Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules

Jonathan P. McNamara and Ian H. Hillier*

Table	e ST interaction energies (kcal mor) i	or geometry optim	ised 522 complex	les			
No.	Complex (symmetry)	AM1	PM3	$\mathbf{PM3}_{\mathbf{BP}}^{a}$	AM1-D	PM3-D	Database ⁰
Hydrog	gen bonded complexes (7)		- - -	· · · -		4.00	
1	$(NH_3)_2 (C_{2h})$	-1.39	-0.71	-0.87	-3.03	-1.99	-3.17
2	$(H_2O)_2 (C_s)$	-3.30	-3.55	-4.19	-7.22	-6.53	-5.02
3	Formic acid dimer (C_{2h})	-6.62	-9.58	-12.60	-12.45	-16.16	-18.61
4	Formamide dimer (C_{2h})	-2.06	-6.99	-14.48	-14.64	-14.42	-15.96
5	Uracil dimer (C_{2h})	10.48	-10.70	-16.96	-17.80	-18.83	-20.65
6	2-pyridoxine·2-aminopyridine (C_1)	-6.15	-7.06	-14.90	-13.06	-18.32	-16.71
7	Adenine thymine WC (C_1)	-5.06	-6.90	-15.36	-12.66	-18.66	-16.37
MUE		8.78	7.28	2.45	2.86	1.77	
Compl	exes with predominant dispersion contribution	(8)					
8	$(CH_4)_2 (D_{3d})$	-0.21	-0.32	-0.18	-4.10	-2.38	-0.53
9	$(C_2H_4)_2(D_{2d})$	-0.13	-1.08	-0.82	-4.85	-4.11	-1.51
10	Benzene·CH ₄ (C_3)	0.35	-0.20	-0.23	-2.93	-2.88	-1.50
11	Benzene dimer (C_{2h})	0.01	-0.02	-0.54	-3.10	-4.59	-2.73
12	Pyrazine dimer (C_s)	-0.34	-0.26	-0.38	-4.87	-4.45	-4.42
13	Uracil dimer (C_2)	-6.05	-4.26	-4.79	-11.25	-7.59	-10.12
14	Indole benzne (C_1)	-1.33	-1.65	-2.01	-8.16	-6.26	-5.22
15	Adenine thymine stack (C_1)	-5.15	-6.50	-16.57	-15.13	-11.70	-12.23
MUE		3.23	3.00	2.68	2.01	1.48	
Mixed	complexes (7)						
16	Ethene ethine (C_{2n})	-0.57	-1.23	-1 23	-2.47	-2.58	-1 53
17	Benzene: $H_{2}O(C)$	-1.03	-1.63	-1 77	-3.90	-4 46	_3.28
18	Benzene·NH ₂ (C)	-0.80	-0.93	-1.12	-4 04	_3.99	-2.35
19	Benzene HCN (C)	-0.92	-1.85	_2 24	-4.28	-4 40	-4 46
20	Beznene dimer (C_2)	-0.09	-0.52	-0.60	_4 22	_4 39	_2 74
20	Indole benzene T-shape (C_1)	-1.24	-1.67	-1.85	_7 74	-7.20	-5.73
22	Phenol dimer (C_1)	_3 39	-4 33	-3.41	-11.55	-8.95	-7.05
MUE		2.73	2.14	2.13	1.63	1.28	1.05
Statisti	<u>(8</u>						
MSE ^c		_1 83	_1 00	-2.04	0.52	0.59	
MD^d		2 27	-+.09 2 71	-2.04	1 00	1 3/	
MITE ⁶		J.27 1.83	2.74	1.40	1.77	1.34	
DMCE	f	4.03	4.09	2.43	2.10	1.31	
NIVISE	MINES	0.23	<i>J.22</i> 0.74	2.90	2.03	1.03	
MAXE		13.10	9.74	10.35	10.65	5.13	

Table S1 Interaction energies (kcal mol^{-1}) for geometry optimised *S22* complexes

^{*a*} Giese *et al.*^{20 *b*} S22 database.^{1 *c*} Mean signed error. ^{*d*} Mean deviation. ^{*e*} Mean unsigned error. ^{*f*} Root mean square error. ^{*g*} Error spread (largest positive minus largest negative error).

Table S2 Inter	raction distances (Angstroms) for geo	ometry optimised	S22 complexes	а			
No.	Complex (symmetry)	AM1	PM3	$\mathbf{PM3}_{\mathbf{BP}}^{b}$	AM1-D	PM3-D	Database ^c
Hydrogen bonded	d complexes (7)						
1	$(NH_3)_2 (C_{2h})$	2.784	3.241	3.129	2.646	2.726	2.504
2	$(H_2O)_2 (C_s)$	2.094	1.809	1.761	1.911	1.769	1.952
3	Formic acid dimer (C_{2h})	2.101	1.776	1.729	1.925	1.737	1.670
4	Formamide dimer (C_{2h})	2.072	1.807	1.730	1.981	1.763	1.841
5	Uracil dimer (C_{2h})	2.044	1.787	1.722	1.946	1.744	1.775
6	2-pyridoxine 2-aminopyridine (C_1)	2.511, 2.107	1.798, 1.815	1.717, 1.737	1.980, 1.981	1.722, 1.768	1.859, 1.874
7	Adenine thymine WC (C_1)	2.476, 2.101	1.780, 1.821	1.696, 1.741	1.807, 2.018	1.708, 1.768	1.819, 1.929
MUE	-	0.34	0.14	0.18	0.12	0.12	
Complexes with p	predominant dispersion contribution (8)						
8	$(CH_4)_2 (D_{3d})^2$	3.721	3.447	3.717	2.881	3.160	3.718
9	$(C_2H_4)_2(D_{2d})$	3.714	3.706	3.759	3.305	3.469	3.718
10	Benzene $\cdot CH_4(C_3)$	3.746	3.718	3.729	3.315	3.450	3.716
11	Benzene dimer (C_{2b})	6.952	6.096	6.202	3.643	3,499	3.765
12	Pyrazine dimer (C_2)	4 848	4 760	4 633	3 695	3 4 3 7	3 479
13	Uracil dimer (C_2)	5.805	6.732	6.671	3.097	3.406	3.166
14	Indole benzne (C_1)	5 572	5 520	4 781	$4 448^{i}$	3 415	3 444
15	Adenine thymine stack (C_1)	6.202	5.788	5.599	4.320^{i}	3.280	3.172
MUE		1.55	1.52	1.36	0.53	0.22	
Mixed complexes	(7)						
Mixeu complexes	$(/)$ Ethono othing (C_{-})	2 169	2 420	2 440	2 210	2266	2 752
10	Entene.etime (C_{2v})	2.408	2.429	2.440	2.319	2.300	2.732
1/	Benzene NL (C)	4.020	5.740	2.020	2.980	2.982	2.551
10	$\begin{array}{c} \text{Benzene-INFI3} (C_s) \\ \text{Benzene-IICN} (C) \end{array}$	4.092	4.023	5.900 2.441	2.995	5.009	5.392
19	Benzene dimon (C_s)	5.472	5.094	5.441	5.228	2.270	5.50/ 2.512
20	Bezhene dimer (C_{2v})	3.223	5.000	5.040	5.235	5.570	3.313
21	Indole benzene 1-snape (C_1)	3.811	3.80/	3.42/	3.010	5.255	3.210
22	Phenol dimer (C_1)	2.174, 5.925	1.829, 5.712	1.//5, 5.6/4	2.001, 5.040	1.//8, 5.265	1.937, 4.921
MUE		0.74	0.48	0.39	0.29	0.26	
Statistics		0.02	0.60	0.51	0.02	0.00	
MSE"		-0.83	-0.60	-0.51	-0.02	0.08	
MD		0.79	0.79	0.74	0.30	0.18	
MUE'		0.85	0.69	0.63	0.30	0.20	
RMSE ^g		1.28	1.17	1.09	0.42	0.25	
MAXE–MINE ⁿ		3.47	3.89	3.82	1.99	1.01	

^{*a*} Refer to Figure S1 for structures and (average) interaction distances. ^{*b*} Giese *et al.*^{20 *c*} S22 database.^{1 *d*} Mean signed error. ^{*e*} Mean deviation. ^{*f*} Mean unsigned error. ^{*g*} Root mean square error. ^{*h*} Error spread (largest positive minus largest negative error). ^{*i*} Indole benzene (C_1) collapses to the T-shape arrangement; adenine thymine stack (C_1) is distorted by hydrogen-bonding interactions.

No.	Complex	AM1	PM3	$\mathbf{PM3}_{\mathbf{BP}}^{b}$	AM1-D	PM3-D	Dispersion ^c	Database ^d
TT 1 1								
Hydrogen bo	nded DNA base pairs (31)	11.02 (14.71)	1(40 (14 00)	21.21(.26.07)	20.00 (25.24)	20.04 (20.70)	4.57	22.00
23	G. C WC	-11.82 (-14./1)	-16.48 (-14.90)	-21.21 (-26.97)	-30.00 (-25.34)	-29.94(-30.79)	-4.5/	-32.06
24	mG····mC WC	-10.71 (-14.68)	-17.12 (-14.84)	-22.45 (-26.93)	-30.46 (-25.34)	-31.61 (-30.87)	-4.78	-31.59
25	A····T WC	-4.28 (-5.06)	-6.79 (-6.14)	-9.66 (-15.36)	-16.58 (-12.66)	-17.33 (-18.66)	-4.05	-16.86
26	mA···m1 H	-3.39 (-5.09)	-8.13 (-7.71)	-11.85 (-16.55)	-16.81 (-12.78)	-19.51 (-19.86)	-4.21	-18.16
27	80G···C WC pl	-11.76 (-15.54)	-19.03 (-16.31)	-24.70 (-28.77)	-31.79 (-26.01)	-33.67 (-32.06)	-4.69	-33.30
28	I···C WC pl	- 8.36 (-10.41)	-13.87 (-12.87)	-18.50 (-21.14)	-24.11 (-18.79)	-26.15 (-24.09)	-4.20	-24.90
29	G…U wobble	-2.46 (-8.39)	-8.23 (-7.35)	-11.64 (-13.05)	-18.39 (-16.65)	-18.60 (-15.80)	-3.63	-19.10
30 ^e	CCH+	-24.60 (-33.54)	-35.96 (-36.18)	-43.20 (-48.31)	-48.96 (-40.04)	-53.21 (-51.64)	-4.82	-51.40
31	U…U Calcutta pl	-2.98 (-5.13)	-3.15 (-3.75)	-3.93 (-6.24)	-11.45 (-11.10)	-8.73 (-11.69)	-2.52	-10.30
32	U…U pl	-1.34 (-6.11)	-5.34 (-4.93)	-7.35 (-10.27)	-13.75 (-11.84)	-13.57 (-12.89)	-2.92	-13.70
33	2-aminoA…T	-5.51 (-7.74)	-7.85 (-7.81)	-10.84 (-17.53)	-23.21 (-17.81)	-22.15 (-23.10)	-5.11	-19.50
34	2-aminoA…T pl	-5.80 (-7.82)	-8.29 (-9.40)	-11.06 (-18.76)	-22.58 (-17.80)	-21.72 (-23.60)	-4.86	-19.70
35	A····F	-1.04 (-2.15)	-0.62 (-2.14)	-1.34 (-4.04)	-6.85 (-7.18)	-4.95 (-11.64)	-2.66	-5.20
36	A…C pl	-3.96 (-4.78)	-8.98 (-10.43)	-12.91 (-19.70)	-15.14 (-10.50)	-20.30 (-23.53)	-3.91	-17.60
37	G…G pl	-8.42 (-9.66)	-9.22 (-8.76)	-12.51 (-14.38)	-19.54 (-16.81)	-18.75 (-20.46)	-3.97	-21.30
38	G…A 1	-4.19 (-7.43)	-8.64 (-8.36)	-12.30 (-16.67)	-19.43 (-15.60)	-21.43 (-21.87)	-4.94	-19.40
39	G…A 1 pl	-4.26 (-7.07)	-9.23 (-10.15)	-12.47 (-17.78)	-18.55 (-15.60)	-20.60 (-22.21)	-4.44	-18.90
40	G…A 2	-1.17 (-3.70)	-4.12 (-4.84)	-5.94 (-12.92)	-10.70 (-7.90)	-14.00 (-19.89)	-3.89	-14.40
41	G…A 2 pl	-0.83 (-2.78)	-4.74 (-7.11)	-6.76 (-14.92)	-10.63 (-7.89)	-14.92 (-20.69)	-3.89	-12.80
42	G…A 3	-3.90 (-6.12)	-8.47 (-7.98)	-11.85 (-16.12)	-18.04 (-14.35)	-20.58 (-20.70)	-4.76	-18.80
43	G…A 4	-1.31 (-4.19)	-4.39 (-5.17)	-6.63 (-13.68)	-11.89 (-8.78)	-15.24 (-19.69)	-3.96	-13.50
44	A…A 1 pl	-1.87 (-3.33)	-6.08 (-7.58)	-9.28 (-16.28)	-12.06 (-8.42)	-16.61 (-20.11)	-3.70	-14.50
45	A···A 2 pl	-0.88 (-3.05)	-5.46 (-5.53)	-8.28 (-15.96)	-10.54 (-7.75)	-15.51 (-20.24)	-3.64	-13.70
46	A····A 3 pl	0.31 (-3.11)	-3.70 (-4.62)	-5.93 (-13.87)	-8.63 (-8.99)	-13.16 (-19.03)	-3.58	-12.20
47	80G…G	-3.37 (-10.04)	-9.61 (-8.27)	-13.74 (-15.46)	-21.10 (-18.58)	-21.10 (-17.79)	-3.78	-22.80
48	A···T WC	-4.53	-6.38	-9.27	-17.13	-17.35	-4.30	-16.40
49	G…C WC	-12.79	-20.81	-26.56	-33.32	-35.95	-4.89	-35.80
50	A···T WC	-6.05	-6.80	-9.79	-18.00	-17.37	-4.27	-18.40
51	G…A HB	0.27	-5.40	-8.41	-12.01	-17.96	-4.54	-11.30
52	C…G WC	-9.32	-18.79	-25.37	-31.18	-34.60	-4.81	-30.70
53	G…C WC	-9.11	-18.59	-25.14	-30.60	-34.12	-4.68	-31.40
MUE ^f		15.17 (11.76)	10.63 (10.50)	7.06 (2.97)	1.58 (4.67)	1.66 (3.41)		
Interstrand b	ase pairs (32)							
54	GG0/3.36 CGis036	-1.22	-1.82	-2.26	-3.35	-3.96	-1.86	-3.68
55	GG0/3.36 GCis036	7.36	8.67	9.71	-3.41	-4.59	-11.23	-4.82
56 ^g	AA20/3.05 ATis2005	-1 37	-0.97	-1 48	-3.58	-3.33	-1.72	-2.16
57 ^g	AA20/3.05 TAis2005	4 90	6.08	6.45	-4 82	-5 21	-9.76	-2.34
58	GC0/3.25 C//Cis	2.92	2.86	3 60	2.97	2.50	-0 39	3.09
			- .00	5.00		2.20	0.07	2.07

least mat-1) for ICCU 2

⁴

60 ^g	CG0/3.19 G//Gis	2.10	2.52	3.06	1.57	1.65	-0.77	1.24
61 ^g	CG0/3.19 C//Cis	1.08	4.46	4.10	-6.11	-4.69	-7.04	-3.91
62	GA10/3.15 A//Cis	1.40	1.37	2.01	-0.31	-0.42	-1.61	-0.31
63	GA10/3.15 T//Gis	1.48	1.48	1.85	0.64	0.36	-1.05	0.58
64	AG08/3.19 T//Gis	1.01	2.01	2.25	-1.82	-1.40	-2.64	-0.47
65	AG08/3.19 A//Cis	1.32	1.99	2.55	-0.32	0.06	-1.53	-0.18
66	TG03.19 A//Gis	0.63	1.84	1.45	-5.21	-5.12	-5.54	-4.22
67	TG03.19 T//Cis	-0.52	-0.71	-0.94	-1.10	-1.29	-0.54	-1.15
68	GT10/3.15 T//Cis	0.55	0.53	0.57	0.30	0.12	-0.42	0.30
69	GT10/3.15 A//Gis	-1.46	-1.83	-2.79	-4.70	-5.56	-2.96	-4.06
70	AT10/3.26 T//Tis	1.13	1.15	1.44	0.60	0.40	-0.74	0.88
71	AT10/3.26 A//Ais	0.85	1.70	2.30	-1.59	-1.10	-2.16	-0.92
72	TA08/3.16 A//Ais	2.28	3.58	4.18	-2.73	-2.37	-4.67	-1.55
73	TA08/3.16 T//Tis	0.96	0.90	1.13	0.67	0.43	-0.47	0.70
74	AA0/3.24 A//Tis	-0.08	-0.33	-0.46	-1.48	-1.78	-1.33	-1.71
75	AA0/3.24 T//Ais	-0.20	-0.54	-0.79	-1.39	-1.82	-1.16	-1.30
76	A…A IS	0.78	1.87	2.43	-2.19	-1.73	-2.66	-0.70
77	T…T IS	1.32	1.35	1.66	0.77	0.53	-0.80	1.00
78	G…G IS	1.33	3.77	3.55	-6.29	-5.64	-7.68	-4.50
79	C…C IS	2.58	3.59	4.26	1.30	1.82	-1.34	1.40
80	A…G IS	-1.85	-2.49	-3.57	-4.79	-5.82	-2.75	-4.80
81	T···C IS	0.34	0.23	0.20	-0.01	-0.29	-0.52	-0.10
82	C…A IS	-0.21	0.68	0.21	-3.09	-2.70	-2.28	-3.00
83	G…G IS	-3.60	-3.36	-4.31	-6.00	-5.68	-1.91	-5.22
84	G…G IS	4.00	6.12	6.93	-0.03	0.86	-4.18	0.80
85	C…C IS	3.08	3.02	3.75	3.16	2.68	-0.37	3.10
MUE		2.30	2.87	2.99	0.61	0.58		
Stacked base	e pairs (54)							
86	G···C S	-5.87	2.33	0.62	-21.10 (-22.20)	-14.50 (-15.75)	-11.98	-19.02
87	mG…mC S	-3.20	6.49	4.97	-22.51 (-23.59)	-15.75 (-18.91)	-15.98	-20.35
88	A····T S	2.91	7.37	6.56	-12.20 (-15.13)	-10.63 (-11.70)	-14.18	-12.30
89	mA…mT S	4.77	11.54	10.74	-15.80 (-18.45)	-12.46 (-15.18)	-18.32	-14.57
90	CC1	8.58	10.10	11.50	0.72	-0.14	-8.76	2.45
91	CC2	5.33	6.31	6.61	-3.72	-4.81	-9.40	-3.85
92	CC3	1.66	2.29	1.79	-8.27	-9.07	-9.47	-8.88
93	CC4	1.12	2.74	2.67	-9.19	-8.65	-9.42	-9.92
94	CC5	8.31	9.99	11.31	-0.06	-0.78	-9.10	0.32
95	CC6	8.60	10.60	11.87	0.19	-0.37	-9.23	0.64
96	CC7	4.79	4.64	5.22	-0.47	-2.01	-5.73	-0.98
97	CC8	0.72	0.80	0.83	-8.24	-9.05	-8.14	-9.10
98	CC9	1.48	3.41	3.23	-8.68	-7.76	-9.36	-9.11
99	CC10	1.24	3.16	3.17	-8.82	-8.00	-9.12	-8.27
100	CC11	0.64	1.99	1.66	-9.00	-8.56	-8.80	-9.43
101	CC12	-0.79	-1.73	-1.91	-6.36	-7.70	-4.99	-7.43
								-

102	CC13	0.69	2.36	2.15	-8.03	-7.23	-7.82	-8.80
103	CC14	1.34	3.39	3.49	-9.12	-8.29	-9.53	-9.11
104	AAst	3.51	4.50	4.26	-7.88	-9.03	-11.38	-8.58
105	GGst	0.98	2.05	1.20	-12.12	-13.18	-12.71	-12.67
106	ACst	1.61	2.72	2.15	-9.08	-9.62	-10.40	-10.22
107	GAst	2.46	3.21	2.72	-9.87	-11.20	-12.13	-11.38
108	CCst	0.83	2.55	2.13	-9.00	-8.15	-9.00	-10.02
109	AUst	2.15	3.52	2.72	-8.81	-9.21	-10.73	-9.79
110	GCst	-0.31	1.10	-0.17	-10.91	-10.92	-10.03	-10.60
111	CUst	0.23	0.97	0.02	-9.34	-9.69	-9.00	-10.42
112	UUst	1.90	2.45	1.71	-6.45	-6.87	-8.15	-7.46
113	GUst	0.22	1.54	0.24	-11.10	-11.53	-10.93	-12.09
114 ^g	GG0/3.36 GGs036	5.64	6.00	6.73	-0.87	-2.24	-7.04	-1.62
115 ^g	GG0/3.36 CCs036	-3.10	-3.69	-4.61	-4.46	-4.76	-0.96	-3.54
116	AA20/3.05 AAs2005	5.29	7.58	8.18	-6.43	-6.88	-11.81	-6.06
117	AA20/3.05 TTs2005	-0.34	0.29	0.21	-3.18	-2.46	-2.16	-4.18
118	GC0/3.25 G//Cs	1.04	1.45	0.41	-10.94	-12.68	-11.66	-10.80
119	CG0/3.19 G//Cs	1.18	0.54	0.56	-6.43	-8.25	-7.22	-7.88
120	GA10/3.15 A//Gs	3.35	5.08	4.21	-9.84	-11.18	-13.24	-9.14
121	GA10/3.15 T//Cs	3.38	4.52	4.27	-4.47	-5.06	-8.08	-4.69
122	AG08/3.19 A//Gs	3.44	2.89	2.78	-6.43	-8.75	-10.01	-7.58
123	AG08/3.19 T//Cs	1.87	0.88	0.76	-6.15	-7.89	-7.68	-6.07
124	TG03.19 T//Gs	2.73	2.95	3.01	-4.68	-5.98	-7.39	-5.67
125	TG03.19 A//Cs	3.78	4.93	5.57	-4.58	-5.37	-8.23	-4.96
126	GT10/3.15 T//Gs	5.57	7.01	7.40	-6.46	-7.25	-11.91	-4.96
127	GT10/3.15 A//Cs	4.56	5.97	6.44	-5.48	-6.01	-10.04	-5.44
128	AT10/3.26 A//Ts	3.85	4.29	4.05	-6.87	-7.97	-10.45	-6.64
129	TA08/3.16 A//Ts	7.89	12.21	12.78	-5.80	-4.94	-13.52	-6.07
130	AA0/3.24 A//As	4.93	6.61	7.06	-6.21	-7.03	-11.23	-6.25
131	AA0/3.24 T//Ts	5.07	6.00	6.37	-5.27	-5.62	-9.85	-3.86
132	A····T S	4.71	5.23	5.10	-7.95	-9.20	-12.48	-8.10
133	G…C S	0.04	-2.11	-2.13	-6.38	-8.71	-5.85	-7.90
134	A····C S	4.54	5.20	6.02	-6.47	-7.34	-10.82	-6.70
135	T…G S	4.51	4.91	5.17	-6.79	-7.95	-11.23	-6.20
136	G····C S	2.76	4.93	5.13	-7.86	-6.92	-9.85	-7.70
137	A…G S	3.34	7.40	8.31	-8.92	-7.43	-11.78	-6.50
138	C…G S	0.61	0.14	-0.63	-9.98	-12.08	-10.27	-12.40
139	G····C S	-0.56	-0.31	-1.27	-10.74	-12.08	-9.69	-11.60
MUE ¹		10.36	11.80	11.68	0.81 (3.28)	1.11 (1.48)		
Amino acid bas	se pairs							
140	F30-K46	-0.34	-1.08	-1.00	-4.27	-4.50	-3.28	-3.10
141	F30-L33	-0.47	0.02	0.25	-9.69	-8.29	-7.23	-5.00
142	F30-Y13	-0.20	-1.27	-1.14	-5.75	-6.37	-4.78	-3.90
143	F30-F49	0.30	-0.54	-0.47	-4.03	-4.44	-3.80	-3.30
								6

144	F30-Y4	2.38	0.97	1.14	-6.59	-7.81	-8.60	-7.00
145	F49-K46	-1.53	0.81	1.16	-9.28	-5.70	-4.93	-4.80
146	F49-V5	-1.19	0.09	0.15	-12.28	-9.31	-7.79	-6.70
147^{h}	F49-W37	0.28	-0.54	-0.45	-2.83	-3.37	-2.76	-2.50
148	F49-Y4	0.28	-2.07	-0.90	-8.22	-8.85	-6.54	-3.10
149	F49-PB (Y4-V5)	0.46	-0.04	0.21	-3.64	-3.97	-3.60	-2.80
150	F49-PB (V5-C6)	-0.66	0.14	-0.42	-10.17	-8.49	-7.30	-8.20
151	E47-K6 (1IU5)	-69.83	-68.09	-67.23	-79.87	-76.11	-5.58	-80.73
152	E49-K6 (1BQ9)	-99.84	-101.37	-100.15	-110.05	-109.40	-5.54	-113.35
153	E54-K2 (1SMM)	-86.71	-87.04	-87.46	-90.75	-89.95	-2.10	-88.29
154	E50-K30 (1BRF)	-58.22	-58.78	-59.16	-58.85	-59.14	-0.30	-60.36
155	E50-K52 (1BRF)	-84.55	-83.42	-83.97	-93.65	-91.40	-6.03	-97.14
156	E49-K6 (1BRF)	-63.83	-67.09	-66.20	-73.65	-73.41	-5.47	-74.24
MUE		5.93	5.60	5.82	2.32	2.28		
Statistics								
MSE^i		-8.98	-8.60	-7.78	-0.01	0.41		
MD^{i}		4.74	4.29	3.97	1.13	1.17		
MUE^k		8.99	8.61	7.79	1.13	1.26		
$RMSE^{l}$		10.69	10.11	9.24	2.52	3.04		
MAXE-MINE ^m		26.97	27.07	26.39	9.29	12.40		

^{*a*} (In parenthesis) interaction energies calculated using semi-empirical optimised geometries. ^{*b*} Giese *et al.*^{20 *c*} AM1-D and PM3-D dispersion contributions for *JSCH-2005* geometries only. ^{*d*} *JSCH-2005* database.¹ Reference complexes 23-47 and 86-89 are *ab initio* optimised geometries whereas remainder are experimental geometries. Complexes omitted containing sulfur; hydrogen bonded complexes 6tG···C WC pl, A···4tU WC, G···4tU, G···2tU, G···6tG pl, 6tG···G pl, 2tU···2tU pl and amino acid pairs F49-C39 and F49-C6. ^{*e*} Overall charge +1. ^{*f*} (In parenthesis) MUEs for optimised complexes only. For comparison, for the stacked complexes the MUEs at the reference geometries are 1.39 (AM1-D) and 3.23 (PM3-D) kcal mol⁻¹. ^{*g*} Interaction energies of complexes 56 and 57, 60 and 61, 114 and 115 are interchanged compared to the *JSCH-2005* database. ^{*h*} Residue 37 of 1RB9 is tryptophan (W), not tyrosine (Y). ^{*i*} Mean signed error. ^{*j*} Mean deviation. ^{*k*} Mean unsigned error. ^{*l*} Root mean square error. ^{*m*} Error spread (largest positive minus largest negative error).

			F30				
Amino Acid Base Pair	F49	K46	L33	Y13	Y4	Sum	MUE
Reference ^b	-3.30	-3.10	-5.00	-3.90	-7.00	-22.30	
Semi-empirical							
AM1 PM3	0.30 -0.54	-0.34 -1.08	-0.47 0.02	-0.20 -1.27	2.38 0.97	1.67 -1.90	4.79 4.08
PM3 _{BP} ^c AM1-D	-0.47 -4.03	-1.00 -4.27	0.25 -9.69	-1.14 -5.75	1.14 -6.59	-1.22 -30.33	3.98 1.77
PM3-D	-4.44	-4.50	-8.29	-6.37	-7.81	-31.41	1.82
<i>DFT-D^d</i> BLYP-D/TZV(2d,2p)	-2.60	-3.05	-5.14	-4.14	-5.10	-20.03	0.61
Molecular Mechanics ^e							
AMBER gaff	-18.90	-6.40	-6.70	0.60	-5.30	-36.70	5.36
AMBER parm94, parm99	-19.30	-13.00	-6.60	-3.10	-5.60	-47.60	5.94
AMBER ff02	-24.10	-15.90	-/.80	-4.80	-5.40	-58.00	7.78
AMBER IIU3 CHARM22	-16.20 -2.10	-8.20	-5.20	-3.50	-5.40	-38.50	4.04
MMFF94	-1.50	-4.10	-2.20	-2.10	-5.00	-14.90	1.88
Engh-Huber	-3.10	-3.10	-4.10	-2.90	-8.20	-21.40	0.66
OPLS-AA	0.00	-0.30	-0.10	0.40	-1.20	-1.20	4.22
TAFF	-2.20	-1.80	-3.60	-2.60	-5.30	-15.50	1.36
Rule	-10.00	-10.60	-14.60	-13.90	-26.00	-75.00	10.54

Table 54 Wolecular mechanics and semi-embilical interaction energies (kear more) of r 50 cluster in tubledoxi
--

^{*a*} PDB Code: 1RB9. ^{*b*} JSCH-2005 database.¹ ^{*c*} Giese *et al.*^{20 *d*} Morgado *et al.*^{31 *e*} Vondrášek *et al.*³⁰

No	Compley		PM3	PM3 _{pp} ^a	AM1_D	PM3_D	Database ^b
110.	Complex	AMI	1 1115	I MISBP	AMI-D	1 113-0	Database
Hydrogen h	onded DNA base pairs (25)						
23	GC WC	2 087	1 803	1 721	1 948	1 739	1 761
23	0 0 1 0	2.349	1.005	1 717	1.910	1 745	1 906
		2.115	1 840	1 761	1 989	1 764	1 922
24	mG…mC WC	2.085	1.802	1.720	1.948	1.739	1.730
		2.366	1.784	1.720	1.972	1.744	1.874
		2.111	1.837	1.759	1.985	1.765	1.880
25	A…T WC	2.101	1.821	1.741	2.018	1.768	1.929
-		2.476	1.780	1.696	1.870	1.708	1.819
26	mA…mT H	2.491	1.766	1.679	1.896	1.692	1.746
		2.130	1.827	1.748	2.051	1.770	1.930
27	80G…C WC pl	2.072	1.805	1.723	1.952	1.741	1.729
	1	2.089	1.768	1.707	1.941	1.732	1.853
		2.084	1.838	1.759	1.984	1.765	1.868
28	I…C WC pl	2.088	1.795	1.729	1.994	1.754	1.790
	-	1.988	1.779	1.710	1.848	1.718	1.775
29	G…U wobble	2.052	1.794	1.728	1.929	1.747	1.744
		2.147	1.802	1.732	2.036	1.759	1.754
30^{c}	CCH+	2.168	1.858	1.771	2.014	1.780	1.892
		1.886	1.697	1.644	1.809	1.668	1.714
		1.995	1.767	1.714	1.880	1.714	1.610
31	U Calcutta pl	2.106	1.808	1.745	1.988	1.759	1.847
		2.207	2.481	2.461	1.998	1.781	2.177
32	U…U pl	2.109	1.805	1.735	1.973	1.758	1.810
		2.109	1.799	1.733	1.971	1.752	1.811
33	2-aminoA…T	2.120	1.850	1.771	1.981	1.778	1.942
		2.036	1.758	1.676	1.932	1.714	1.799
		2.110	1.844	1.760	1.976	1.770	1.870
34	2-aminoA…T pl	2.111	1.832	1.761	1.981	1.770	1.905
		2.055	1.758	1.677	1.933	1.719	1.868
		2.106	1.828	1.756	1.976	1.765	1.873
35	A…Ł	2.160	1.801	1.776	1.997	1.787	2.105
		2.777	2.598	2.530	2.477	1.746	2.272
36	A…C pl	2.571	1.792	1.715	2.004	1.726	1.903
		2.468	1.794	1.721	1.980	1.727	1.889
37	G…G pl	2.585	1.810	1.734	1.881	1.721	1.846
		2.244	2.485	2.459	2.071	1.800	2.162
38	G…A 1	2.431	1.805	1.722	2.029	1.735	1.823
		2.100	1.805	1.728	1.974	1.752	1.806
39	G…A 1 pl	2.385	1.778	1.712	2.028	1.739	1.939

Table S5 Interaction distances (Å) for semi-empirically optimised JSCH-2005 complexes

		2.088	1.807	1.730	1.974	1.749	1.774
40	G…A 2	2.636	1.835	1.744	2.279	1.735	2.005
		2.756	1.811	1.719	2.172	1.728	1.961
41	G…A 2 pl	2.569	1.786	1.704	2.176	1.720	1.928
		2.635	1.817	1.739	2.280	1.732	2.006
42	G…A 3	2.539	1.790	1.706	2.073	1.720	1.821
		2.123	1.815	1.739	2.016	1.762	1.851
43	G…A 4	2.693	1.815	1.725	2.023	1.731	1.921
		2.653	1.820	1.730	2.048	1.729	1.947
44	A…A 1 pl	2.577	1.802	1.722	2.046	1.733	1.923
		2.577	1.802	1.722	2.046	1.733	1.925
45	A····A 2 pl	2.562	1.834	1.736	2.298	1.743	1.951
		2.629	1.810	1.711	2.194	1.726	1.938
46	A····A 3 pl	2.607	1.836	1.736	2.725	1.744	1.987
		2.608	1.836	1.736	2.725	1.744	1.981
47	80G…G	2.080	1.789	1.716	2.032	1.741	1.717
		2.136	1.815	1.742	1.969	1.765	1.712
MUE		0.41	0.09	0.15	0.17	0.14	
Stacked Base I	Pairs (4)						
86^d	G····C S	5.587	5.707	5.774	3.693	3.641	3.191
87^d	mG…mC S	6.012	6.140	6.219	3.159	3.183	3.056
88^d	A····T S	6.202	5.788	5.599	4.320 ^{<i>i</i>}	3.281	3.172
89^d	mA…mT S	6.536	6.821	5.984	3.092	3.238	3.054
MUE		2.97	3.00	2.78	0.45	0.22	
Statistics							
MSE ^e		-0.58	-0.17	-0.08	-0.18	0.11	
MD^{f}		0.38	0.39	0.38	0.12	0.10	
MUE ^g		0.58	0.29	0.32	0.19	0.15	
$RMSE^{h}$		0.89	0.79	0.55	0.27	0.18	
MAXE-MINE	i	3.45	4.07	3.49	1.33	0.98	

^{*a*} Giese *et al.*^{20 *b*} *JSCH-2005* benchmark database. Sulfur containing complexes 6tG···C WC pl, A···4tU WC, G···4tU, G···2tU, G···6tG pl, 6tG···G pl and 2tU···2tU pl omitted. ^{*c*} Overall charge +1. ^{*d*} Distance between centre of mass of monomer units. ^{*e*} Mean signed error. ^{*f*} Mean deviation. ^{*g*} Mean unsigned error. ^{*h*} Root mean square error. ^{*i*} Error spread (largest positive minus largest negative error). ^{*j*} Hydrogen-bonding interactions distort structure. Figure S1 Intermolecular interaction distances for S22 complexes.

Note: • refers to the centre of mass (COM) of the monomer unit

Hydrogen bonded complexes (7)

Adenine thymine WC (C_1)

Complexes with predominant dispersion contribution (8)

 $(\mathrm{CH}_4)_2\,(D_{3\mathrm{d}})$

 $(C_2H_4)_2 (D_{2d})$

Mixed Complexes (7)

Ethene-ethine (C_{2v})

Benzene dimer (C_{2h})

Uracil dimer (C_2)

Adenine thymine stack (C_1)

Benzene·H₂O (C_s)

Benzene·NH₃ (C_s)

Benzene dimer (C_{2v})

Benzene·HCN (C_s)

Indole benzene T-shape (C_1)

Phenol dimer (C_1)