and computational efficiency.

1 Introduction

Crowdsourcing provides an easy and relatively inexpensive way to utilize human capabilities to
solve difficult computational learning problems (e.g. image annotation in ESP game [17]). It divides
a large task into a number of small-scale tasks, often referred to as Human Intelligence Tasks (HITs),
and asks a human worker to solve each individual HIT. It then combines the partial solutions ob-
tained from individual HITs to form the final solution. In the past, crowdsourcing has been explored
for a number of machine learning tasks (e.g., classification and clustering) [21, 10, 19].

Crowdclustering [10] exploits the crowdsourcing paradigm for data clustering. The key idea is to
first obtain manual annotations of objects through crowdsourcing. The annotations can either be
in the form of grouping objects based on their perceived similarities [10] or the keyword assign-
ments to individual objects (e.g., images) by human workers [25]. A pairwise similarity matrix is
then computed from the acquired annotations, and is used to cluster objects. Unlike the convention-
al clustering techniques where the similarity measure is defined based on the features of objects, in
crowdclustering, the pairwise similarities are derived from the manual annotations, which better cap-
ture the underlying inter-object similarity. Studies [10] have shown that crowdclustering performs
significantly better than the conventional clustering methods, given a sufficiently large number of
manual annotations for all the objects to be clustered.
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Figure 1: The proposed framework for semi-crowdsourced clustering. The given N objects
(o1, o2, . . . , oN ) need to be clustered, but only a small subset of the N objects (o′1, o

′
2, · · · o′n) have

been annotated by crowdsourcing, n ≪ N .

Despite the encouraging results obtained via crowdclustering, a main shortcoming of crowdclus-
tering is that it can only cluster objects for which manual annotations are available, significantly
limiting its application to large scale clustering problems. For instance, when clustering hundreds of
thousands of objects, it is not feasible to have each object manually annotated by multiple workers.
To address this limitation, we study the problem of semi-crowdsourced clustering, where given
the annotations obtained through crowdsourcing for a small subset of the objects, the objective is to
cluster the entire collection of objects. Figure 1 depicts the proposed framework. Given a set of N
objects to be clustered, the objective is to learn a pairwise similarity measure from the crowdsourced
labels of n objects (n ≪ N ) and the object feature vector x. Note that the available crowdclustering
algorithms [10, 25] expect that all N objects be labeled by crowdsourcing.

The key to semi-crowdsourced clustering is to define an appropriate similarity measure for the subset
of objects that do not have manual annotations (i.e., N−n objects). To this end, we propose to learn
a similarity function, based on the object features, from the pairwise similarities derived from the
manual annotations for the subset of n objects; we then apply the learned similarity function to
compute the similarity between any two objects, and perform data clustering based on the computed
similarities. In this study, for computational simplicity, we restrict ourselves to a linear similarity
function, i.e. given two objects oi and oj and their feature representation xi and xj , respectively,

their similarity sim(Oi, Oj) is given by sim(Oi, Oj) = x
⊤
i Mxj , where M � 0 is the learned

distance metric.

Learning a linear similarity function from given pairwise similarities (sometimes referred to as pair-
wise constraints when similarities are binary) is known as distance metric learning, which has been
studied extensively in the literature [24]. The key challenge of distance metric learning in semi-
crowdsourced clustering arises due to the noise in the pairwise similarities obtained from manual
annotations. According to [25], large disagreements are often observed among human workers in
specifying pairwise similarities. As a result, pairwise similarities based on the majority vote among
human workers often disagree with the true cluster assignments of objects. As an example, the au-
thors in [25] show that for the Scenes data set [8], more than 80% of the pairwise labels obtained
from human workers are inconsistent with the true cluster assignment. This large noise in the pair-
wise similarities due to crowdsourcing could seriously misguide the distance metric learning and
lead to a poor prediction performance, as already demonstrated in [12] as well as in our empirical
study.

We propose a metric learning algorithm that explicitly addresses the presence of noise in pairwise
similarities obtained via crowdsourcing. The proposed algorithm uses the matrix completion tech-
nique [3] to rectify the noisy pairwise similarities, and regression analysis to efficiently learn a
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Figure 2: The proposed framework of learning a distance metric from noisy manual annotations

distance metric from the restored pairwise similarities. More specifically, the proposed algorithm
for clustering N objects consists of three components: (i) filtering noisy pairwise similarities for n
objects by only keeping object pairs whose pairwise similarities are agreed by many workers (not
majority of the workers). The result of the filtering step is a partially observed n × n similarity
matrix (n ≪ N ) with most of its entries removed/unobserved; (ii) recovering the n × n similarity
matrix from the partially observed entries by using the matrix completion algorithm; (iii) applying a
regression algorithm to learn a distance metric from the recovered similarity matrix, and clustering
the N ×N pairwise similarities based on the learned distance metric. Figure 2 shows the basic steps
of the proposed algorithm.

Compared to the existing approaches of distance metric learning [24], the proposed algorithm has
the following three advantages: (i) by exploring the matrix completion technique, the proposed
algorithm is robust to a large amount of noise in the pairwise similarities; (ii) by utilizing regres-
sion analysis, the proposed algorithm is computationally efficient and does not have to handle the
positive semi-definite constraint, a key computational bottleneck for most distance metric learning
algorithms; (iii) the learned distance metric, with high probability, is close to the optimal metric
learned from the perfect or true similarities (i.e. similarity of 1 when two objects are in the same
cluster and 0, otherwise) for arbitrarily large n.

We finally note that in addition to distance metric learning, both kernel learning [16] and con-
strained clustering [2] can be applied to generalize the information in the manual annotations ac-
quired by crowdsourcing. In this work, we focus on distance metric learning. The related work,
as well as the discussion on exploring kernel learning and constrained clustering techniques for
semi-crowdsourced clustering can be found in Section 4.

2 Semi-Crowdsourced Clustering by Robust Distance Metric Learning

We first present the problem and a general framework for semi-crowdsourced clustering. We then
describe the proposed algorithm for learning distance metric from a small set of noisy pairwise
similarities that are derived from manual annotations.

2.1 Problem Definition and Framework

Let D = {O1, . . . , ON} be the set of N objects to be clustered, and let X = (x1, . . . ,xN ) be their
feature representation, where xi ∈ R

d is a vector of d dimensions. We randomly sample a subset

of n ≪ N objects from the collection D, denoted by D̂ = {Ô1, . . . , Ôn}, and obtain their manual
annotations by crowdsourcing. Let m be the number of HITs used by crowsourcing. Given the
manual annotations collected from the k-th HIT, we define a similarity matrix Ak ∈ R

n×n such that

Ak
i,j = 1 if objects Ôi and Ôj share common annotations (i.e. share common annotated keywords

or assigned to the same cluster by the worker), zero if they don’t, and −1 if either of the two objects
is not annotated by the kth HIT (i.e. unlabeled pair). Note that we only consider a binary similarity
measure in this study because our goal is to perfectly reconstruct the ideal pairwise similarities based
on the true cluster assignments (i.e. 1 when both objects are assigned to the same cluster and zero,
otherwise). The objective of semi-crowdsourced clustering is to cluster all the N objects in D based

on the features in X and the m×m similarity matrices {Ak}mk=1
for the objects in D̂. Throughout

this paper, we assume that the number of clusters, denoted by r, is given a priori 1.

1We may relax this requirement by estimating the number of clusters via some heuristic, e.g. considering
the number of clusters as the rank of the completed matrix A.
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To generalize the pairwise similarities from the subset D̂ to the entire collection of objects D, we
propose to first learn a distance metric from the similarity matrices {Ak}mk=1

, and then compute the
pairwise similarity for all the N objects in D using the learned distance metric. The challenge is how
to learn an appropriate distance metric from a set of similarity matrices {Ak}mk=1

. A straightforward
approach is to combine multiple similarity matrices into a single similarity matrix by computing

their average. More specifically, let Ã ∈ R
n×n be the average similarity matrix. We have

Ãi,j =
1∑m

k=1
I(Ak

i,j ≥ 0)

m∑

k=1

I(Ak
i,j ≥ 0)Ai,j

where Ak
i,j < 0 indicates that the pair (Ôi, Ôj) is not labeled by the kth HIT (i.e. either object Ôi

or Ôj is not annotated by the kth worker) and I(z) is an indicator function that outputs 1 when z is

true and zero, otherwise. We then learn a distance metric M from Ã. The main problem with this
simple strategy is that due to the large disagreements among workers in determining the pairwise
similarities, the average similarities do not correlate well with the true cluster assignments. In the
next subsection, we develop an efficient and robust algorithm that learns a distance metric from a set
of noisy similarity matrices.

2.2 Learning a Distance Metric from a Set of Noisy Similarity Matrices

As illustrated in Figure 2, the proposed algorithm consists of three steps, i.e. filtering step, matrix
completion step and distance metric learning step. For the first two steps, namely the data prepro-
cessing steps, we follow the idea proposed in [25].

Filtering step. To filter out the uncertain object pairs, we introduce two thresholds d0 and d1(1 ≥
d1 > d0 ≥ 0) into the average similarity matrix Ã. Since any similarity measure smaller than d0
indicates that most workers put the corresponding object pair into different clusters, we simply set
it as 0. Similarly, we set the similarity measure larger than d1 as 1. For object pairs with similarity
measure in the range between d0 and and d1, they are treated as uncertain object pairs and are
discarded (i.e. marked as unobserved) from the similarity matrix. The resulting partially observed
similarity matrix A is given by

Ai,j =





1 Ãi,j ∈ [d1, 1]

0 Ãi,j ∈ [0, d0]
unobserved Otherwise

(1)

We also define ∆ as the set of observed entries in Ai,j

∆ = {(i, j) ∈ [N ]× [N ] : Ãij ≥ 0, Ãij /∈ (d0, d1)}

Matrix completion step. Since A is constructed from the partial clustering results generated by
different workers, we expect some of the binary similarity measures in A to be incorrect. We in-
troduce the matrix E ∈ R

n×n to capture the incorrect entries in A. If A∗ is the perfect similarity
matrix, we have P∆(A

∗ + E) = P∆(A), where P∆ outputs a matrix with [P∆(B)]i,j = Bi,j if
(i, j) ∈ ∆ and zero, otherwise. With appropriately chosen thresholds d0 and d1, we expect most
of the observed entries in A to be correct and as a result, E to be a sparse matrix. To reconstruct
the perfect similarity matrix A∗ from A, following the matrix completion theory [3], we solve the
following optimization problem

min
Â,E

|Â|∗ + C|E|1 s. t. P∆(Â+ E) = P∆(A), (2)

where |A|∗ is the nuclear norm of matrix A and |E|1 =
∑

i,j |Ei,j | is the ℓ1 norm of E. Using the

facts that E is a sparse matrix and Â is of low rank [14], under the two assumptions made in [25],

with a high probability, we have A∗ = Â, where Â is the optimal solution for (2). For completeness,
we include in the supplementary document the theoretical result for the problem in (2)

Distance metric learning step. This step learns a distance metric from the completed similarity

matrix Â. A common problem shared by most distance metric learning algorithms is their high
computational cost due to the constraint that a distance metric has to be positive semi-definite. In this
study, we develop an efficient algorithm for distance metric learning that does not have to deal with
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the positive semi-definite constraint. Our algorithm is based on the key observation that with a high

probability, the completed similarity matrix Â is positive semi-definite. This is because according

to Theorem 1 of [25], with a probability at least 1 − n−3, Â = Y Y ⊤, where Y ∈ {0, 1}n×r is
the true cluster assignment. This property guarantees the resulting distance metric to be positive
semi-definite.

The proposed distance metric learning algorithm is based on a standard regression algorithm [15].

Given the similarity matrix Â, the optimal distance metric M is given by a regression problem

min
M∈Rd×d

L̂(M) =

n∑

i,j=1

(x̂⊤
i M x̂j − Âi,j)

2 = |X̂⊤MX̂ − Â|2F (3)

where x̂i is the feature vector for the sampled object Ôi and X̂ = (x̂1, . . . , x̂n). The optimal

solution to (3), denoted by M̂ , is given by

M̂ = (X̂X̂⊤)−1X̂ÂX̂⊤(X̂X̂⊤)−1 (4)

where Z−1 is pseudo inverse of Z. It is straightforward to verify M̂ � 0 if Â � 0.

Directly using the solution in (4) could result in the overfitting of similarity matrix Â because of the

potential singularity of X̂X̂⊤. We address this challenge by a smoothing technique, i.e.

M̂s = (X̂X̂⊤ + λmI)−1X̂ÂX̂⊤(X̂X̂⊤ + λmI)−1 (5)

where I is the identity matrix of size d× d and λ > 0 is a smoothing parameter used to address the
overfitting and the curse of dimensionality. Note that the computation in (5) can be simplified by

expressing M̂s in terms of the singular values and singular vectors of X̂ . We omit the details due to
the space constraints.

We now state the theoretical property of M̂s. Let A(Oi, Oj) be the perfect similarity that outputs
1 when Oi and Oj belong to the same cluster and zero, otherwise. It is straightforward to see that

A(Oi, Oj) = y
⊤
i yj , where yi ∈ {0, 1}r is the cluster assignment for object Oi. To learn an ideal

distance metric from the perfect similarity measure A(Oi, Oj), we generalize the regression problem
in (3) as follows

min
M∈Rd×d

L(M) = Exi,xj

[
(x⊤

i Mxj −A(Oi, Oj))
2
]

(6)

The solution to (6) is given by M = C−1

X BB⊤C−1

X , where CX = Exi
[xix

⊤
i ] and B = Exi

[xiy
⊤
i ].

Let Ms be the smoothed version of the ideal distance metric M , i.e. M = (CX+λI)−1BB⊤(CX+

λI)−1. The following theorem shows that with a high probability, the difference between M̂s and
Ms is small if both λ and n are not too small.

Theorem 1. Assume |x|2 ≤ 1 for the feature representation of any object. Assume the conditions
in Theorem 1 of [25] hold. Then, with a probability 1− 3n−3, we have

|Ms − M̂s|2 = O

(
lnn

λ2
√
n

)

where |Z|2 stands for the spectral norm of matrix Z.

The detailed proof can be found in the supplementary materials. Given the learned distance metric

M̂s, we construct a similarity matrix S = X⊤M̂sX and then apply a spectral clustering algorith-
m [18] to compute the final data partition for N objects.

3 Experiments

In this section, we demonstrate empirically that the proposed semi-crowdsourced clustering algo-
rithm is both effective and efficient.
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3.1 Data Sets, Baselines, and Parameter Settings

Data Sets. Two real-world image data sets are used in our experiments: (i) ImageNet data set is
a subset of the larger ImageNet database [6]. The subset contains 6, 408 images belonging to 7
categories: tractor, horse cart, bench, blackberry, violin, saxophone, and hammer. (ii) PASCAL 07
data set is a subset of the PASCAL Visual Object Classes Challenge 2007 database [7]. The subset
contains 2, 989 images belonging to five classes: car, dog, chair, cat and bird. We choose these
specific image categories because they yield relatively low classification performance in ImageNet
competition and PASCAL VOC Challenge, indicating that it could be difficult to cluster these im-
ages using low level features without side information. The image features for these datasets were
downloaded from the homepages of the ImageNet database 2 and the research group of Learning
and Recognition in Vision (LEAR) 3, respectively.

To perform crowdlabeling, we follow [25], and ask human workers to annotate images with key-
words of their choice in each HIT. A total of 249 and 332 workers were employed using the Ama-
zon’s Mechanical Turk [13] to annotate images from ImageNet and PASCAL datasets, respectively.
On average, each image is annotated by five different workers, with three keywords from each
individual worker. For every HIT, the pairwise similarity between two images (i.e. Ak

i,j used in
Section 2.1) is set to 1 if the two images share at least one common annotated keyword and zero,
otherwise 4.

Baselines. Two baseline methods are used as reference points in our study: (a) the Base method
that clusters images directly using image features without distance metric learning, and (b) the Raw

method that runs the proposed algorithm against the average similarity matrix Ã without filtering
and matrix completion steps. The comparison to the Base method allows us to examine the effect of
distance metric learning in semi-crowdsourced clustering, and the comparison to the Raw method
reveals the effect of filtering and matrix completion steps in distance metric learning.

We compare the proposed algorithm for distance metric learning to the following five state-of-the-art
distance metric learning algorithms: (a) GDM, the global distance metric learning algorithm [23],
(b) RCA, the relevant component analysis [1], (c) DCA, the discriminative component analysis [11],
(d) ITML, the information theoretic metric learning algorithm [5], and (e) LMNN, the large margin
nearest neighbor classifier [20]. Some of the other state-of-the-art distance metric learning algo-
rithms (e.g. the neighborhood components analysis (NCA) [9]) were excluded from the comparison
because they can only work with class assignments, instead of pairwise similarities, and therefore
are not applicable in our case. The code for the baseline algorithms was provided by their respective
authors (In LMNN, Principal Component Analysis (PCA) is used at first to reduce the data to lower
dimensions). For a fair comparison, all distance metric learning algorithms are applied to the pair-

wise constraints derived from Â, the n × n pairwise similarity matrix reconstructed by the matrix
completion algorithm. We refer to the proposed distance metric learning algorithm as Regression
based Distance Metric Learning, or RDML for short, and the proposed semi-crowdsourced clus-
tering algorithm as Semi-Crowd.

Parameter Settings. Two criteria are used in determining the values for d0 and d1 in (1). First,
d0 (d1) should be small (large) enough to ensure that most of the retained pairwise similarities are
consistent with the cluster assignments. Second, d0 (d1) should be large (small) enough to obtain a
sufficient number of observed entries in the partially observed matrix A. For both data sets, we set
d0 to 0 and d1 to 0.8. We follow the heuristic proposed in [25] to determine the parameter C in (2),
which is selected to generate balanced clustering results. Parameter λ in (5) is set to 1. We varied λ
from 0.5 to 5 and found that the clustering results essentially remain unchanged.

Evaluation. Normalized mutual information (NMI for short) [4] is used to measure the coherence
between the inferred clustering and the ground truth categorization. The number of sampled images
is varied from 100, 300, 600 to 1, 000. All the experiments are performed on a PC with Intel Xeon
2.40 GHz processor and 16.0 GB of main memory. Each experiment is repeated five times, and the
performance averaged over the five trials is reported.

2http://www.image-net.org/download-features
3http://lear.inrialpes.fr/people/guillaumin/data.php
4We tried several other similarity measures (e.g. cosine similarity measure and tf.idf weighting) and found

that none of them yielded better performance than the simple similarity measure used in this work
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(a) ImageNet data set (b) PASCAL 07 data set

Figure 3: NMI vs. no. of sampled images (n) used in crowdlabeling.

(a) Two images incorrectly placed in dif-

ferent clusters by the Base method (similari-

ty 0.16) but correctly grouped into the same

cluster by the proposed method (similarity

0.66).

(b) Two images incorrectly placed in d-

ifferent clusters by the Base method (sim-

ilarity 0.31) but correctly grouped into

the same cluster by the proposed method

(similarity 0.85)

(c) Two images incorrectly grouped into the

same cluster by the Base method (similarity

0.72) but correctly clustered to different clus-

ters by the proposed method (similarity 0.22)

Figure 4: Sample image pairs that are incorrectly clustered by the Base method but correctly clustered by the

proposed method (the similarity of our method is based on the normalized distance metric M̂s).

3.2 Experimental Results

First, we examine the effect of distance metric learning algorithm on semi-crowdsourced clustering.
Figure 3 compares the clustering performance with six different metric learning algorithms with
that of the Base method that does not learn a distance metric. We observed that four of the distance
metric learning algorithms (i.e. GDM, ITML, LMNN and the proposed RDML) outperform the
Base method, while RCA and DCA fail to improve the clustering performance of Base. We con-
jecture that the failure of RCA and DCA methods is due to their sensitivity to the noisy pairwise
similarities. In fact, RCA and DCA can yield better performance than the Base method if all the
pairwise similarities are consistent with the cluster assignments. Compared to all the baseline dis-
tance metric learning algorithms, RDML, the proposed distance metric learning algorithm, yields
the best clustering results for both the data sets and for all values of n (i.e. the number of anno-
tated images) considered here. Furthermore, the performance of RDML gradually stabilizes as the
number of sampled images increases. This is consistent with our theoretical analysis in Theorem 1,
and implies that only a modest number of annotated images is needed by the proposed algorithm to
learn an appropriate distance metric. This observation is particularly useful for crowdclustering as
it is expensive to reliably label a very large number of images. Figure 4 shows some example image
pairs for which the Base method fails to make correct cluster assignments, but the proposed RDML
method successfully corrects these mistakes with the learned distance metric.

Our next experiment evaluates the impact of filtering and matrix completion steps. In Figure 3,
we compare the clustering results of the proposed algorithm for semi-crowdsourced clustering
(i.e. Filtering+Matrix-Completion+RDML) to the Raw method that runs the proposed distance met-
ric algorithm RDML without the filtering and matrix completion steps. Based on these experiments,
we can make the following observations: (i) the proposed distance metric learning algorithms per-
forms better than the Raw method, particularly when the number of annotated images is small; (ii)
the gap between the proposed semi-crowdsourced clustering method and the Raw method decreases
as the sample size increases. These results indicate the importance of filtering and matrix comple-
tion steps for the crowdsourced data in semi-crowdsourced clustering. Finally, it is interesting to
observe that the Raw method still outperforms all the baseline methods, which further verifies the
effectiveness of the proposed algorithm for distance metric learning.

Finally, we evaluate the computational efficiency of the proposed distance metric learning algorithm.
Table 1 shows that the proposed distance metric learning algorithm is significantly more efficient
than the baseline approaches evaluated here. The last row of Table 1 indicates the run time for the
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Table 1: CPU time (in seconds) for learning the distance metrics.

CPU time (s) ImageNet Data Set PASCAL 07 Data Set

Sample sizes (n) 100 300 600 1,000 100 300 600 1,000

RDML (proposed) 4.2 6.3 8.0 11.2 27.4 34.2 41.7 47.3

GDM [23] 11384 14706 18140 25155 26346 36795 44237 53468

LMNN [20] 59.8 157 330 629 55.1 124 277 527

ITML [5] 2128 2376 2692 3081 5311 5721 6104 6653

DCA [11] 8.5 9.2 14.5 20.7 51.2 64.1 72.7 82.3

RCA [1] 9.7 13.5 18.6 23.6 71.4 92.7 103 122

Matrix Completion 12.4 74.2 536 1916 12.8 86.6 615 1873

matrix completion step. Since all the distance metric learning algorithms are applied to the similarity
matrix recovered by the matrix completion algorithm, the computational cost of matrix completion is
shared by all distance metric learning algorithms used in our evaluation. We observe that the matrix
completion step, particularly for large sample sizes, is computationally demanding, a problem that
will be investigated in our future work.

4 Related Work and Discussion

Crowdclustering was first proposed in [10]. It divided the task of clustering a collection of images
into a number of human intelligence tasks (or HITs). In each HIT, a small subset of images are
randomly sampled from the collection, and a worker is asked to cluster the subset of images in-
to multiple groups. By using a large number of HITs, the authors ensure that every image in the
collection is included in at least one HIT. In [25], the authors extend the definition of HITs for
crowdclustering by asking workers to annotate images by keywords and then derive pairwise sim-
ilarities between images based on the commonality of annotated keywords. A major limitation of
both these studies, as pointed out earlier, is that they can only cluster images that have been manually
annotated. Although the matrix completion technique was first proposed for crowdclustering in [25],
it had a different goal from this work. In [25], matrix completion was used to estimate the similarity
matrix, while the proposed approach uses matrix completion to estimate a distance metric, so that
crowdsourced labels can be generalized to cluster those images which were not annotated during
crowdsourcing.

Our work is closely related to distance metric learning that learns a distance metric consistent with
a given subset of pairwise similarities/constraints [24]. Although many studies on distance metric
learning have been reported, only a few address the challenge of learning a reliable distance metric
from noisy pairwise constraints [12, 22]. One limitation of these earlier studies is that they can
only work with a relatively small number (typically less than 30%) of noisy pairwise constraints.
In contrast, in semi-crowdsourced clustering, we expect that a significantly larger percentage of
pairwise similarities are inconsistent with the true cluster assignments (as many as 80% [25]).

One limitation of distance metric learning is that it is restricted to a linear similarity function. Kernel
learning generalizes distance metric learning to a nonlinear similarity function by mapping each
data point to a high dimensional space through a kernel function [16]. We plan to learn a kernel
based similarity function from a subset of manually annotated objects. Besides distance metric
learning, an alternative approach to incorporate the manual annotations into the clustering process
is constrained clustering (or semi-supervised clustering) [2]. Compared to distance metric learning,
constrained clustering can be computationally more expensive. Unlike distance metric learning that
learns a distance metric from pairwise constraints only once and applies the learned distance metric
to cluster any set of objects, a constrained clustering algorithm has to be rerun whenever a new
set of objects needs to be clustered. To exploit the strength of constrained clustering algorithms, we
plan to explore hybrid approaches that effectively combine distance metric learning with constrained
clustering approaches for more accurate and efficient semi-crowdsourced clustering.
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