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ABSTRACT Rapid and accurate monitoring of soil organic matter (SOM) content is of great significance

for precision fertilization of farmland. However, the SOM retrieval models are mainly established by

statistical methods, which have limited application scope and incomplete theoretical foundation. Moreover,

the accuracy of the SOM retrieval models remains raised. In this paper, for the first time, a semi-empirical

SOM content retrieval model is constructed, which has certain theoretical basis, strong applicability and

higher accuracy than before. Based on the Kubelka–Munk (KM) theory, the SOM retrieval model with the

absorption coefficient k and scattering coefficient s related to SOM (r = k/s) is derived. The validity and

reliability of the model are confirmed with validation set (n = 26) including three sorts of soils. Results

show that the model can estimate SOM content in different sorts of soils with high prediction accuracy

and good prediction ability (root mean square errors of prediction (RMSEP), coefficients of determination

(R2) and relative percentage deviation (RPD) values of 0.18%, 89.9% and 3.2, respectively ) in the range

of 552-950nm. The model provides an innovative method for predicting SOM content.

INDEX TERMS Soil organic matter retrieval, reflectance, semi-empirical model, KM.

I. INTRODUCTION

SOM is an important part of soil, and the SOM content is

generally regarded as a criterion to assess soil fertility and

an important indicator of soil degradation [1], [2]. Efficient

and accurate monitoring of SOM content is of great signif-

icance for precision fertilization and rational utilization of

land resources. The traditional determination of SOM con-

tent is mainly achieved by soil field sampling and chemical

analysis. Although the precision is high, the cost is also high

and it can’t effectively monitor the degradation of soil [3].

The visible and near-infrared (VNIR) hyper-spectral tech-

nique can retrieve the SOM content by measuring the spectral

reflectance of soil. Compared with the traditional method,

it has many advantages such as low cost, high speed, no pol-

lution, and real-time monitoring of soil component. It can

The associate editor coordinating the review of this manuscript and
approving it for publication was Wen-Sheng Zhao.

greatly meet the development needs of precision agriculture,

and has become a research hotspot [4]–[21].

At present, statistical model is the main method to estab-

lish SOM content retrieval model based on hyper-spectral

characteristics of soil. Several multivariate methods for SOM

prediction have been successfully utilized to develop a

faster and higher-quality model, such as partial least-squares

regression (PLSR), principal components regression (PCR),

multiple linear regression (MLR), multivariate adaptive

regression splines (MARS), support vector machines (SVM),

PLS-SVM, bayesian model averaging (BMA) [22], weighted

average partial least-squares(WAPLS), (GPR) [23], artificial

neural networks (ANN), ordinary kriging (OK), regression

kriging (RK) [24], random forest (RF) [25], [26], random

forest kriging (RFK), gradient boosting (GB) [27]–[30] and

gradient boosting kriging (GBK). The modeling results using

these methods to predict SOM content are shown in Table 1,

coefficients of determination (R2): 0.17%-0.92%, root mean
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TABLE 1. Modeling results of different methods for predicting SOM
content.

square errors of prediction (RMSEP): 0.22%-0.73%, relative

percentage deviation (RPD): 1.60-3.68 [3], [31]–[35].

However, the SOM retrieval model established by statis-

tical methods has limited application scope and incomplete

theoretical foundation [36]. Moreover, the accuracy of the

SOM retrieval model with statistical methods remains to be

raised.

To solve this problem, a concise model which has a cer-

tain theoretical basis and strong applicability is presented.

In previous studies, the diffuse reflectance in the KM model

is usually regarded as a parameter that needs to be inverted or

a constant for a given material and illumination wavelength.

Nevertheless, further study finds that diffuse reflectance is

not only related to material and wavelength, but also to SOM

content, since k and s of soil are both affected by SOM

content, and diffuse reflectance is the function of k and s

based on KM model. According to a frequently effective and

commonly accepted assumption that the k and s of a mixed

medium can be regarded as a simple sum function of the k

and s weighted by their composition proportions [37]–[39],

the k and s with SOM content are first signified, respectively.

Then, the relationship between reflectance R and transformed

reflectance r is derived based on the KM theory. Finally,

the SOM retrieval model is further derived by relating R and

SOM content with r = k/s. The model can estimate the SOM

content with higher accuracy than before, and it provides an

innovative method for predicting SOM content. The proposed

model exhibits the following advantages:

(1) For the first time, a semi-empirical model for SOM

content retrieval is constructed by introducing SOM

content information into KM model. It has a certain

theoretical basis, high prediction accuracy and exten-

sive applicability.

(2) It is not restricted to a single band or wavelength. Prop-

erly calibrated, it is competent to describe the response

of reflectance to SOM content over the full optical

range.

The rest of this paper is organized as follows. Section II

provides the description of the SOM retrieval model. The

details of the soil samples and the measurement procedures

are outlined in Section III. The measured reflectance spectra

results and comparisons between the models and measure-

ments are discussed in Section IV. Section V presents the

conclusions of this paper.

II. SOM RETRIEVAL MODEL

A. KM THEORY

The KM [40] theory describes radiative transfer, considering

a downward and an upward light propagation flux (I and J ,

respectively), in an absorbing and scatteringmedium, perpen-

dicular to the layer (Fig.1).

The KM theory consists of two differential equations

describing the light fluxes, I (λ, z) and J (λ, z), at a given

wavelength, λ (nm), and at a depth in the layer, z (cm), with

a light absorption coefficient, k (cm-1), and a light scattering

coefficients s (cm-1):

dI (λ, z)

dz
= −(k + s)I (λ, z) + sJ (λ, z) (1)

dJ (λ, z)

dz
= (k + s)J (λ, z) − sI (λ, z) (2)

By analytically solving these equations, reflectance R can

be obtained [37]:

R = (1 − β)2[exp(αd) − exp(−αd)]

(1 + β)2 exp(αd) − (1 − β)2 exp(−αd)
(3)

where α =
√
k(k + 2s)β =

√
k/(k + 2s)

With increasing layer thickness, d, the reflectance reaches

the infinite reflectance value, R∞, which is used in diffuse
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FIGURE 1. Visualization of the KM theory. I and J are the two light fluxes
in opposite directions; k and s are the absorption and scattering
coefficients, respectively.

reflectance spectroscopy because a further increase of the

sample thickness does not affect the measured signal. In that

case, the calculation of the infinite reflectance in (3) can be

drastically simplified:

R∞ = 1 − β

1 + β
= 1 + k

s
−

√

(
k

s
)2 + 2

k

s
(4)

By solving (4) for transformed reflectance r = k/s, the so-

called KM function is obtained

r = k

s
= (1 − R∞)2

2R∞
(5)

According to the KM theory, the relationship between infi-

nite reflectance R∞ and transformed reflectance r is derived.

B. SOM RETRIEVAL MODEL

For dry soil, reflectance, which is related to SOM, mainly

depend on Fresnel reflectance Ri and diffuse scattering Rd
[41]. The relationship can be expressed as:

R = Ri + Rd = Ri + (1 − Ri)
(1 − K2)R∞
1 − K2R∞

(6)

where K2 is the Fresnel reflectance for diffuse light that

exits the material and transits a thin layer-air interface at

the material surface. In general, K2 is a function of surface

roughness, refractive index and scattering angles. It is often

assumed approximately equal to Ri or treated as a constant

[41]. Ri is the Fresnel reflectance for light incident in air upon

the target surface [42]:

Ri =
(

nsoil − nair

nsoil + nair

)2

(7)

where nsoil is refractive indices of soil (≈ 1.5) and nair is

refractive indices of air (≈ 1).

Equation (6) can be rearranged as:

R∞(R) = R− Ri

R · Ri + 1 − 2Ri
(8)

Combining (5) and (8) yields:

r(R) = k

s
= (1 − R∞)2

2R∞
=

[1 − ( R−Ri
R·Ri+1−2Ri

)]2

2(R−Ri)
R·Ri+1−2Ri

(9)

Equation (9) shows that reflectanceR is affected by k and s,

this is because they are functions of the soil particle character-

istics (i.e., mineral composition, soil water content, nutrients,

etc.) and the SOM. A frequently effective and commonly

accepted assumption is that k and s of a mixed medium can

be regarded as a simple sum function of k and s weighted by

their composition proportions. Given this assumption, k and

s of the soil surface can be described as:
k(θ ) = kother (1 − θ ) + kSOMθ (10)

s(θ ) = sother (1 − θ ) + sSOMθ (11)

where θ is SOM content, kSOM and kother are absorption

coefficients of SOM and the other components, respectively;

sSOM and sother are scattering coefficients of SOM and the

other components, respectively. When SOM content is θ1,

absorption and scattering coefficients of the soil denoted as

k1 and s1 can be described as:
k1 = kother (1 − θ1) + kSOMθ1 (12)

s1 = sother (1 − θ1) + sSOMθ1 (13)

Equations (10) and (11) can be described as:

k(θ ) = k1(
1 − θ

1 − θ1
) + kSOM (

θ − θ1

1 − θ1
) (14)

s(θ ) = s1(
1 − θ

1 − θ1
) + sSOM (

θ − θ1

1 − θ1
) (15)

Combining (14), (15), and (5) yields:

r(θ ) = k(θ )

s(θ )
=
k1(

1−θ
1−θ1

) + kSOM ( θ−θ1
1−θ1

)

s1(
1−θ
1−θ1

) + sSOM ( θ−θ1
1−θ1

)
(16)

Next, the numerator and denominator on the right side of

the (16) are simultaneously divided by the scattering coeffi-

cient s1:

r(θ ) = k(θ )

s(θ )
=
r1(

1−θ
1−θ1

) + a1(
θ−θ1
1−θ1

)

( 1−θ
1−θ1

) + a2(
θ−θ1
1−θ1

)
(17)

With:

a1 = kSOM

s1
(18)

a2 = sSOM

s1
(19)

r1 = k1

s1
= (1 − R1)

2

2R1
(20)

where R1 is the reflectance of the soil when SOM content is

θ1.

For remote sensing applications, one need to retrieve SOM

content from reflectance data. As to such an application,

equation (17) can be solved explicitly for SOM content as:

θ (R) = r1 − r(R) + [a2r(R) − a1]θ1

r1 − r(R) + a2r(R) − a1
(21)
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FIGURE 2. Study area with soil samples locations.

With:

r1 = k1

s1
= (1 − R1)

2

2R1
(22)

r(R) =
[1 − ( R−Ri

R·Ri+1−2Ri
)]2

2(R−Ri)
R·Ri+1−2Ri

(23)

III. EXPERIMENT

A. SOIL SAMPLE PREPARATION

In 2016, 109 soil samples, which include black soil,

chernozem soil, and meadow soil, were equably collected in

Qiqihar (124◦26’15.86’’E-126◦45’22.44’’E, 47◦24’31.40’’
N-48◦14’25.33’’N Hei Longjiang Province), showed in

Fig. 2. The type of land is farmland. Krishnan et al. [43]

found that the SOM content determines its role in the soil

reflectance spectrum. When the SOM content is more than

2%, it plays a major role in describing the spectral reflectance

characteristics of the soil; when the SOM content is less than

2%, the ability that SOM conceals the spectral reflectance

properties of other soil constituents (such as iron and man-

ganese) is diminished. The SOM content in the study area

is high (greater than 2%). SOM is the dominant factor of

soil reflectance spectrum characteristics in the study area,

which provides a high-quality data basis for the SOM content

retrieval model. The collected soil samples were further air-

dried, and crushed to pass through a 1 mm sieve in order that

stones, roots and the vegetation litter were avoided from soils.

B. SPECTRAL MEASUREMENT AND PRE-PROCESSING

The hyper-spectral reflectance data were acquired in a dark

room using anASDFieldSpec.3 Portable Spectrometer (Ana-

lytical Spectral Devices, Boulder, CO, USA). The main geo-

metric parameters of the spectrometer set-up were illustrated

as follows (Fig. 3): a 50 W halogen lamp as unique light

source with a 30◦ incident angle was used to reduce the

shadow effect caused by soil roughness. The lamp away

from petri dish was set as 10 cm; the probe was mounted

vertically about 5 cm above the dish, and the field angle of

the probe was 1◦. The soil depth is 1cm. In order to obtain the

absolute reflectance, the reflectance was standardized using

FIGURE 3. Experimental device.

a white spectralon reference panel. The arithmetic average

of 10 spectral curves collected from each soil sample was

regarded as the actual reflectance spectrum data.

The reflectance of each spectrum was narrowed to

450–2500 nm. To eliminate the noise in the spectra, the study

applied rlowess smoothing to the original reflectance spectra

curve.

Three-quarter whole dataset were chosen by sample set

partitioning based on joint x-y distance (SPXY) method [44]

and used for the calibration set (n = 82). The remaining was

used for the validation set (n = 26).The RMSEP, R2 and RPD

between the predicted and measured SOM in the processes of

validation were selected to evaluate the model performance.

The RMSEP, shown in (24), represents the mean absolute

error of prediction that was calculated by the model between

the observed estimators and the measured values.

RMSEP =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (24)

where yi and ŷi are the observed and predicted value, respec-

tively; n is the number of samples with i = 1, 2, n.

The coefficients of determination R2 which is the percent-

age of the total variation in the dependent values is defined

in (25).

R2 = 1 −

n
∑

i=1

(yi − ŷi)
2

n
∑

i=1

(yi − y)2
(25)

where y is the mean of the observed data.

RPD is also used for evaluation of the models’ accuracy

and is the standard deviation (SD) divided by RMSEP, and

described by (26). According to [33], the estimations are

‘‘excellent’’ with RPD > 2.5 and R2 > 0.80, ‘‘good’’

with RPD between 2 and 2.5 and R2 > 0.70, ‘‘moder-

ate’’ with RPD between 1.5 and 2 and R2 > 0.60 and

‘‘poor’’ with RPD < 1.5 and R2 < 0.60.

RPD = SD

RMSEP
(26)
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TABLE 2. Statistical description of SOM contents CV: Coefficient of
variation.

Generally, the larger R2, RPD and the smaller RMSEP are

indicators of a superior model.

The unknown parameter a1 is the ratio of kSOM to s1, a2 is

the ratio of sSOM to s1. They needed to be acquired according

to the calibration set based on least-squares algorithm. The

best criterion for model parameter selection is to minimize

the residual sum of squares between the simulated and the

measured value. The optimization objective function is con-

structed as follows [21]:

min1R(θ ) =
∑

(Rmeasure − R mod el)
2 (27)

where, Rmeasure is the measured value for the laboratory,

Rmodel is the theoretical value of the model. All data analyses

were carried out in Matlab R2014b. (The Math Works Inc.:

Natick, MA, USA).

IV. RESULTS AND DISCUSSION

A. STATISTICAL DESCRIPTION OF SOM

The summary statistics of SOM for the whole, calibration

and validation sets are respectively provided in Table 2. The

values of the mean, standard deviation (SD) and coefficient

of variation (CV) from three sets are relatively similar.

Generally speaking, the characteristic statistics of both the

calibration and the validation set is similar to the whole set,

indicating that they are well divided to represent the whole

set.

B. REFLECTANCE SPECTRAL FEATURE OF SOIL

Figure 4 and figure 5 respectively show reflectance spec-

tra and continuum removed reflectance of three sorts of

soils measured in experiment The spectral profile shows

three prominent absorption peaks at 1420nm, 1920nm,

and 2200 nm, which are mainly caused by the hydroxyl

group (OH) of free water at 1420 and 1920 nm and the Al–OH

lattice structure in clay minerals at 2200 nm [45]. The shape

of the soil spectral reflectance curves is consistent with the

results of other studies [46], [47]. Fig. 4 and Fig. 5 show that

the reflectance spectra of different sorts of soils are diverse,

which is mainly in respect that soil particle characteristics

(i.e., mineral composition, organic matter, nutrients, etc.) of

different sorts of soils are distinct. The validity and reliability

of the proposed model are confirmed with validation set

including three sorts of soils. The diversity of soil optical

properties exhibited in Fig. 4 and Fig. 5 illustrates how the

proposed model works for different sorts of soils.

FIGURE 4. Reflectance spectra of three soils.

FIGURE 5. Continuum removed reflectance spectra of three soils.

FIGURE 6. Parameter a1 at different wavelength.

C. RETRIEVAL UNKNOWN PARAMETER a1 AND a2

θ1 of soil is 2.95%. The unknown parameter a1 and a2
were acquired by the least-squares algorithm combining

the calibration set, wavelength-by-wavelength, in the range

of 450–2400 nm (Fig. 6 and Fig. 7).

D. SOM ESTIMATION

SOM content can be estimated with validation set by

using the model mentioned in (21). The RMSEPs between

estimated and measured SOM content were computed

wavelength-by-wavelength in the range of 450–2500 nm

Fig. 8 shows that the accuracy of the model is high,
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FIGURE 7. Parameter a2 at different wavelength.

FIGURE 8. RMSEP at different wavelength.

FIGURE 9. R2 at different wavelength.

the RMSEPs are generally less than 0.27%. Especially in the

range of 552—950nm, the RMSEPs are less than 0.18%.

The R2s between estimated and measured SOM were

computed in the range of 450–2500 nm, wavelength-by-

wavelength (Fig. 9). The R2s are generally more than 0.78,

especially in the range of 552—950nm, the R2s are more

than 89.9%.

From the Fig. 10, the RPDs are generally greater than 2.2.

In the range of 552—950nm, the RPDs are more than 3.2.

Thus, the model has good prediction ability and it can be well

applied to the prediction of SOM content of different sorts of

soils.

According to [33], the estimations are ‘‘good’’ with the

RPD value of 2.2 and the R2 > 78% in the range

of 450–2500 nm, the estimations are ‘‘excellent’’ with the

RPD > 3.2 and the R2 > 89.9% in VNIR bands. The

FIGURE 10. RPD at different wavelength.

proposed model can be well applied to the prediction of

SOM content in different sorts of soils with high prediction

accuracy and good prediction ability (RMSEP, R2 and RPD

values of 0.18%, 89.9% and 3.2, respectively) in VNIR bands.

Fig. 8, 9 and 10 reveal that the VNIR bands provide the

optimal bands in the solar domain (i.e. wavelength between

350 and 2500 nm) for remote sensing of SOM. It further

verifies previous findings. Luan et al. found that saline-alkali

SOM had a high correlation with the spectral reflectance

at 560–750 nm and 760–1000 nm [48]. Liu et al. used

the typical black earth area in Heilongjiang Province as

the study area, and showed that the sensitive bands were

445–1380 nm, the significantly correlated spectral range was

545-1250 nm [49]. The results of this article show that in the

range of 552-950nm, the model has the highest accuracy, the

highest stability, and the best predictive ability. The research

results can provide theoretical basis and technical support for

sensor band setting.

To further verify the validity of the model, 26 soil samples

were randomly selected from the whole sets as the validation

sets, and the remaining samples were calibration sets. The

unknown a1 and a2 in (21) were inverted using the validation

set, and then the SOM was estimated by randomly selecting

26 verification samples. The RMSEPs between estimated and

measured SOM were computed at six wavelengths corre-

sponding to various bands of Landsat TM and ETM+ satel-

lite, including band 1 (blue, 480 nm), band 2 (green,560 nm),

band 3 (red, 660 nm), band 4 (near infrared, 830 nm), band 5

(SWIR, 1650 nm), and band 7 (SWIR, 2210 nm). The above

procedure was repeated 50 times, and the minimum value,

the maximum value, and the average value of the RMSEPs

were calculated at 6 wavelengths, respectively. The results

(Table 3) show that the mean value of the RMSEPs ranges

from 0.1950% to 0.2614%, which reveals the model can

effectively invert the SOM content.

E. COMPARISON WITH PLSR

In this section, the model described in (21) was compared to

PLSR method for estimating SOM content. Fig. 11 provides

the RMSEPs of SOM retrieved, computed wavelength-by-

wavelength in the range of 552-950nm, using the proposed
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TABLE 3. Statistical description of the RMSEPs calculated 50 times.

FIGURE 11. Comparison between the proposed model and PLSR method.

model and PLSR method. The RMSEPs of SOM retrieved

using the proposed model are generally less 0.005% than

PLSR method. Thus, the proposed model performs much

better than PLSR method.

The model can estimate the SOM content with higher

accuracy than before, and it provides an innovative method

for predicting SOM content. The proposed model exhibits the

following advantages:
(1) For the first time, a semi-empirical model for SOM

content retrieval is constructed by introducing SOM

content information into KM model. It has a certain

theoretical basis, high prediction accuracy and exten-

sive applicability.

(2) It is not restricted to a single band or wavelength. Prop-

erly calibrated, it is competent to describe the response

of reflectance to SOM content over the full optical

range.

A distinct constraint of the model is that it contains two

unknown parameters and thus requires soil information a pri-

ori to be solved (i.e. calibration).

V. CONCLUSION

An innovative semi-empirical model is proposed in order to

estimate SOM content. The main conclusions of this study

are summarized below:
(1) For the first time, a semi-empirical model for

SOM content retrieval is constructed by introducing

SOM content information into KM model. Compared

with the statistical model mostly used in the SOM

estimation, the semi-empirical model has a certain the-

oretical basis and strong applicability

(2) The proposed model can be well applied to the pre-

diction of SOM content in different sorts of soils with

high prediction accuracy and good prediction ability

(RMSEP, R2 and RPD values of 0.18%, 89.9% and 3.2,

respectively) in VNIR bands.

(3) The VNIR bands provide the optimal bands in the

solar domain for remote sensing of SOM. In the range

of 552-950nm, the model has the highest accuracy, and

the best predictive ability.

This study is the first step toward focusing on the

theoretical aspects of the model and its testing under well-

controlled laboratory conditions. Future studies are underway

to examine/extend the model for field and large-scale appli-

cations when facing challenges such as surface roughness,

topographical features, shadow effects, etc.
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