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Semi De Morgan logic properly displayed

Giuseppe Greco2, Fei Liang1, M. Andrew Moshier3, and Alessandra Palmigiano∗4,5

1Shandong University, China
2Utrecht University, the Netherlands

3Chapman University, USA
4Delft University of Technology, the Netherlands

5University of Johannesburg, South Africa

Abstract

In the present paper, we endow a family of axiomatic extensions of semi De Morgan logic
with proper multi-type display calculi which are sound, complete, conservative, and enjoy cut
elimination and subformula property. Our proposal builds on an algebraic analysis of semi De
Morgan algebras and its subvarieties and applies the guidelines of the multi-type methodology
in the design of display calculi.

Keywords : semi De Morgan algebras, proper display calculus, multi-type methodology.
Math. Subject Class 2010 : 03B45, 03G25, 03F05, 06D30, 08A68.

1 Introduction

Semi De Morgan logic, introduced in an algebraic setting by H.P. Sankappanavar [22], is a very
well known paraconsistent logic [21], and is designed to capture the salient features of intuition-
istic negation in a paraconsistent setting. Semi De Morgan algebras form a variety of normal dis-
tributive lattice expansions (cf. [15, Definition 9]), and are a common abstraction of De Morgan
algebras and distributive pseudocomplemented lattices. Besides being studied from a universal-
algebraic perspective [22, 2, 3], semi De Morgan logic has been studied from a duality-theoretic
perspective [18] and from the perspective of canonical extensions [19].

From a proof-theoretic perspective, the main challenge posed by semi De Morgan logic is that,
unlike De Morgan logic, its axiomatization is not analytic inductive in the sense of [15, Definition
55]. In [14], an analytic calculus for semi De Morgan logic is introduced which is sound, complete,
conservative, and enjoys cut elimination and subformula property. The design of this calculus
builds on an algebraic analysis of semi De Morgan algebras, and applies the guidelines of the
multi-type methodology, introduced in [7, 5] and further developed in [1, 6, 8, 17, 16]. This
methodology guarantees in particular that all the properties mentioned above follow from the
general background theory of proper multi-type display calculi (cf. [17, Definition A.1.]).

Due to space constraints, in [14], the proofs of the algebraic analysis on which the design of
this calculus is grounded had to be omitted. The present chapter provides the missing proofs, and
also extends the results of [14] by explicitly and modularly accounting for the logics associated
with the five subvarieties of semi De Morgan algebras introduced in [22]. This modular account
is partly made possible by the fact that all but two of these subvarieties correspond to axiomatic
extensions of semi De Morgan logic with so-called analytic inductive axioms (cf. [15, Definition

∗This research is supported by the NWO Vidi grant 016.138.314, the NWO Aspasia grant 015.008.054, and a Delft
Technology Fellowship awarded to the second author in 2013.
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55]), and the two remaining ones can be given analytic equivalent presentations in the multi-type
setting for the basic calculus. The general theory of proper (multi-type) display calculi provides
an algorithm which computes the analytic structural rules corresponding to these axioms, and
guarantees that each calculus obtained by adding any subset of these rules to the basic calculus
still enjoys cut elimination and subformula property.

Therefore, this chapter introduces a proof-theoretic environment which is suitable to comple-
ment, from a proof-theoretic perspective, the investigations on the lattice of axiomatic extensions
of semi De Morgan logic, as well as on the connections between the lattices of axiomatic exten-
sions of semi De Morgan logic and of De Morgan logic.

Structure of the chapter. In Section 2, we report on the axioms and rules of semi De Morgan
logic and its axiomatic extensions arising from the subvarieties of semi De Morgan algebras intro-
duced in [22], and discuss why the basic axiomatization is not amenable to the standard treatment
of display calculi. In Section 3, we define the algebraic environment which motivates our multi-
type approach and prove that this environment is an equivalent presentation of the standard alge-
braic semantics of semi De Morgan logic and its extensions. Then we introduce the multi-type se-
mantic environment and define translations between the single-type and the multi-type languages
of semi De Morgan logic and its extensions. In Section 4, we discuss how equivalent analytic
(multi-type) reformulations can be given of non-analytic (single-type) axioms in the language of
semi De Morgan logic. In Section 5, we introduce the display calculi for semi De Morgan logic
and its extensions, and in Section 6, we discuss their soundness, completeness, conservativity, cut
elimination and subformula property.

2 Preliminaries

2.1 Semi De Morgan logic and its axiomatic extensions

Fix a denumerable set Atprop of propositional variables, let p denote an element in Atprop. The
language L of semi De Morgan logic over Atprop is defined recursively as follows:

A ::= p | ⊤ | ⊥ | ¬A | A∧A | A∨A

Definition 1. Semi De Morgan logic, denoted SM, consists of the following axioms:

⊥ ⊢ A, A ⊢ ⊤, ¬⊤ ⊢ ⊥, ⊤ ⊢ ¬⊥, A ⊢ A, A∧B ⊢ A, A∧B ⊢ B,

A ⊢ A∨B, B ⊢ A∨B, ¬A ⊢ ¬¬¬A, ¬¬¬A ⊢ ¬A, ¬A∧¬B ⊢ ¬(A∨B),

¬¬A∧¬¬B ⊢ ¬¬(A∧B), A∧ (B∨C) ⊢ (A∧B)∨ (A∧C)

and the following rules:

A ⊢ B B ⊢ C
A ⊢ C

A ⊢ B A ⊢ C
A ⊢ B∧C

A ⊢ B C ⊢ B
A∨C ⊢ B

A ⊢ B
¬B ⊢ ¬A

The following table reports the name of each axiomatic extension of SM arising from the subvarieties
introduced in [22], its acronym, and its characterizing axiom:

lower quasi De Morgan logic LQM A ⊢ ¬¬A

upper quasi De Morgan logic UQM ¬¬A ⊢ A

demi pseudo-complemented lattice logic DP ¬A∧¬¬A ⊢ ⊥

almost pseudo-complemented lattice logic AP A∧¬A ⊢ ⊥

weak Stone logic WS ⊤ ⊢ ¬A∨¬¬A

2



In [15], a characterization is given of the properly displayable (single-type) logics (i.e. those
logics that can be captured by a proper display calculus, cf. [23, Chapter 4]). Properly displayable
logics are exactly those logics which admit a presentation consisting of analytic inductive ax-
ioms (cf. [15, Definition 55]). It is not difficult to verify that ¬A ⊢ ¬¬¬A, ¬¬¬A ⊢ ¬A and
¬¬A∧¬¬B ⊢ ¬¬(A∧ B) in SM, ¬¬A ⊢ A in UQM, and ¬A∧¬¬A ⊢ ⊥ in DP are not analytic
inductive. To our knowledge, no equivalent axiomatizations have been introduced for semi De
Morgan logic and its extensions using only analytic inductive axioms. This provides the motiva-
tion for circumventing this difficulty by introducing proper multi-type display calculi for semi De
Morgan logic and its extensions.

2.2 The variety of semi De Morgan algebras and its subvarieties

We recall the definition of the variety of semi De Morgan algebras and those of its subvarieties
introduced in [22, Definition 2.2, Definition 2.6].

Definition 2. An algebra A = (L,∧,∨,′ ,⊤,⊥) is a semi De Morgan algebra (SMA) if for all
a,b ∈ L,

(S1) (L,∧,∨,1,0) is a bounded distributive lattice;

(S2) ⊥′ = ⊤,⊤′ = ⊥;

(S3) (a∨b)′= a′∧b′;

(S4) (a∧b)′′ = a′′∧b′′;

(S5) a′ = a′′′.

A lower quasi De Morgan algebra (LQMA) is an SMA satisfying the following inequality:

(S6a) a ≤ a′′.

Dually, a upper quasi De Morgan algebra (UQMA) is an SMA satisfying the following inequality:

(S6b) a′′ ≤ a.

A demi pseudocomplemented lattice (DPL) is an SMA satisfying the following equation:

(S7) a′∧a′′ = ⊥.

A almost pseudocomplemented lattice (APL) is an SMA satisfying the following equation:

(S8) a∧a′ = ⊥.

A weak Stone algebra (WSA) is an SMA satisfying the following equation:

(S9) a′∨a′′ = ⊤.

The following proposition is a straightforward consequence of (S8), (S2), (S3) and (S5):

Proposition 3 ([22] see discussion above Corollary 2.7). (S7) holds in any APL and WSA.

Definition 4. An algebra D = (D,∩,∪,∗ ,1,0) is a De Morgan algebra (DMA) if for all a,b ∈ D,

(D1) (D,∩,∪,1,0) is a bounded distributive lattice;

(D2) 0∗ = 1,1∗ = 0;

(D3) (a∪b)∗ = a∗∩b∗;

(D4) (a∩b)∗ = a∗∪b∗;

3



(D5) a = a∗∗.

As is well known, a Boolean algebra (BA) D is a DMA satisfying one of the following equations:

(B1) a∨a∗ = 1;

(B2) a∧a∗ = 0.

The following theorem can be shown using a routine Lindenbaum-Tarski construction.

Theorem 5 (Completeness). SM (resp. LQM, UQM, DP, AP, WS) is complete with respect to the

class of SMAs (resp. LQMAs, UQMAs, DPLs, APLs, WSAs).

Definition 6. A distributive lattice A is perfect (cf. [12, Definition 2.14]) if A is complete, com-
pletely distributive and completely join-generated by the set J∞(A) of its completely join-irreducible
elements (as well as completely meet-generated by the set M∞(A) of its completely meet-irreducible
elements).

A De Morgan algebra (resp. Boolean algebra) A is perfect if its lattice reduct is a perfect
distributive lattice, and the following distributive laws are valid:

(
∨

X)∗ =
∧

X∗ (
∧

X)∗ =
∨

X∗.

A lattice homomorphism h : L→ L′ is complete if for each X ⊆ L,

h(
∨

X) =
∨

h(X) h(
∧

X) =
∧

h(X).

3 Towards a multi-type presentation

In the present section, we introduce the algebraic environment which justifies semantically the
multi-type approach to semi De Morgan logic and its extensions of Section 2.1. In the next sub-
section, we define the kernel of an SMA (cf. Definition 8) and show that it can be endowed with
a structure of DMA (cf. Definition 4). Similarly, we define the kernel of a DPL (cf. Definition
2) and show that it can be endowed with a structure of Boolean algebra. Then we define two
maps between the kernel of any SMA (resp. DPL) A and the lattice reduct of A. These are the
main components of the heterogeneous semi De Morgan algebras and the heterogeneous demi p-
lattices which we introduce in Subsection 3.2, where we also show that SMAs (resp. DPLs) can be
equivalently presented in terms of heterogeneous semi De Morgan algebras (heterogeneous demi
p-lattices). Based on these, we can also define the heterogeneous algebras for other subvariety of
SMAs we introduced in Section 2.2. In Subsection 3.3, we apply results pertaining to the theory of
canonical extensions to the heterogeneous semi De Morgan algebras and the heterogeneous demi
p-lattices.

3.1 The kernel of a semi De Morgan algebra

For any semi De Morgan algebra A = (L,∧,∨,′ ,⊤,⊥), we let K := {a′′ | a ∈ L}, define h : L։ K

by the assignment a 7→ a′′ for any a ∈ L, and let e : K ֒→ L denote the natural embedding. Hence,
eh(a) = a′′ and h(a) = h(a′′) for every a ∈ L.

Lemma 7. For any semi De Morgan algebra A, and K,h,e defined as above, the following equa-

tion holds for any α ∈ K:

he(α) = α (1)

Proof. Let α ∈ K, and let a ∈ L such that h(a) = α. Hence,

he(α) = heh(a) α = h(a)
= h(a′′) eh(a) = a′′

= h(a) h(a) = h(a′′)
= α definition of h

4
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Definition 8. For any SMAA= (L,∧,∨,⊤,⊥,′ ), let the kernel KA = (K,∩,∪,∗ ,1,0) ofA be defined
as follows:

K1 K := {a′′ | a ∈ L};

K2 α∪β : = h((e(α)∨ e(β))′′) for all α,β ∈ K;

K3 α∩β : = h(e(α)∧ e(β)) for all α,β ∈ K;

K4 1 : = h(⊤);

K5 0 : = h(⊥);

K6 α∗ := h(e(α)′).

In what follows, to simplify the notation, we omit as many parentheses as we can without
generating ambiguous readings. For example, we write e(h(a)∗) in place of e((h(a))∗), and eh(a)′

in place of (eh(a))′ .

Proposition 9. If A = (L,∧,∨,⊤,⊥,′ ) is an SMA, then KA is a De Morgan algebra.

Proof. Let us show that KA is a distributive lattice. Associativity and commutativity are straight-
forwardly verified and their corresponding verification is omitted. To show that the absorption law
and the distributive law hold, let α,β,γ ∈ K, and let a,b,c ∈ L such that (i) h(a) = α, (ii) h(b) = β
and (iii) h(a) = γ.

• absorption law:

α∪ (α∩β)
= h((e(α)∨ e(α∩β))′′) K2
= h((e(α)∨ eh(e(α)∧ e(β)))′′) K3
= h((e(α)∨ (e(α)∧ e(β))′′)′′) eh(a) = a′′

= h((e(α)′ ∧ (e(α)∧ e(β))′′′)′) S3
= h((e(α)′′′ ∧ (e(α)′′ ∧ e(β)′′)′)′) S5, S4
= h((e(α)′′ ∨ (e(α)′′ ∧ e(β)′′))′′) S3
= h((e(α)′′ ∨ (e(α)′′′′ ∧ e(β)′′′′)) S4
= h((e(α)′′ ∨ (e(α)′′ ∧ e(β)′′)) S5
= h(e(α)′′) S1
= he(α) h(a) = h(a′′)
= α Lemma 7

• distributivity law:

5



α∩ (β∪γ)
= h(e(α)∧ e(β∪γ)) K3
= h(e(α)∧ eh((e(β)∨ e(γ))′′)) K2
= h(e(α)∧ (e(β)∨ e(γ))′′′′) eh(a) = a′′

= h(eh(a)∧ (e(β)∨ e(γ))′′′′) (i)
= h(a′′ ∧ (e(β)∨ e(γ))′′′′) eh(a) = a′′

= h(a′′′′ ∧ (e(β)∨ e(γ))′′) S5
= h((a′′ ∧ (e(β)∨ e(γ)))′′) S4
= h(((a′′ ∧ e(β))∨ (a′′ ∧ e(γ)))′′) S1
= h((a′′ ∧ eh(b))∨ (a′′ ∧ eh(c))′′) (ii) and (iii)
= h(((a′′ ∧b′′)∨ (a′′∧ c′′))′′) eh(a) = a′′

= h(((a′′′′ ∧b′′′′)∨ (a′′′′∧ c′′′′))′′) S5
= h(((a′′ ∧b′′)′′∨ (a′′∧ c′′)′′)′′) S4
= h((eh(eh(a)∧ eh(b))∨ eh(eh(a)∧ eh(c)))′′ ) eh(a) = a′′

= h((eh(e(α)∧ e(β))∨ eh(e(α)∧ e(γ)))′′ ) (i), (ii) and (iii)
= h(((e(α∩β))∨ e(α∩γ))′′) K3
= (α∩β)∪ (α∩γ) K2

Let us show that KA satisfies (D1)-(D5).
As to (D1), we need to show that KA is bounded:

0∩α 1∪α
= h(e(0)∧ e(α)) K3 = h((e(1)∨ e(α))′′) K2
= h(eh(⊥)∧ e(α)) K5 = h((eh(⊤))∨ e(α))′′) K4
= h(⊥′′∧ e(α)) eh(a) = a′′ = h((⊤′′ ∨ e(α))′′) eh(a) = a′′

= h(⊥∧ e(α)) S2 = h((⊤∨ e(α))′′) S2
= h(⊥) S1 = h(⊤′′) S5
= 0 K5 = 1 S2, K4

As to (D2):

0∗ = h(e(0)′) K6 1∗ = h(e(1)′) K6
= h((eh(⊥))′) K5 = h((eh(⊤))′) K4
= h(⊥′′′) eh(a) = a′′ = h(⊤′′′) eh(a) = a′′

= h(⊥′) S5 = h(⊤′) S5
= h(⊤) S2 = h(⊥) S2
= 1 K4 = 0 K4

As to (D3):

(α∪β)∗ = h(e(α∪β)′) K6
= h((eh((e(α)∨ e(β))′′)′) K2
= h((e(α)∨ e(β))′′′′′) eh(a) = a′′

= h((e(α)′ ∧ e(β)′)′′′′) S3
= h((e(α)′′′ ∧ e(β)′′′)′′) S5
= h((eh(e(α)′)∧ eh(e(β)′))′′) eh(a) = a′′

= h((e(α∗)∧ e(β∗))′′) K6
= heh(e(α∗)∧ e(β∗)) eh(a) = a′′

= h(e(α∗)∧ e(β∗)) Lemma 7
= α∗∩β∗ K3

As to (D4):
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(α∩β)∗ = h(e(α∩β)′) K6
= h((eh(e(α)∧ e(β)))′) K3
= h((e(α)∧ e(β))′′′) eh(a) = a′′

= h((e(α)′′ ∧ e(β)′′)′) S4
= h((e(α)′ ∨ e(β)′)′′) S3
= h((eh(a)′ ∨ eh(b)′)′′) (i) and (ii)
= h((a′′′ ∨b′′′)′′) eh(a) = a′′

= h((a′′′′′ ∨b′′′′′)′′) S5
= h((eh(eh(a)′)∨ eh(eh(b)′))′′) eh(a) = a′′

= h((eh(e(α)′)∨ eh(e(β)′))′′) (i) and (ii)
= h((e(α∗)∨ e(β∗))′′) K6
= α∗∪β∗ K2

As to (D5):

α∗∗ = h((eh(e(α)′))′) K6
= h(e(α)′′′′) eh(a) = a′′

= h((eh(a))′′′′) (i)
= h(a′′′′′′) eh(a) = a′′

= h(a′′) S5
= heh(a) eh(a) = a′′

= h(a) Lemma 7
= α (i)

�

Corollary 10. If A = (L,∧,∨,⊤,⊥,′ ) is a DPL, then KA is a Boolean algebra.

Proof. By Proposition 9, KA is a De Morgan algebra. Hence, it suffices to show that K satisfies
(B1). For any α ∈ KA,

α∩α∗ = h(α∩h(e(α)′)) K3
= h(e(α)∧ eh(e(α)′)) K6
= h(e(α)∧ e(α)′′′) eh(a) = a′′

= h(e(α)∧ e(α)′) S5
= heh(e(α)∧ e(α)′) Lemma 7
= h((e(α)∧ e(α)′)′′) eh(a) = a′′

= h(e(α)′′ ∧ e(α)′′′) S4
= h(⊥) S7
= 0 K5

�

Proposition 11. Let A be an SMA (resp. a DPL), and e,h be defined as above. Then h is a lattice

homomorphism from A onto KA, and for all α,β ∈ K,

e(α)∧ e(β) = e(α∩β) e(1) = ⊤ e(0) = ⊥.

Proof. It is an immediate consequence of K1 that h is surjective. We need to show that h is a
lattice homomorphism. For any a,b ∈ L,
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h(a∧b) h(a∨b)
= heh(a∧b) Lemma 7 = heh(a∨b) Lemma 7
= h((a∧b)′′) eh(a) = a′′ = h((a∨b)′′) eh(a) = a′′

= h(a′′ ∧b′′) S4 = h((a′ ∧b′)′) S3
= h(eh(a)∧ eh(b)) eh(a) = a′′ = h(a′′′ ∧b′′′)′ S5
= h(a)∩h(b) K3 = h(a′′ ∨b′′)′′ S3

= h((eh(a)∨ eh(b))′′) eh(a) = a′′

= h(a)∪h(b) K2

Moreover, h(⊥) = ⊥′′ = ⊥ and h(⊤) = ⊤′′ = ⊤. This completes the proof that h is a homomor-
phism from A to KA. Next, we show that e(α)∧ e(β) = e(α∩β). For any α,β ∈ K,

e(α∩β) = eh(e(α)∧ e(β)) K3
= (e(α)∧ e(β))′′ eh(a) = a′′

= e(α)′′ ∧ e(β)′′ S4
= ehe(α)∧ ehe(β) eh(a) = a′′

= e(α)∧ e(β) Lemma 7

Finally, e(0) = eh(⊥) = ⊥′′ = ⊥ and e(1) = eh(⊤) = ⊤′′ = ⊤ are straightforward consequences of
(K4), (K5) and (S2). �

In what follows, we will drop the subscript of the kernel whenever it does not cause confusion.

3.2 Heterogeneous SMAs as equivalent presentations of SMAs

Definition 12. A heterogeneous semi De Morgan algebra (HSMA) is a tuple (L,D,e,h) satisfying
the following conditions:

(H1) L is a bounded distributive lattice;

(H2a) D is a De Morgan algebra;

(H3) e : D ֒→ L is an order embedding, and for all α1,α2 ∈ D,

- e(α1)∧ e(α2) = e(α1∩α2);

- e(1) = ⊤, e(0) = ⊥.

(H4) h : L։ D is a surjective lattice homomorphism;

(H5) he(α) = α for every α ∈ D.1

A heterogeneous lower quasi De Morgan algebra (HLQMA) is an HSMA satisfying the fol-
lowing condition:

(H6a) a ≤ eh(a) for any a ∈ L.

A heterogeneous upper quasi De Morgan algebra (HUQMA) is an HSMA satisfying the fol-
lowing condition:

(H6b) eh(a) ≤ a for any a ∈ L.

A heterogeneous demi pseudocomplemented lattice (HDPL) is defined analogously, except replac-
ing (H2a) with the following condition (H2b):

(H2b) D is a Boolean algebra.

1Condition (H5) implies that h is surjective and e is injective.
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A heterogeneous almost pseudocomplemented lattice (HAPL) is an HDPL satisfying the fol-
lowing condition:

(H7) e(h(a)∗)∧a = ⊥ for all a ∈ L.

A heterogeneous weak Stone algebra (HWSA) is an HDPL satisfying the following condition:

(H8) e(α∗)∨ e(α) = ⊤ for all α ∈ A.

L D ∗

h

e

An HSMA (resp. HLQMA,HUQMA, HDPL, HAPL and HWSA) is perfect if:

(PH1) both L and D are perfect as a distributive lattice and De Morgan algebra (or Boolean alge-
bra), respectively (see Definition 6);

(PH2) e is an order-embedding and is completely meet-preserving;

(PH3) h is a complete homomorphism.

Definition 13. For any SMA (resp. LQMA, UQMA, DPL, APL and WSA) A, let

A
+ := (L,K,e,h),

where L is the lattice reduct of A, K is the kernel of A (cf. Definition 8), and e : K → L and
h : L→K are defined as in the beginning of Section 3.1.

Proposition 14. If A is an SMA (resp. DPL), then A+ is an HSMA (resp. HDPL).

Proof. It immediately follows from Proposition 9 and Proposition 11. �

Corollary 15. IfA is an LQMA (resp. UQMA, APL and WSA), thenA+ is an HLQMA (resp. HUQMA,

HAPL and HWSA).

Proof. If A is an LQMA, by Proposition 14, it suffices to show that A+ satisfies (H6a). By (S6a)
and H5, it is easy to see a ≤ e(h(a)). The argument is dual when A is a UQMA. If A is an APL, it
suffices to show A+ satisfies (H7).

e(h(a)∗)∧a

= eh((eh(a))′)∧a K6
= a

′′′′′

∧a eh(a) = a′′

= a′ ∧a S5
= ⊥ S8

If A is a WSA, it suffices to show A+ satisfies (H8).

e(α∗)∨ e(α)
= eh(e(α)′)∨ e(α) K6
= eh(e(α)′)∨ ehe(α) Lemma 7
= e(α)′′′ ∨ ehe(α) eh(a) = a′′

= e(α)′′′ ∨ e(α)′′ Lemma 7
= e(α)′ ∨ e(α)′′ S5
= ⊤ S9

�
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Definition 16. For any HSMA (resp. HLQMA, HUQMA, HDPL, HAPL and HWSA)H= (L,D,e,h),
let

H+ := (L, ′),

where ′ : L→ L is defined by the assignment a′ 7→ e(h(a)∗).

Proposition 17. If H is an HSMA (resp. HDPL), then H+ is an SMA (resp. DPL). Moreover,

KH+ � K.

Proof. Since H is an HSMA by assumption, L is a bounded distributive lattice, hence it suffices to
show that the operation ′ satisfies (S2)-(S5) (cf. Definition 2).

• As to (S2):

⊥′ = e(h(⊥)∗) definition of ′ ⊤′ = e(h(⊤)∗) definition of ′

= e(0∗) H3 = e(1∗) H3
= e(1) H2a = e(0) H2a
= ⊤ H3 = ⊥ H3

• As to (S3):

(a∨b)′ = e(h(a∨b)∗) definition of ′

= e((h(a)∪h(b))∗) H4
= e(h(a)∗ ∩h(b)∗) H2a
= e(h(a)∗)∧ e(h(b)∗) H3
= a′∧b′ definition of ′

• As to (S4):

(a∧b)′′ = e((he(h(a∧b)∗))∗) definition of ′

= e(h(a∧b)∗∗) H5
= eh(a∧b) H2a
= e(h(a)∩h(b)) H4
= eh(a)∧ eh(b) H3
= e(h(a)∗∗)∧ e(h(b)∗∗) H2a
= e((he(h(a)∗))∗)∧ e((he(h(b)∗))∗) H5
= a′′∧b′′ definition of ′

• As to (S5):

a′′′ = e((he((he(h(a)∗ ))∗))∗) definition of ′

= e(h(a)∗∗∗) H5
= e(h(a)∗) H2a
= a′ definition of ′

Hence, (L,′ ) is a semi De Morgan algebra. If (L,D,e,h) is an HDPL, we also need to show
that ′ satisfies (S7):

a′∧a′′ = e(h(a)∗)∧ e((he(h(a)∗))∗) definition of ′

= e(h(a)∗)∧ e(h(a)∗∗) H5
= e(h(a)∗)∧ eh(a) H2a
= e(h(a)∗ ∩h(a)) H3
= e(0) H2a
= ⊥ H3

10



which completes the proof that (L, ′) is a DPL. As to the second part of the statement, let us show
preliminarily that the following identities hold:

K2D. α∪β = h((e(α)∨ e(β))′′) for all α,β ∈D;

K3D. α∩β = h(e(α)∧ e(β)) for all α,β ∈ D;

K4D. 1 = h(⊤);

K5D. 0 = h(⊥);

K6D. α∗ = h(e(α)′).

As to K2D,

h((e(α)∨ e(β))′′) = he((he(h(e(α)∨ e(β))∗))∗) definition of ′

= (h(e(α)∨ e(β)))∗∗ H5
= h(e(α)∨ e(β)) H2a
= he(α)∪he(β) H4
= α∪β H5

Conditions K3D,K4D and K5D easily follow from H4, H5 and H3, and their proofs are omitted.
As to K6D,

h(e(α)′) = he((he(α))∗) definition of ′

= α∗ H5

To show that D and K are isomorphic to each other, notice that the domain of K is defined
as K := Range(′′) = Range(e◦∗ ◦h◦ e◦∗ ◦h) = Range(e◦h). Since by assumption h is surjective,
K = Range(e), and since e is an order embedding, K, regarded as a sub-poset of L, is order-
isomorphic to the domain of D with its lattice order. Let f : D→K denote the order-isomorphism
between D and K. Define ek : K ֒→ L and hk : L։ K as as in the beginning of Section 3.1. Thus,
e = ek ◦ f and hk = f ◦h. We need to show that: for all α,β ∈D, let ∩k,∪k,

∗k denote the operations
on K,

1. f (α)∩k f (β) = f (α∩β),

f (α)∩k f (β) = hk(ek f (α)∧ ek f (β)) definition of ∩k

= f h(ek f (α)∧ ek f (β)) hk = f ◦h

= f h(e(α)∧ e(β)) e = ek ◦ f

= f (α∩β) K3D

2. f (α)∪k f (β) = f (α∩β),

f (α)∪k f (β) = hk((ek f (α)∨ ek f (β))′′) definition of ∪k

= f h((ek f (α)∨ ek f (β))′′) hk = f ◦h

= f h((e(α)∨ e(β))′′) e = ek ◦ f

= f (α∪β) K2D

3. f (α)∗k = f (α∗),

( f (α))∗k = hk((ek f (α))′) definition of ∗k

= f h((ek f (α))′) hk = f ◦h

= f h(e(α)′) e = ek ◦ f

= f (α∗) K6D
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Hence, f : D→ K is an isomorphism of De Morgan algebras (resp. Boolean algebras). This
completes the proof. �

Corollary 18. If H is an HLQMA (resp. HUQMA, HAPL and HWSA), then A+ is a LQMA

(resp. UQMA, APL and WSA).

Proof. By Proposition 17, if H is an HLQMA, it suffices to show that H+ satisfies (S6a).

a ≤ eh(a) H6a
iff a ≤ e(h(a)∗∗) H2a
iff a ≤ e((he(h(a)∗))∗) H5
iff a ≤ a′′ definition of ′

If H is an HUQMA, the argument is dual. If H is an HAPL, it is clear that H+ satisfies (S8) by
(H7). If H is an HWSA, it suffices to show that H+ satisfies (S6).

a′∨a′′

= e(h(a)∗)∨ e((he(h(a)∗))∗) def. of ′

= e(h(a)∗)∨ e(h(a)∗∗) Lemma 7
= e(h(a)∗)∨ eh(a) H2a
= ⊤ H8

�

Proposition 19. For any SMA (resp. LQMA, UQMA, DPL, APL, and WSA) A and any HSMA

(resp. HLQMA, HUQMA, HDPL, HAPL, and HWSA) H:

A � (A+)+ and H � (H+)+.

These correspondences restrict appropriately to the relevant classes of perfect algebras and per-

fect heterogeneous algebras.

Proof. It immediately follows from Proposition 14, Corollary 15, Proposition 17 and Corollary
18. �

3.3 Canonical extensions of heterogeneous algebras

Canonicity in the multi-type environment is used both to provide complete semantics for a large
class of axiomatic extensions of the basic logic (semi De Morgan logic in the present case), and to
prove the conservativity of its associated display calculus (cf. Section 6.3). In the present section,
we define the canonical extension Hδ of any heterogeneous algebra H introduced in Section 3.2
by instantiating the general definition discussed in [17]. This makes it possible to define the
canonical extension of any SMA A as a perfect SMA (A+)δ+. We then show that this definition
coincides with the definition given in [19, Section 4]. In what follows, we let Lδ and Aδ denote
the canonical extensions of the distributive lattice L and of the De Morgan algebra (resp. Boolean
algebra) D respectively, and eπ and hδ denote the π-extensions of e and h2, respectively. We refer
to [9] for the relevant definitions.

Proposition 20. If (L,D,e,h) is an HSMA (resp. HDPL, HLQMA, HUQMA, HAPL, and HWSA),

then (Lδ,Dδ,eπ,hδ) is a perfect HSMA (resp. perfect HDPL, perfect HLQMA, perfect HUQMA,

perfect HAPL and perfect HWSA).

2The order-theoretic properties of h guarantee that the σ-extension and the π-extension of h coincide. This is why
we use hδ to denote the resulting extension.
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L D ∗

∗δ

h

e

L
δ

D
δ

⊢

eℓ

eπ

hδ

⊢
⊢

hr

hℓ

Proof. Firstly, Lδ andDδ are a perfect distributive lattice and a perfect De Morgan algebra (resp. per-
fect Boolean algebra) respectively. Secondly, since h is a surjective homomorphism, h is both
finitely meet-preserving and finitely join-preserving. Hence, as is well known, hδ is surjective,
and completely meet- (join-) preserving [11, Theorem 3.7]. Since h is also smooth, this shows
that hδ = hπ = hσ is a complete homomorphism. Thirdly, since e is finitely meet-preserving, eπ

is completely meet-preserving, and it immediately follows from the definition of π-extension that
eπ is an order-embedding [11, Corollary 2.25]. The identity eπ(0) = 0 clearly holds, since A is a
subalgebra of Aδ. Moreover, IdD = h◦ e is canonical by [10, Proposition 14]. This is enough to
show that if (L,D,e,h) is a SMA (resp. DPL), then (Lδ,Dδ,eπ,hδ) is a perfect HSMA (resp. perfect
HDPL).

Since (H6a), (H6b), (H7) and (H8) are analytic inductive (cf. Definition 29), they are canoni-
cal. So their corresponding heterogeneous algebras are perfect. �

In the environment of perfect heterogeneous algebras, completely join (resp. meet) preserving
maps have right (resp. left) adjoints. These adjoints guarantee the soundness of all display rules in
the display calculi introduced in the next section.

In [19], C. Palma studied the canonical extensions of semi De Morgan algebras using insights
from the Sahlqvist theory of Distributive Modal Logic. She recognized that not all inequalities
in the axiomatization of SMA are Sahlqvist, and circumvented this problem by introducing the
following term-equivalent presentation of SMAs.

Definition 21 ([19], Definition 4.1.2). For any SMA A = (L,∧,∨,′ ,⊤,⊥), let SA = (L,∧,∨,⊲
,� ,⊤,⊥) be such that � and ⊲ are unary operations respectively defined by the assignments a 7→ a′′

and a 7→ a′.

Palma showed that the algebras corresponding to SMAs via the construction above are exactly
those {� ,⊲}-reducts of Distributive Modal Algebras satisfying the following additional axioms:

1. ⊲ ⊤ ≤ ⊥;

2. �a ≤⊲⊲ a;

3. ⊲⊲ a ≤ �a;

4. �⊲a ≤⊲ a;

5. ⊲ a ≤ �⊲a.
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The axioms above can be straightforwardly verified to be Sahlqvist and hence canonical. This
enables Palma to define the canonical extension Aδ of A as the {⊲}-reduct of Sσ

A
= (Lσ,⊲π,�π).

The following lemma immediately implies that Aδ coincides with (A+δ)+.

Lemma 22. For any SMA A, letting SA be defined as above,

1. �π = eπ ◦hδ;

2. ⊲π= eπ ◦∗δ ◦hδ.

Proof. By the definitions of � ,⊲, e and h (cf. beginning of Section 3.1),

�
π = (′′)π definition of �
= (e◦h)π definitions of e and h

= eπ ◦hπ [11, Lemma 3.3, Corollary 2.25]
= eπ ◦hδ h is smooth

⊲
π = (′)π definition of ⊲
= (e◦∗◦h)π definition of ′

= eπ ◦∗π ◦hπ [11, Lemma 3.3, Corollary 2.25]
= eπ ◦∗δ ◦hδ ∗ and h are smooth

�

4 Multi-type presentation of semi De Morgan logic and its extensions

In Section 3.2 we showed that heterogeneous semi De Morgan algebras are equivalent presenta-
tions of semi De Morgan algebras. This provides a semantic motivation for introducing the multi-
type language LMT, which is naturally interpreted on heterogeneous semi De Morgan algebras.
The language LMT consists of terms of types DL and K, defined as follows:

DL ∋ A ::= p | �α | ⊤ | ⊥ | A∧A | A∨A

K ∋ α ::= ◦A | 1 | 0 |∼ α | α∪α | α∩α

The interpretation of LMT-terms into heterogeneous algebras is defined as the easy generalization
of the interpretation of propositional languages in universal algebra; namely, the heterogeneous
operation e interprets the connective � , the heterogeneous operation h interprets the connective ◦,
and DL-terms (resp. K-terms) are interpreted in the first (resp. second) component of heterogeneous
algebras.

The toggle between single-type algebras and their heterogeneous counterparts (cf. Sections
3.2) is reflected syntactically by the translations (·)τ : L→LMT defined as follows:

pτ ::= p

⊤τ ::= ⊤

⊥τ ::= ⊥

(A∧B)τ ::= Aτ∧Bτ

(A∨B)τ ::= Aτ∨Bτ

(¬A)τ ::= � ∼ ◦Aτ

Recall that A+ denotes the heterogeneous algebra associated with the single-type algebra A
(cf. Definition 13). The following proposition is proved by a routine induction on L-formulas.

Proposition 23. For all L-formulas A and B and any A ∈ {SMA, LQMA, UQMA, DPL, APL,

WSA},

A |= A ⊢ B iff A
+ |= Aτ ⊢ Bτ.
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We are now in a position to translate the characteristic axioms of every logic mentioned in
Section 2.1 into LMT. Together with Proposition 19, the proposition above guarantees that the
translation of each of the axioms below is valid on the corresponding class of heterogeneous
algebras.

¬¬A∧¬¬B ⊢ ¬¬(A∧B) �∼◦�∼◦(A∧B)τ ⊢ �∼◦�∼◦Aτ∧�∼◦�∼◦Bτ (i)

¬A ⊢ ¬¬¬A �∼◦Aτ ⊢ �∼◦�∼◦�∼◦Aτ (ii)

¬¬¬A ⊢ ¬A �∼◦�∼◦�∼◦Aτ ⊢ �∼◦Aτ (iii)

¬A∧¬B ⊢ ¬(A∨B)  �∼◦(A∨B)τ ⊢ �∼◦Aτ∧�∼◦Bτ (iv)

⊤ ⊢ ¬⊥ ⊤ ⊢ �∼◦⊥ (v)

¬⊤ ⊢ ⊥  �∼◦⊤ ⊢ ⊥ (vi)

A ⊢ ¬¬A Aτ ⊢ �∼◦�∼◦Aτ (vii)

¬¬A ⊢ A �∼◦�∼◦Aτ ⊢ Aτ (viii)

¬A∧¬¬A ⊢ ⊥ �∼◦Aτ∧�∼◦�∼◦Aτ ⊢ ⊥ (ix)

A∧¬A ⊢ ⊥ Aτ∧�∼◦Aτ ⊢ ⊥ (x)

⊤ ⊢ ¬A∨¬¬A ⊤ ⊢ �∼◦Aτ∨�∼◦�∼◦Aτ (xi)

Notice that the defining identities of heterogeneous algebras (cf. Definition 12) can be ex-
pressed as analytic inductive LMT-inequalities (cf. Definition 29). Hence, these inequalities can
be used to generate the analytic rules of the calculus introduced in Section 5, with a methodology
analogous to the one introduced in [15]. As we will discuss in Section 6.2, the inequalities (i)-(xi)
are derivable in the calculus obtained in this way.

5 Proper Display Calculi for semi De Morgan logic and its extensions

In the present section, we introduce proper multi-type display calculi for semi De Morgan logic and
its extensions. The language manipulated by these calculi has types DL and K, and is built up from
structural and operational (aka logical) connectives. In the tables of Section 5.1, each structural
connective corresponding to a logical connective which belongs to the family F (resp. G, H)
defined in Section A is denoted by decorating that logical connective with ˆ (resp. ˇ, ˜).3

5.1 Language

Structural and operational terms.

3For any sequent x ⊢ y, we define the signed generation trees +x and −y by labelling the root of the generation tree of
x (resp. y) with the sign + (resp. −), and then propagating the sign to all nodes according to the polarity of the coordinate
of the connective assigned to each node. Positive (resp. negative) coordinates propagate the same (resp. opposite) sign
to the corresponding child node. Then, a substructure z in x ⊢ y is in precedent (resp. succedent) position if the sign of
its root node as a subtree of +x or −y is + (resp. −).
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DL



















A ::= p | ⊤ | ⊥ | �α | A∧A | A∨A

X ::= A | ⊤̂ | ⊥̌ | �̌Γ | •̂ℓ Γ | •̌r Γ | X ∧̂X | X ∨̌X | X >̂ X | X →̌X

K























α ::= 1 | 0 | ◦A | ∼ α | α∩α | α∪α

Γ ::= α | 1̂ | 0̌ | ◦̃X | �̂X | ∗̃Γ | Γ ∩̂Γ | Γ ∪̌Γ | Γ ⊃̂ Γ | Γ ⊃̌Γ

Interpretation of pure-type structural connectives as their logical counterparts4 :

DL K

⊤̂ ∧̂ >̂ ⊥̌ ∨̌ →̌ 1̂ ∩̂ ⊃̂ 0̌ ∪̌ ⊃̌ ∗̃

⊤ ∧ (> ) ⊥ ∨ (→) 1 ∩ (⊃ ) 0 ∪ ( ⊃ ) ∼ ∼

Interpretation of heterogeneous structural connectives as their logical counterparts:

DL→ K K→ DL K→ DL K→ DL DL→ K

◦̃ •̂ℓ •̌r �̌ �̂

◦ ◦ (•ℓ) (•r) � (� )

Algebraic interpretation of heterogeneous structural connectives as operations in perfect HSM-
algebras (see Lemma 20).

DL→ K K→ DL K→ DL DL→ K

◦̃ •̂ℓ •̌r �̌ �̂

h hℓ hr e eℓ

5.2 Multi-type display calculi for semi De Morgan logic and its extensions

In what follows, structures of type DL are denoted by the variables X,Y,Z, and W; structures of
type A are denoted by the variables Γ,∆,Θ and Π.

- The proper display calculus for semi De Morgan logic D.SM consists of the following rules:

• Identity and cut rules

Id
p ⊢ p

X ⊢ A A ⊢ Y CutL
X ⊢ Y

Γ ⊢ α α ⊢ ∆ CutD
Γ ⊢ ∆

• Pure DL-type display rules

X ∧̂Y ⊢ ZresL

Y ⊢ X →̌Z

X ⊢ Y ∨̌Z resL

Y >̂ X ⊢ Z

• Pure K-type display rules

Γ ∩̂∆ ⊢ ΘresD

∆ ⊢ Γ ⊃̌Θ

Γ ⊢ ∆ ∪̌Θ resD

∆ ⊃̂ Γ ⊢ Θ

∗̃Γ ⊢ ∆
adj∗
∗̃∆ ⊢ Γ

Γ ⊢ ∗̃∆
adj∗

∆ ⊢ ∗̃Γ

• Multi-type display rules

X ⊢ �̌Γ
adjLD

�̂X ⊢ Γ

◦̃X ⊢ Γ
adjDL

X ⊢ •̌r Γ

Γ ⊢ ◦̃X
adjDL

•̂ℓ Γ ⊢ X
4In the synoptic table, the operational symbols which occur only at the structural level will appear between round

brackets.
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• Pure DL-type structural rules

X ⊢ Y
⊤̂

X ∧̂ ⊤̂ ⊢ Y

X ⊢ Y
⊥̌

X ⊢ Y ∨̌ ⊥̌

X ∧̂Y ⊢ ZEL

Y ∧̂X ⊢ Z

X ⊢ Y ∨̌Z EL

X ⊢ Z ∨̌Y

(X ∧̂Y) ∧̂Z ⊢W
AL

X ∧̂ (Y ∧̂Z) ⊢ Z

X ⊢ (Y ∨̌Z) ∨̌W
AL

X ⊢ Y ∨̌ (Z ∨̌W)

X ⊢ YWL

X ∧̂Z ⊢ Y

X ⊢ Y WL

X ⊢ Y ∨̌Z

X ∧̂X ⊢ YCL
X ⊢ Y

X ⊢ Y ∨̌Y CL
X ⊢ Y

• Pure K-type structural rules

Γ ⊢ ∆
1̂
Γ ∩̂ 1̂ ⊢ ∆

Γ ⊢ ∆
0̌

Γ ⊢ ∆ ∪̌ 0̌

Γ ∩̂∆ ⊢ ΘED

∆ ∩̂Γ ⊢ Θ

Γ ⊢ ∆ ∪̌Θ ED

Γ ⊢ Θ ∪̌∆

(Γ ∩̂∆) ∩̂Θ ⊢ Π
AD

Γ ∩̂ (∆ ∩̂Θ) ⊢ Θ

Γ ⊢ (∆ ∪̌Θ) ∪̌Π
AD

Γ ⊢ ∆ ∪̌ (Θ ∪̌Π)

Γ ⊢ ∆WD

Γ ∩̂Θ ⊢ ∆

Γ ⊢ ∆ WD

Γ ⊢ ∆ ∪̌Θ

Γ ∩̂Γ ⊢ ∆CD
Γ ⊢ ∆

Γ ⊢ ∆ ∪̌∆ CD
Γ ⊢ ∆

Γ ⊢ ∆
cont

∗̃∆ ⊢ ∗̃Γ

• Multi-type structural rules

X ⊢ Y
◦̃
◦̃X ⊢ ◦̃Y

•̂ℓ Γ ⊢ •̌r∆
•̃

Γ ⊢ ∆

1̂ ⊢ Γ
�̂ 1̂
�̂ ⊤̂ ⊢ Γ

X ⊢ �̌ 0̌
�̌ 0̌

X ⊢ ⊥̌

Γ ⊢ ◦̃ �̌∆
◦̃ �̌

Γ ⊢ ∆

• Pure DL-type operational rules

⊤̂ ⊢ X
⊤
⊤ ⊢ X

⊤
⊤̂ ⊢ ⊤

⊥
⊥ ⊢ ⊥̌

X ⊢ ⊥̌
⊥

X ⊢ ⊥

A ∧̂B ⊢ X
∧

A∧B ⊢ X

X ⊢ A Y ⊢ B
∧

X ∧̂Y ⊢ A∧B

A ⊢ X B ⊢ Y
∨

A∨B ⊢ X ∨̌Y
X ⊢ A ∨̌B

∨
X ⊢ A∨B

• Pure K-type operational rules
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1̂ ⊢ Γ
1

1 ⊢ Γ
1

1̂ ⊢ 1

0
0 ⊢ 0̌

Γ ⊢ 0̌
0

Γ ⊢ 0

α ∩̂β ⊢ Γ
∩
α∩β ⊢ Γ

Γ ⊢ α ∆ ⊢ β
∩

Γ ∩̂∆ ⊢ α∩β

α ⊢ Γ β ⊢ ∆
∪
α∪β ⊢ Γ ∪̌∆

Γ ⊢ α ∪̌β
∪

Γ ⊢ α∪β

∗̃α ⊢ Γ
∼
∼ α ⊢ Γ

Γ ⊢ ∗̃α
∼

Γ ⊢ ∼ α

• Multi-type operational rules

◦̃A ⊢ Γ
◦
◦A ⊢ Γ

X ⊢ ◦̃A
◦

X ⊢ ◦A

α ⊢ Γ
�

�α ⊢ �̌Γ
X ⊢ �̌α

�

X ⊢ �α

- The proper display calculus D.LQM for lower quasi De Morgan logic consists of all axiom
and rules in D.SM plus the following rule:

X ⊢ Y LQM
X ⊢ �̌ ◦̃Y

- The proper display calculus D.UQM for upper quasi De Morgan logic consists of all axiom
and rules in D.SM plus the following rule:

•̂ℓ �̂X ⊢ Y
UQM

X ⊢ Y

- The proper display calculus D.DP for demi pseudocomplemented lattice logic consists of
all axiom and rules in D.SM plus the following rule:

Γ ∩̂∆ ⊢ ΣresB

∆ ⊢ ∗̃Γ ∪̌Σ

- The proper display calculus D.AP for almost pseudocomplemented lattice logic consists of
all axiom and rules in D.DP plus the following rule:

X ⊢ �̌ ∗̃ ◦̃Y
AP

X ∧̂Y ⊢ ⊥̌

- The proper display calculus D.WS for weak stone logic consists of all axiom and rules in
D.DP plus the following rule:

�̂X ⊢ ∆
WS

�̂ (�̌ ∗̃ ◦̃X >̂ ⊤̂) ⊢ ∆

6 Properties

6.1 Soundness

In the present subsection, we outline the verification of the soundness of the rules of D.SM
(resp. D.LQM, D.UQM D.DP, D.AP and D.WS) w.r.t. the semantics of perfect HSMAs (resp. HQ-
MAs, HDPLs, HAPLs and HWSAs, see Definition 12). The first step consists in interpreting
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structural symbols as logical symbols according to their (precedent or succedent) position, as in-
dicated at the beginning of Section 5. This makes it possible to interpret sequents as inequalities,
and rules as quasi-inequalities. For example, the rules on the left-hand side below are interpreted
as the quasi-inequalities on the right-hand side:

X ⊢ Y
◦̃X ⊢ ◦̃Y

 ∀a∀b[a ≤ b⇒ h(a) ≤ h(b)]

�̂X ⊢ ∆

�̂ (�̌ ∗̃ ◦̃X >̂ ⊤̂) ⊢ ∆
 ∀a[eℓ[e(h(a)∗)> ⊤] ≤ eℓ(a)]

The proof of the soundness of the rules in these display calculi then consists in verifying the
validity of their corresponding quasi-inequalities in the corresponding class of perfect heteroge-
neous algebras. The verification of the soundness of pure-type rules and of the introduction rules
following this procedure is routine, and is omitted. The validity of the quasi-inequalities cor-
responding to multi-type structural rules follows straightforwardly from the observation that the
quasi-inequality corresponding to each rule is obtained by running the algorithm ALBA (cf. Sec-
tion 3.4 [15]) on some of the defining inequalities of its corresponding heterogeneous algebras.5

For instance, the soundness of the characteristic rule of D.WS on HWSAs follows from the valid-
ity of the inequality (xi) in every HWSA (discussed in Section 4) and from the soundness of the
following ALBA reduction in every HWSA:

∀a[⊤ ≤ e(h(a)∗)∨ e((he(h(a)∗))∗)]
iff ∀a∀b∀c[b ≤ a&c ≤ e(h(a)∗)⇒⊤ ≤ e(h(b)∗)∨ e(h(c)∗)]
iff ∀a∀b∀c[b ≤ a&a ≤ hr(eℓ(c)∗)⇒⊤ ≤ e(h(b)∗)∨ e(h(c)∗)]
iff ∀b∀c[b ≤ hr(eℓ(c)∗)⇒⊤ ≤ e(h(b)∗)∨ e(h(c)∗)]
iff ∀b∀c[b ≤ hr(eℓ(c)∗)⇒ e(h(c)∗)> ⊤ ≤ e(h(b)∗)]
iff ∀b∀c[b ≤ hr(eℓ(c)∗)⇒ b ≤ hr(eℓ[e(h(c)∗)> ⊤]∗)]
iff ∀c[hr(eℓ(c)∗) ≤ hr(eℓ[e(h(c)∗)> ⊤]∗)]
iff ∀c[eℓ(c)∗ ≤ eℓ[e(h(c)∗)> ⊤]∗] hr is injective
iff ∀c[eℓ[e(h(c)∗)> ⊤] ≤ eℓ(c)] ∗ is injective

6.2 Completeness

In the present subsection, we show that the translations of the axioms and rules of SM, LQM, UQM,
DP, AP and WS are derivable in D.SM, D.LQM, D.UQM, D.DP, D.AP and D.WS, respectively.
Then, the completeness of these display calculi w.r.t. the classes of SMAs, LQMAs, UQMAs,
DPLs, APLs and WSAs immediately follows from the completeness of SM, LQM, UQM, DP, AP

and WS (cf. Theorem 5).

Proposition 24. For every A ∈L, the sequent Aτ ⊢ Aτ is derivable in all display calculi introduced

in Section 5.2.

Proof. By inducution on A ∈ L. The proof of base cases: A := ⊤, A := ⊥ and A := p, are straight-
forward and are omitted.

Inductive cases:

• as to A := ¬B,

5Indeed, as discussed in [15], the soundness of the rewriting rules of ALBA only depends on the order-theoretic
properties of the interpretation of the logical connectives and their adjoints and residuals. The fact that some of these
maps are not internal operations but have different domains and codomains does not make any substantial difference.
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ind.hyp.
Bτ ⊢ Bτ

◦̃
◦̃Bτ ⊢ ◦̃Bτ

◦Bτ ⊢ ◦̃Bτ

◦Bτ ⊢ ◦Bτ cont
∗̃◦Bτ ⊢ ∗̃◦Bτ

∗̃◦Bτ ⊢ ∼ ◦Bτ

∼ ◦Bτ ⊢ ∼ ◦Bτ

� ∼ ◦Bτ ⊢ �̌ ∼ ◦Bτ

� ∼ ◦Bτ ⊢ � ∼ ◦Bτ

• as to A := B∨C,

ind.hyp.
Bτ ⊢ Bτ

W
Bτ ⊢ Bτ ∨̌Cτ

ind.hyp.
Cτ ⊢ Cτ

W
Cτ ⊢ Cτ ∨̌Bτ

E
Cτ ⊢ Bτ ∨̌Cτ

Bτ∨Cτ ⊢ (Bτ ∨̌Cτ) ∨̌ (Bτ ∨̌Cτ)
C

Bτ∨Cτ ⊢ Bτ∨Cτ

• as to A := B∧C,

ind.hyp.
Bτ ⊢ Bτ

W
Bτ ∧̂Cτ ⊢ Bτ

ind.hyp.
Cτ ⊢ Cτ

W
Cτ ∧̂Bτ ⊢ Cτ

E
Bτ ∧̂Cτ ⊢ Cτ

(Bτ ∧̂Cτ) ∧̂ (Bτ ∧̂Cτ) ⊢ Bτ∧Cτ
C

Bτ∧Cτ ⊢ Bτ∧Cτ

�

Proposition 25. For every A,B ∈ L, if A ⊢ B is derivable in any logic introduced in 2.1, then

Aτ ⊢ Bτ is derivable in its respective display calculus.

Proof. It is enough to show the statement of the proposition on the axioms. For the sake of
readability, in what follows, we suppress the translation symbol (·)τ. As to the axioms in SM:

• ¬⊤ ⊢ ⊥  � ∼ ◦⊤ ⊢ ⊥,

⊤̂ ⊢ ⊤WL

•̂ℓ ∗̃ 0̌ ∧̂ ⊤̂ ⊢ ⊤
⊤̂

•̂ℓ ∗̃ 0̌ ⊢ ⊤

∗̃ 0̌ ⊢ ◦̃⊤
∗̃ 0̌ ⊢ ◦⊤
∗̃◦⊤ ⊢ 0̌
∼ ◦⊤ ⊢ 0̌
� ∼ ◦⊤ ⊢ �̌ 0̌

�̌ 0̌
� ∼ ◦⊤ ⊢ ⊥̌
� ∼ ◦⊤ ⊢ ⊥

• ⊤ ⊢ ¬⊥ ⊤ ⊢ � ∼ ◦⊤,

⊥ ⊢ ⊥̌ WL

⊥ ⊢ ⊥̌ ∨̌ •̌r ∗̃ 1̂
⊥̌

⊥ ⊢ •̌r ∗̃ 1̂

◦̃⊥ ⊢ ∗̃ 1̂
◦⊥ ⊢ ∗̃ 1̂

1̂ ⊢ ∗̃◦⊥
1̂ ⊢ ∼ ◦⊥

�̂ ⊤̂
�̂ ⊤̂ ⊢ ∼ ◦⊥

⊤̂ ⊢ �̌ ∼ ◦⊥

⊤̂ ⊢ � ∼ ◦⊥
⊤ ⊢ � ∼ ◦⊥
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• ¬A ⊢ ¬¬¬A  � ∼ ◦A ⊢ � ∼ ◦� ∼ ◦� ∼ ◦A

and ¬¬¬A ⊢ ¬A  � ∼ ◦� ∼ ◦� ∼ ◦A ⊢ � ∼ ◦A,

A ⊢ A
◦̃

◦̃A ⊢ ◦̃A

◦A ⊢ ◦̃A

◦A ⊢ ◦A cont
∗̃ ◦A ⊢ ∗̃◦A

∗̃ ◦A ⊢ ∼ ◦A
◦̃ �̌

∗̃ ◦A ⊢ ◦̃ �̌ ∼ ◦A

•̂ℓ ∗̃ ◦A ⊢ �̌ ∼ ◦A

•̂ℓ ∗̃ ◦A ⊢ � ∼ ◦A

∗̃ ◦A ⊢ ◦̃� ∼ ◦A

∗̃ ◦A ⊢ ◦� ∼ ◦A

∗̃ ◦� ∼ ◦A ⊢ ◦A

∼ ◦� ∼ ◦A ⊢ ◦A

� ∼ ◦� ∼ ◦A ⊢ �̌◦A
◦̃

◦̃� ∼ ◦� ∼ ◦A ⊢ ◦̃ �̌◦A

◦� ∼ ◦� ∼ ◦A ⊢ ◦̃ �̌◦A
◦̃ �̌

◦� ∼ ◦� ∼ ◦A ⊢ ◦A cont
∗̃ ◦A ⊢ ∗̃◦� ∼ ◦� ∼ ◦A

∗̃ ◦A ⊢ ∼ ◦� ∼ ◦� ∼ ◦A

∼ ◦A ⊢ ∼ ◦� ∼ ◦� ∼ ◦A

� ∼ ◦A ⊢ �̌ ∼ ◦� ∼ ◦� ∼ ◦A

� ∼ ◦A ⊢ � ∼ ◦� ∼ ◦� ∼ ◦A

A ⊢ A
◦̃

◦̃A ⊢ ◦̃A

◦A ⊢ ◦̃A

◦A ⊢ ◦A cont
∗̃ ◦A ⊢ ∗̃◦A

∼ ◦A ⊢ ∗̃◦A

� ∼ ◦A ⊢ �̌ ∗̃◦A
◦̃

◦̃� ∼ ◦A ⊢ ◦̃ �̌ ∗̃ ◦A

◦� ∼ ◦A ⊢ ◦̃ �̌ ∗̃ ◦A
◦̃ �̌

◦� ∼ ◦A ⊢ ∗̃◦A

◦A ⊢ ∗̃◦� ∼ ◦A

◦A ⊢ ∼ ◦� ∼ ◦A
◦̃ �̌

◦A ⊢ ◦̃ �̌ ∼ ◦� ∼ ◦A

•̂ℓ ◦A ⊢ �̌ ∼ ◦� ∼ ◦A

•̂ℓ ◦A ⊢ � ∼ ◦� ∼ ◦A

◦A ⊢ ◦̃� ∼ ◦� ∼ ◦A

◦A ⊢ ◦� ∼ ◦� ∼ ◦A cont
∗̃ ◦� ∼ ◦� ∼ ◦A ⊢ ∗̃◦A

∼ ◦� ∼ ◦� ∼ ◦A ⊢ ∗̃◦A

∼ ◦� ∼ ◦� ∼ ◦A ⊢ ∼ ◦A

� ∼ ◦� ∼ ◦� ∼ ◦A ⊢ �̌ ∼ ◦A

� ∼ ◦� ∼ ◦� ∼ ◦A ⊢ � ∼ ◦A

• ¬A∧¬B ⊢ ¬(A∨B)  � ∼ ◦A∧� ∼ ◦B ⊢ � ∼ ◦ (A∨B),

A ⊢ A
◦̃

◦̃A ⊢ ◦̃A

◦̃A ⊢ ◦A cont
∗̃◦A ⊢ ∗̃ ◦̃A

∼ ◦A ⊢ ∗̃ ◦̃A

� ∼ ◦A ⊢ �̌ ∗̃ ◦̃AWL
� ∼ ◦A ∧̂� ∼ ◦B ⊢ �̌ ∗̃ ◦̃A

� ∼ ◦A∧� ∼ ◦B ⊢ �̌ ∗̃ ◦̃A

�̂ (� ∼ ◦A∧� ∼ ◦B) ⊢ ∗̃ ◦̃A

◦̃A ⊢ ∗̃ �̂ (� ∼ ◦A∧� ∼ ◦B)

A ⊢ •̌r ∗̃ �̂ (� ∼ ◦A∧� ∼ ◦B)

B ⊢ B
◦̃

◦̃B ⊢ ◦̃B

◦̃B ⊢ ◦B cont
∗̃◦B ⊢ ∗̃ ◦̃B

∼ ◦B ⊢ ∗̃ ◦̃B

� ∼ ◦B ⊢ �̌ ∗̃ ◦̃BWL
� ∼ ◦B ∧̂� ∼ ◦A ⊢ �̌ ∗̃ ◦̃BEL
� ∼ ◦A ∧̂� ∼ ◦B ⊢ �̌ ∗̃ ◦̃B

� ∼ ◦A∧� ∼ ◦B ⊢ �̌ ∗̃ ◦̃B

�̂ (� ∼ ◦A∧� ∼ ◦B) ⊢ ∗̃ ◦̃B

◦̃B ⊢ ∗̃ �̂ (� ∼ ◦A∧� ∼ ◦B)

B ⊢ •̌r ∗̃ �̂ (� ∼ ◦A∧� ∼ ◦B)

A∨B ⊢ •̌r ∗̃ �̂ (� ∼ ◦A∧� ∼ ◦B) ∨̌ •̃∗̃ �̂ (� ∼ ◦A∧� ∼ ◦B)
CL

A∨B ⊢ •̃∗̃ �̂ (� ∼ ◦A∧� ∼ ◦B)

◦̃ (A∨B) ⊢ ∗̃ �̂ (� ∼ ◦A∧� ∼ ◦B)

◦ (A∨B) ⊢ ∗̃ �̂ (� ∼ ◦A∧� ∼ ◦B)

�̂ (� ∼ ◦A∧� ∼ ◦B) ⊢ ∗̃◦ (A∨B)

�̂ (� ∼ ◦A∧� ∼ ◦B) ⊢ ∼ ◦ (A∨B)
� ∼ ◦A∧� ∼ ◦B ⊢ �̌ ∼ ◦ (A∨B)
� ∼ ◦A∧� ∼ ◦B ⊢ � ∼ ◦ (A∨B)
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• ¬¬A∧¬¬B ⊢ ¬¬(A∧B)  � ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B ⊢ � ∼ ◦� ∼ ◦ (A∧B),

A ⊢ A
◦̃

◦̃A ⊢ ◦̃A

◦A ⊢ ◦̃A
cont

∗̃ ◦̃A ⊢ ∗̃◦A

∗̃ ◦̃A ⊢ ∼ ◦A
◦̃ �̌

∗̃ ◦̃A ⊢ ◦̃ �̌ ∼ ◦A

•̂ℓ ∗̃ ◦̃A ⊢ �̌ ∼ ◦A

•̂ℓ ∗̃ ◦̃A ⊢ � ∼ ◦A

∗̃ ◦̃A ⊢ ◦̃� ∼ ◦A

∗̃ ◦̃A ⊢ ◦� ∼ ◦A

∗̃ ◦� ∼ ◦A ⊢ ◦̃A

∼ ◦� ∼ ◦A ⊢ ◦̃A

� ∼ ◦� ∼ ◦A ⊢ �̌ ◦̃AWL
� ∼ ◦� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦B ⊢ �̌ ◦̃A

� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B ⊢ �̌ ◦̃A

�̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B) ⊢ ◦̃A

•̂ℓ �̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B) ⊢ A

B ⊢ B
◦̃

◦̃B ⊢ ◦̃B

◦B ⊢ ◦̃B cont
∗̃ ◦̃B ⊢ ∗̃◦B

∗̃ ◦̃B ⊢ ∼ ◦B
◦̃ �̌

∗̃ ◦̃B ⊢ ◦̃ �̌ ∼ ◦B

•̂ℓ ∗̃ ◦̃B ⊢ �̌ ∼ ◦B

•̂ℓ ∗̃ ◦̃B ⊢ � ∼ ◦B

∗̃ ◦̃B ⊢ ◦̃� ∼ ◦B

∗̃ ◦̃B ⊢ ◦� ∼ ◦B

∗̃ ◦� ∼ ◦B ⊢ ◦̃B

∼ ◦� ∼ ◦B ⊢ ◦̃B

� ∼ ◦� ∼ ◦B ⊢ �̌ ◦̃BWL
� ∼ ◦� ∼ ◦B ∧̂� ∼ ◦� ∼ ◦A ⊢ �̌ ◦̃BEL
� ∼ ◦� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦B ⊢ �̌ ◦̃B

� ∼ ◦� ∼ ◦B∧� ∼ ◦� ∼ ◦A ⊢ �̌ ◦̃B

�̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B) ⊢ ◦̃B

•̂ℓ �̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B) ⊢ B

•̂ℓ �̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B) ∧̂ •̂ℓ �̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B) ⊢ A∧B
CL

•̂ℓ �̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B) ⊢ A∧B

�̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B) ⊢ ◦̃ (A∧B)

�̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B) ⊢ ◦ (A∧B)
cont

∗̃ ◦ (A∧B) ⊢ ∗̃ �̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B)

∼ ◦ (A∧B) ⊢ ∗̃ �̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B)

� ∼ ◦ (A∧B) ⊢ �̌ ∗̃ �̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B)
◦̃

◦̃� ∼ ◦ (A∧B) ⊢ ◦̃ �̌ ∗̃ �̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B)
◦̃ �̌

◦̃� ∼ ◦ (A∧B) ⊢ ∗̃ �̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B)

◦� ∼ ◦ (A∧B) ⊢ ∗̃ �̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B)

�̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B) ⊢ ∗̃◦� ∼ ◦ (A∧B)

�̂ (� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B) ⊢ ∼ ◦� ∼ ◦ (A∧B)
� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B ⊢ �̌ ∼ ◦� ∼ ◦ (A∧B)
� ∼ ◦� ∼ ◦A∧� ∼ ◦� ∼ ◦B ⊢ � ∼ ◦� ∼ ◦ (A∧B)
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As to the characterizing axioms of LQM and UQM:

• A ⊢ ¬¬A  A ⊢ � ∼ ◦� ∼ ◦A and ¬¬A ⊢ A  � ∼ ◦� ∼ ◦A ⊢ A,

A ⊢ A LQM
A ⊢ �̌ ◦̃A

�̂A ⊢ ◦̃A

�̂A ⊢ ◦A
cont

∗̃ ◦A ⊢ ∗̃ �̂A

∼ ◦A ⊢ ∗̃ �̂A

� ∼ ◦A ⊢ �̌ ∗̃ �̂A
◦̃

◦̃� ∼ ◦A ⊢ ◦̃ �̌ ∗̃ �̂A
◦̃ �̌

◦̃� ∼ ◦A ⊢ ∗̃ �̂A

◦� ∼ ◦A ⊢ ∗̃ �̂A

�̂A ⊢ ∗̃◦� ∼ ◦A

�̂A ⊢ ∼ ◦� ∼ ◦A

A ⊢ �̌ ∼ ◦� ∼ ◦A
A ⊢ � ∼ ◦� ∼ ◦A

A ⊢ A
◦̃

◦̃A ⊢ ◦̃A
◦A ⊢ ◦̃A

cont
∗̃ ◦̃A ⊢ ∗̃◦A
∗̃ ◦̃A ⊢ ∼ ◦A

◦̃ �̌
∗̃ ◦̃A ⊢ ◦̃ �̌ ∼ ◦A

•̂ℓ ∗̃ ◦̃A ⊢ �̌ ∼ ◦A

•̂ℓ ∗̃ ◦̃A ⊢ � ∼ ◦A

∗̃ ◦̃A ⊢ ◦̃� ∼ ◦A
∗̃ ◦̃A ⊢ ◦� ∼ ◦A

∗̃ ◦� ∼ ◦A ⊢ ◦̃A
∼ ◦� ∼ ◦A ⊢ ◦̃A

� ∼ ◦� ∼ ◦A ⊢ �̌ ◦̃A

�̂� ∼ ◦� ∼ ◦A ⊢ ◦̃A

•̂ℓ �̂� ∼ ◦� ∼ ◦A ⊢ A
UQM

� ∼ ◦� ∼ ◦A ⊢ A

As to the characterizing axiom of AP:

• ¬A∧A ⊢ ⊥  � ∼ ◦A∧A ⊢ ⊥,

A ⊢ A
◦̃

◦̃A ⊢ ◦̃A
◦̃A ⊢ ◦A
∼ ◦A ⊢ ∗̃ ◦̃A

� ∼ ◦A ⊢ �̌ ∗̃ ◦̃A
AP

A ∧̂� ∼ ◦A ⊢ ⊥̌

� ∼ ◦A ⊢ A →̌ ⊥̌

A ∧̂� ∼ ◦A ⊢ ⊥̌EL

� ∼ ◦A ∧̂A ⊢ ⊥̌

� ∼ ◦A ∧̂A ⊢ ⊥
� ∼ ◦A∧A ⊢ ⊥

23



As to the characterizing axiom of DP:

• ¬A∧¬¬A ⊢ ⊥  � ∼ ◦A∧� ∼ ◦� ∼ ◦A ⊢ ⊥,

A ⊢ A
◦̃

◦̃A ⊢ ◦̃A

◦A ⊢ ◦̃A

◦A ⊢ ◦A WL

◦A ∩̂ 0̌ ⊢ ◦A

0̌ ⊢ ∗̃◦A ∪̌ ◦A EL

0̌ ⊢ ◦A ∪̌ ∗̃◦A

∗̃ ◦A ∩̂ 0̌ ⊢ ∗̃◦A
0̌

∗̃◦A ⊢ ∗̃◦A

∗̃◦A ⊢ ∼ ◦A

∼ ◦A ⊢ ∼ ◦A
◦̃ �̌

∼ ◦A ⊢ ◦̃ �̌ ∼ ◦A

•̂ℓ ∼ ◦A ⊢ �̌ ∼ ◦A

•̂ℓ ∼ ◦A ⊢ � ∼ ◦A

∼ ◦A ⊢ ◦̃� ∼ ◦A

∼ ◦A ⊢ ◦� ∼ ◦A

� ∼ ◦A ⊢ �̌◦� ∼ ◦A

�̂� ∼ ◦A ⊢ ◦� ∼ ◦A
WL

�̂� ∼ ◦A ⊢ ◦� ∼ ◦A ∪̌ 0̌

∗̃ ◦� ∼ ◦A ∩̂ �̂� ∼ ◦A ⊢ 0̌
EL

�̂� ∼ ◦A ∩̂ ∗̃◦� ∼ ◦A ⊢ 0̌

∗̃◦� ∼ ◦A ⊢ ∗̃ �̂� ∼ ◦A ∪̌ 0̌

∼ ◦� ∼ ◦A ⊢ ∗̃ �̂� ∼ ◦A ∪̌ 0̌

� ∼ ◦� ∼ ◦A ⊢ �̌ (∗̃ �̂� ∼ ◦A ∪̌ 0̌)

�̂� ∼ ◦� ∼ ◦A ⊢ ∗̃ �̂� ∼ ◦A ∪̌ 0̌

�̂� ∼ ◦A ∩̂ �̂� ∼ ◦� ∼ ◦A ⊢ 0̌

�̂� ∼ ◦� ∼ ◦A ⊢ �̂� ∼ ◦A→̌ 0̌

� ∼ ◦� ∼ ◦A ⊢ �̌ ( �̂� ∼ ◦A→̌ 0̌)
WL

� ∼ ◦� ∼ ◦A ∧̂� ∼ ◦A ⊢ �̌ ( �̂� ∼ ◦A→̌ 0̌)
EL

� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A ⊢ �̌ ( �̂� ∼ ◦A→̌ 0̌)

�̂ (� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A) ⊢ �̂� ∼ ◦A→̌ 0̌

�̂� ∼ ◦A ∩̂ �̂ (� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A) ⊢ 0̌

�̂� ∼ ◦A ⊢ �̂ (� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A)→̌ 0̌

� ∼ ◦A ⊢ �̌ ( �̂ (� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A)→̌ 0̌)
WL

� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A ⊢ �̌ ( �̂ (� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A)→̌ 0̌)

�̂ (� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A) ⊢ �̂ (� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A)→̌ 0̌)

�̂ (� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A) ∩̂ �̂ (� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A) ⊢ 0̌
CD

�̂ (� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A) ⊢ 0̌

� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A ⊢ �̌ 0̌
�̌ 0̌

� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A ⊢ ⊥̌

� ∼ ◦A ∧̂� ∼ ◦� ∼ ◦A ⊢ ⊥

� ∼ ◦A∧� ∼ ◦� ∼ ◦A ⊢ ⊥
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As to the characterizing axiom of WS:

• ⊤ ⊢ ¬¬A∨¬A  ⊤ ⊢ � ∼ ◦� ∼ ◦A∨� ∼ ◦A,

A ⊢ A
◦̃

◦̃A ⊢ ◦̃A

◦̃A ⊢ ◦A

◦A ⊢ ◦A

∼ ◦A ⊢ ∗̃◦A

∼ ◦A ⊢ ∼ ◦A

� ∼ ◦A ⊢ �̌ ∼ ◦A

�̂� ∼ ◦A ⊢ ∼ ◦A
WS

�̂ (�̌ ∗̃ ◦̃� ∼ ◦A >̂ ⊤̂) ⊢ ∼ ◦A

�̌ ∗̃ ◦̃� ∼ ◦A >̂ ⊤̂ ⊢ �̌ ∼ ◦A

�̌ ∗̃ ◦̃� ∼ ◦A >̂ ⊤̂ ⊢ � ∼ ◦A

⊤̂ ⊢ �̌ ∗̃ ◦̃� ∼ ◦A ∨̌� ∼ ◦A

� ∼ ◦A >̂ ⊤̂ ⊢ �̌ ∗̃ ◦̃� ∼ ◦A

�̂ (� ∼ ◦A >̂ ⊤̂) ⊢ ∗̃ ◦̃� ∼ ◦A

◦̃� ∼ ◦A ⊢ ∗̃ �̂ (� ∼ ◦A >̂ ⊤̂)

◦� ∼ ◦A ⊢ ∗̃ �̂ (� ∼ ◦A >̂ ⊤̂)

�̂ (� ∼ ◦A >̂ ⊤̂) ⊢ ∗̃ ◦� ∼ ◦A

�̂ (� ∼ ◦A >̂ ⊤̂) ⊢ ∼ ◦� ∼ ◦A

� ∼ ◦A >̂ ⊤̂ ⊢ �̌ ∼ ◦� ∼ ◦A

� ∼ ◦A >̂ ⊤̂ ⊢ � ∼ ◦� ∼ ◦A

⊤̂ ⊢ � ∼ ◦� ∼ ◦A ∨̌� ∼ ◦A

⊤̂ ⊢ � ∼ ◦� ∼ ◦A∨� ∼ ◦A

⊤ ⊢ � ∼ ◦� ∼ ◦A∨� ∼ ◦A

�

6.3 Conservativity

To argue that the calculi introduced in Section 5 conservatively capture their respective logics (see
Section 2.1), we follow the standard proof strategy discussed in [15, 13]. Let L be one of the logics
of Definition 1, let ⊢L denote its syntactic consequence relation, and let |=L (resp. |=HL) denote
the semantic consequence relation arising from the class of the perfect (heterogeneous) algebras
associated with L. We need to show that, for all L-formulas A and B, if Aτ ⊢ Bτ is derivable in
the display calculus D.L, then A ⊢L B. This claim can be proved using the following facts: (a) the
rules of D.L are sound w.r.t. perfect heterogeneous L-algebras (cf. Section 6.1); (b) L is complete
w.r.t. its associated class of algebras (cf. Theorem 5); and (c) L-algebras are equivalently presented
as heterogeneous L-algebras (cf. Section 3.2), so that the semantic consequence relations arising
from each type of algebras preserve and reflect the translation (cf. Proposition 23). If Aτ ⊢ Bτ is
derivable in D.L, then by (a), |=HL Aτ ⊢ Bτ. By (c), this implies that |=L A ⊢ B. By (b), this implies
that A ⊢L B, as required.

6.4 Cut elimination and subformula property

In the present subsection, we briefly sketch the proof of cut elimination and subformula property
for all display calculi introduced in Section 5.2. As discussed earlier on, proper display calculi
have been designed so that the cut elimination and subformula property can be inferred from a
meta-theorem, following the strategy introduced by Belnap for display calculi. The meta-theorem
to which we will appeal was proved in [6, Theorem 4.1].

Theorem 26. Cut elimination and subformula property hold for all display calculi introduced in

Section 5.2.
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Proof. All conditions in [6] except C′8 are readily satisfied by inspecting the rules. Condition C′8
requires to check that reduction steps are available for every application of the cut rule in which
both cut-formulas are principal, which either remove the original cut altogether or replace it by
one or more cuts on formulas of strictly lower complexity. In what follows, we show C′8 for the
unary connectives by induction on the complexity of cut formula.

Pure type atomic propositions:

p ⊢ p p ⊢ p

p ⊢ p  p ⊢ p

Pure type constants:

⊤̂ ⊢ ⊤

... π1

⊤̂ ⊢ X
⊤ ⊢ X

⊤̂ ⊢ X  

... π1

⊤̂ ⊢ X

The cases for ⊥, 1, 0 are standard and similar to the one above.

Pure-type unary connectives:

... π1

Γ ⊢ ∗̃α
Γ ⊢ ∼ α

... π2

∗̃α ⊢ ∆
∼ α ⊢ ∆

Γ ⊢ ∆  

... π2

∗̃α ⊢ ∆
∗̃∆ ⊢ α

... π1

Γ ⊢ ∗̃α
α ⊢ ∗̃Γ

∗̃∆ ⊢ ∗̃Γ cont
Γ ⊢ ∆

Pure-type binary connectives:

... π1

X ⊢ A

... π2

Y ⊢ B

X ∧̂Y ⊢ A∧B

... π3

A ∧̂B ⊢ Z
A∧B ⊢ Z

X ∧̂Y ⊢ Z  

... π1

X ⊢ A

... π2

Y ⊢ B

... π3

A ∧̂B ⊢ Z

B ⊢ A →̌Z

Y ⊢ A →̌Z

A ∧̂Y ⊢ Z

Y ∧̂A ⊢ Z

A ⊢ Y →̌Z

X ⊢ Y →̌Z

Y ∧̂X ⊢ Z

X ∧̂Y ⊢ Z

The cases for A∨B, α∩β, α∪β are standard and similar to the one above.

Multi-type unary connectives:

... π1

X ⊢ �̌α
X ⊢ �α

... π2

α ⊢ ∆

�α ⊢ �̌∆

X ⊢ �̌∆  

... π1

X ⊢ �̌α

�̂X ⊢ α

... π2

α ⊢ ∆

�̂X ⊢ ∆

X ⊢ �̌∆

... π1

Γ ⊢ ◦̃A
Γ ⊢ ◦A

... π2

◦̃A ⊢ ∆
◦A ⊢ ∆

Γ ⊢ ∆  

... π1

Γ ⊢ ◦̃A
•̂ℓ Γ ⊢ A

... π2

◦̃A ⊢ ∆
A ⊢ •̌r∆

•̂ℓ Γ ⊢ •̌r∆
•

Γ ⊢ ∆
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A Analytic inductive inequalities

In the present section, we specialize the definition of analytic inductive inequalities (cf. [15]) to
the multi-type language LMT, in the types DL and K, defined in Section 4 and reported below for
the reader’s convenience.

DL ∋ A ::= p | �α | ⊤ | ⊥ | A∧A | A∨A

K ∋ α ::=◦A | 1 | 0 |∼ α | α∪α | α∩α

We will make use of the following auxiliary definition: an order-type over n ∈ N is an n-tuple
ǫ ∈ {1,∂}n. For every order type ǫ, we denote its opposite order type by ǫ∂, that is, ǫ∂(i) = 1 iff
ǫ(i) = ∂ for every 1 ≤ i ≤ n. The connectives of the language above are grouped together into
the families F := FDL∪FK ∪FMT, G := GDL∪GK ∪GMT, and H :=HDL∪HK ∪HMT defined as
follows:

FDL := {∧,⊤} GDL := {∨,⊥} HDL := ∅
FK := {∩,1} GK := {∪,0} HK := {∼}
FMT := ∅ GMT := {� } HMT := {◦}

For any ℓ ∈ F ∪G∪H , we let nℓ ∈ N denote the arity of ℓ, and the order-type ǫℓ on nℓ indi-
cates whether the ith coordinate of ℓ is positive (ǫℓ(i) = 1) or negative (ǫℓ(i) = ∂). The order-
theoretic motivation for this partition is that the algebraic interpretations of F -connectives (resp.
G-connectives), preserve finite joins (resp. meets) in each positive coordinate and reverse fi-
nite meets (resp. joins) in each negative coordinate, while the algebraic interpretations of H-
connectives, preserve both finite joins and meets in each positive coordinate and reverse both
finite meets and joins in each negative coordinate.

For any term s(p1, . . . pn), any order type ǫ over n, and any 1 ≤ i ≤ n, an ǫ-critical node in a
signed generation tree of s is a leaf node +pi with ǫ(i) = 1 or −pi with ǫ(i) = ∂. An ǫ-critical

branch in the tree is a branch ending in an ǫ-critical node. For any term s(p1, . . . pn) and any order
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Skeleton PIA
∆-adjoints SRA

+ ∨ ∪

− ∧ ∩

+ ∧ ∩ ◦ ∼ �

− ∨ ∪ ◦ ∼

SLR SRR
+ ∧ ∩ ◦ ∼

− ∨ ∪ ◦ ∼ �

+ ∨ ∪

− ∧ ∩

Table 1: Skeleton and PIA nodes.

type ǫ over n, we say that +s (resp. −s) agrees with ǫ, and write ǫ(+s) (resp. ǫ(−s)), if every leaf in
the signed generation tree of +s (resp. −s) is ǫ-critical. We will also write +s′ ≺ ∗s (resp. −s′ ≺ ∗s)
to indicate that the subterm s′ inherits the positive (resp. negative) sign from the signed generation
tree ∗s. Finally, we will write ǫ(s′) ≺ ∗s (resp. ǫ∂(s′) ≺ ∗s) to indicate that the signed subtree s′,
with the sign inherited from ∗s, agrees with ǫ (resp. with ǫ∂).

Definition 27 (Signed Generation Tree). The positive (resp. negative) generation tree of any
LMT-term s is defined by labelling the root node of the generation tree of s with the sign + (resp.
−), and then propagating the labelling on each remaining node as follows: For any node labelled
with ℓ ∈ F ∪G∪H of arity nℓ, and for any 1 ≤ i ≤ nℓ, assign the same (resp. the opposite) sign to
its ith child node if ǫℓ(i) = 1 (resp. if ǫℓ(i) = ∂). Nodes in signed generation trees are positive (resp.
negative) if are signed + (resp. −).

Definition 28 (Good branch). Nodes in signed generation trees will be called ∆-adjoints, syn-

tactically left residual (SLR), syntactically right residual (SRR), and syntactically right adjoint

(SRA), according to the specification given in Table 1. A branch in a signed generation tree ∗s,
with ∗ ∈ {+,−}, is called a good branch if it is the concatenation of two paths P1 and P2, one of
which may possibly be of length 0, such that P1 is a path from the leaf consisting (apart from
variable nodes) only of PIA-nodes6, and P2 consists (apart from variable nodes) only of Skeleton-
nodes.

+

Skeleton

+p s1

PIA

≤ −

Skeleton

+p s2

PIA

Definition 29 (Analytic inductive inequalities). For any order type ǫ and any irreflexive and tran-
sitive relation <Ω on p1, . . . pn, the signed generation tree ∗s (∗ ∈ {−,+}) of anLMT term s(p1, . . . pn)
is analytic (Ω, ǫ)-inductive if

1. every branch of ∗s is good (cf. Definition 28);

2. for all 1 ≤ i ≤ n, every SRR-node occurring in any ǫ-critical branch with leaf pi is of the
form ⊛(s,β) or ⊛(β, s), where the critical branch goes through β and

6For an expanded discussion on this definition, see [20, Remark 3.24] and [4, Remark 3.3].
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(a) ǫ∂(s) ≺ ∗s (cf. discussion before Definition 28), and

(b) pk <Ω pi for every pk occurring in s and for every 1 ≤ k ≤ n.

We will refer to <Ω as the dependency order on the variables. An inequality s ≤ t is analytic

(Ω, ǫ)-inductive if the signed generation trees +s and −t are analytic (Ω, ǫ)-inductive. An inequality
s ≤ t is analytic inductive if is analytic (Ω, ǫ)-inductive for some Ω and ǫ.

In each setting in which they are defined, analytic inductive inequalities are a subclass of
inductive inequalities (cf. [15, Definition 16]). In their turn, inductive inequalities are canonical

(that is, preserved under canonical extensions, as defined in each setting).
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