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Abstract 

Some problems related to discrete event simulation and model validation are discussed. The 

validity of models with simultaneous events is discussed. The basic concepts of the theory of 

categories are recalled and applied to model construction process. The language of the theory 

of categories is used to treat some problems in modelling and simulation of discrete event, 

namely the ambiguity that may appear when simultaneous events occur. It is pointed out that 

the theory of categories may be useful as a unified language for model description. In 

particular, the categorical point of view can be useful while treating the model validity. Using 

this language we can get a high level of abstractions in model building. 
(Received in September 2011, accepted in March 2012. This paper was with the author 1 month for 1 revision.) 
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1. INTRODUCTION 
 

Discrete event simulation is a widely used and quiet fast manner to simulate many physical 

(real existing or proposed) systems. Roughly speaking, a discrete event consists in a change in 

the state of the model, which may affect one or more model components. For example, if in 

the real queuing system a client enters and occupies a place in a waiting line, the 

corresponding discrete event should include an instruction "add one to the queue length" or 

"insert an object (a client) to the queue". The event occurs in certain time instant te, and the 

change in the model state is immediate. So, the model state, treated as a function of time, is 

discontinuous. The model state at the time instant te is undefined, unless we define it as a left- 

or right-hand limit of a sequence of the model states at te. As in the discrete event model 

nothing happens between the consecutive events, the model time can jump from one event to 

another, which makes the simulation very fast. 

      However, there are some things that should not be forgotten. First of all, in the real world 

discrete events does not exists, and they should be treated only as an approximation while 

extracting from the real system its logic only. For example, most packages for electrical 

circuit simulation support both logical simulation, and "physical" continuous simulation that 

provides the trajectories with transient processes. If the duration of the transient process in 0-1 

logic approaches zero, then the results of this physical version of the model should tend to the 

results obtained from the logical version. In this case we reject the physical interpretation of 

the circuit operation. One could say that the discrete event models are a priori invalid, because 

any change of the state of a physical model is associated with some energy flow. Permitting 

discrete events, we get energy flows of infinite intensity. But the validity of models refers 

rather to the final results that are limited by the actual experimental frame. In this sense 

discrete event model should be validated. 

      There are some questions that arise when dealing with discrete events. One of these 

questions is continuity. Given a discrete event that consists in changing the state of a model 

component from value a to b at time instant te, let us define a corresponding continuous 
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process that performs the same change continuously during a time interval te – e / 2 to te – e / 2, 

e being a finite time interval. If we apply this procedure to all discrete events in our discrete 

model Md, we obtain a continuous model M(e). Let us define: 
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      To do this, we need to define the "lim" symbol. We can use here the convergence in the 

metrics in the model space, introduced in [11, 12]. This metrics is based on the (Hausdorff) 

distance between the sets of results generated by different models. So, the discrete model 

should be Md = M(0). Unfortunately, this is not always the case. 

      Generally speaking, a discrete event can be defined as follows: 
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      X(te) being undefined or defined arbitrarily as  X1 or X2. 

      The above can be also written using a Dirac's δ function (supposing no other events occur 

in the considered time interval): 
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      The corresponding semi-discrete event can be defined replacing δ by any continuous 

distribution f(t) that approaches δ, as follows: 
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      So, if f approaches δ, then the event becomes a discrete one. 

      Remember that f  is a distribution, so  ∫
∞

∞−
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      There are many other possibilities of relaxing discrete events without talking about 

distributions, like that used in the example 2 below. 

 

2. THE CONTINUITY 
 

Consider the following example 1. 

      The model Md has two components A and B. Denote the state of the components as a and 

b (real numbers), respectively. 

      Denote : model state x , a real number, define x = a + b. 

      Result space = R (space of real numbers), the result is y = x 

      Let the model includes only two following discrete events. 

   E1  add one to the state a of the component A 

   E2  replace the actual value b with a
2  

      The initial condition: a = 3, b = 0. 

      Let the two events execute in time instant t1 and t2 respectively. If t1<t2 then the final 

outcome is equal to 20, and if t1>t2 then the outcome is equal to 13. 

      What happens when t1=t2 ? 

      In this case, we have simultaneous events at t1. The two events occur simultaneously in 

model time. In the real (computer) time, they must be executed in some order. If the order is 

E1, E2 then the outcome is 20, otherwise it is equal to 13. Which result is valid? Recall that 

the DEVS (Discrete Event Specification) formalism [6], in the case of multi-component 
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coupled models, provides the formal model component, named select. It is a function that 

embodies the rules employed to choose which of the imminent components (those having the 

minimum time of next event) is allowed to carry out its next event. However, select is not 

related to any information provided by the modelled system, at least in this case. 

Consequently, the modeller must define it. As there are only two options for the execution of 

the events, the two possible results are equal to 20 for t1<t2 or 13 for t1>t2. If the modeller has 

no idea about the selection, then he/she could define the order as random, and take the 

average value over a set of simulations, which will tend to 16.5. Such outcome, however, 

never takes place for this discrete model. 

      Certain specialists explain the select component as follows: "....conclusions drawn from a 

simulation study with discrete event systems always flow from a collection of experiments 

developed to properly deal with the underlying stochastic behaviour. The simultaneous event 

situation would surely be adequately accommodated in the analysis of the results from this 

collection of experiments". Observe, however, that if we can have a "collection of 

experiments" from the real system, we need no modelling and simulation at all. 

      Relaxing the discrete events to semi-discrete so that each of them has a finite duration (the 

changes are continuous over some small interval), we can overcome the need of any "select" 

rule and get rid of the discontinuity and ambiguity caused by the simultaneous events. 

      The example 1 may appear to be somewhat artificial, so let us show this procedure applied 

to the following. 

 

      Example 2: 3D rotations. 

      In the kinetics of mechanisms and in the kinetics of robots, the system dynamics is not 

taken into account, so the corresponding simulations do not consider the inertia of moving 

bodies. Consequently, one can treat the movements as discrete events (instant displacements 

or rotations). This may accelerate simulations, but also implies certain problems. Consider, 

for example, 3D rotations. Let the model includes three following events: 

• RX – rotate around the X axis, 

• RY – rotate around the Y axis, 

• RZ – rotate around the Z axis. 

      We will apply the rotations to a line between (0, 0, 0) and (x, y, z). Each rotation event 

consists in multiplying the corresponding rotation matrix by the (column) vector (x, y, z). 

Everything works correctly, unless we intend to simulate simultaneous rotation events. If the 

three events occur in the same model time, they must be executed in some order in the real 

(computer) time. We have six possible permutations, and we must select one of them (again 

the select function of DEVS). Unfortunately, the final results for each possible permutation 

are different (indeed, the 3D rotations around distinct spatial axes do not commute). For 

example, let initially (x, y, z)=(1, 1, 1) and let the rotation angle be equal to 30 degrees, the 

same for the three rotation events. Here are results, to show only three possible permutations: 

• Rotation RX-RY-RZ gives the final position (x, y, z) = (0.444, 0.851, 1.442). 

• Rotation RX-RZ-RY gives the final position (x, y, z) = (-0.116, 0.548, 1.639). 

• Rotation RZ-RY-RX gives the final position (x, y, z) = (-0.669, 0.090, 1.595). 

      Other permutations provide results always different from each other. The vector length is 

constant, equal to square root of 3. 

      Now, as in the previous example, we "relax" the rotation events, replacing them with 

semi-discrete events. Let the angle changes in n small steps within a time interval [t0, t0 + H]. 

      The change in the position (x, y, z) in each step can be expressed as follows: 

)(ˆ)()(ˆ tx
n

Rdtx x

α
=+          (5) 
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where 0
ˆ ( , , ), ˆx x y z x=  is the initial condition, d = H / n, Rx (α / n) is the rotation matrix around 

X by the angle α / n, and α is the total rotation angle. Eq. (5) can be directly used to code the 

computer algorithm. So, Eq. (5) is a numerical approximation of a continuous process (a 

semi-discrete event). Using Ry and Rz instead of Rx we have the rotations around Y and Z 

axes. Being continuous, the three rotations can be executed simultaneously without any need 

to select a particular rotation order. The result, with the same initial condition and α = 30 

degrees is (x, y, z) = (-0.999, -0.520, 1.315), quite different from any permutation of discrete-

event rotations. The results are the same, independently on the order of small rotations in each 

rotation step, up to the small differences due to the time discretization (5). These errors tend 

to zero with n → ∞, for any value of H > 0. This means that we can permit that H approaches 

zero, but the discrete event model with simultaneous events is not the limit of a sequence of 

semi-discrete models. In other words, there is a discontinuity in H = 0. 

      The concept of semi-discrete events has been proposed earlier [10, 11], in some different 

way. The main idea is to create a model where the events have finite duration e, and which 

results converge to the result of the discrete event model whenever the discrete model is not 

ambiguous (no simultaneous events). Semi-discrete events are nothing more than continuous 

changes of the system state. This term suggests that the event duration e is small in relation to 

the simulated time period, and that it is possible to make e arbitrarily small (but always 

greater than zero). 

 

3. USING THE CATEGORICAL LANGUAGE 
 

In 1942-45, Samuel Eilenberg [2] and Saunders Mac Lane introduced categories, functors, 

and natural transformations as part of their work in topology, especially algebraic topology 

(see also [1, 5]). As the concepts of the theory of categories provide a high level of 

abstracting, the language of the theory may be useful while constructing models and examine 

their properties. In [8] the reader can find interesting remarks on application of the Theory of 

Categories to cognitive modelling. However, the main and most widely spread field of 

applications is the mathematics itself (consult, for example, [1, 7]). 

      Recall the definition of the category. The reader familiar with this terminology (recalled 

also in [13]) may skip this part. 

      A category is defined by its data and the axioms the data must satisfy. The data are the 

following: 

1.  A collection of things called objects. By default, A, B, C, ... vary over objects. 

2.  A collection of things called morphisms, sometimes called arrows. 

      By default, f, g, h, ... vary over morphisms. 

3.  A relation on morphisms and pairs of objects, called typing of the morphisms. 

      By default, the relation is denoted f : A → B , for morphism f and objects A, B . In this 

case we also say that A → B is the type of f, and that f is a morphism from A to B. Object A is 

called the source of f, and the object b is its target. In other words, src f = A and tgt f = B. 

4.  A binary partial operation on morphisms, called composition. 

      By default, f ; g is the notation of the composition of morphisms f and g. 

5.  For each object A, a distinguished morphism, called identity on A. By default, idA, or 

id when A is clear from the context, denotes the identity on object A. 

      The morphisms of a category must satisfy the following axioms. 

A3.1  f: A → B  and  f: A0 → B0  ═>   A = A0 and B = B0  (unique-Type). 

A3.2  f: A → B  and  g: B → C   ═>   f ; g : A → C  (composition-Type). 
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A3.3  idA: A → A   (identity- type). 

A3.4  ( f ; g ) ; h = f ; ( g ; h )   (composition). 

A3.5  id ; f = f = f ; id   (identity). 

      Note that f : A → A does not mean that f is an identity (it is an endomorphism). For 

example, if X is the space of real numbers, the function y(x)=x
3
 maps X to itself, but it is not 

an identity. Also f : A → B  and  g : A → B  does not mean that f = g. 

 

      Example 3 (following Maarten M. Fokkinga [4]) 

      Each pre-ordered set (A, ≤ ) can be considered a category, in the following way. The 

elements a, b, ... of A are the objects of the category and there is a morphism from a to b 

precisely when a ≤ b. Formally, the category is defined as follows: 

An object is: an element in A. 

A morphism is: a pair (a, b) with a ≤ b in A. 

(a, b): c → d   ≡   a = c   Λ   b = d. 

(a, b) ; (b, c) = (a, c). 

ida = (a, a). 

      Another example can be a mechanical system, composed by a set of bodies. The 

corresponding category M0 can be defined as follows: 

An object of M0 is the pair (X(t), t)  where X is the system state and t stands for time. 

A morphism is a pair ((X(t1), t1), (X (t2), t2)) with t1 ≤ t2. 

((X(t1), t1), (X(t2), t2)): (Y, r) →(Z, s) ≡ (Y, r) = (X(t1), t1) Λ (Z, s) = (X(t2), t2).  

id = ((X(t), t), X(t), t)) 

      If M0 is a real physical system, then the morphisms are physical rules of movement (state 

transitions) from a given time instant to some other future time instant. 

      Now, recall the concept of the functor. 

      The functor is a mapping from one category to another, preserving the categorical 

structure. It preserves the property of being an object, a morphism, typing, composition and 

identity. To be more precise, the definition is as follows (as given in [4]). 

      Let A and B be categories; then a functor from A to B is: a mapping F that sends objects 

of A to objects of B, and morphisms of A to morphisms of B in such a way that: 

A3.6  F f  :  FA →B FB   whenever  f : A →B A  B. 

A3.7  FidA  =  idFA   for each object A in A. 

A3.8  F (f ; g) =  F f ; F g. 

      The symbol →a   denotes a mapping in the category A . The axioms A3.7 and A3.8 imply 

the following:  F (f ; . . . ; g ) = F f ; . . . ; F g. 

      Now, consider again the system M0. What we can do is merely to observe its behaviour. 

This is rather a philosophical assertion telling us that no object or system of the real world can 

be completely understood and its functioning completely known. So, let us assume that M0 is 

a category. If so, we can look for another category M in such a way that: 

A3.9  The properties of M are simple enough to be understood. 

A3.10  There exists a functor F : M0  → M. 

      We will call the category M the model of M0, and the functor F the operation of 

modelling. The model M does not have to be unique, so we can look for other, simpler or 

more sophisticated models for the same physical (or proposed) system. The definition of the 
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validity implies that any valid model must form a category, and the operation of modelling 

must satisfy the above functor axioms. 

      For example, define the objects of M0 as pairs (X0(t), t), where X0 is the state of a set of 

small bodies (3D positions, velocities, body temperature, spatial orientation, spin etc.) moving 

in space and subject to gravitational forces in such the way that they do not collide. Then, the 

model M may be a category of material points, the objects of M being pairs (X(t), t), and the 

morphisms fa,b of M being defined by solutions to a system of differential equations 

(Newtonian or relativistic) that describe the state transition over a model time interval [a, b]. 

The functor F maps the real world objects (X0(t), t) into (X(t), t) taking the positions and 

velocities of the mass centre of each body only. The morphisms of M are defined as f1,2 : 

(X(t1), t1) → (X(t2), t2) where f1,2 means to solve the model differential equations over [t1, t2] 

with the initial condition X(t1). In the sequel we will omit the sub indices of f. Of course, if the 

system M0 is subject to some external excitation (forces), then this (input) functions should be 

added to the definition of the morphism. 

      Note that a consequence of the fact that F is a functor (see A3.6) is that the graph of Fig. 1 

must commute (passing from X0(t1) to X(t2)). If it does not, there is something wrong with the 

definition of the functor. This is a well known condition of model validity. Bernard Zeigler 

[14] defines the validity in the same way, avoiding the categorical language, perhaps in order 

to make the definition simple and not to bother the reader with the concepts of the category 

theory. 
 

 

Figure 1: Model validity. 

 

      Note that in Fig. 1 we have (X(t), t) = F (X0(t), t) , where the sub 0 means the original 

(real) system. Remember that the functor F maps category objects as well as morphisms. 

      Now suppose that in the real system the bodies can collide (due to their finite diameter or 

to the movement itself). In such the case, the graph 1 does not commute, simply because the 

real transition rule f0 takes into account possible collisions and the morphism f does not (the 

model contemplates a movement of material points only, not the real bodies). In this case the 

model is invalid. 

      The examples of models of Section 2 can be also expressed in the language of category 

theory. For the basic model (the real world), consider the pairs (state,time) as category 

objects, and morphisms f as the rules of state-time transition. While constructing a discrete 

event model, the functor maps (state,time) pairs into (model state, model time) pairs, and the 

real system morphism f into the rules of transitions in a discrete event case, or some 

differential equation or other rule for the continuous case. As the discrete model provides 

false results for simultaneous events, the corresponding graph of Fig. 1 does not commute. 
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This is a categorical interpretation only, in fact to see that these models are invalid we do not 

need the category theory. 

      Now, take a closer look at simultaneous events. Let category M be a set of pairs (Xn, tn), 

where X is the model state and tn a time instant. We introduce a weak order in M with respect 

to time, namely we define (Xi , ti) ≤ (Xj , tj) if ti ≤ tj. Let for any two objects A and B in M, such 

A ≤ B there exists a morphism between A and B. We will interpret morphisms as discrete 

events. More precisely, an event morphism between A and B can be expressed as follows. 

      f : A → B   ≡ " take the value of X, perform an operation over it and substitute the result of 

the value of X in B, take the value of time for src f add a non-negative (may be zero) value to 

it and substitute it as the time of tgt f. We will say the event occurs at time equal to the time of 

tgt f ". 

      Consequently, if there are two or more objects with the same value of t, then morphisms 

must exist between each other. This is the case of simultaneous events. Fig. 2A shows a 

diagram for three events that occur in time instants tn < tn+ e < tn+1. If e approaches zero, the 

events f and h have nearly the same target time. One may suppose, that the model with 

simultaneous events f and h is the limit case for e → 0. However, this is not the case. Fig. 2B 

shows the diagram for e = 0. As the targets of morhisms f and g have the same value of t, 

there exist morphisms between the corresponding nodes, namely h and i. The morphism h ; i 

is not necessarily an identity. As for the morphisms j and k we may assume that these are 

identities. Observe the following. 

* The model changes its structure at when e reaches 0. 

** We have f ; h ; k = g ; i ; j which means that f ; h = g ; i. 

      Now, return to the example 1 of section 2. Let both f and i correspond to the event EV1,  ,  

g and h to the event EV2 (add one to X and take the square of X, respectively). 

      Obviously, f ; h cannot be equal to g ; i. So, we have an ambiguity at tn+1. 

 

Figure 2: Two versions of the model. The suffix of X is omitted, supposed to be the same as 

     that of t. Identity morphisms are assumed, but not shown. 

 

      If we take the model 2B as a (new) model of 2A with e = 0 (simultaneous events), then 

we obtain an invalid model, because the diagram 2B does not commute. 

 

4. CONCLUSIONS 
 

Section 3 shows how to express models and their properties in the categorical language. The 

categorical language may be useful when we want to have a higher level of abstraction. Each 

95 



Raczynski: Semi-Discrete Events and Models in Categorical Language 

morphism can be a function, an algorithm, a piece of software or even a textual specification 

of state transitions. In the case of the discrete events, we show again (see also [9, 10]) that 

they form a singularity in the space of models. This may result in certain problems in model 

validity. A more general remark might be formulated regarding the relation between the real 

world (system) and the model we create. Is the real world a category? If so, any valid model 

should also be a category. 

      At the fist glance, the reader might be somewhat confused and lost in the definitions of the 

theory of categories. In fact, the theory was created by mathematicians, and most of the books 

and texts about the theory are full of examples taken from advanced mathematics. Note, 

however, that the definitions of the basic concepts are not very complicated and need not be 

applied to structures in advanced mathematics. If the knowledge on the category theory were 

a little bit more propagated in the modelling and simulation community, it might become a 

good and uniform way to express model specifications. 
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