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Abstract—A semi-empirical model of the ensemble-averaged
differential Mueller matrix for microwave backscattering from
bare soil surfaces is presented. Based on existing scattering models
and data sets measured by polarimetric scatterometers and the
JPL AirSAR, the parameters of the co-polarized phase-difference
probability density function, namely the degree of correlation

and the co-polarized phase-difference , in addition to the
backscattering coefficients 0 , 0 and 0 , are modeled empir-
ically in terms of the volumetric soil moisture content and the
surface roughness parameters and , where = 2 , is
the rms height and is the correlation length. Consequently, the
ensemble-averaged differential Mueller matrix (or the differential
Stokes scattering operator) is specified completely by 0 , 0 ,
0 , , and

Index Terms—Bare soil surfaces, differential Mueller matrix,
microwave backscattering, semi-empirical model.

I. INTRODUCTION

T HERE is a strong need for a good polarimetric scattering
model for backscattering from bare soil surfaces for var-

ious reasons. One of the reasons is to use the phase-difference
statistics, in addition to the backscattering coefficients, for re-
trieving the soil moisture and the surface roughness parameters
from synthetic aperture radar (SAR) data. The other reason for
the need to generate a good model for the ensemble-averaged
differential Mueller matrix (or the Stokes scattering operator)
for backscatter by bare soil surfaces is that it is a prerequisite for
the development of a scattering model for vegetation-covered
surfaces. The polarimetric scattering model can also be used to
synthesize the polarization response for any possible combina-
tion of transmit and receive antenna polarizations.

The small perturbation method (SPM), the physical optics
(PO) model, the geometrical optics (GO) model [1] and the inte-
gral equation method (IEM)[2]–[5] are commonly used for pre-
dicting the backscattering coefficients of rough surfaces. Em-
pirical models based on polarimetric measurements have also
been reported [6], [7], but they have dealt with only the mag-
nitude of the backscattering response; i.e., the backscattering
coefficients, , , and . Experimental data acquired by
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coherent polarimetric SAR systems and by polarimetric scat-
terometer systems have shown that the probability density func-
tion (PDF) of the co-polarized phase angle ,
as well as the backscattering coefficients, are strongly depen-
dent upon the incidence angle, the wavelength, the soil moisture
content and surface roughness. In contrast, the cross-polarized
phase angle is uniformly dis-
tributed over [0, 2 ] and therefore contains no target-specific in-
formation [8]–[10]. The PDF of is characterized completely
by two parameters, namely the degree of correlationand the
co-polarized phase-difference[9].

Unlike the backscattering coefficients of bare soil surfaces,
no theoretical models currently exist for the parametersand
, even though many experimental observations have been re-

ported [8]–[11]. An attempt for modeling empirically the phase
parameters and had been tried based on a data set obtained
by a ground-based scatterometer [12], [13]. The goal of this
study is to improve the empirical models for the parameters
and , as well as , and , based on an extensive data-
base obtained by the JPL airborne SAR system and ground-
based scatterometers, thereby providing a complete model for
all of the ensemble-averaged differential Mueller matrix ele-
ments.

The backscattering coefficient of a distributed target can be
computed from the following polarization synthesis equation
[14]:

(1)

where is the rotation angle, is the ellipticity angle of the po-
larization ellipse, and are the normalized modified Stokes
vectors for the receiving and transmitting antennas. We note
that is the modified differential Stokes scattering operator
[14], where is the ensemble-averaged differential Mueller
matrix [15].

From a measurement standpoint, if we assume that the differ-
ential scattering matrix is uniform across the area illuminated by
the main beam of the antenna, the differential Mueller matrix
is then obtained from , where is the illu-
minated area (or the illumination integral) and is the mea-
sured ensemble-averaged modified Mueller matrix. In practice,
the uniformity assumption is seldom applicable, thereby neces-
sitating the application of an elaborate calibration procedure as
described in [15].

Analysis of polarimetric data for various types of distributed
targets, such as soil surfaces, indicates that the correlation
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Fig. 1. Phase-difference PDFs with different values of� and�.

between the two co-polarized scattering amplitudes is
quite significant, while that between the co- and cross-polarized
scattering amplitudes , , or is
very weak [8]–[11], [16]. According to the reciprocity relation,
the cross-polarized scattering amplitudes are identical in the
backscattering direction, namely . Therefore, the
differential Mueller matrix can be approximated as (2), shown
at the bottom of the page.

The PDF of the co-polarized phase angle
was derived in [9] as follows:

(3)

where , the parameter , referred to as the
degree of correlation, is a measure of the width of the PDF and
the parameter, referred to as the mean value of the co-polarized
phase-difference[9], isthevalueofatwhichthePDFhasamax-
imum. These two parameters completely specify . Fig. 1
shows plots of the PDF for two different values ofand . The
PDF is approximately Gaussian in shape with a circular nature
over [ 180 ,180 ].Fig.2shows therelationbetween theparam-
eter and the standard deviation of, , of the corresponding
Gaussian PDF with . The degree of correlationis directly
related to the standard deviation of, and the co-polarized
phase-difference is equivalent to the mean of , .

The ensemble-averaged terms of the co-polarized scattering
amplitudes in the differential Mueller matrix elements were de-

Fig. 2. Relation between the phase-difference standard deviation� and the
degree of correlation�.

rived in [9], [10] using the parametersand as follows:

Re (4)

Im (5)

The ensemble-averaged differential Mueller matrix elements
can be computed from the three backscattering coefficients,

, and the two phase-difference parameters, as fol-
lows:

(6)

(7)

(8)

(9)

(10)

(11)

II. POLARIMETRIC EXPERIMENTAL OBSERVATIONS

In support of the model development, an extensive database
was generated of the -, -, -polarized backscattering co-
efficients, the degree of correlation and the co-polarized phase-
difference, obtained by a combination of ground-based scat-
terometers and the JPL airborne SAR system over a wide va-
riety of bare soil surfaces. This database also includes precise

Re Im

Im Re

(2)
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ground truth data such as the surface roughness parameters and
the volumetric soil moisture contents for all soil surfaces. The
surface roughness for each field was measured by averaging 1-m
profiles collected by a laser profilometer and 3.5-m profiles ac-
quired using chart paper and spray paint The soil moisture con-
tent was measured by a dielectric probe and by soil sampling.
Most of the soil surfaces were agricultural fields and their soil
types were primarily silt loam, loam, or sandy loam. The data-
base includes the following seven polarimetric measurements:

A. LCX POLARSCAT Data-1

This data set was obtained by a truck-mounted polarimetric
scatterometer at 1.5 GHz, 4.75 GHz and 9.5 GHz at the Botan-
ical Garden of the University of Michigan in 1990 [6], [8]. Four
different, random, bare soil fields were generated and each was
measured under two different moisture conditions at incidence
angles ranging from 10to 70 . For each data point (different
frequency, polarization configuration, incidence angle, rough-
ness and moisture content), more than 60 independent samples
were taken to achieve good statistical representation of the mea-
sured backscatter. A summary of the scatterometer characteris-
tics and the surface roughness and soil moisture data for these
soil fields is given in [6].

B. POLARSCAT Data-2

This data set was obtained by a truck-mounted polarimetric
scatterometer at 1.25 GHz and 5.3 GHz during the cross-cali-
bration experiment of the JPL AirSAR and by a truck-mounted
polarimetric scatterometer at Pellston, Michigan in 1991 [17].
Three different rough soil fields (300 m 100 m) were gener-
ated before the experiment and measured at incidence angles of
30 , 40 , and 50. The roughness parameters and soil moisture
contents of the surfaces are given in [17].

C. POLARSCAT Data-3

Four different soil surfaces were generated by flattening,
tilling, raking and plowing four different agricultural fields
located near Ypsilanti, Michigan. Then, the backscattering co-
efficients of these four fields were measured by a truck-mounted
polarimetric scatterometer at 1.25 GHz, 5.3 GHz, and 9.6 GHz
at incidence angles of 20, 30 , 40 , 50 , 60 , and 70 over
a period of two months. During this period, the surfaces
underwent several drying and wetting cycles and each surface
was measured under eight different soil moisture conditions.
Table I provides a summary of the associated surface roughness
and soil moisture conditions.

D. Polarimetric Scatterometer Data-4

An indoor polarimetric scatterometer system was used
to measure the backscattering coefficients of two bare soil
surfaces at 15 GHz at incidence angles ranging from 0to
70 at Hong-ik University, Seoul, Korea, in 1999. The surface
parameters measured for the first surface were cm,

cm and and those for the second surface
were cm, and .

TABLE I
MEASUREDSOIL-SURFACEPARAMETERS FORPOLARSCAT DATA-3

E. AirSAR Data-1

During the cross-calibration experiment involving the JPL
AirSAR and a truck-mounted polarimetric scatterometer at
Pellston, Michigan in 1991 [17], the backscatter responses at
1.25 GHz and 5.3 GHz were measured by the SAR at three
different incidence angles (about 25, 35 and 55) for the
same soil surfaces observed by the POLARSCAT Data-2.

F. AirSAR Data-2

During the Washita ’92 experiment conducted at Chichasha,
Oklahoma in 1992, the JPL AirSAR obtained backscatter data
from various fallow fields for two weeks while several working
groups were collecting ground truth data. Backscatter data for
a large bare soil field (approximately 700 m1400 m) are
available for various soil moisture conditions at 1.25 GHz and
5.3 GHz. The recorded soil surface parameters are cm,

cm and , 0.224, 0.241, 0.181, 0.136, and
0.116 at about 55and , 0.175 at about 34.

G. AirSAR Data-3

In 1993, the JPL AirSAR was used to measure the radar
backscatter response of various agricultural fields near Davis,
CA. Backscatter and ground surface data were recorded for 19
bare soil fields at 1.25 GHz. The rms heights of those fields
ranged from 0.61 cm to 2.5 cm and the correlation lengths
varied from 1.73 cm to 11.9 cm and the volumetric moisture
contents varied from 0.035 to 0.144.

A summary of dynamic range for soil parameters, , and
is given in Table II.

III. M ODELING PROCEDURE ANDVERIFICATION

The input parameters for the intended polarimetric model in-
clude incidence angle, the volumetric soil moisture content

and the roughness parametersand , where is the rms
height, is the correlation length andis the wavenumber. The
surface roughness spectrum was also considered in the mod-
eling procedure by comparing various roughness spectra [18]
with the measured radar backscatter. Because the backscatter is
only weakly dependent on soil type, in comparison with its re-
sponse to surface roughness and soil moisture, the soil type has
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TABLE II
DYNAMIC RANGE OF SOIL PARAMETERS

been excluded in this model. The soil moisture contentis
used in the model instead of the complex dielectric constant for
simplicity. Moreover, the soil moisture content of the top 3-cm
soil-surface layer is used at all frequencies because it was shown
that the top 2 3 cm soil layer exhibits the greatest influence on
the radar backscatter response even though the wave may pene-
trate deeper into the soil for a dry surface at L-band [19].

A. -Polarized Backscattering Coefficient

It was found that the cross-polarized backscattering coeffi-
cient of the semi-empirical model described in [6] agrees very
well with the measurements, especially with regard to its depen-
dence on . The model expresses in terms of the Fresnel re-
flectivity (or indirectly through the complex dielectric constant),
the incidence angle and the roughness parameter. For a typ-
ical agricultural soil, such as silt loam or sandy loam, the Fresnel
reflectivity exhibits an approximately linear dependence on the
volumetric soil moisture content [20]. At nadir the relationship
assumes the approximate form and is valid over the
soil moisture range of .

After examining the angular patterns of the measured data,
we selected as a candidate function for characterizing
the angular dependence and function is used
to account for the response to surface roughness. This rough-
ness function satisfies the conditions that the cross-polarized
backscattering coefficient approaches zero for a smooth (near
flat) surface ( ) and that on the other extreme it becomes
independent of for a very rough surface ( ). Hence,
an overall functional form for the cross-polarized backscattering
coefficient is proposed as follows:

(12)

The magnitudes of constants, , , and were determined
through data fitting, using the database, by applying the min-
imum mean square error (MMSE) technique. The process led
to the following values , , , ,
and .

The data fitting has been performed using all data listed in the
previous section. Table III shows the root-mean-square errors
obtained from the data-fit process.

Fig. 3 shows a comparison between our model and the IEM
for an incidence angle of 45and a soil moisture content

. The figure also includes data measured at angles in the
range and for moisture in the range

. For the IEM computation, an approximate backscat-
tering model for surfaces with small and moderate rms heights

TABLE III
ROOT-MEAN-SQUARE ERRORS FOR THEDATA-FITTING PROCESS

Fig. 3. Measurements of� for conditions over the range of35 < � < 55 ,
0:03 < m < 0:3 and0:03 < s=l < 0:32. The measurements are compared
with curves calculated using the IEM and the semi-empirical model, both for
� = 45 andm = 0:13.

( ) [3, Ch.5] with an exponential correlation function with
was used. Our proposed model agrees well with the

measurement across the entire range ofand agrees with the
IEM for the range of .

B. -Polarized Backscattering Coefficient

The cross-polarized ratio is defined as as
in [6], where it is expressed as proportional to the term

and to . Analysis of the database shows that the
measured values ofagree quite well with .
Fig. 4 shows the measured values offor ,

at , compared with the func-
tional form given by . Also shown
is a set of curves calculated on the basis of the IEM, assuming an
exponential autocorrelation function with ,
and .

Data analysis also shows that the sensitivity of the measured
to incidence angle is high enough for modeling, while that

to the soil moisture is very weak. We examined the sensi-
tivities of to and using the IEM and confirmed that the
increases rapidly with incidence angles for , par-
ticularly for a surface with a small surface slope ( ),
but becomes almost insensitive to the incidence angle at angles
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Fig. 4. Measured variation of the cross-polarized ratio� =� with ks,
where the measurements cover the range29 < � < 51 , 0:03 < m < 0:3
and 0:03 < s=l < 0:32. Curves calculated in accordance with the
semi-empirical model and the IEM are shown for comparison.

greater than 40and that is insensitive to soil moisture over
the range .

Based on the preceding analysis, we propose the following
functional form for the cross-polarized ratio:

(13)

where , , , and are constants to be determined by applying
MMSE fitting to the database. The best data-fit gave ,

, , , and .
Upon combining (12) and (13), we obtain the following ex-

pression for the -polarized backscattering coefficient, see

(14)

We note that the dependence of on the parameter can be
approximated as for and (indepen-
dent of ) for . Fig. 5 displays measured values of
as a function of . Also shown is our semi-empirical model
calculated for median conditions, as well as the IEM ( )
and GO model ( ). For the GO model computation, a sur-
face correlation function was assumed
[1, Ch.12]. Our empirical model agrees well with the measure-
ments over the entire range of and it also agrees with the IEM
for and with the GO model for .

C. -Polarized Backscattering Coefficient

Next, we examined the co-polarized ratio . The
SPM, which is valid for small values, shows that the is
higher than and that the ratio depends on the dielectric
constant (and therefore on the soil moisture content) and the
incidence angle, while the GO model, which is valid for large

values, shows that is always equal to . We know that

Fig. 5. Plots of� , calculated in accordance with the IEM, the GO model
and the semi-empirical model, for� = 40 , m = 0:08 ands=l = 0:1. Also
included are measurements over the range29 < � < 51 , 0:03 < m <
0:15 and0:03 < s=l < 0:32.

(0 dB) at normal incidence ( ) for any surface and
it is also equal to 1 when the surface is very rough ( )
at any incidence angle. Incorporating these limiting cases with
expectations on the variations ofwith and , we propose
the following functional form:

(15)

where is the incidence angle in degrees and, , and are
constants to be found from MMSE fitting using the database.
This form uses the volumetric soil moisture content (for
simplicity) instead of the Fresnel reflectivity at nadir [6]. The
best data-fit gave , , and .

Fig. 6 shows the variation of the measuredto for data
over the range and . For com-
parison, model curves are shown for two extreme cases, namely

and and and , as well as
curves based on the IEM for the same extreme cases.

We can compute the -polarized backscattering coefficient
by simply combining (14) and (15) or by combining (12),

(13) and (15)

In Fig. 7 we compare the model-calculated angular responses
of , and for a surface with ,
at about 55 with backscattering values measured by the JPL
AirSAR. Good agreement is observed between the model and
the measured data.

D. Degree of Correlation

Until the present study, no theoretical model has been pub-
lished containing explicit expressions for the statistical parame-
ters of the phase-difference PDF, namely the degree of corre-
lation and the co-polarized phase-difference. Hence, our
model effort will rely on polarimetric measurements of bare
soil surfaces and on numerical computations of backscattering
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Fig. 6. Variation of the co-polarized ratio� =� with ks for measurements
over the range0:03 < m < 0:3 and0 < � < 70 . Curves calculated on
the basis of the semi-empirical model, the IEM and the GO model, are shown
for two relatively extreme surface conditions.

Fig. 7. Polarimetric semi-empirical model compared with SAR data for a
surface withks = 0:477, kl = 4:65 at 54:7 < � < 57:0 : � , � and
� versusm .

from one-dimensional inhomogeneous, dielectric, rough sur-
faces [21]. For an isotropic homogeneous rough surface, there is
no phase-difference between the- and -polarized backscat-
tering amplitudes at . Therefore, the PDF of the phase-
difference angle is a delta function at , which corresponds
to (Fig. 2). The measurement database and the numerical
computation show that decreases as increases and the an-
gular variation of depends strongly on the surface roughness
and weakly on the soil moisture content.

After close examination of the database, the following func-
tional form was chosen:

(16)

where and may depend on the surface roughness and soil
moisture content. At first, and were determined for each

Fig. 8. Measured degree of correlation compared with model predictions for
two relatively extreme surface conditions.

of many subsets in the database, with each subset defined over
a narrow range of the parameters , , and . Then,
functional forms were deployed for and leading to

(17)

Application of MMSE data-fit to the measurement database
provided the following values for the constants: ,

, , and . Fig. 8 shows the variation
of the measured with for the range ,

and and the two calculated curves
bounding the data represent two relatively extreme conditions.

E. Co-Polarized Phase-Difference

The co-polarized phase-differenceis a measure of the mean
value of the co-polarized phase angle. At , should
be zero because there should be no phase-difference between the

- and -polarized backscattering amplitudes for an isotropic
surface. A data-fitting process similar to that used in the pre-
ceding section led to the following functional dependence on
the surface parameters:

(18)

where is the incidence angle in degrees. The MMSE data-fit
to the measurement database provided ,
and . In Fig. 9 we compare model calculation of the
co-polarized phase-differencewith all of the measured data.

As shown in Fig. 9, the data measured by the AirSAR are
about 15 lower than those measured by the polarimetric scat-
terometers. The phase-difference parameters measured by the
polarimetric scatterometers are accurate because the data were
calibrated by the differential Mueller matrix technique using
the polarimetric response of a calibration target over the entire
mainlobe of the scatterometer [15]. When a traditional calibra-
tion technique for a distributed target is used,i.e., the differen-
tial Mueller matrix is approximated by the Mueller matrix di-
vided simply by an illuminated area, theand the are inaccu-
rate as shown in [15]. For the scatterometer data, thevalues
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Fig. 9. Measured co-polarized-phase-difference compared with model
predictions for median soil parameters.

obtained by the old illumination-integral calibration technique
were about 0.8 times thevalues determined by the new accu-
rate differential Muller matrix calibration technique. It should
be noted that the degree of correlation measured by the JPL
AirSAR fits better to the model (17) multiplied by a factor of
0.8 0.85.

Table IV shows maximum sensitivities of the models for ,
, , and over the 95% ranges of the soil parameters, ,
, (Table II), as well as over the range of( ).

F. Differential Mueller Matrix

As described in Section I, the differential Mueller matrix can
be computed from , , , and , each of which can be
computed using the expressions provided by the semi-empirical
polarimetric model in terms of the surface parameters. Compar-
ison between the model and measured data can be made in terms
of the Mueller matrix. At , a surface with ,

, and was measured by the scatterometer
to have a differential Mueller matrix

(19)
For the surface parameters associated with the measured matrix
given in (19), such a process leads to

(20)
The corresponding elements of the two differential Mueller ma-
trices are in very good agreement. We note that elements other
than , , , , and of the differential
Mueller matrix are negligible for radar backscattering from soil
surfaces.

TABLE IV
MAXIMUM SENSITIVITY OF THE MODEL ON EACH PARAMETER IN ITS

95% RANGE

IV. CONCLUDING REMARKS

A semi-empirical polarimetric backscattering model was de-
veloped for random bare soil surfaces using a combination of
truck-mounted scatterometer measurements and airborne SAR
observations, both supported by extensive ground observation of
the soil surface statistics and moisture content. The functional
form of the model was constrained to insure that its predictions
are consistent with known theoretical values, such as
at normal incidence, for an electromagnetically very
rough surface and approaches a constant as surface
roughness exceeds . The two distinguishing features of
the model is that it not only agrees with experimental obser-
vations over a wide range of soil surface conditions, but it also
agrees with the IEM and geometrical optics model over their in-
dividual regions of validity, thereby encompassing the full range
of surface roughness encountered under natural conditions.
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