
Semi-Dense Visual Odometry for AR on a Smartphone

Thomas Schöps∗ Jakob Engel† Daniel Cremers‡

Technische Universität München

Figure 1: From left to right: AR demo application with simulated car. Corresponding estimated semi-dense depth map. Estimated dense collision
mesh, fixed and shown from a different perspective. Photo of running system. The attached video shows the system in action.

ABSTRACT

We present a direct monocular visual odometry system which runs
in real-time on a smartphone. Being a direct method, it tracks and
maps on the images themselves instead of extracted features such as
keypoints. New images are tracked using direct image alignment,
while geometry is represented in the form of a semi-dense depth
map. Depth is estimated by filtering over many small-baseline,
pixel-wise stereo comparisons. This leads to significantly less out-
liers and allows to map and use all image regions with sufficient
gradient, including edges. We show how a simple world model
for AR applications can be derived from semi-dense depth maps,
and demonstrate the practical applicability in the context of an AR
application in which simulated objects can collide with real geom-
etry.

Keywords: Semi-Dense, Direct Visual Odometry, Tracking, Map-
ping, AR, Mobile Devices, 3D Reconstruction, NEON

1 INTRODUCTION

Estimating the movement of a monocular camera and the 3D struc-
ture of the environment is amongst the most prominent challenges
in computer vision. Commonly referred to as monocular SLAM
or structure from motion, it is a key enabler for many augmented
reality applications: only if the precise pose of the camera is avail-
able in real-time, virtual objects can be rendered into the scene as
if they were part of it. Further, knowledge about the geometry of
the scene allows virtual objects to interact with it: in an augmented
reality game, game characters can collide with, be occluded by or
be placed on top of real obstacles. To assist with furnishing or re-
decorating a room, a piece of furniture could be reconstructed from
a video taken by a smartphone, and virtually rendered into different
locations in the room. Figure 1 shows an example AR application
realized on top of our direct Visual Odometry (VO) system.

Apart from marker based methods [24, 23, 6] – which allow for
precise and fast camera pose estimation at the cost of having to
manually place one or more physical markers into the scene – state-

∗e-mail: schoepst@in.tum.de
†e-mail: engelj@in.tum.de
‡e-mail: cremers@tum.de

of-the-art monocular SLAM methods generally operate on features.
While this allows to estimate the camera movement in real-time on
mobile platforms [12, 15], the resulting feature based maps hardly
provide sufficient information about the 3D geometry of the scene
for physical interaction.

At the same time, recent advances in computer vision have
shown the high potential of direct methods for monocular
SLAM [16, 5, 7, 17]: instead of operating on features, these meth-
ods perform both tracking and mapping directly on the image inten-
sity values. Fundamentally different from feature based methods,
direct methods not only allow for fast, sub-pixel accurate camera
tracking, but also provide substantially more information about the
3D structure of the environment, are less susceptible to outliers, and
more robust in environments with little texture [5].

1.1 Related Work

In this section we give an overview over existing monocular SLAM
and VO methods, divided into feature based and direct methods.
While there exists a large number of feature based methods for mo-
bile phones, existing direct methods are computationally expensive
and require a powerful GPU to run in real-time. Figure 2 summa-
rizes the main differences between feature based and direct meth-
ods.

Feature Based. The basic idea behind features is to split the over-
all problem – estimating geometric information from images – into
two separate, sequential steps: First, a set of feature observations is
extracted from the image, typically independently of one another.
This can be done using a large variety of methods, including differ-
ent corner detectors and descriptors, as well as fast matching meth-
ods and outlier detection schemes like RANSAC. Second, camera
position and scene geometry are computed as a function of these
feature observations only. Again, there exists a variety of methods
to do this, including bundle adjustment based approaches [11] or
filtering based approaches [3, 14].

While decoupling image based (photometric) estimation from
subsequent geometric estimation simplifies the overall problem, it
comes with an important limitation: Only information that con-
forms to the feature type and parametrization can be used. In par-
ticular, when using keypoints, information contained in edges is
discarded.

Today, there are several keypoint based monocular VO and
SLAM methods which run in real-time on mobile devices [14, 12].
In order to obtain a denser 3D reconstruction, one approach is to

Feature-Based

Extract & Match
 Features

(SIFT / SURF / ...)

Track:
min. reprojection error

(point distances)

Map:
est. feature-parameters
(3D points / normals)

abstract image to feature observations

Track:
min. photometric error
(intensity differences)

Map:
est. per-pixel depth

(semi-dense depth map)

keep full images (no abstraction)

Input
Images

Direct
Input

Images

Figure 2: Feature based methods abstract images to feature obser-
vations and discard all other information. In contrast, the proposed
direct approach maps and tracks directly on image intensities: this
allows to (1) use all information, including e.g. edges and (2) directly
obtain rich, semi-dense information about the geometry of the scene.

perform two-frame or multi-frame stereo on selected frames, where
the camera pose is obtained from a full feature based SLAM sys-
tem running in the background [22]. However – even though the
computed dense depth maps are often more accurate and precise
than the feature based map, they cannot directly be fed back into
the SLAM system running in the background, thereby discarding
valuable information.

Direct. Direct approaches circumvent these limitations by di-
rectly optimizing the camera poses and scene geometry on the raw
images. This allows to use all information in the image, leading to
higher accuracy and robustness in particular in indoor environments
with only few features. Early direct or semi-direct approaches
were based on scene representations by sets of planar patches: [19]
presents such a system which simultaneously estimates the motion,
scene structure and illumination. [8] also combines tracking and
reconstruction and especially discusses local optimums in the error
function.

Images are tracked by direct minimization of the per-pixel pho-
tometric error (see Sec. 2.1), which is well established for tracking
RGB-D or stereo sensors [10, 1]. In a monocular setting, the re-
quired per-pixel depth values are in turn computed from stereo on
previous frames: in [5], a pixel-wise filtering formulation was pro-
posed, which fuses information from many small-baseline stereo
comparisons. This approach allows to obtain accurate and pre-
cise semi-dense depth maps in real-time on a CPU. It has re-
cently been extended to LSD-SLAM, a large-scale direct monoc-
ular SLAM system [4] including loop-closures. Another approach
is to compute fully dense depth maps using a variational formu-
lation [20, 16, 17], which however is computationally demanding
and requires a state-of-the-art GPU to run in real-time. A common
feature of direct methods is their inherent parallelism: as many op-
erations are defined on a per-pixel basis, they can ideally be paral-
lelized using GPGPUs or SIMD (Single Instruction Multiple Data)
instructions, achieving considerable speed-ups in practice.

1.2 Contributions and Outline

In this paper we present a direct monocular VO system based on [5]
which runs in real-time on a smartphone. In addition to accurately
computing the camera pose at over 30 Hz, the proposed method
provides rich information about the environment in the form of a

Figure 3: Examples of semi-dense depth maps estimated in real-time
on a smartphone. See also the attached video.

semi-dense depth map of the currently visible scene. In particu-
lar we (1) describe modifications required to run the algorithm in
real-time on a smartphone, and (2) propose a method to derive a
dense world model suitable for basic physical interaction of simu-
lated objects with the real world. We demonstrate the capabilities
of the proposed approach with a simple augmented reality game,
in which a simulated car drives through the environment, and can
collide with real obstacles in the scene.

The paper is organized as follows: We describe the proposed
semi-dense, direct VO method in Sec. 2. In particular, in Sec. 2.3,
we describe the steps required for real-time performance on a
smartphone. Following this, we show how collision meshes are
computed from the semi-dense depth map in Sec. 3, and how they
are used in a simple AR application. Finally, we qualitatively eval-
uate the resulting system in different environments in Sec. 4.

2 SEMI-DENSE DIRECT VISUAL ODOMETRY

The proposed monocular VO algorithm does not use features at
any stage of the algorithm, but instead directly operates on the
raw intensity images: The map is represented as a semi-dense in-
verse depth map, which contains a Gaussian probability distribu-
tion (mean and variance) for the inverse depth of a subset of pixels,
hence “semi-dense”. An example is shown in Fig. 3: pixels that
have a depth hypothesis are shown in color (encoding the depth).

The whole system is divided into two parts (see Fig. 4), run-
ning in parallel: tracking and mapping. In Sec. 2.1, we describe
tracking using direct image alignment. In Sec. 2.2, we present the
mapping part which simultaneously estimates and propagates the
depth map. The system is closely based on the approach by Engel
et al. [5] for real-time operation on a consumer laptop.

Notation. We represent an image as function I : Ω → R. Simi-
larly, we represent the inverse depth map and inverse depth variance
map as functions D : ΩD → R

+ and V : ΩD → R
+, where ΩD

contains all pixels which have a valid depth hypothesis. Note that
D and V denote mean and variance of the inverse depth, as this
approximates the uncertainty of stereo much better than assuming
a Gaussian-distributed depth.

Initialization. We initialize the map with random depth values and
large variance for the first frame. When moving the camera slowly
and in parallel to the image plane, the algorithm (running normally)
typically locks onto a consistent depth configuration and quickly
converges to a valid map. This is in contrast to [5], in which a
keypoint based initializer was used. While the process is successful
in most cases, we observed one distinct failure case which results in
an inverse estimate of both the depth map and the camera motion,
which is further discussed in [8]. A numerical evaluation of the
initialization success and convergence rate is given in Sec. 4.

Tracking:
minimize photometric error
(at 30Hz on a smartphone)

Input Video:
320x240 at 30Hz

Mapping:
estimate semi-dense depth map

(at ~15Hz on a smartphone)

● propagation

● update

● regularization

Map: Semi-Dense Inverse Depth Map
Gaussian probability distribution of the inverse depth for all

pixels with sufficient intensity gradient (colored)

inverse depth inv. depth variance original image

Figure 4: Semi-Dense Visual Odometry: Tracking and mapping are
performed in parallel, operating on a semi-dense inverse depth map
as central data structure. It contains an inverse depth hypothesis for
all pixels close to sufficiently strong image gradient. It is continuously
propagated to new frames, updated with new stereo observations
and spatially regularized. More details on the respective steps are
given in Sec. 2.

2.1 Tracking

The pose of new frames is estimated using direct image alignment:
given the current map {IM , DM , VM}, the relative pose ξ ∈ SE(3)
of a new frame I is obtained by directly minimizing the photometric
error

E(ξ) :=
∑

x∈ΩDM

‖IM (x)− I(ω(x, DM (x), ξ))‖
δ
, (1)

where ω : ΩDM
× R × SE(3) → Ω projects a point from the ref-

erence image into the new frame, and ‖ · ‖δ is the Huber norm to
account for outliers. Global brightness changes due to auto-shutter
typically have little effect, as we only use image regions with strong
gradient. The minimum is computed using iteratively re-weighted
Levenberg-Marquardt minimization, as described in [4].

Image Pyramid. To handle larger inter-frame motions, we use
a pyramid scheme: Each new frame is first tracked on a very low
resolution image and depth map, the tracked pose is then used as
initialization for the next higher resolution. Depth maps are down-
sampled by factors of two, using a weighted average of the inverse
depth. To account for the strong correlation between neighbouring
pixels, we average the information (inverse variance), giving

Dl+1(x) :=

∑

x′∈Ωx

Dl(x
′)

Vl(x
′)

∑

x′∈Ωx

1
Vl(x

′)

(2)

Vl+1(x) :=
|Ωx|

∑

x′∈Ωx

1
Vl(x

′)

(3)

where l is the index of the pyramid level. Ωx denotes the set of

320×240 160×120 80×60 40×30 20×15

39% 46% 56% 71% 87%

Figure 5: Image Pyramid. Top: intensity image Il, middle: color-
coded inverse depth Dl, bottom: inverse depth variance Vl. The
given percentage corresponds to the density, i.e., the percentage of
pixels that have a depth value. The described down-sampling strat-
egy causes the depth maps to become significantly denser on higher
pyramid levels.

valid pixels (i.e. with depth value) contained in pixel x at the next
higher resolution.

Note that a pixel at low resolution has an associated depth hy-
pothesis if at least one of the contained high-resolution pixels has
a depth hypothesis. This strategy automatically lets the semi-dense
depth maps become denser on lower resolutions (see Fig. 5), lead-
ing to more robust low-resolution tracking results without affecting
the accuracy of the final result on the highest resolution. Averaging
the inverse depth effectively averages the optical flow, causing this
strategy to work well for minimizing the photometric error (1). If
used for reconstruction purposes however, it will create undesired
points between the front and back surface around depth discontinu-
ities.

2.2 Mapping

Depth maps are estimated by filtering over small-baseline pixel-
wise stereo comparisons, interleaved with spatial regularization and
propagation to a new frame, as first proposed in [5]. Each mapping
iteration consists of three main steps:

1. Propagation: Depth hypotheses are projected into the most
recently tracked frame, giving an initialization for the new
depth map (prediction in an extended Kalman filter (EKF)).

2. Update: New depth measurements are obtained from a
large number of pixel-wise stereo comparisons with previous
frames, and merged into the existing depth map by filtering
(observation in an EKF). We use the propagated prior hypoth-
esis to constrain the search interval, greatly accelerating the
search and reducing the probability for false observations in
repetitive image regions.

Stereo is only performed for a subset of suitable pixels, that is
pixels where the expected accuracy is sufficiently high. This
depends on the intensity gradient at that point as well as the
camera motion, and is efficiently determined as proposed in
[5]. In particular, regions with little image gradient are never
updated as no accurate stereo measurements can be obtained.
ΩD contains all pixels that have a depth hypothesis, either
propagated from previous frames, or observed in that frame.

3. Regularization: In a last step, the depth map is spatially reg-
ularized and outliers are removed.

Mapping runs in a continuous loop, in each iteration propagating
the depth map to the most recently tracked frame, potentially skip-
ping some frames. The runtime of one iteration varies in practice,
as it depends on the density of the current depth map and the camera
motion; an experimental runtime evaluation is given in Sec. 4.

2.3 Implementation on Mobile Phones

Current smartphone cameras have a rolling shutter, which intro-
duces systematic distortions and, during quick motion, can have
strong effects on the accuracy of stereo observations. While there
exist methods to correctly model this in an off-line reconstruction
setting [18], or to approximate it in real-time [9, 13], we found that
ignoring the rolling shutter still gives very good results in practice,
and significantly saves computational time.

All experiments are conducted on a Sony Xperia Z1, which is
equipped with a 2.3 GHz quad-core CPU. While the processing
power of mobile devices has increased rapidly in the last years,
mobile processors based on the ARM architecture are generally
still much slower than their desktop counterparts; we currently do
not use GPU or DSP features for tracking or mapping. In order
to achieve real-time performance, i.e. tracking with at least 30 fps
under these conditions, two steps were crucial: (1) separation of
mapping and tracking resolution and choice of a suitable compro-
mise, and (2) NEON optimization of computation-heavy algorith-
mic steps.

Image Resolution. While current desktop CPUs easily allow for
real-time operation at VGA resolution (640×480), our mobile im-
plementation performs mapping at 320×240. As tracking perfor-
mance is crucial for a smooth AR experience, we further reduce the
maximum resolution used for tracking down to 160×120. While
this greatly reduces the computation time, the effect on accuracy is
relatively small (see Sec. 4). This can be explained by the sub-pixel
accuracy of direct image alignment: In practice, inaccuracies from
motion blur, rolling shutter and other model violations (e.g. reflec-
tions, occlusions, specular highlights, etc.) dominate the error.

NEON Parallelization. Many parts of the tracking stage are
well suited for optimization using SIMD parallelization. We use
NEON instructions, which offer this functionality on ARM proces-
sors, leading to greatly improved performance and thereby being
a vital step in achieving real-time performance on mobile proces-
sors. There are two algorithmic steps in tracking which particularly
benefit from NEON optimization:

(1) Calculating the approximated Hessian H and gradient g of
the error required for building the linear system to compute the pose
increment ∆ξ, that is

∑

x∈ΩD

J
T

xJxwx

︸ ︷︷ ︸

H

·∆ξ =
∑

x∈ΩD

J
T

x rxwx

︸ ︷︷ ︸

g

, (4)

where rx, Jx and wx are, for one pixel x, the pixel’s residual, its
Jacobian with respect to the pose update, and the computed Huber
weight. Using NEON optimization, four elements in the sum –
which goes over all pixels which have depth – can be processed at
once, resulting in a significant speed-up.

(2) Calculating the weights and residual sum: again, four pixels
can be processed at the same time. In addition, NEON offers fast
inverse approximations, which help to reduce processing time.

Both the above steps are required in every Levenberg-Marquardt
iteration, thereby making up a large part of overall tracking per-
formance. Details to the runtime of our implementation, with and
without NEON acceleration, are given in Sec. 4.

3 AUGMENTED REALITY APPLICATION

We demonstrate a simple AR game using the computed semi-dense
depth maps, in which a simulated car can be driven through the
environment. For this, we construct a low-resolution collision mesh
from the semi-dense depth map, which is used for real-time physics
simulation with the free Bullet library [2].

Input
video frame

Pose
estimation

AR frame
rendering

Mapping

World model
creation

full resolution 320x240

30 Hz

30 Hz

30 Hz

~15 Hz

~15 Hz

Figure 7: AR Processing Pipeline: Camera images are retrieved and
displayed directly at full resolution. Simultaneously, a downsampled
(320 × 240) version is computed and processed in the VO pipeline
to allow real-time tracking and mapping. The estimated pose of that
frame, as well as the generated world model are then used to render
virtual objects into the scene. The world model is updated asyn-
chronously at a lower frequency. All components run in parallel.

For this, we assume that the scene has a well-defined ground
plane, which we estimate with the help of the IMU. The full pro-
cessing pipeline for augmented reality is shown in Fig. 7.

3.1 Collision Mesh Generation

We first compute a fully dense low-resolution (15×20) depth map
using a variational in-painting approach. As data term for valid pix-
els we use the hypothesis from the corresponding level of the semi-
dense depth map. Additionally, to cover up large unconstrained
regions, we assume that pixels that do not have a depth hypothe-
sis lie on the estimated ground plane π. As regularizer we use the
Huber norm

‖x‖δ :=

{
‖x‖2

2

2δ
if ||x||2 < δ

‖x‖1 −
δ

2
otherwise

(5)

of the inverse depth gradient. The Huber norm is a combination
of a quadratic regularizer favouring smooth surfaces, and the total
variation (TV), which allows sharp transitions at occluding edges.
The combined energy to be minimized with respect to the resulting
inverse depth map u is hence given by

E(u) :=

∫

ΩD

(u(x)−D(x))2

V (x)
dx

+

∫

Ω\ΩD

(u(x)− π(x))2

Vπ

dx

+α

∫

Ω

‖∇u‖δdx, (6)

where π(x) denotes the inverse depth of pixel x assuming it lies on
the estimated ground plane, while Vπ and α are parameters of the
energy functional. This is a convex energy, and on the used resolu-
tion can be minimized globally and quickly using gradient descent.
Fig. 6 shows some results. Afterwards, a triangle mesh is generated
from the resulting depth map by interpreting the depth pixels as cor-
ners of a regular triangle grid. Some examples in different scenes
are shown in Fig. 9. A desirable effect of this approach is that the
collision meshes naturally have a higher resolution in close-by than
in far-away regions, where the un-projected mesh vertices are more
tightly spaced and at the same time the depth map is more accurate.

3.2 Ground plane estimation

We estimate the ground plane normal by low-pass filtering ac-
celerometer measurements which are available on all modern

Figure 6: Variational Inpainting: the top row shows a number of full-resolution depth maps from live operation, the bottom row shows the
computed low-resolution, regularized version used to build the collision mesh.

Table 1: Tracking accuracy (as drift per second) for two sequences
from the TUM RGB-D benchmark [21] at different resolutions. For
comparison, we also include results obtained from PTAM [11]. The
sequences contain significant rolling shutter and motion blur effects,
which reduce the tracking accuracy of PTAM significantly. Accuracy
of direct tracking degrades only very little with decreasing image res-
olution.

fr2/xyz fr2/desk

method mapping tracking (cm/s) (deg/s) (cm/s) (deg/s)

PTAM 640×480 640×480 8.2 3.2 fail fail

ours 640×480 640×480 0.50 0.31 2.2 0.96

ours 640×480 320×240 0.58 0.32 3.6 1.25

ours 320×240 320×240 0.58 0.32 3.3 0.96

ours 320×240 160×120 0.62 0.33 4.9 1.38

ours 160×120 160×120 0.68 0.37 fail fail

ours 160×120 80×60 1.58 0.71 fail fail

Table 2: Performance of tracking and mapping for the first 600 frames
of the fr2/desk sequence, on a Sony Xperia Z1 (mean and standard
deviation, in ms per iteration). The given resolution is the mapping
resolution, tracking is done with one pyramid level higher as the last
level. Mapping is not NEON-optimized; the frames were played back
with 30 fps. Note that tracking and mapping run in parallel.

C++ ASM with NEON ASM with NEON

320×240 640×480 320×240

Tracking 30.7 (±11.2) 39.2 (±15.9) 14.7 (±6.8)

Mapping 46.6 (±35.4) 184.4 (±123.3) 52.6 (±37.7)

smartphones, giving the direction of gravity. To determine the plane
height, we search for the lowest height which is supported by a cer-
tain minimum number of depth map samples. The maximum height
of all supporting samples is then taken as ground plane: this assures
that small bumps, caused by inaccurate height estimates of individ-
ual samples, are covered up with a smooth ground surface to drive
on.

4 RESULTS

Initialization. We evaluate the success rate of random initializa-
tion by running our system on many subsequences of the fr2/desk
sequence of the TUM RGB-D benchmark [21]. Note that this in-
cludes subsequences with all types of motion, in particular strong
rotation or forward-translation, which are ill-conditioned for ini-
tialization – causing the initialization to fail more often than in a
hand-held case.

A run is classified as successful if the mean relative depth error
after 3 seconds is at most 16%, and final relative translational drift
(computed over 15 frames) is at most 60%. We observed that the
success rate strongly depends on the movement speed of the cam-

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

d
ep
th

er
ro
r

0 2 4 6 8 10

seconds after initialization

0.0

0.2

0.4

0.6

0.8

1.0

tr
a
ck
in
g
er
ro
r

Figure 8: Initialization evaluation: development of errors in success-
ful random initialization runs (average in blue, all samples in gray),
evaluated on subsequences of the TUM RGB-D benchmark fr2/desk
sequence. The depth error shows the relative deviation from the
ground truth depth, after choosing the optimal scale. The tracking
error shows the translational drift per 0.5 seconds, relative to the trav-
eled distance. The largest reduction in depth error happens already
within the first 0.5 seconds; the tracking error requires longer to sta-
bilize.

era: if the camera does not move sufficiently fast, the depth filters
become over-confident, and get stuck at wrong values – this how-
ever can be avoided by only mapping on a subset of frames, e.g.
every 4th frame. Overall, the measured initialization success rate
with this configuration is 67%. Figure 8 shows the evolution of
the relative translational drift as well as the mean relative depth er-
ror over the first 10 s of all successful runs. Note that these results
are obtained using resolutions as employed on the smartphone, and
some of the sequences contain strong motion blur and rolling shut-
ter artifacts.

Accuracy. We numerically evaluate the tracking accuracy of the
proposed approach for different resolutions using the TUM RGB-D
benchmark. To be independent from initialization issues and to ob-
tain the correct scale, we use the very first depth image for initial-
ization, while for the remainder of the sequences only the provided
intensity images are used. Table 1 shows the results. Notably, the
accuracy only changes very little with decreasing image resolution,
allowing smooth yet accurate operation on a smartphone.

Speed. With NEON optimizations at a resolution of 320×240, our
system is able to track the camera pose with usually well more than

Figure 9: Qualitative evaluation of the system in different, challenging scenes. The collision mesh is fixed and shown from a different perspective,
together with its original viewport, augmented objects and the ground plane. The screenshots are taken by the smartphone during live operation.

30 Hz on current-generation smartphones. See Table 2 for timing
values measured on a Sony Xperia Z1.

Qualitative Results. We extensively tested the system in real-
time operation, Fig. 9 shows some examples of augmented scenes.
A full sequence is shown in the attached video.

5 CONCLUSION

The presented direct monocular visual odometry algorithm is able
to operate in real-time on a modern smartphone, with tracking rates
of well above 30 Hz at a mapping resolution of 320 × 240. It oper-
ates fully without features; instead it is based on direct image align-
ment for tracking, and semi-dense depth estimation by pixel-wise
filtering over many small-baseline stereo comparisons for mapping.
This allows to use much more information in the images (including
e.g. edges) and reduces the number of outliers drastically. In ad-
dition to accurately and robustly estimating the camera pose, the
estimated semi-dense depth maps can be used to build a physical
world model for AR with little additional computational effort. We
demonstrated this with a small example application.

As future work, using a more sophisticated regularizer for depth
map in-painting (e.g. total generalized variation) will eliminate the
need for estimating a ground plane. At the same time, more so-
phisticated minimization schemes as e.g. in [20] will allow world
modeling on higher resolutions. Integrating the recent extension to-
wards full, large-scale direct monocular SLAM (LSD-SLAM) [4]
will allow to merge collision meshes and scale the method to larger
environments.

REFERENCES

[1] A. Comport, E. Malis, and P. Rives. Accurate quadri-focal tracking

for robust 3D visual odometry. In ICRA, 2007.

[2] E. Coumans et al. Bullet physics library, http://

bulletphysics.org.

[3] A. Davison, I. Reid, N. Molton, and O. Stasse. MonoSLAM: Real-

time single camera SLAM. Trans. on Pattern Analysis and Machine

Intelligence (TPAMI), 29, 2007.

[4] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-scale direct

monocular SLAM. In ECCV, 2014.

[5] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual odometry for a

monocular camera. In ICCV, 2013.

[6] M. Fiala. ARTag, a fiducial marker system using digital techniques.

In CVPR, 2005.

[7] C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast semi-direct

monocular visual odometry. In ICRA, 2014.

[8] O. Kahler and J. Denzler. Tracking and reconstruction in a combined

optimization approach. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 34(2):387–401, 2012.

[9] A. Karpenko, D. Jacobs, J. Baek, and M. Levoy. Digital video stabi-

lization and rolling shutter correction using gyroscopes. CSTR, 1:2,

2011.

[10] C. Kerl, J. Sturm, and D. Cremers. Dense visual SLAM for RGB-D

cameras. In Intelligent Robot Systems (IROS), 2013.

[11] G. Klein and D. Murray. Parallel tracking and mapping for small AR

workspaces. In Mixed and Augmented Reality (ISMAR), 2007.

[12] G. Klein and D. Murray. Parallel tracking and mapping on a camera

phone. In Mixed and Augmented Reality (ISMAR), 2009.

[13] M. Li, B. Kim, and A. Mourikis. Real-time motion estimation on a

cellphone using inertial sensing and a rolling-shutter camera. In ICRA,

2013.

[14] M. Li and A. Mourikis. High-precision, consistent EKF-based

visual-inertial odometry. International Journal of Robotics Research,

32:690–711, 2013.

[15] A. Mourikis and S. Roumeliotis. A multi-state constraint Kalman filter

for vision-aided inertial navigation. In IEEE International Conference

on Robotics and Automation, 2007.

[16] R. Newcombe, S. Lovegrove, and A. Davison. DTAM: Dense tracking

and mapping in real-time. In ICCV, 2011.

[17] M. Pizzoli, C. Forster, and D. Scaramuzza. REMODE: Probabilistic,

monocular dense reconstruction in real time. In ICRA, 2014.

[18] O. Saurer, K. Köser, J.-Y. Bouguet, and M. Pollefeys. Rolling shutter

stereo. In ICCV, 2013.

[19] G. Silveira, E. Malis, and P. Rives. An efficient direct approach to

visual SLAM. Robotics, IEEE Transactions on, 24(5):969–979, 2008.

[20] J. Stuehmer, S. Gumhold, and D. Cremers. Real-time dense geometry

from a handheld camera. In Pattern Recognition (DAGM), 2010.

[21] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A

benchmark for the evaluation of RGB-D SLAM systems. In Intelligent

Robot Systems (IROS), 2012.

[22] P. Tanskanen, K. Kolev, L. Meier, F. C. Paulsen, O. Saurer, and

M. Pollefeys. Live metric 3D reconstruction on mobile phones. In

ICCV, 2013.

[23] D. Wagner, T. Langlotz, and D. Schmalstieg. Robust and unobtrusive

marker tracking on mobile phones. In Mixed and Augmented Reality

(ISMAR), 2008.

[24] D. Wagner and D. Schmalstieg. ARToolKitPlus for pose tracking on

mobile devices. In Proceedings of 12th Computer Vision Winter Work-

shop (CVWW’07), 2007.

