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1 INTRODUCTION

The use of new optical fiber devices in the telecommu-
nication sector has known an important development in
the last few years. Among them, Fiber Bragg Gratings
(FBG) based devices represent an attractive alternative
for applications such as multichannel filtering, multichan-
nel optical add/drop multiplexing, multichannel dispersion
compensation and multiwavelength laser sources. Focus-
ing on this last domain, the FBG functionality is to ensure
the choice of desired wavelengths by forming a step-tunable
laser (Chow et al., 1996; Wei et al., 2000). It may be incor-
porated either in all-fiber structures such as erbium-doped
fiber ring lasers or hybridized with an external Fabry-Perot
cavity (Helmers et al., 2002). One way to perform their re-
alization is to use sampled FBGs. Such filters are made of
a spatial comb distribution of identical sampling gratings.

Pioneer works on this topic have reported results ob-
tained with amplitude-only sampling through the writing
of periodic transmitting and opaque regions inside the fiber
core (Eggleton et al., 1994). The main drawback in this
case is the sinc envelope of the spectral response due to the
square index envelope of every transmitting region. The
uniformity of the response is then limited to only a few
nanometers. In order to overcome this non-uniformity, it
was proposed to insulate the opaque regions with sets of

interleaved amplitude-only sampling patterns for yielding
interleaved groups of channels (Loh et al., 1999). However,
a predictable number of peaks inside an overall square en-
velope is still difficult to reach in this case.

A lot of work was then performed for optimizing the
sampling pattern either in amplitude (Ibsen et al., 1998)
and/or in phase (Buryak et al., 2003; Rothenberg et al.,
2002). In the case of amplitude optimization, the index
modulation amplitude of the sampling was optimized fol-
lowing a Fourier analogy (Ibsen et al., 1998). In the case
of phase-only optimization, only the relative phase of the
channels to be generated are continuously modified and
the amplitude modulation of the sampling is minimized.
Such an approach was first demonstrated with semicon-
ductor laser Bragg reflectors (Ishii et al., 1993) and it was
recently applied to FBG (Rothenberg et al., 2002). Al-
though this method can generate as many as 51-channel
filters, phase-variation is still difficult to inscribe, requir-
ing a customized lithographically prepared phase mask or
a high precision inscription technique.

There is therefore an important demand for optimiza-
tion methods for the design of sampling patterns giving
a desired reflectivity spectrum (Rothenberg et al., 2002).
In addition, the method requires performing global opti-
mization as it is observed that functionals have multiple
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Figure 1: Fiber Bragg grating diagram: Dark stripes corre-
spond to core zone where the refractive index is modulated.
The fiber reflects a certain wavelength band, E-, and allows
other one, E+, to pass. Λ represents the grating period.

minima (Skaar and Risvik, 1998).
In this paper we introduce a new global semi-

deterministic optimization algorithm (SDA). The ap-
proach is compared to a well known genetic algorithm (Du-
mas et al., 2004; Goldberg, 1989) and applied to the design
of FBG structures. We show that superior results can be
found with this method from both industrial realizability
and computational complexity point of view.

Section 2 presents the Fiber Bragg Grating devices and
their mathematical modelling. Section 3 describes our op-
timization method and recalls the basis of genetic algo-
rithms. Finally, in section 4 we discuss different designs of
high-channel-count multichannel filters.

2 Fiber Bragg Gratings (FBG)

Fiber Bragg Gratings are based on the perturbation of the
effective refractive index of an optical guide in order to
reflect a predetermined wavelength band and to let other
bands pass (see Figure 1). To write a FBG in an optical
fiber, we expose it to UV Laser radiation. This radiation
will modify the refractive index of the optical guide core
in a periodic or an aperiodic way (Erdogan, 1997).

In order to derive a mathematical model of a FBG, we
assume there exist only two counterpropagating guided
modes in the FBG of respective amplitudes A(z) and B(z)
for any wavelength λ in the transmission band. We denote
by neff the unperturbed refractive effective index and by
β the corresponding propagation constant. The perturba-
tion by UV exposure, denoted by neff , of the refractive
effective index along the fiber axis z is given by:

δneff (z) = δneff (z)(1 + ν cos

[

2π

Λ
z + φ(z)

]

) (1)

where z ∈ [−L
2 , L

2 ], L is the fiber length, Λ is the nominal

grating period, δneff (z) is the slowly varying index am-
plitude change over the grating (also called apodization), ν

is the fringe visibility and φ(z) is the slowly varying index
phase change (also called chirp).

While the modes are orthogonal in an ideal waveguide
and therefore do not exchange energy, the presence of a
dielectric perturbation causes the modes to be coupled.
Introducing the detuning parameter:

ζ = β − π

Λ
=

2πneff

λ
− π

Λ

and the new unknowns:

R(z) = A(z) exp(iζz − φ(z)
2 )

S(z) = B(z) exp(−iζz + φ(z)
2 )

the coupled equations can be written as:

dR

dz
(z) = iσ̂(z)R(z) + iκ(z)S(z) (2)

dS

dz
(z) = −iσ̂(z)S(z) − iκ(z)R(z) (3)

When δneff is small compared to neff , the two coupling
coefficients can be approximated by:

σ̂(z) = ζ + σ(z) − 1

2

dφ

dz
(z) = ζ + β

δneff (z)

neff

− 1

2

dφ

dz
(z)

and
κ(z) =

ν

2
σ(z)

σ is called the ’dc’ (demi coupling) and κ the ’ac’ (as-
sociated coupling) coefficient. This system known as the
two modes coupling model is completed by the following
boundary conditions:

R(−L

2
) = 1 (4)

(the forward-going wave is incident from −∞) and

S(
L

2
) = 0 (5)

(there is no backward-going wave for z ≥ L
2 ).

The main characteristics of a FBG is then expressed
through its complex spectral response in the transmission
band:

λ ∈ [λmin, λmax] 7→ ρ(λ) =
S(−L

2 )

R(−L
2 )

(6)

from which we deduce its power reflection function:

λ ∈ [λmin, λmax] 7→ r(λ) = |ρ(λ)|2 (7)

2.1 Uniform FBG

If the grating is uniform along z, then the apodization
δneff and the chirp φ are constant functions, as well as κ

and σ. Thus, equations (2-3) reduce to a system of first-
order coupled ordinary differential equations with constant
coefficients.
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More precisely, the complex spectral response and the
power reflection function can be approximated by the fol-
lowing expressions (see (Skaar and Risvik, 1998)):

ρ(λ) =
−κ sinh(ωL)

σ̂ sinh(ωL) + i
√

κ2 − σ̂2 cosh(ωL)
(8)

and

r(λ) =
sinh2(ωL)

cosh2(ωL) − σ̂2

κ2

(9)

where ω =
√

κ2 − σ̂2.

2.2 Non-uniform FBG

Non-uniform apodization and chirped refractive index are
suitable in applications. These permit a better reduction
of undesirable sidelobes appearing in uniform FBG power
reflection functions. For instance, a non uniform apodiza-
tion of a FBG can eventually produce a power reflection
function very close to the often desired ”top-hat” shape.

In this case, the complex spectral response and the
power reflection function are approximated by decompos-
ing the FBG in a set of N uniform elementary fibers of
length L

N
. Expressions (8-9) are then used on each of

these fibers to find the overall coefficients of the complete
FBG. This leads to the so-called simplified transfer matrix
method (Erdogan, 1997).

2.3 Non uniform sampled FBG

A sampled FBG is a superstructure made of a comb dis-
tribution of a sampling pattern. This is an efficient and
simple technique to construct a grating that exhibits pe-
riodic maxima in its spectrum. Using the coupled mode
theory (Erdogan, 1997), it can be shown that a spatial
comb distribution leads to a comb of peaks with identical
response and with a wavelength separation ∆λ varying as:

∆λ =
2neffΛ2

P
(10)

with P the period of the sampling patterns distribution.
The computation of the reflectivity coefficients of a sam-
pled FBG remains unchanged compared to the one exposed
in the previous paragraph (Erdogan, 1997). But this cal-
culation is more time-consuming.

2.4 The inverse problem of non uniform sampled

FBG

In order to obtain a multi-channel filter, Ibsen et al. (Ibsen
et al., 1998) have shown the possibility to inscribe inside
the fiber core a Sinc-shaped apodization function (see Fig-
ure 3) with a continuous writing technique:

δneff (z) = (δneff )max

sin( 2Nlπz
L

)
2Nlπz

L

(11)

The number of secondary side loops of this function,
(2 ∗ (Nl − 1)), being proportional to the total number of
targeted channels, a 16-peak filter was demonstrated with
a profile exhibiting 14 secondary side loops between the
main lobes. To physically express the negative values of
the Sinc function, discrete π-phase shifts (or equivalently
sign changes in the profile) were inserted between each side
loop. However, this type of profile suffers several draw-
backs. A great number of π-phase shifts must be inserted
as the number of channels increases, which requires master-
ing the writing process. Moreover, as the number of chan-
nels increases, the duty cycle (i.e. the ratio between the
central lobe and the rest of the grating) decreases propor-
tionally to 1

N
. Most of the energy deposited onto the fiber

finally concerns the writing of the central lobe so that the
strength of reflectivity of the grating strongly decreases. In
this way, a 16-channel count FBG with a reflectivity of 0.95
requires a maximum index variation up to 6.10−4. Such
values are impossible to realize in practice. In addition,
using highly photosensitive fibers gives rise to a nonlinear
regime during the UV-writing. All this makes it important
to find profiles easier to implement by optimization.

3 Optimization methods

We propose to use two types of minimization methods. A
typical genetic algorithm (Dumas et al., 2004; Goldberg,
1989) and a new global minimization method based on
a recursive search for the attraction basins of any local
optimization algorithm.

3.1 Genetic algorithm

Consider the minimization of a real functional J(x), x ∈
Ωad, x is the optimization parameter and belongs to an
admissible space Ωad. Genetic algorithms approximate the
global minimum (or maximum) J through a stochastic pro-
cess based on an analogy with the Darwinian evolution of
species:

• A family (xi)1≤i≤Np
of Np possible solutions of the op-

timization problem, called ’individuals’, is first ran-
domly created in the search space Ωad in order to
constitute the first generation of the ’population’.

• Each individual, representing a potential solution of
the given problem, is ranked relatively to its asso-
ciated value through an auxiliary ”fitness” function
(inversely proportional to J in the case of a minimiza-
tion problem). In this process (selection process), bet-
ter individuals, in terms of the fitness function, have
higher chances to be chosen for reproduction.

• The next generation is then made from the current
generation by creating ’offsprings’ (crossover process)
from different pairs of individuals; the offsprings may
in turn eventually ”mute” (mutation process).
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With these three basic evolution processes, it is gener-
ally observed that the best obtained individual is getting
closer after each generation to the optimal solution of the
problem (Goldberg, 1989; Dumas et al., 2004). In practice,
as final convergence is difficult with GA based algorithms,
one should always complete GA iterations by a descent
method for better accuracy, these approaches are called
’hybrid algorithms’.

Engineers like GA’s because these do not require sen-
sitivity computation, perform global and multi-objective
optimization and are easy to parallelize. Their drawbacks
remain their weak mathematical background, their com-
putational complexity and their lack of accuracy. The
semi-deterministic algorithm (SDA) presented below aims
to address these issues.

3.2 Semi-deterministic multi-level optimization

We want to minimize a functional J : Ω → IR (where Ω is
a subset of IRn) subject to the following hypotheses (Mo-
hammadi and Saiac, 2002): J ∈ C1(Ω, IR) and is coercive
(i.e. J(x) → +∞ when |x| → +∞ in Ω). The minimum
of J is denoted Jm. In cases where Jm is unknown, we set
Jm = 0 and look for the best solution for a given complex-
ity and computational effort.

The general idea of the Semi Deterministic Algorithm
(SDA) is to improve the efficiency of any particular local
deterministic minimization algorithms (Gradient, Newton,
etc...), by making it global. It is based on a recursive
search for the attraction basins of the local algorithm.
For the sake of simplicity, we will only consider here the
following optimal descent algorithm with an output called
D(x0, I, ǫ):

• Input: x0, I, ǫ

• x1 = x0

For n going from 1 to I

• Determine ρopt = argminρ(J(xn − ρ∇J(xn))) using
dichotomy

• xn+1 = xn − ρopt∇J(xn)
• If J(xn+1) < Jm + ǫ EndFor

EndFor

• Output: D(x0, I, ǫ) = xn+1

Above the inputs x0 ∈ Ω, ǫ ∈ IR and I ∈ IN are
respectively the initial condition, the stopping criterion
and the iteration number.

We consider that the minimization problem is solved if
the initial condition x0 lies in the attraction basin of the
global minimum of J . In order to determine such an initial
condition, we consider x0 = v as a new variable in the
previous algorithm to be found by the minimization of:

h(v) = J(D(v, I, ǫ)) − Jm (12)

To perform the minimization of (12), we then con-
sider the following algorithm with an output called

A1(v1, N, I, ǫ):

• Input: v1, N, I, ǫ

• v2 chosen randomly
For i going from 1 to N

• oi = D(vi, I, ǫ)
• oi+1 = D(vi + 1, I, ǫ)
• If J(oi) = J(oi+1) EndFor

• If min{J(ok), k = 1, ..., i} < Jm + ǫ EndFor

• vi+2 = vi+1 − J(oi+1)
vi+1−vi

J(oi+1)−J(oi)

EndFor

• Output: A1(v1, N, I, ǫ) = argmin{J(ok), k = 1, ..., i}

Above the inputs are v1 ∈ Ω, (N, I) ∈ IN2 and ǫ ∈ IR.

As this line search minimization algorithm might fail, an
external level to the algorithm A1 is added in order to have
a multidimensional search. As previously, we consider v1 =
w as a new variable in A1 to be found by the minimization
of:

h̃(w) = h(A1(w,N, I, ǫ)) (13)

To perform the minimization of (13), we then consider
the following two-level algorithm with an output called
A2(w1,M, N, I, ǫ):

• Input: w1,M, N, I, ǫ

• w2 chosen randomly
For i going from 1 to M

• pi = A1(wi, I, ǫ)
• pi+1 = A1(wi + 1, I, ǫ)
• If J(pi) = J(pi+1) EndFor

• If min{J(pk), k = 1, ..., i} < Jm + ǫ EndFor

• wi+2 = wi+1 − J(pi+1)
wi+1−wi

J(pi+1)−J(pi)

EndFor

• Output: A2(w1,M,N, I, ǫ) = argmin{J(pk), k =
1, ..., i}

Above w1 ∈ Ω, (M, N, I) ∈ IN3 and ǫ ∈ IR . In order
to add search directions, the previous construction can be
easily pursued recursively.

The choice of the initial condition w1 in this algorithm
contains the only non-deterministic feature of the SDA
method. In practice we randomly choose the initial condi-
tion w1 ∈ Ω and we consider (N,M, I) = (5, 5, 10). These
values give a good compromise between computation com-
plexity and result accuracy. Mathematical background for
this approach and validation on academic test cases are
available (Mohammadi and Saiac, 2002; Debiane et al.,
2004).

4 Optimization problem

The GA and the SDA algorithms above are applied to solve
the inverse problem of sampling pattern design of high-
channel-count multichannel filters. We exhibit designs of
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100 mm long multichannel filters centered around 15525
nm that consist of 16 and 38 totally reflective identical
channels spaced 100 GHz. We discuss their spectral char-
acteristics and compare them to the responses obtained
with currently used Sinc-profiles.

4.1 Cost function

We design a sampled FBG knowing its power reflection
function (7). We can reformulate this problem considering
that each sampled FBG with no chirp can be characterized
by its apodization (or equivalently refractive index mod-
ulation) z 7→ δneff (z), we denote by Ωapo the associated
search space of all acceptable apodization profiles. The
functional is given by:

J(x) = ‖r(x) − rtarget(x)‖L2([λmin,λmax]) (14)

where r(x) is the power reflection function of the sampled
FBG with an apodization associated with x ∈ Ωapo and
rtarget(x) the nearest perfect power reflection function to
r(x) matching the desired requirements.

4.2 Parameterization

In order to find a multi-channel filter with the desired spec-
tral response and associated with an index modulation
with some ’interesting’ characteristics (smooth enough,
slowly varying and symmetric), apodization profiles are
generated by spline interpolation through a reduced num-
ber of NS points equally distributed along the first half
of the sampling pattern and completed by parity. We will
choose a value of NS high enough to ensure a large num-
ber of peaks in the spectral response but small enough
to ensure improvement in the index modulation profile in
comparison with the classical Sinc profile. Thus, the cor-
responding search space of the optimization problem is a
hypercube:

ΩNS
= [−nmax, nmax]NS (15)

where nmax is a design constraint. Here nmax = 5.10−4.
The functional on ΩNS

is defined by:

JNc
(x) =

Nc
∑

i=1

(r(x)(λi) − rtarget(x)(λi))
2 (16)

In the above expression, the power reflection function r(x)
of the filter with an apodization associated with x ∈ ΩNS

is evaluated on Nc wavelengths equally distributed on the
transmission band by using the simplified transfer matrix
method (Erdogan, 1997). On the other hand, rtarget(x) de-
notes the nearest perfect power reflection function to r(x)
matching the desired requirements (see Figure 2), namely
Npeaks transmitted wavelengths with a transmission rate
greater than 0.95 and separated by ∆λ:

rtarget(x)(λ) =

{

max(0.95, r(x)(λ)) if λ ∈ Λ
0 elsewhere

(17)

with Λ = {λx, λx+∆λ, . . . , λx+(Npeaks−1)△λ}, λx being
the lowest frequency peak and for λ ∈ [λmin, λmax].
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Figure 2: Example of ideal reflectivity for a 16-peak filter.

5 Results and discussion

Two different FBG configurations have been considered for
optimization with GA and SDA algorithms above. The re-
sults have been compared to the empirical technique based
on Sinc functions. The grating profile has been optimized
on the entire length of a sampling period equal to 1.039
mm, corresponding to an interchannel spacing ∆λ = 0.8
µm (10). The total length of the grating is set to 103.9 mm.
The initial core effective refractive index is n0 = 1.45.

For the genetic algorithm, we have chosen the following
values for the three associated stochastic processes (see
section 3.1). The crossover is barycentric in each coordi-
nate with a probability of 0.45. The mutation process is
non-uniform with a refinement parameter of 1.1 and prob-
ability of 0.15. The selection is a roulette wheel type pro-
portional to the rank of the individual in the population.
A one-elitism principle, that consists in keeping the best
current individual in the next generation, has also been
imposed. The population size has been set to 180 and the
maximum generation number to 30.

For the semi-deterministic algorithm, we use a three-
level structure with M = N = 5 iterations for the ex-
ternal levels and I = 10 iterations of conjugate gradient
as core optimization method (calculations after doubling
these numbers give rise to the same solutions). We see
that the complexity in terms of calculation and memory
requirement is quite low. These parameters are fixed and
used in all computations.

5.1 Npeaks= 16, Ns=9, Nc=1200

Figures 3 and 4 show the apodization variation profile and
the associated power reflection function between 1540 and
1560 µm for three different filters: Sinc, GA and SDA (i.e.
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Sinc GA SDA
JNc

value 6.6 5.9 3.1
Evaluation number · · · 5400 3000

Out-of-band rejection 0.4 0.15 0.03
∆nmax 5 10−4 2.1 10−4 1.9 10−4

Phase shifts 14 6 4

Table 1: 16-peak multichannel filter: left to right, results
with Sinc, GA and SDA apodization profiles.

obtained by these optimization procedures). The Sinc
filter has a cost function of 6.59. The GA filter gives 5.83.
The total number of functional evaluations is 5400 and
the best element was found at generation 21 of GA after
3780 evaluations. The SDA filter gives 3.09. The total
number of functional evaluations is about 3000. The best
element was found at iteration 169 after 2028 evaluations.
This is important as Sinc profiles are considered efficient
and realistic for the realization of these filters. Conver-
gence histories are given in Figure 5. The three values of
the cost function show that both GA and SDA algorithms
have led to better solutions in terms of reflection charac-
teristics than the Sinc profile. This is visible in Figure 3
on the respective interchannel and out-of-band rejection
(undesirable side peaks) which is reduced to 0.03 in the
SDA profile and to 0.15 in the GA profile, to be com-
pared to 0.4 for the Sinc profile. In addition, optimized
profiles are more suitable for industrial realization as the
number of necessary phase shifts (when δneff (z) = 0) is
only 6 for the GA profile and 4 for SDA against 14 for the
Sinc-profile and the index modulation of profiles is more
homogeneously distributed along the pattern and does not
exhibit any dominant lobe. A last improvement concerns
the maximum amplitude of the profile which has been re-
duced to ∆nmax = 2.10−4 for both GA and SDA profiles.
These results are summarized in Table 1.

5.2 Npeaks= 38, Ns=15, Nc=2400

In this case, the classical sinc-type profile exhibits better
spectral characteritics than the SDA and GA optimized
profiles as can be observed in Figures 6 and 7 or in the
corresponding values of JNc

(9.1 for sinc against 10.3 for
SDA and 13.9 for GA). Furthermore, the GA optimized
profile fails to exhibit all the 38 peaks with a reflection
higher than 0.95. However, the sinc profile is difficult to
build because of its large amount of phase shifts (36) and
its large maximum index amplitude (6 × 10−4). Actually,
the SDA algorithm could have found results equivalent to,
or better than, the sinc-type profile if a larger value Ns

had been taken (e.g. Ns > 40). However, to avoid the
above-mentioned experimental difficulty, we explicitly re-
moved such unsuitable profiles with the choice of a reduced
search space. Thus, the obtained FBG is easier to im-
plement as the number of phase shifts is reduced to 14,
the index modulation is more homogeneously distributed
and the maximum amplitude of the profile is reduced to
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Figure 3: 16-peak multichannel filter. From top to bottom:
SINC, GA and SDA optimized filters apodization.
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Figure 4: 16-peak multichannel filter. From top to bottom:
Sinc, GA and SDA optimized filters associated spectra.
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Figure 5: 16-peak multichannel filter. GA (Left) and SDA
(Right) convergence histories: Best element (solid line)
and global convergence (dashed line).

Sinc GA SDA
JNc

value 9.8 13.9 10.3
Evaluation number · · · 5400 4500

Peak number 38 34 38
∆nmax 6 10−4 3.5 10−4 4.8 10−4

Phase shifts 36 22 14

Table 2: 38-peak multichannel filter: left to right, results
with Sinc, GA and SDA apodization profiles.

∆nmax = 4.8 × 10−4 (see Table 2). The total number
of functional evaluations is now 4500 for SDA and almost
unchanged for GA at 5400. With GA, the best element
is found at generation 28 after 5040 evaluations (almost
at the end) while it is reached at iteration 89 after 1602
evaluations by SDA. This is visible in Figure 8.

6 Conclusion

Two configurations of high channel count filters based
on non-chirped apodized fiber Bragg gratings have been
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Figure 6: 38-peak multichannel filter. From top to bottom:
SINC, GA and SDA optimized filters apodization.
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Figure 7: 38-peak multichannel filter. From top to bottom:
Sinc, GA and SDA optimized filters associated spectra.
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Figure 8: 38-peak multichannel filter. GA (Top) and
SDA (Bottom) convergence histories: Best element (solid

line) and global convergence (dashed line).

analyzed by global optimization methods using a semi-
deterministic and a hybrid genetic optimization algorithm.
This leads to the creation of four filters with different FBG
apodization profiles. The results obtained by the semi-
deterministic algorithm outmatch those by the genetic al-
gorithm and also the sinc method traditionally used in
industry.

The grating solutions produced by the semi-
deterministic approach are easier to manufacture because
they have no step variation, lower maximum index
modulation value and also smaller number of π-phase
shifts in the sampling pattern. A prototype of this fiber
is developed by the Electronic and MicroOptoElectronic
Center at Montpellier University.

Recently, this approach has been successfully ex-
tended to the design of Spectral Code Division Multiple
Access (spectral CDMA) filter devices (Ivorra et al., 2004).
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