
Semi-homomorphic Encryption and

Multiparty Computation

Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias

Department of Computer Science, Aarhus University and CFEM�

Abstract. An additively-homomorphic encryption scheme enables us
to compute linear functions of an encrypted input by manipulating only
the ciphertexts. We define the relaxed notion of a semi-homomorphic
encryption scheme, where the plaintext can be recovered as long as the
computed function does not increase the size of the input “too much”.
We show that a number of existing cryptosystems are captured by our
relaxed notion. In particular, we give examples of semi-homomorphic en-
cryption schemes based on lattices, subset sum and factoring. We then
demonstrate how semi-homomorphic encryption schemes allow us to con-
struct an efficient multiparty computation protocol for arithmetic cir-
cuits, UC-secure against a dishonest majority. The protocol consists of
a preprocessing phase and an online phase. Neither the inputs nor the
function to be computed have to be known during preprocessing. More-
over, the online phase is extremely efficient as it requires no cryptographic
operations: the parties only need to exchange additive shares and verify
information theoretic MACs. Our contribution is therefore twofold: from
a theoretical point of view, we can base multiparty computation on a
variety of different assumptions, while on the practical side we offer a
protocol with better efficiency than any previous solution.

1 Introduction

The fascinating idea of computing on encrypted data can be traced back at
least to a seminal paper by Rivest, Adleman and Dertouzos [RAD78] under
the name of privacy homomorphism. A privacy homomorphism, or homomor-
phic encryption scheme in more modern terminology, is a public-key encryption
scheme (G, E, D) for which it holds that D(E(a) ⊗ E(b)) = a ⊕ b, where (⊗,⊕)
are some group operation in the ciphertext and plaintext space respectively. For
instance, if ⊕ represents modular addition in some ring, we call such a scheme
additively-homomorphic. Intuitively a homomorphic encryption scheme enables
two parties, say Alice and Bob, to perform secure computation: as an example,
Alice could encrypt her input a under her public key, send the ciphertext E(a)
to Bob; now by the homomorphic property, Bob can compute a ciphertext con-
taining, e.g., E(a ·b+c) and send it back to Alice, who can decrypt and learn the

� Center for Research in the Foundations of Electronic Markets, supported by the
Danish Strategic Research Council.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 169–188, 2011.
c© International Association for Cryptologic Research 2011

170 R. Bendlin et al.

result. Thus, Bob has computed a non trivial function of the input a. However,
Bob only sees an encryption of a which leaks no information on a itself, assum-
ing that the encryption scheme is secure. Informally we will say that a set of
parties P1, . . . , Pn holding private inputs x1, . . . , xn securely compute a function
of their inputs y = f(x1, . . . , xn) if, by running some cryptographic protocol,
the honest parties learn the correct output of the function y. In addition, even
if (up to) n−1 parties are corrupt and cooperate, they are not able to learn any
information about the honest parties’ inputs, no matter how they deviate from
the specifications of the protocol.

Building secure multiparty computation (MPC) protocols for this case of dis-
honest majority is essential for several reasons: First, it is notoriously hard to
handle dishonest majority efficiently and it is well known that unconditionally
secure solutions do not exist. Therefore, we cannot avoid using some form of
public-key technology which is typically much more expensive than the standard
primitives used for honest majority (such as secret sharing). Secondly, security
against dishonest majority is often the most natural to shoot for in applications,
and is of course the only meaningful goal in the significant 2-party case. Thus,
finding practical solutions for dishonest majority under reasonable assumptions
is arguably the most important research goal with respect to applications of
multiparty computation.

While fully-homomorphic encryption [Gen09] allows for significant improve-
ment in communication complexity, it would incur a huge computational over-
head with current state of the art. In this paper we take a different road: in
a nutshell, we relax the requirements of homomorphic encryption so that we
can implement it under a variety of assumptions, and we show how this weaker
primitive is sufficient for efficient MPC. Our main contributions are:

A framework for semi-homomorphic encryption: we define the notion of a semi-
homomorphic encryption modulo p, for a modulus p that is input to the key
generation. Abstracting from the details, the encryption function is additively
homomorphic and will accept any integer x as input plaintext. However, in con-
trast to what we usually require from a homomorphic cryptosystem, decryption
returns the correct result modulo p only if x is numerically small enough. We
demonstrate the generality of the framework by giving several examples of known
cryptosystems that are semi-homomorphic or can be modified to be so by trivial
adjustments. These include: the Okamoto-Uchiyama cryptosystem [OU98]; Pail-
lier cryptosystem [Pai99] and its generalization by Damg̊ard and Jurik [DJ01];
Regev’s LWE based cryptosystem [Reg05]; the scheme of Damg̊ard, Geisler and
Krøigaard [DGK09] based on a subgroup-decision problem; the subset-sum based
scheme by Lyubashevsky, Palacio and Segev [LPS10]; Gentry, Halevi and Vaikun-
tanathan’s scheme [GHV10] based on LWE, and van Dijk, Gentry, Halevi and
Vaikuntanathan’s scheme [DGHV10] based on the approximate gcd problem.
We also show a zero-knowledge protocol for any semi-homomorphic cryptosys-
tem, where a prover, given ciphertext C and public key pk, demonstrates that
he knows plaintext x and randomness r such that C = Epk(x, r), and that x
furthermore is numerically less than a given bound. We show that using a twist

Semi-homomorphic Encryption and Multiparty Computation 171

of the amortization technique of Cramer and Damg̊ard [CD09], one can give u
such proofs in parallel where the soundness error is 2−u and the cost per instance
proved is essentially 2 encryption operations for both parties. The application
of the technique from [CD09] to prove that a plaintext is bounded in size is new
and of independent interest.

Information-theoretic “online” MPC: we propose a UC secure [Can01] protocol
for arithmetic multiparty computation that, in the presence of a trusted dealer
who does not know the inputs, offers information-theoretic security against an
adaptive, malicious adversary that corrupts any dishonest majority of the par-
ties. The main idea of the protocol is that the parties will be given additive shar-
ing of multiplicative triples [Bea91], together with information theoretic MACs
of their shares – forcing the parties to use the correct shares during the protocol.
This online phase is essentially optimal, as no symmetric or public-key cryptog-
raphy is used, matching the efficiency of passive protocols for honest majority
like [BOGW88, CCD88]. Concretely, each party performs O(n2) multiplications
modulo p to evaluate a secure multiplication. This improves on the previous
protocol of Damg̊ard and Orlandi (DO) [DO10] where a Pedersen commitment
was published for every shared value. Getting rid of the commitments we im-
prove on efficiency (a factor of Ω(κ), where κ is the security parameter) and
security (information theoretic against computational). Implementation results
for the two-party case indicate about 6 msec per multiplication (see the full
version [BDOZ10]), at least an order of magnitude faster than that of DO on
the same platform. Moreover, in DO the modulus p of the computation had to
match the prime order of the group where the commitments live. Here, we can,
however, choose p freely to match the application which typically allows much
smaller values of p.

An efficient implementation of the offline phase: we show how to replace the
share dealer for the online phase by a protocol based solely on semi-homomorphic
encryption1. Our offline phase is UC-secure against any dishonest majority, and
it matches the lower bound for secure computation with dishonest majority of
O(n2) public-key operations per multiplication gate [HIK07]. In the most efficient
instantiation, the offline phase of DO requires security of Paillier encryption and
hardness of discrete logarithms. Our offline phase only has to assume security
of Paillier cryptosystem and achieves similar efficiency: A count of operations
suggests that our offline phase is as efficient as DO up to a small constant fac-
tor (about 2-3). Preliminary implementation results indicate about 2-3 sec to
prepare a multiplication. Since we generalize to any semi-homomorphic scheme
including Regev’s scheme, we get the first potentially practical solution for dis-
honest majority that is believed to withstand a quantum attack. It is not possible
to achieve UC security for dishonest majority without set-up assumptions, and
our protocol works in the registered public-key model of [BCNP04] where we

1 The trusted dealer could be implemented using any existing MPC protocol for dis-
honest majority, but we want to show how we can do it efficiently using semi-
homomorphic encryption.

172 R. Bendlin et al.

assume that public keys for all parties are known, and corrupted parties know
their own secret keys.

Related Work: It was shown by Canetti, Lindell, Ostrovsky and Sahai [CLOS02]
that secure computation is possible under general assumptions even when con-
sidering any corrupted number of parties in a concurrent setting (the UC frame-
work). Their solution is, however, very far from being practical. For computation
over Boolean circuits efficient solutions can be constructed from Yao’s garbled
circuit technique, see e.g. Pinkas, Schneider, Smart and Williams [PSSW09].
However, our main interest here is arithmetic computation over larger fields or
rings, which is a much more efficient approach for applications such as bench-
marking or some auction variants. A more efficient solution for the arithmetic
case was shown by Cramer, Damg̊ard and Nielsen [CDN01], based on threshold
homomorphic encryption. However, it requires distributed key generation and
uses heavy public-key machinery throughout the protocol. More recently, Ishai,
Prabhakaran and Sahai [IPS09] and the aforementioned DO protocol show more
efficient solutions. Although the techniques used are completely different, the
asymptotic complexities are similar, but the constants are significantly smaller
in the DO solution, which was the most practical protocol proposed so far.

Notation: We let US denote the uniform distribution over the set S. We use
x ← X to denote the process of sampling x from the distribution X or, if X is
a set, a uniform choice from it.

We say that a function f : N → R is negligible if ∀c, ∃nc s.t. if n > nc then
f(n) < n−c. We will use ε(·) to denote an unspecified negligible function.

For p ∈ N, we represent Zp by the numbers {−	(p− 1)/2
, . . . , �(p− 1)/2�}.
If x is an m-dimensional vector, ||x||∞ := max(|x1|, . . . , |xm|). Unless differently
specified, all the logarithms are in base 2.

As a general convention: lowercase letters a, b, c, . . . represent integers and
capital letters A, B, C, . . . ciphertexts. Bold lowercase letters r, s, . . . are vectors
and bold capitals M,A, . . . are matrices. We call κ the computational security
parameter and u the statistical security parameter. In practice u can be set to
be much smaller than κ, as it does not depend on the computing power of the
adversary.

2 The Framework for Semi-homomorphic Encryption

In this section we introduce a framework for public-key cryptosystems, that sat-
isfy a relaxed version of the additive homomorphic property. Let PKE = (G, E, D)
be a tuple of algorithms where:

G(1κ, p) is a randomized algorithm that takes as input a security parameter
κ and a modulus p2; It outputs a public/secret key pair (pk, sk) and a set of
parameters P = (p, M, R,Dd

σ, G). Here, M, R are integers, Dd
σ is the description

2 In the framework there are no restrictions for the choice of p; however in the next
sections p will always be chosen to be a prime.

Semi-homomorphic Encryption and Multiparty Computation 173

of a randomized algorithm producing as output d-vectors with integer entries (to
be used as randomness for encryption). We require that except with negligible
probability, Dd

σ will always output r with ||r||∞ ≤ σ, for some σ < R that
may depend on κ. Finally, G is the abelian group where the ciphertexts belong
(written in additive notation). For practical purposes one can think of M and
R to be of size super-polynomial in κ, and p and σ as being much smaller than
M and R respectively. We will assume that every other algorithm takes as input
the parameters P, without specifying this explicitly.

Epk(x, r) is a deterministic algorithm that takes as input an integer x ∈ Z

and a vector r ∈ Z
d and outputs a ciphertext C ∈ G. We sometimes write

Epk(x) when it is not important to specify the randomness explicitly. Given
C1 = Epk(x1, r1), C2 = Epk(x2, r2) in G, we have C1 +C2 = Epk(x1 +x2, r1 +r2).
In other words, Epk(·, ·) is a homomorphism from (Zd+1, +) to (G, +)). Given
some τ and ρ we call C a (τ, ρ)-ciphertext if there exists x, r with |x| ≤ τ and
||r||∞ ≤ ρ such that C = Epk(x, r). Note that given a ciphertext τ and ρ are
not unique. When we refer to a (τ, ρ)-ciphertext, τ and ρ should be interpreted
as an upper limit to the size of the message and randomness contained in the
ciphertext.

Dsk(C) is a deterministic algorithm that takes as input a ciphertext C ∈ G

and outputs x′ ∈ Zp ∪ {⊥}.
We say that a semi-homomorphic encryption scheme PKE is correct if, ∀p:

Pr[(pk, sk, P)← G(1κ, p), x ∈ Z, |x| ≤M ; r ∈ Z
d, ||r||∞ ≤ R :

Dsk(Epk(x, r)) �= x mod p] < ε(κ)

where the probabilities are taken over the random coins of G and E.
We now define the IND-CPA security game for a semi-homomorphic cryp-

tosystem. Let A = (A1,A2) be a PPT TM, then we run the following experi-
ment:

(pk, sk, P)← G(1κ, p)
(m0, m1, state)← A1(1κ, pk) with m0, m1 ∈ Zp

b← {0, 1}, C ← Epk(mb), b′ ← A2(1κ, state, C)

We define the advantage of A as AdvCPA(A, κ) = |Pr[b = b′] − 1/2|, where the
probabilities are taken over the random choices of G, E,A in the above experi-
ment. We say that PKE is IND-CPA secure if ∀ PPT A, AdvCPA(A, κ) < ε(κ).

Next, we discuss the motivation for the way this framework is put together:
when in the following, honest players encrypt data, plaintext x will be chosen
in Zp and the randomness r according to Dd

σ. This ensures IND-CPA security
and also that such data can be decrypted correctly, since by assumption on Dd

σ,
||r||∞ ≤ σ ≤ R. However, we also want that a (possibly dishonest) player Pi is
committed to x by publishing C = Epk(x, r). We are not able to force a player
to choose x in Zp, nor that r is sampled with the correct distribution. But our
zero-knowledge protocols can ensure that C is a (τ, ρ)-ciphertext, for concrete
values of τ, ρ. If τ < M, ρ < R, then correctness implies that C commits Pi to
x mod p, even if x, r may not be uniquely determined from C.

174 R. Bendlin et al.

2.1 Examples of Semi-homomorphic Encryption

Regev’s cryptosystem [Reg05] is parametrized by p, q, m and α, and is given by
(G, E, D). A variant of the system was also given in [BD10], where parameters
are chosen slightly differently than in the original. In both [Reg05] and [BD10]
only a single bit was encrypted, it is quite easy, though, to extend it to elements
of a bigger ring. It is this generalized version of the variant in [BD10] that we
describe here. All calculations are done in Zq. Key generation G(1κ) is done
by sampling s ∈ Z

n
q and A ∈ Z

m×n
q uniformly at random and x ∈ Z

m
q from a

discrete Gaussian distribution with mean 0 and standard deviation qα√
2π

. We then
have the key pair (pk, sk) = ((A,As + x), s). Encryption of a message γ ∈ Zp

is done by sampling a uniformly random vector r ∈ {−1, 0, 1}m. A ciphertext
C is then given by C = Epk(γ, r) = (a, b) = (AT r, (As + x)T r + γ 	q/p�).
Decryption is given by Dsk(C) =

⌊
(b − sT a) · p/q

⌉
. Regev’s cryptosystem works

with a decryption error, which can, however, be made negligibly small when
choosing the parameters.

Fitting the cryptosystem to the framework is quite straight forward. The
group G = Z

n
q × Zq and p is just the same. The distribution Dd

σ from which
the randomness r is taken is the uniform distribution over {−1, 0, 1}m, that is
d = m and σ = 1. Given two ciphertexts (a, b) and (a′, b′) we define addition to
be (a+a′, b+b′). With this definition it follows quite easily that the homomorphic
property holds. Due to the choices of message space and randomness distribution
in Regev’s cryptosystem, we will always have that the relation M = Rp/2 should
hold. How M can be chosen, and thereby also R, depends on all the original
parameters of the cryptosystem. First assume that q · α = d

√
q with d > 1.

Furthermore we will need that p ≤ q/(4 c
√

q) for some constant c < d. Then
to bound M we should have first that M < q/(4p) and secondly that M <
p s
√

q/(2m) for some s > cd/(d−c). Obtaining these bounds requires some tedious
computation which we leave out here.

In Paillier’s cryptosystem [Pai99] the secret key is two large primes p1, p2,
the public key is N = p1p2, and the encryption function is Epk(x, r) = (N +
1)xrN mod N2 where x ∈ ZN and r is random in Z

∗
N2 . The decryption function

D′
sk reconstructs correctly any plaintext in ZN , and to get a semi-homomorphic

scheme modulo p, we simply redefine the decryption as D(c) = D′(c) mod p. It
is not hard to see that we get a semi-homomorphic scheme with M = (N −
1)/2, R = ∞, d = 1,Dd

σ = UZ
∗
N2

, σ = ∞ and G = Z
∗
N2 . In particular, note that

we do not need to bound the size of the randomness, hence we set σ = R =∞.
The cryptosystem looks syntactically a bit different from our definition which

writes G additively, while Z∗
N2 is usually written with multiplicative notation;

also for Paillier we have Epk(x, r)+Epk(x′, r) = Epk(x+x′, r ·r′) and not Epk(x+
x′, r + r′). However, this makes no difference in the following, except that it
actually makes some of the zero-knowledge protocols simpler (more details in
Section 2.2). It is easy to see that the generalization of Paillier in [DJ01] can be
modified in a similar way to be semi-homomorphic.

In the full paper [BDOZ10] we show how several other cryptosystems are
semi-homomorphic.

Semi-homomorphic Encryption and Multiparty Computation 175

2.2 Zero-Knowledge Proofs

We present two zero-knowledge protocols, ΠPoPK, ΠPoCM where a prover P
proves to a verifier V that some ciphertexts are correctly computed and that some
ciphertexts satisfy a multiplicative relation respectively. ΠPoPK has (amortized)
complexity O(κ+u) bits per instance proved, where the soundness error is 2−u.
ΠPoCM has complexity O(κu). We also show a more efficient version of ΠPoCM

that works only for Paillier encryption, with complexity O(κ + u). Finally, in
the full paper [BDOZ10], we define the multiplication security property that we
conjecture is satisfied for all our example cryptosystems after applying a simple
modification. We show that assuming this property, ΠPoCM can be replaced by
a different check that has complexity O(κ + u).

ΠPoPK and ΠPoCM will both be of the standard 3-move form with a ran-
dom u-bit challenge, and so they are honest verifier zero-knowledge. To achieve
zero-knowledge against an arbitrary verifier standard techniques can be used. In
particular, in our MPC protocol we will assume – only for the sake of simplicity
– a functionality FRand that generates random challenges on demand. The FRand

functionality is specified in detail in the full paper [BDOZ10] and can be imple-
mented in our key registration model using only semi-homomorphic encryption.
In the protocols both prover and verifier will have public keys pkP and pkV . By
EP (a, r) we denote an encryption under pkP , similarly for EV (a, r).

We emphasize that the zero-knowledge property of our protocols does not
depend on IND-CPA security of the cryptosystem, instead it follows from the
homomorphic property and the fact that the honest prover creates, for the pur-
pose of the protocol, some auxiliary ciphertexts containing enough randomness
to hide the prover’s secrets.

Proof of Plaintext Knowledge. ΠPoPK takes as common input u ciphertexts
Ck, k = 1, . . . , u. If these are (τ, ρ)-ciphertexts, the protocol is complete and sta-
tistical zero-knowledge. The protocol is sound in the following sense: assuming
that pkP is well-formed, if P is corrupt and can make V accept with probabil-
ity larger than 2−u, then all the Ck are (22u+log uτ, 22u+log uρ)-ciphertexts. The
protocol is also a proof of knowledge with knowledge error 2−u that P knows
correctly formed plaintexts and randomness for all the Ck’s.

In other words, ΠPoPK is a ZKPoK for the following relation, except that zero-
knowledge and completeness only hold if the Ck’s satisfy the stronger condition
of being (τ, ρ)-ciphertexts. However, this is no problem in the following: the
prover will always create the Ck’s himself and can therefore ensure that they are
correctly formed if he is honest.

R
(u,τ,ρ)
PoPK = {(x, w)| x = (pkP , C1, . . . , Cu);

w = ((x1, r1), . . . , (xu, ru)) : Ck = EP (xk, rk),

|xk| ≤ 22u+log uτ, ||rk||∞ ≤ 22u+log uρ}

We use the approach of [CD09] to get small amortized complexity of the zero-
knowledge proofs, and thereby gaining efficiency by performing the proofs on u

176 R. Bendlin et al.

simultaneous instances. In the following we define m = 2u−1, furthermore Me is
an m×u matrix constructed given a uniformly random vector e = (e1, . . . , eu) ∈
{0, 1}u. Specifically the (i, k)-th entry Me,i,k is given by Me,i,k = ei−k+1 for
1 ≤ i − k + 1 ≤ u and 0 otherwise. By Me,i we denote the i-th row of Me.
The protocol can be seen in Figure 1. Completeness and zero-knowledge follow
by standard arguments that can be found in the full paper [BDOZ10]. Here we
argue soundness which is the more interesting case: Assume we are given any
prover P ∗, and consider the case where P ∗ can make V accept for both e and
e′, e �= e′, by sending z, z′, T and T′ respectively. We now have the following
equation:

(Me −Me′)c = (d− d′) (1)

What we would like is to find x = (x1, . . . , xu) and R = (r1, . . . , ru) such that
Ck = EP (xk, rk). We can do this by viewing (1) as a system of linear equations.
First let j be the biggest index such that ej �= e′j . Now look at the u × u
submatrix of Me −Me’ given by the rows j through j + u both included. This
is an upper triangular matrix with entries in {−1, 0, 1} and ej − e′j �= 0 on a
diagonal. Now remember the form of the entries in the vectors c, d and d′, we
have Ck = EP (xk, rk), Dk = EP (zk, tk), D′

k = EP (z′k, t′k). We can now directly
solve the equations for the xk’s and the rk’s by starting with Cu and going up.
We give examples of the first few equations (remember we are going bottom up).
For simplicity we will assume that all entries in Me −Me′ will be 1.

EP (xu, ru) = EP (zu+j − z′u+j, tu+j − t′u+j)

EP (xu−1, ru−1) + EP (xu, ru) = EP (zu+j−1 − z′u+j−1, tu+j−1 − t′u+j−1)
...

Since we know all values used on the right hand sides and since the cryptosystem
used is additively homomorphic, it should now be clear that we can find xk

and rk such that Ck = EP (xk, rk). A final note should be said about what we
can guarantee about the sizes of xk and rk. Knowing that |zi| ≤ 2u−1+log uτ ,
|z′i| ≤ 2u−1+log uτ , ||ti||∞ ≤ 2u−1+log uρ and ||t′i||∞ ≤ 2u−1+log uρ we could
potentially have that C1 would become a (22u+log uτ, 22u+log uρ) ciphertext. Thus
this is what we can guarantee.

Proof of Correct Multiplication. ΠPoCM(u, τ, ρ) takes as common input u
triples of ciphertexts (Ak, Bk, Ck) for k = 1, . . . , u, where Ak is under pkP and
Bk and Ck are under pkV (and so are in the group GV). If P is honest, he will
know ak and ak ≤ τ . Furthermore P has created Ck as Ck = akBk + EV (rk, tk),
where EV (rk, tk) is a random (23u+log uτ2, 23u+log uτρ)-ciphertext. Under these
assumptions the protocol is zero-knowledge.

Jumping ahead, we note that in the context where the protocol will be used,
it will always be known that Bk in every triple is a (22u+log uτ, 22u+log uρ)-
ciphertext, as a result of executing ΠPoPK. The choice of sizes for EV (rk, tk)
then ensures that Ck is statistically close to a random (23u+log uτ2, 23u+log uτρ)-
ciphertext, and so reveals no information on ak to V .

Semi-homomorphic Encryption and Multiparty Computation 177

Subprotocol ΠPoPK: Proof of Plaintext Knowledge

PoPK(u, τ, ρ):
1. The input is u ciphertexts {Ck = EP (xk, rk)}uk=1. We define the vectors

c = (C1, . . . , Cu) and x = (x1, . . . , xu) and the matrix R = (r1, . . . , ru),
where the rk’s are rows.

2. P constructs m (2u−1+log uτ, 2u−1+log uρ)-ciphertexts {Ai = EP (yi, si)}mi=1,
and sends them to V . We define vectors a and y and matrix S as above.

3. V chooses a uniformly random vector e = (e1, . . . , eu) ∈ {0, 1}u, and sends
it to P .

4. Finally P computes and sends z = y + Me · x and T = S + Me ·R to V .
5. V checks that d = a + Me · c where d = (EP (z1, t1), . . . , EP (zm, tm)).

Furthermore, V checks that |zi| ≤ 2u−1+log uτ and ||ti||∞ ≤ 2u−1+log uρ.

Fig. 1. Proof of Plaintext Knowledge

Subprotocol ΠPoCM: Proof of Correct Multiplication

PoCM(u, τ, ρ):
1. The input is u triples of ciphertexts {(Ak, Bk, Ck)}uk=1, where Ak =

EP (ak,hk) and Ck = akBk + EV (rk, tk).
2. P constructs u uniformly random (23u−1+log uτ, 23u−1+log uρ)-ciphertexts

Dk = EP (dk, sk) and u ciphertexts Fk = dkBk + EV (fk,yk),
where EV (fk,yk) are uniformly random (24u−1+log uτ 2, 24u−1+log uτρ)-
ciphertexts.

3. V chooses u uniformly random bits ek and sends them to P .
4. P returns {(zk,vk)}uk=1 and {(xk, wk)}uk=1 to V . Here zk = dk + ekak,

vk = sk + ekhk, xk = fk + ekrk and wk = yk + ektk.
5. V checks that Dk + ekAk = EP (zk,vk) and that Fk + ekCk = zkBk +

EV (xk,wk). Furthermore, he checks that |zk| ≤ 23u−1+log uτ , ||vk||∞ ≤
23u−1+log uρ, |xk| ≤ 24u−1+log uτ 2 and ||wk||∞ ≤ 24u−1+log uτρ.

6. Step 2-5 is repeated in parallel u times.

Fig. 2. Proof of Correct Multiplication

Summarizing, ΠPoCM is a ZKPoK for the relation (under the assumption that
pkP , pkV are well-formed):

R
(u,τ,ρ)
PoCM = {(x, w)| x = (pkP , pkV , (A1, B1, C1), . . . , (Au, Bu, Cu));

w = ((a1,h1, r1, t1), . . . , (au,hu, ru, tu)) :
Ak = EP (ak,hk), Bk ∈ GV , Ck = akBk + EV (rk, tk),

|ak| ≤ 23u+log uτ, ||hk||∞ ≤ 23u+log uρ,

|rk| ≤ 24u+log uτ2, ||tk||∞ ≤ 24u+log uτρ)}

178 R. Bendlin et al.

The protocol can be seen in Figure 2. Note that Step 6 could also be interpreted
as choosing ek as a u-bit vector instead, thereby only calling FRand once. Com-
pleteness, soundness and zero-knowledge follow by standard arguments that can
be found in the full paper [BDOZ10].

Zero-Knowledge Protocols for Paillier. For the particular case of Paillier
encryption, ΠPoPK can be used as it is, except that there is no bound required
on the randomness, instead all random values used in encryptions are expected
to be in Z

∗
N2 . Thus, the relations to prove will only require that the random

values are in Z
∗
N2 and this is also what the verifier should check in the protocol.

For ΠPoCM we sketch a version that is more efficient than the above, using spe-
cial properties of Paillier encryption. In order to improve readability, we depart
here from the additive notation for operations on ciphertexts, since multiplica-
tive notation is usually used for Paillier. In the following, let pkV = N . Note
first that based on such a public key, one can define an unconditionally hiding
commitment scheme with public key g = EV (0). To commit to a ∈ ZN , one
sends com(a, r) = garN mod N , for random r ∈ Z

∗
N2 . One can show that the

scheme is binding assuming it is hard to extract N -th roots modulo N2 (which
must be the case if Paillier encryption is secure).

We restate the relation R
(u,τ,ρ)
PoCM from above as it will look for the Paillier case,

in multiplicative notation and without bounds on the randomness:

R
(τ,ρ)
PoCM,Paillier = {(x, w)| x = (pkP , pkV , (A1, B1, C1), . . . , (Au, Bu, Cu));

w = ((a1, h1, r1, t1), . . . , (au, hu, ru, tu)) :
Ak = EP (ak, hk), Bk ∈ ZN2 , Ck = Bak

k · EV (rk, tk),

|ak| ≤ 22u+log uτ, |rk| ≤ 25u+2 log uτ2}

The idea for the proof of knowledge for this relation is now to ask the prover to
also send commitments Ψk = com(ak, αk), Φk = com(rk, βk), k = 1 . . . u to the
rk’s and ak’s. Now, the prover must first provide a proof of knowledge that for
each k: 1) the same bounded size value is contained in both Ak and Ψk, and that
2) a bounded size value is contained in Φk. The proof for {Φk} is simply ΠPoPK

since a commitment has the same form as an encryption (with (N + 1) replaced
by g). The proof for {Ψk, Ak} is made of two instances of ΠPoPK run in parallel,
using the same challenge e and responses zi in both instances. Finally, the prover
must show that Ck can be written as Ck = Bak

k · EV (rk, tk), where ak is the value
contained in Ψk and rk is the value in Φk. Since all commitments and ciphertexts
live in the same group Z

∗
N2 , where pkV = N , we can do this efficiently using a

variant of a protocol from [CDN01]. The resulting protocol is shown in Figure 3.
Completeness of the protocol in steps 1-4 of Figure 3 is straightforward by in-

spection. Honest verifier zero-knowledge follows by the standard argument: choose
e and the prover’s responses uniformly in their respective domains and use the
equations checked by the verifier to compute a matching first message D, X, Y .
This implies completeness and honest verifier zero-knowledge for the overall pro-
tocol, since the subprotocols in steps 2 and 3 have these properties as well.

Semi-homomorphic Encryption and Multiparty Computation 179

Subprotocol ΠPoCM: Proof of Correct Multiplication (only for Paillier)

1. P sends Ψk = com(ak, αk), Φk = com(rk, βk), k = 1, . . . , u to the verifier.
2. P uses ΠPoPK on Φk to prove that, even if P is corrupted, each Φk contains a

value rk with |rk| ≤ 25u+2 log uτ 2.
3. P uses ΠPoPK in parallel on (Ak, Ψk) (where V uses the same e in both runs)

to prove that, even if P is corrupted, Ψk and Ak contains the same value ak

and |ak| ≤ 22u+log uτ .
4. To show that the Ck’s are well-formed, we do the following for each k:

(a) P picks random x, y, v, γ, δ ← Z
∗
N2 and sends D = Bx

k EV (y, v), X =
com(x, γx), Y = com(y, γy) to V .

(b) V sends a random u-bit challenge e.
(c) P computes za = x + eak mod N, zr = y + erk mod N .

He also computes qa, qr, where x + ea = qaN + za, y + erk = qrN + zr
a.

P sends za, zr, w = vse
kBqa

k mod N2, δa = γxαe
kgqa mod N2, and δr =

γyβe
kgqr mod N2 to V .

(d) V accepts if DCe
k = Bza

k EV (zr, w) mod N2∧XΨe
k = com(za, δa) mod N2∧

Y Φe
k = com(zr, δr) mod N2.

a Since g and Bk do not have order N , we need to explicitly handle the quotients
qa and qr, in order to move the “excess multiples” of N into the randomness
parts of the commitments and ciphertext.

Fig. 3. Proof of Correct Multiplication for Paillier encryption

Finally, soundness follows by assuming we are given correct responses in step
7 to two different challenges. From the equations checked by the verifier, we can
theneasily computeak, αk, rk, βk, sk such thatΨk = com(ak, αk), Φk(rk, βk), Ck =
Bak

k EV (rk, sk).Now,bysoundnessof theprotocols in steps2and3,wecanalso com-
pute bounded size values a′

k, r′k that are contained in Ψk, Φk. By the binding prop-
erty of the commitment scheme, we have r′k = rk, a′

k = ak except with negligible
probability, so we have a witness as required in the specification of the relation.

3 The Online Phase

Our goal is to implement reactive arithmetic multiparty computation over Zp for
a prime p of size super-polynomial in the statistical security parameter u. The
(standard) ideal functionality FAMPC that we implement can be seen in Figure 6.
We assume here that the parties already have a functionality for synchronous3,
secure communication and broadcast.
3 A malicious adversary can always stop sending messages and, in any protocol for

dishonest majority, all parties are required for the computation to terminate. With-
out synchronous channels the honest parties might wait forever for the adversary
to send his messages. Synchronous channels guarantee that the honest parties can
detect that the adversary is not participating anymore and therefore they can abort
the protocol. If termination is not required, the protocol can be implemented over
an asynchronous network instead.

180 R. Bendlin et al.

We first present a protocol for an online phase that assumes access to a func-
tionality FTRIP which we later show how to implement using an offline protocol.
The online phase is based on a representation of values in Zp that are shared
additively where shares are authenticated using information theoretic message
authentication codes (MACs). Before presenting the protocol we introduce how
the MACs work and how they are included in the representation of a value in
Zp. Furthermore, we argue how one can compute with these representations as
we do with simple values, and in particular how the relation to the MACs are
maintained.

In the rest of this section, all additions and multiplications are to be read
modulo p, even if not specified. The number of parties is denoted by n, and we
call the parties P1, . . . , Pn.

3.1 The MACs

A key K in this system is a random pair K = (α, β) ∈ Z
2
p, and the authentication

code for a value a ∈ Zp is MACK(a) = αa + β mod p.
We will apply the MACs by having one party Pi hold a, MACK(a) and another

party Pj holding K. The idea is to use the MAC to prevent Pi from lying about a
when he is supposed to reveal it to Pj . It will be very important in the following
that if we keep α constant over several different MAC keys, then one can add two
MACs and get a valid authentication code for the sum of the two corresponding
messages. More concretely, two keys K = (α, β), K ′ = (α′, β′) are said to be
consistent if α = α′. For consistent keys, we define K + K ′ = (α, β + β′) so that
it holds that MACK(a) + MACK′(a′) = MACK+K′(a + a′).

The MACs will be used as follows: we give to Pi several different values
m1, m2, . . . with corresponding MACs γ1, γ2, . . . computed using keys Ki =
(α, βi) that are random but consistent. It is then easy to see that if Pi claims a
false value for any of the mi’s (or a linear combination of them) he can guess an
acceptable MAC for such a value with probability at most 1/p.

3.2 The Representation and Linear Computation

To represent a value a ∈ Zp, we will give a share ai to each party Pi. In addition,
Pi will hold MAC keys Ki

a1
, . . . , Ki

an
. He will use key Ki

aj
to check the share of

Pj , if we decide to make a public. Finally, Pi also holds a set of authentication
codes MACKj

ai
(ai). We will denote MACKj

ai
(ai) by mj(ai) from now on. Party

Pi will use mj(ai) to convince Pj that ai is correct, if we decide to make a public.
Summing up, we have the following way of representing a:

[a] = [{ai, {Ki
aj

, mj(ai)}nj=1}ni=1]

where {ai, {Ki
aj

, mj(ai)}nj=1} is the information held privately by Pi, and where
we use [a] as shorthand when it is not needed to explicitly talk about the shares
and MACs. We say that [a] = [{ai, {Ki

aj
, mj(ai)}nj=1}ni=1] is consistent, with

a =
∑

i ai, if mj(ai) = MACKj
ai

(ai) for all i, j. Two representations

[a] = [{ai, {Ki
aj

, mj(ai)}nj=1}ni=1], [a′] = [{a′
i, {Ki

a′
j
, mj(a′

i)}nj=1}ni=1]

Semi-homomorphic Encryption and Multiparty Computation 181

Opening: We can reliably open a consistent representation to Pj : each Pi sends
ai, mj(ai) to Pj . Pj checks that mj(ai) = MAC

K
j
ai

(ai) and broadcasts OK or

fail accordingly. If all is OK, Pj computes a =
∑

i ai, else we abort. We can
modify this to opening a value [a] to all parties, by opening as above to every
Pj .

Addition: Given two key-consistent representations as above we get that

[a + a′] = [{ai + a′
i, {Ki

aj
+ Ki

a′
j
, mj(ai) + mj(a

′
i)}nj=1}ni=1]

is a consistent representation of a+a′. This new representation can be computed
only by local operations.

Multiplication by constants: In a similar way, we can multiply a public con-
stant δ “into” a representation. This is written δ[a] and is taken to mean that
all parties multiply their shares, keys and MACs by δ. This gives a consistent
representation [δa].

Addition of constants: We can add a public constant δ into a representation.
This is written δ + [a] and is taken to mean that P1 will add δ to his share a1.
Also, each Pj will replace his key Kj

a1 = (αj
1, β

j
a1) by Kj

a1+δ = (αj
1, β

j
a1 − δαj

1).
This will ensure that the MACs held by P1 will now be valid for the new share
a1 + δ, so we now have a consistent representation [a + δ].

Fig. 4. Operations on [·]-representations

are said to be key-consistent if they are both consistent, and if for all i, j the
keys Ki

aj
, Ki

a′
j

are consistent. We will want all representations in the following
to be key-consistent: this is ensured by letting Pi use the same αj -value in keys
towards Pj throughout. Therefore the notation Ki

aj
= (αi

j , β
i
aj

) makes sense and
we can compute with the representations, as detailed in Figure 4.

3.3 Triples and Multiplication

For multiplication and input sharing we will need both random single values [a]
and triples [a], [b], [c] where a, b are random and c = ab mod p. Also, we assume
that all singles and triples we ever produce are key consistent, so that we can
freely add them together. More precisely, we assume we have access to an ideal
functionality FTRIP providing us with the above. This is presented in Figure 5.

The principle in the specification of the functionality is that the environment
is allowed to specify all the data that the corrupted parties should hold, including
all shares of secrets, keys and MACs. Then, the functionality chooses the secrets
to be shared and constructs the data for honest parties so it is consistent with
the secrets and the data specified by the environment.

Thanks to this functionality we are also able to compute multiplications in
the following way: If the parties hold two key-consistent representations [x], [y],
we can use one precomputed key-consistent triple [a], [b], [c] (with c = ab) to
compute a new representation of [xy].

182 R. Bendlin et al.

Functionality FTRIP

Initialize: On input (init, p) from all parties the functionality stores the modulus
p. For each corrupted party Pi the environment specifies values αi

j , j = 1, . . . , n,
except those αi

j where both Pi and Pj are corrupt. For each honest Pi, it chooses
αi

j , j = 1, . . . , n at random.
Singles: On input (singles, u) from all parties Pi, the functionality does the fol-

lowing, for v = 1, . . . , u:
1. It waits to get from the environment either “stop”, or some data as specified

below. In the first case it sends “fail” to all honest parties and stops. In the
second case, the environment specifies for each corrupt party Pi, a share ai

and n pairs of values (mj(ai), β
i
aj

), j = 1, . . . , n, except those (mj(ai), β
i
aj

)
where both Pi and Pj are corrupt.

2. The functionality chooses a ∈ Zp at random and creates the representation
[a] as follows:
(a) First it chooses random shares for the honest parties such that the sum

of these and those specified by the environment is correct: Let C be the
set of corrupt parties, then ai is chosen at random for Pi �∈ C, subject
to a =

∑
i ai.

(b) For each honest Pi, and j = 1, . . . , n, βi
aj

is chosen as follows: if Pj is

honest, βi
aj

is chosen at random, otherwise it sets βi
aj

= mi(aj)−αi
jaj .

Note that the environment already specified mi(aj), aj , so what is done
here is to construct the key to be held by Pi to be consistent with the
share and MAC chosen by the environment.

(c) For all i = 1, . . . , n, j = 1, . . . , n it sets Ki
aj

= (αi
j , β

i
aj

), and computes
mj(ai) = MAC

K
j
ai

(ai).

(d) Now all data for [a] is created. The functionality sends
{ai, {Ki

aj
, mj(ai)}j=1,...,n} to each honest Pi (no need to send

anything to corrupt parties, the environment already has the data).
Triples: On input (triples , u) from all parties Pi, the functionality does the follow-

ing, for v = 1, . . . , u:
1. Step 1 is done as in “Singles”.
2. For each triple to create it chooses a, b at random and sets c = ab. Now it

creates representations [a], [b], [c], each as in Step 2 in “Singles”.

Fig. 5. The ideal functionality for making singles [a] and triples [a], [b], [c]

To compute [xy] we first open [x]− [a] to get a value ε, and [y]− [b] to get δ.
Then, we have xy = (a + ε)(b + δ) = c + εb + δa + εδ. Therefore, we get a new
representation of xy as follows:

[xy] = [c] + ε[b] + δ[a] + εδ.

Using the tools from the previous sections we can now construct a protocol
ΠAMPC that securely implements the MPC functionality FAMPC in the UC se-
curity framework. FAMPC and ΠAMPC are presented in Figure 6 and Figure 7
respectively. The proof of Theorem 1 can be found in the full paper [BDOZ10].

Semi-homomorphic Encryption and Multiparty Computation 183

Functionality FAMPC

Initialize: On input (init , p) from all parties, the functionality activates and stores
the modulus p.

Rand: On input (rand , Pi, varid) from all parties Pi, with varid a fresh identifier,
the functionality picks r ← Zp and stores (varid , r).

Input: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other
parties, with varid a fresh identifier, the functionality stores (varid , x).

Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2

are present in memory and varid3 is not), the functionality retrieves (varid1, x),
(varid2, y) and stores (varid3, x + y mod p).

Multiply: On input (multiply, varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functionality re-
trieves (varid1, x), (varid2, y) and stores (varid3, x · y mod p).

Output: On input (output , Pi, varid) from all parties (if varid is present in mem-
ory), the functionality retrieves (varid , x) and outputs it to Pi.

Fig. 6. The ideal functionality for arithmetic MPC

Protocol ΠAMPC

Initialize: The parties first invoke FTRIP(init, p). Then, they invoke
FTRIP(triples , u) and FTRIP(singles, u) a sufficient number of times to
create enough singles and triples.

Input: To share Pi’s input [xi] with identifier varid , Pi takes a single [a] from the
set of available ones. Then, the following is performed:
1. [a] is opened to Pi.
2. Pi broadcasts δ = xi − a.
3. The parties compute [xi] = [a] + δ.

Rand: The parties take an available single [a] and store with identifier varid .
Add: To add [x], [y] with identifiers varid1, varid2 the parties compute [z] = [x]+[y]

and assign [z] the identifier varid3.
Multiply: To multiply [x], [y] with identifiers varid1, varid2 the parties do the

following:
1. They take a triple ([a], [b], [c]) from the set of the available ones.
2. [x]− [a] = ε and [y]− [b] = δ are opened.
3. They compute [z] = [c] + ε[b] + δ[a] + εδ
4. They assign [z] the identifier varid3 and remove ([a], [b], [c]) from the set of

the available triples.
Output: To output [x] with identifier varid to Pi the parties do an opening of [x]

to Pi.

Fig. 7. The protocol for arithmetic MPC

184 R. Bendlin et al.

Theorem 1. In theFTRIP-hybrid model, the protocol ΠAMPC implements FAMPC

with statistical security against any static4, active adversary corrupting up to n−1
parties.

4 The Offline Phase

In this section we describe the protocol ΠTRIP which securely implements the
functionality FTRIP described in Section 3 in the presence of two standard func-
tionalities: a key registration functionality FKeyReg and a functionality that gen-
erates random challenges FRand

5. Detailed specifications of these functionalities
can be found in the full paper [BDOZ10].

4.1 〈·〉-Representation

Throughout the description of the offline phase, Ei will denote Epki where pki

is the public key of party Pi, as established by FKeyReg. We assume the cryp-
tosystem used is semi-homomorphic modulo p, as defined in Section 2. In the
following, we will always set τ = p/2 and ρ = σ. Thus, if Pi generates a ci-
phertext C = Ei(x, r) where x ∈ Zp and r is generated by Dd

σ, C will be a
(τ, ρ)-ciphertext. We will use the zero-knowledge protocols from Section 2.2.
They depend on an “information theoretic” security parameter u controlling,
e.g., the soundness error. We will say that a semi-homomorphic cryptosystem is
admissible if it allows correct decryption of ciphertext produced in those proto-
cols, that is, if M ≥ 25u+2 log uτ2 and R ≥ 24u+log uτρ.

In the following 〈xk〉 will stand for the following representation of xk ∈
Zp: each Pi has published Ei(xk,i) and holds xk,i privately, such that xk =∑

i xk,i mod p. For the protocol to be secure, it will be necessary to ensure that
the parties encrypt small enough plaintexts. For this purpose we use the ΠPoPK

described in Section 2.2, and we get the protocol in Figure 8 to establish a set
〈xk〉 , k = 1, . . . , u of such random representations.

4.2 〈·〉-Multiplication

The final goal of the ΠTRIP protocol is to produce triples [ak], [bk], [ck] with
akbk = ck mod p in the [·]-representation, but for now we will disregard the
MACs and construct a protocol Πn-MULT which produces triples 〈ak〉 , 〈bk〉 , 〈ck〉
in the 〈·〉-representation6.

We will start by describing a two-party protocol. Assume Pi is holding a set
of u (τ, ρ)-encryptions Ei(xk) under his public key and likewise Pj is holding u

4 ΠAMPC can actually be shown to adaptively secure, but our implementation of FTRIP

will only be statically secure.
5 FRand is only introduced for the sake of a cleaner presentation, and it could easily

be implemented in the FKeyReg model using semi-homomorphic encryption only.
6 In fact, due to the nature of the MACs, the same protocol that is used to compute

two-party multiplications will be used later in order to construct the MACs as well.

Semi-homomorphic Encryption and Multiparty Computation 185

Subprotocol ΠSHARE

Share(u):
1. Each Pi chooses xk,i ∈ Zp at random for k = 1, . . . , u and broadcasts

(τ, ρ)-ciphertexts {Ei(xk,i)}uk=1.
2. Each pair Pi, Pj , i �= j, runs ΠPoPK(u, τ, ρ) with the Ei(xk,i)’s as input.

This proves that the ciphertexts are (22u+log uτ, 22u+log uρ)-ciphertexts.
3. All parties output 〈xk〉 = (E1(xk,1), . . . , En(xk,n)), for k = 1, . . . , u, where

xk is defined by xk =
∑

i xk,i mod p. Pi keeps the xk,i and the randomness
for his encryptions as private output.

Fig. 8. Subprotocol allowing parties to create random additively shared values

Subprotocol Π2-MULT

2-Mult(u, τ, ρ):
1. Honest Pi and Pj input (τ, ρ)-ciphertexts {Ei(xk)}uk=1, {Ej(yk)}uk=1. (At

this point of the protocol it has already been verified that the ciphertexts
are (22u+log uτ, 22u+log uρ)-ciphertexts.)

2. For each k, Pi sends Ck = xk Ej(yk)+Ej(rk) to Pj . Here Ej(rk) is a random
(23u+log uτ 2, 23u+log uτρ)-encryption under Pj ’s public key. Pi furthermore
invokes ΠPoCM(u, τ, ρ) with input Ck, Ei(xk), Ej(yk), to prove that the Ck’s
are constructed correctly.

3. For each k, Pj decrypts Ck to obtain vk, and outputs zk,j = vk mod p. Pi

outputs zk,i = −rk mod p.

Fig. 9. Subprotocol allowing two parties to obtain encrypted sharings of the product
of their inputs

Subprotocol Πn-MULT

n-Mult(u):

1. The input is 〈ak〉 , 〈bk〉 , k = 1, . . . , u, created using the ΠSHARE protocol.
Each Pi initializes variables ck,i = ak,ibk,i mod p, k = 1, . . . , u.

2. Each pair Pi, Pj , i �= j, runs Π2-MULT using as input the ciphertexts
Ei(ak,i), Ej(bk,j), k = 1, . . . , u, and adds the outputs to the private vari-
ables ck,i, ck,j , i.e., for k = 1, . . . , u, Pi sets ck,i = ck,i + zk,i mod p, and Pj

sets ck,j = ck,j + zk,i mod p.
3. Each Pi invokes ΠSHARE, where ck,i, k = 1, . . . , u is used as the numbers

to broadcast encryptions of. Parties output what ΠSHARE outputs, namely
〈ck〉 , k = 1, . . . , u.

Fig. 10. Protocol allowing the parties to construct 〈ck = akbk mod p〉 from 〈ak〉 , 〈bk〉

186 R. Bendlin et al.

Subprotocol ΠADDMACS

Initialize: For each pair Pi, Pj , i �= j, Pi chooses αi
j at random in Zp, sends a (τ, ρ)-

ciphertext Ei(α
i
j) to Pj and then runs ΠPoPK(u, τ, ρ) with (Ei(α

i
j), . . . , Ei(α

i
j))

as input and with Pj as verifier.
AddMacs(u):

1. The input is a set 〈ak〉 , k = 1, . . . , u. Each Pi already holds shares ak,i of
ak, and will store these as part of [ak].

2. Each pair Pi, Pj i �= j invokes Π2-MULT(u, τ, ρ) with input Ei(α
i
j), . . . , Ei(α

i
j)

from Pi and input Ej(ak,j) from Pj . From this, Pi obtains output zk,i, and
Pj gets zk,j . Recall that Π2-MULT ensures that αi

jak,j = zk,i + zk,j mod p.
This is essentially the equation defining the MACs we need, so therefore,
as a part of each [ak], Pi stores αi

j , β
i
ak,j

= −zk,i mod p as the MAC key
to use against Pj while Pj stores mi(ak,j) = zk,j as the MAC to use to
convince Pi about ak,j .

Fig. 11. Subprotocol constructing [ak] from 〈ak〉

Protocol ΠTRIP

Initialize: The parties first invoke FKeyReg(p) and then Initialize in ΠADDMACS.
Triples(u):

1. To get sets of representations {〈ak〉 , 〈bk〉 , 〈fk〉 , 〈gk〉}uk=1, the parties invoke
ΠSHARE 4 times.

2. The parties invoke Πn-MULT twice, on inputs {〈ak〉 , 〈bk〉}uk=1, respectively
{〈fk〉 , 〈gk〉}uk=1. They obtain as output {〈ck〉}uk=1, respectively {〈hk〉}uk=1.

3. The parties invoke ΠADDMACS on each of the created sets of the represen-
tations. That means they now have {[ak], [bk], [ck], [fk], [gk], [hk]}uk=1.

4. The parties check that indeed akbk = ck mod p by “sacrificing” the triples
(fk, gk, hk): First, the parties invoke FRand to get a random u-bit challenge
e. Then, they open e[ak] − [fk] to get εk, and open [bk] − [gk] to get δk.
Next, they open e[ck] − [hk] − δk[fk] − εk[gk] − εkδk and check that the
result is 0. Finally, parties output the set {[ak], [bk], [ck]}uk=1.

Singles(u):
1. To get a set of representations {〈a〉}uk=1, ΠSHARE is invoked.
2. The parties invoke ΠADDMACS on the created set of representations and

obtain {[ak]}uk=1.

Fig. 12. The protocol for the offline phase

(τ, ρ)-encryptions Ej(yk) under his public key. For each k, we want the protocol
to output zk,i, zk,j to Pi, Pj , respectively, such that xkyk = zk,i + zk,j mod p.
Such a protocol can be seen in Figure 9. This protocol does not commit parties
to their output, so there is no guarantee that corrupt parties will later use their
output correctly – however, the protocol ensures that malicious parties know
which shares they ought to continue with. To build the protocol Πn-MULT, the

Semi-homomorphic Encryption and Multiparty Computation 187

first thing to notice is that given 〈ak〉 and 〈bk〉 we have that ck = akbk =∑
i

∑
j ak,ibk,j . Constructing each of the terms in this sum in shared form is

exactly what Π2-MULT allows us to do. The Πn-MULT protocol can now be seen
in Figure 10. Note that it does not guarantee that the multiplicative relation in
the triples holds, we will check for this later.

4.3 From 〈·〉-Triples to [·]-Triples

We first describe a protocol that allows us to add MACs to the 〈·〉-representation.
This consists essentially of invoking the Π2-MULT a number of times. The protocol
is shown in Figure 11. The full protocol ΠTRIP, which also includes the possibility
of creating a set of single values, is now a straightforward application of the
subprotocols we have defined now. This is shown in Figure 12. The proof of
Theorem 2 can be found in the full paper [BDOZ10].

Theorem 2. If the underlying cryptosystem is semi-homomorphic modulo p,
admissible and IND-CPA secure, then ΠTRIP implements FTRIP with computa-
tional security against any static, active adversary corrupting up to n−1 parties,
in the (FKeyReg,FRand)-hybrid model.

References

[BCNP04] Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally compos-
able protocols with relaxed set-up assumptions. In: FOCS, pp. 186–195
(2004)

[BD10] Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge
proofs for lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010)

[BDOZ10] Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorhic
enryption and multiparty computation (full version). In: The Eprint
Archive, report 2010/514 (2010)

[Bea91] Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomiza-
tion. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
420–432. Springer, Heidelberg (1992)

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended
abstract). In: STOC, pp. 1–10 (1988)

[Can01] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. In: FOCS, pp. 136–145 (2001)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally se-
cure protocols (extended abstract). In: STOC, pp. 11–19 (1988)

[CD09] Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-
knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 177–191. Springer, Heidelberg (2009)

[CDN01] Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation
from threshold homomorphic encryption. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidel-
berg (2001)

188 R. Bendlin et al.

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally com-
posable two-party and multi-party secure computation. In: STOC, pp.
494–503 (2002)

[DGK09] Damg̊ard, I., Geisler, M., Krøigaard, M.: A correction to efficient and
secure comparison for on-line auctions. IJACT 1(4), 323–324 (2009)

[DGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully ho-
momorphic encryption over the integers. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

[DJ01] Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In: Kim, K.-
c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg
(2001)

[DO10] Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest ma-
jority: From passive to active security at low cost. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 558–576. Springer, Heidelberg
(2010)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
STOC, pp. 169–178 (2009)

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple bgn-type cryp-
tosystem from lwe. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 506–522. Springer, Heidelberg (2010)

[HIK07] Harnik, D., Ishai, Y., Kushilevitz, E.: How Many Oblivious Transfers
Are Needed for Secure Multiparty Computation? In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 284–302. Springer, Heidelberg
(2007)

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation
with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 294–314. Springer, Heidelberg (2009)

[LPS10] Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic
primitives provably as secure as subset sum. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 382–400. Springer, Heidelberg (2010)

[OU98] Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure
as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 308–318. Springer, Heidelberg (1998)

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999)

[PSSW09] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-
party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)

[RAD78] Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy
homomorphisms. In: Foundations of Secure Computation, pp. 169–178
(1978)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC, pp. 84–93 (2005)

	Semi-homomorphic Encryption and Multiparty Computation
	Introduction
	The Framework for Semi-homomorphic Encryption
	Examples of Semi-homomorphic Encryption
	Zero-Knowledge Proofs

	The Online Phase
	The MACs
	The Representation and Linear Computation
	Triples and Multiplication

	The Offline Phase
	<.>-Representation
	<.>-Multiplication
	From <.>-Triples to []-Triples

	References

