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Semi-discretization method for delayed systems
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SUMMARY

The paper presents an e�cient numerical method for the stability analysis of linear delayed systems.
The method is based on a special kind of discretization technique with respect to the past e�ect
only. The resulting approximate system is delayed and also time periodic, but still, it can be transformed
analytically into a high-dimensional linear discrete system. The method is applied to determine the
stability charts of the Mathieu equation with continuous time delay. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

There are several mechanical models which lead to equations of motion governed by delayed-
di�erential equations (DDEs). In mechanical engineering, for example, the models describing
the regenerative e�ect in machine tool vibrations [1], the human=machine systems involving
the human operator’s re�ex delay, or the robotics applications like telemanipulation with
information delay can be mentioned [2]. The corresponding mechanical models are often low
degree-of-freedom (DOF) oscillatory systems subjected to the delayed feed-back of the state
variables. The stability analysis of these systems is an important and crucial problem.
The advanced mechanical models include parametric excitation, too. In case of a human

operator, the re�ex delay can vary in time; in case of machining, the cutting speed [3], or
the number of active teeth [4] can change periodically; while in the case of telemanipula-
tion, a time-varying parameter may help to compensate the destabilizing e�ect of large time
delays [5]. Problems like these require the stability analysis of linear, time-periodic delayed
oscillatory systems, described by linear non-autonomous DDEs.
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According to the well-known theory of linear autonomous ordinary di�erential equations
(ODEs), the stability properties are determined by the roots of the characteristic polynomial:
if and only if all the characteristic roots have negative real parts, the system is asymptotically
stable. The famous Routh–Hurwitz criterion provides an algorithm to check this condition in
characteristic polynomials [6; 7].
The phenomenon of parametric excitation was observed already in the 19th century. The

theory of periodic systems was outlined by Floquet [8]. The general form of an n-dimensional
linear T -periodic system reads

ẏ(t)=A(t)y(t); A(t)=A(t + T ) (1)

All the solutions have the form y(t)=�(t)y(0), where �(t) is the so-called fundamental
matrix of system (1). The matrix �(T ) is the so-called principal or transition matrix, its
eigenvalues are the characteristic multipliers calculated from

det(�I −�(T ))=0 (2)

The trivial solution y(t)≡ 0 of system (1) is asymptotically stable, if and only if all the
characteristic multipliers are in modulus less than one. Generally, this condition is hard to
apply, since there is no closed-form representation for the principal matrix. For practical
applications, approximate methods are used, see e.g. References [9–12]. The basic stability
chart of periodic systems, the Strutt–Ince diagram of Mathieu equation was �rst published by
van der Pol and Strutt [13].
Linear autonomous DDEs have the general form

ẏ(t)=L(yt); L(yt)=
∫ 0

−�
dW(#)y(t + #) (3)

where the matrix W is a function of bounded variation on [−�; 0] and the integral is a Stieltjes
one, i.e. it describes discrete and continuous time delays as well. The linear functional L can
be represented in the above matrix form according to the Riesz representation theorem [14],
and the continuous function yt is de�ned by the shift

yt(#)= y(t + #); #∈ [−�; 0] (4)

The characteristic function of system (3) reads

det

(
�I −

∫ 0

−�
e�# dW(#)

)
=0 (5)

Opposite to the characteristic polynomial of autonomous ODEs, this characteristic function
has, in general, in�nite number of zeros. The books of Hale [14], Hale and Lunel [15] and
Diekmann et al. [16] summarize the most important theorems for DDEs. The su�cient and
necessary condition for asymptotic stability of Equation (3) is that all the in�nite number of
characteristic roots have negative real parts.
The �rst attempts for determining stability criteria for second-order DDEs was made by

Bellmann and Cooke [17] and by Bhatt and Hsu [18]. They used the D-subdivision method [19]
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combined with a theorem of Pontryagin [20]. The book of Kolmanovskii and Nosov [21]
summarizes the main theorems on stability of DDEs, and it contains several examples as well.
A more sophisticated method was developed by St�ep�an [2] (generalized also by Hassard [22])
applicable even for the combination of several discrete and continuous time delays.
Linear periodic DDEs have the general form

ẏ(t)=L(t; yt); L(t; yt)=
∫ 0

−�
d#W(t; #)y(t + #); L(t + T; yt)=L(t; yt) (6)

The Floquet theorem can be extended for these systems [23], but in�nite-dimensional linear
operators are used instead of the �nite-dimensional tensors in (2). Such a linear operator can
be de�ned by yt =U(t)y0. While U(t) plays the role of the fundamental matrix, the role of
the principal matrix is taken by U(T ). The non-zero elements of the spectrum of U(T ) are
called the characteristic multipliers of system (6), also de�ned by

Ker(�I −U(T )) �=? (7)

instead of (2).
For periodic DDEs, the di�culty is that the operator U(t) has no closed form, so no stability

conditions can be expected in closed form either. For practical calculations, only approxima-
tions can be applied. Stability investigations are often carried out by numerical simulations,
see e.g. Balachandran’s simulations for milling processes [24]. A low-dimensional discrete
map approximation was used by Davies et al. [25] and Bayly et al. [26] for stability analy-
sis of interrupted cutting. Another approach was developed by Insperger and St�ep�an [4] for
milling process analysis, when the discrete time delay is approximated by special continu-
ous ones, and the in�nite-dimensional eigenvalue problem is transformed into an approximate
�nite-dimensional one. An alternative of Hill’s method was used by Seagalmann and Butcher
[27] to determine stability properties of turning process with harmonic impedance modulation.
Insperger and St�ep�an [28] also used Hill’s method to determine the closed-form stability chart
for the Mathieu equation with one discrete delay.
The semi-discretization method was composed and applied for the dynamics of cutting

process by Insperger and St�ep�an [29] and Insperger et al. [3]. In this paper, the generalization
of this semi-discretization is shown and applied for demonstrative examples.

2. PRELIMINARIES

In this section, the main idea of semi-discretization is shown for a simple case. Let us consider
the one-dimensional, second-order autonomous DDE with a discrete time delay

�x(t) + c0x(t)= c1x(t − �) (8)

The stability of the trivial solution x(t)≡ 0 of Equation (8) is known analytically. The stability
chart shows the parameters c0 and c1 for which the system is stable. Although Equation (8)
has in�nite-dimensional phase space, its stability chart has the simple structure shown in
Figure 1 [30]. The stability boundaries are lines with slope ±1. Grey coloured parameter
domains refer to asymptotically stable systems.
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Figure 1. Stability chart for Equation (8) with �=2�.

Figure 2. Time-dependent delay.

2.1. Basic idea of semi-discretization

Now, consider the intervals [ti; ti+1) where ti+1 − ti=�t; i=0; 1; : : : ; and the DDE

�x(t) + c0x(t)= c1x(ti−m); t ∈ [ti; ti+1); m ∈ Z; i=0; 1; : : : (9)

This equation for the case m=1 often comes up in control problems modelling the sampling
e�ect [31]. In opposite to Equation (8), the time delay in Equation (9) is not constant, it
is a piece-wise linear periodic function with period �t, as it is shown in Figure 2. As the
parameter m tends to in�nity, the time delay tends to the constant value � if �t= �=(m+ 1

2)
and Equation (9) approximates Equation (8).
Although Equation (9) is a non-autonomous DDE with in�nite-dimensional phase space,

its Poincar�e map has a simple �nite-dimensional representation since it can be solved in each
time interval as an ODE (details will be explained in Section 3). The stability chart de�ned
for various values of m can be seen in Figure 3 (stable parameter domains are denoted by
grey colour). It shows, how the stability chart of Equation (9) approximates the chart of
Equation (8) for increasing parameter m. For m=10, the stability chart approximates the
chart in Figure 1 with errors less than 1%. For the charts in Figure 3, �=2�, consequently,
�t=2�=(m+ 1

2).
For the case m=1, the necessary and su�cient criteria for asymptotic stability can be given

after a lengthy algebraic work (see Reference [32]) as

c1¡c0; c0 �= k
2�2

�t2
(10)
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Figure 3. Stability chart for Equation (9) with �=2�.

and

0¡c1¡
1 + 2 cos(

√
c0�t)

1− cos(√c0�t) c0 or 0¿c1¿
1 + 2 cos(

√
c0�t)

1− cos(√c0�t) c0 (11)

where �t=4�=3. The formulae are more and more complicated for m¿2.
The point of the semi-discretization method is that, while the actual time domain terms

are left in the original form, the delayed terms are approximated by piece-wise constant
values, and are treated as constant excitations in ODEs. In Section 3, the generalization of
the above introduced method will be shown. Before that, the full- and the semi-discretization
are compared.

2.2. Full-discretization

The following question arises naturally: why do not we discretize all the actual time domain
terms? The use of the interval division shown in Section 2.1 leads to the approximated
derivatives of x(t)

ẋ(t)≈ xi+1 − xi
�t

(12)

�x(t)≈ xi+2 − 2xi+1 + xi
�t2

(13)

where xi= x(ti). Substitution into Equation (9) yields the recursive formula

xi+2 = �1xi+1 + �2xi + �3xi−m (14)

where �1 = 2; �2 =−1 − c0�t2 and �3 = c1�t2. This connection is described by the discrete
map

yi+1 =Biyi (15)

where the m+ 2-dimensional state vector is

yi=col(xi+1 xi xi−1 : : : xi−m) (16)
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Figure 4. Stability charts constructed by full-discretization.

and the coe�cient matrix has the form

Bi=




�1 �2 0 : : : 0 �3
1 0 0 : : : 0 0
0 1 0 : : : 0 0
...

...
...
. . .

...
...

0 0 0 : : : 0 0
0 0 0 : : : 1 0




(17)

The stability chart constructed by full discretization can be seen in Figure 4 for various
approximation parameter values. Comparison of the charts in Figures 3 and 4 show, that the
semi-discretization method is much more e�ective.

3. SEMI-DISCRETIZATION METHOD

The so-called semi-discretization is a well-known technique used for example, in the �nite
element analysis of solid bodies, or in computational �uid mechanics. The basic idea is, that
the corresponding partial di�erential equation (PDE) is discretized along the spatial co-
ordinates only, while the time co-ordinates are unchanged. From a dynamical systems view-
point, the PDE has an in�nite-dimensional state space, which is approximated by the �nite-
dimensional state space of a high-dimensional ODE.
The same idea can be used for any DDE, but its implementation is not trivial. The in�nite-

dimensional nature of the DDE is due to the presence of past e�ects, described by functions
embedded also in the time domain, above the past interval [t − �; t], where � denotes the
length of the delay e�ect.
In this section, we will investigate the n-dimensional DDE

ẋ(t)=
∫ 0

−�
d#W(#; t)x(t + #); W(#; t + T )= W(#; t) (18)
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where the lower limit � can also be in�nity. The condition∫ 0

−∞
e−�#|d#�jk(#; t)|¡∞; j; k=1; 2; : : : ; n; �¿0; t ∈R (19)

is satis�ed, where �jk(#; t) are the elements of W(#; t). This condition means that the past
e�ect decays at least exponentially in the past.
The integral in Equation (18) is a Stieltes one, i.e. it may contain discrete and continuous

time delays, like∫ 0

−�
d#W(#; t)x(t + #)=

r∑
j= 1

Rj(t)x(t − �j) +
∫ 0

−�
W(#; t)x(t + #) d# (20)

where the number r of discrete time delays can also be in�nity. Nevertheless, the discrete
time delay can also be de�ned as

x(t − �j)=
∫ 0

−�
wj(#)x(t + #) d# (21)

where � ¿ �j and the weight function is the Dirac distribution at −�j:
wj(#)= 	(#+ �j) (22)

This makes it possible to consider the discrete time delay as a special case of the continuous
one. Thus we will investigate the DDE of the form

ẋ(t) =A(t)x(t) +
∫ 0

−�
W(#; t)x(t + #) d#

A(t + T ) =A(t); W(#; t + T )=W(#; t)

(23)

where W(#; t) is now a weight distribution including such breaks like Dirac distribution, and
the dependence on the present state of x(t) is determined by the matrix A(t). According to
Equation (19), the condition for W(#; t) reads∫ 0

−∞
e−�#|Wjk(#; t)| d#¡∞; j; k=1; 2; : : : ; n; �¿0; t ∈R (24)

Because of this condition, in approximations, the value of � in Equation (23) can be considered
as any large, but still �nite value.

3.1. Structure of semi-discretization

One of the main steps of semi-discretization is the construction of the time intervals [ti; ti+1)
of length �t; i=0; 1; : : : ; so that the principal period can be expressed as T = k�t; k ∈Z.
There are three steps of approximations of the distribution matrix W(#; t) in Equation (23).

1. Consider Equation (23) in the time intervals t ∈ [ti; ti+1]; i=0; 1; : : : : The time-dependent
matrices A(t) and W(#; t) can be approximated with constant matrices Ai and Wi(#) for
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Figure 5. Approximation of the weight function.

each discretization interval

Ai =
1
�t

∫ ti+1

ti
A(t) dt (25)

Wi(#) =
1
�t

∫ ti+1

ti
W(#; t) dt (26)

that is Ai and Wi(#) are not time dependent any more. This step is equivalent to the
piece-wise autonomous approximation of non-autonomous systems.

2. The continuous distribution matrix Wi(#) can be approximated as a sum of shifted Dirac
distributions

W̃i(#)=
m∑
j= 1

	(#+ (j − 1
2 )�t)Wi; j (27)

where the weights of the terms are

Wi; j=
∫ (1−j)�t

−j�t
Wi(#) d# (28)

and m can also be in�nity, similarly to �. This step leads to a kind of piece-wise constant
approximation of the delayed term.

3. Finally, W̃i(#) can be approximated with a time-dependent distribution for t ∈ [ti; ti+1]
˜̃Wi(#; t)= W̃i(#− 1

2�t + t)=
m∑
j= 1

	(#+ (j − 1)�t + t)Wi; j (29)

This is a generalization of the approximation of discrete time delays shown in Figure 2.

The geometrical visualization of the approximation process can be seen in Figure 5.
The application of these approximations in Equation (23) results in a non-autonomous DDE

which seems to be more complicated than the original DDE. However, the integral expression
in Equation (23) can be approximated by a summation as follows:∫ 0

−�
W(#; t)x(t + #) d#≈

∫ 0

−�
˜̃W(#; t)x(t + #) d#=

m∑
j= 1
Wi; jxi−j+1 (30)
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where

xi−j+1 =x(ti − (j − 1)�t); i=0; 1; : : : ; j=0; 1; : : : ; m (31)

In spite of the fact, that the approximated system is a non-autonomous DDE, it can be de�ned
as a series of autonomous ODEs with constant excitations in each discretization interval

ẋ(t)=Aix(t) +
m∑
j= 1

Wi; jxi−j+1; t ∈ [ti; ti+1]; i=0; 1; : : : (32)

In other words, Equation (23) is approximated now with a series of piece-wise autonomous
ODEs.
Let us assume, that the matrix Ai is invertible for all i. Then, the solution of Equation (32)

takes the form

x(t)= exp(Ai(t − ti))Ki −
m∑
j= 1
A−1
i Wi; jxi−j+1 (33)

where the constant vector Ki depends on the initial value x(ti)=xi

Ki=xi +
m∑
j= 1
A−1
i Wi; jxi+1−j (34)

If the matrix Ai is not invertible, then the solution can also be expressed, and the semi-
discretization method can also be applied. However, we are not going into details on this
issue.
Substitution of Equation (34) into Equation (33) and t= ti+1 yield

xi+1 =Mi;0xi +
m−1∑
j= 1

Mi; jxi−j (35)

where the coe�cient matrices are

Mi;0 = exp(Ai�t) + (exp(Ai�t)− I)A−1
i Wi;1 (36)

Mi; j = (exp(Ai�t)− I)A−1
i Wi; j+1 (37)

Equation (35) gives the connection between the states of the system at time instants ti and
ti+1. This connection can be presented as a discrete map

yi+1 =Biyi (38)

where the mn-dimensional state vector is

yi=col(xi xi−1 : : : xi−m+1) (39)
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and the coe�cient matrix is a hypermatrix of the form

Bi=




Mi;0 Mi;1 Mi;2 : : : Mi;m−2 Mi;m−1

I 0 0 : : : 0 0

0 I 0 : : : 0 0

...
...

...
. . .

...
...

0 0 0 : : : 0 0

0 0 0 : : : I 0




(40)

The next step is to determine the transition matrix � over the principal period T= k�t.
This serves a �nite-dimensional approximation of the monodromy operator in the in�nite-
dimensional version of the Floquet theory [23]. The transition matrix gives the connection
between y0 and yk in the form

yk =�y0 (41)

where � is given by coupling the solutions

�=Bk−1Bk−2 : : :B1B0 (42)

This transition matrix is a �nite-dimensional approximation of the U(T ) operator of
Equation (23). Now, the stability investigation of Equation (32) is reduced to the problem,
whether the eigenvalues of � are in modulus less than 1 [33]. Any standard or advanced
numerical algorithm [34] can be used for this last step.

3.2. Convergence of semi-discretization

The convergence of the method can be seen by re�ning the interval division, e.g. by decreasing
�t and increasing m. The approximation de�ned by Equation (30) satis�es

lim
�t→0

∫ 0

−�
˜̃W(#; t)x(t + #) d#= lim

�t→0

m∑
j= 1

Wi; jxi−j+1 =
∫ 0

−�
W(#; t)x(t + #) d# (43)

since it is a rectangular sum approximation of integral expressions according to the classical
de�nition of the Riemann integral.
Let us denote the characteristic multipliers of the original Equation (18) by �j; j=1; 2; : : : ;

and the characteristic multipliers of the approximating Equation (41) by �̃j; j=1; 2; : : : ; mn.
For any small 
¿0, there exists an integer M (
), so that for every m¿M (
), the set⋃mn
j=1 S�̃j ; 
 contains exactly mn number of characteristic multipliers �j of Equation (18),

and all the other characteristic multipliers of Equation (18) are in modulus less
than 
.
Thus, if all the characteristic multipliers of Equation (41) are in modulus less than 1, then

choosing 
= 1
2(1−maxj |�̃j|), the �nite approximation number M (
) exists, and if m¿M (
)

ful�ls, then the discretized and the original system has the same stability properties (see
Figure 6 with nm=3). A rigorous proof of the above statement can be constructed with the
methods presented by Farkas and St�ep�an [35] which use the continuous dependence of the
eigenvalues on the system parameters.
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Figure 6. Eigenvalue localization.

Clearly, the semi-discretization does not preserve the solutions of the original system. It
preserves, however, their exponential stability if the semi-discretization is �ne enough in the
sense presented above. It does not preserve stability in critical linear cases which do not resist
non-linear perturbations.

4. EXAMPLES

One-dimensional, higher-order systems can be investigated by transforming the system into
the form of Equation (23) according to the Cauchy transformation, and then using the
semi-discretization method. In some special cases of higher-order systems, the direct semi-
discretization leads to a lower-dimensional approximation than the semi-discretization of the
Cauchy-transformed systems. This is the case, for example, when the Mathieu equation

�x(t) + b0ẋ(t) + c0(t)x(t)= c1
∫ 0

−1
w(#)x(t + #) d#; c0(t)= c0	 + c0
 cos(2�t=T ) (44)

is investigated with continuous time delay of maximum length 1. Let the time interval division
be de�ned as in Section 3.1. In the interval t ∈ [ti; ti+1), Equation (44) can be approximated as

�x(t) + b0ẋ(t) + c0; ix(t)= c1
m∑
j= 1

wjxi−j+1 (45)
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where

c0; i =
1
�t

∫ ti+1

ti
c0(t) dt≈ c0(ti +�t=2) (46)

wj =
∫ (1−j)�t

−j�t
w(#) d#≈�tw((1=2− j)�t) (47)

For the initial conditions x(ti)= xi; ẋ(ti)= ẋi, the solution and its derivative at time ti+1 can
be determined

xi+1 = x(ti+1)= a0;0xi + a0;1ẋi +
m−1∑
h= 1

b0; hxi−h (48)

ẋi+1 = ẋ(ti+1)= a1;0xi + a1;1ẋi +
m−1∑
h= 1

b1; hxi−h (49)

where

a0;0 = �1;0 exp(�1�t) + �2;0 exp(�2�t) + c1w1=c0; i

a0;1 = �1;1 exp(�1�t) + �2;1 exp(�2�t)

a1;0 = �1;0�1 exp(�1�t) + �2;0�2 exp(�2�t)

a1;1 = �1;1�1 exp(�1�t) + �2;1�2 exp(�2�t)

b0; h = �1; h exp(�1�t) + �2; h exp(�2�t) + c1wh+1=c0; i ; h=1; 2; : : : ; m− 1

b1; h = �1; h�1 exp(�1�t) + �2; h�2 exp(�2�t); h=1; 2; : : : ; m− 1

and

�1;0 =
�2(1− c1w1=c0; i)

�2 − �1 ; �1;1 =
−1

�2 − �1 ; �1; j=
−�2c1wj+1=c0; i
�2 − �1

�2;0 =
−�1
�2
�1;0; �2;1 =−�1;1; �2; j=

−�1
�2
�1; j

�1;2 =
−b0 ±

√
b20 − 4c0; i
2

Equations (48) and (49) de�ne the discrete map

yi+1 =Biyi (50)
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Figure 7. Stability chart for Equation (44) for w(#) ≡ 1; b0 = 0; T = 1
2 .

where the m+ 1-dimensional state vector is

yi=col(ẋi xi xi−1 : : : xi−m+1) (51)

and the coe�cient matrix has the form

Bi=




a1;1 a1;0 b1;1 b1;2 : : : b1; m−2 b1; m−1
a0;1 a0;0 b0;1 b0;2 : : : b0; m−2 b0; m−1
0 1 0 0 : : : 0 0
0 0 1 0 : : : 0 0
...

...
...

...
. . .

...
...

0 0 0 0 : : : 0 0
0 0 0 0 : : : 1 0




(52)

Now, the transition matrix can be given according to Equation (42), and the stability can be
determined by simple eigenvalue analysis.
Three types of weight functions are considered, all of them are taken from the book of

St�ep�an [2]. The stability charts are shown in Figures 7, 8 and 9 for principal period T = 1
2

and coe�cients b0 = 0; c0
=0; 20; 40; 60. The charts for the autonomous case, when c0
=0,
were constructed in closed form in Reference [2]. These cases can be used for checking the
accuracy of the method. The approximation number m=20, that is a 21-dimensional discrete
map approximation of the in�nite-dimensional Equation (44) results stability boundaries with
errors less than 1% in the parameter domain considered here.
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Figure 8. Stability chart for Equation (44) for w(#)=−(�=2) sin(�#); b0 = 0; T = 1
2 .
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Figure 9. Stability chart for Equation (44) for w(#)= (�=2) sin(�#)+(13�=77) sin(2�#); b0 = 0; T = 1
2 .

As an even more complex problem, study the equation

�x(t) + (6 + c0
 cos 2�t)x(t)= x(t − �1) + x(t − �2) (53)
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Figure 10. Stability chart for Equation (53).

In this case T=1, b0 = 0, c0	=6, c1 = 1 and w(#)= 	(#+ �1) + 	(#+ �2) in Equation (44).
For the cases c0
=0 and 6, the stability charts in the parameter plane of time delays �1 and
�2 can be seen in Figure 10. The analysis of the autonomous two-delay system (c0 
=0) can
also be found in Reference [2].
The stability charts were made by point by point investigation of the parameter domain.

The stability boundaries were determined by re�ning the resolution using the algorithm of
Szab�o and L�or�ant [36]. The stable parameter domains are denoted by grey colour.

5. CONCLUSIONS

Time periodic delay models are rarely used by engineers due to the di�culties in the analysis
of the corresponding di�erential equations even in the linear case. An e�cient method was
shown for the stability investigation of linear periodic DDEs. The semi-discretization method
was compared to the full-discretization in the time domain. The method was applied for the
delayed Mathieu equation with continuous delay and two discrete delays, and a range of
intriguing stability charts were plotted. These charts can easily be transformed further into
the domains of physical parameters for problems like regenerative machine tool vibrations,
remote force re�ective manipulation, or human machine systems.
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