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Abstract— The paper proposes a semi-implicit formulation
of the differential-algebraic equations (DAEs) describing power
system models for transient stability analysis. This formulation,
if coupled to an implicit integration scheme, shows two relevant
advantages with respect to the conventional explicit formulation:
(i) reduce the computational burden; and (ii) increase the sparsity
of the Jacobian matrix of the system. The proposed model also
allows using null time constants and thus simplifies the computer
implementation of the DAEs. The properties and the performance
of the proposed semi-implicit formulation and the conventional
explicit one are compared through a dynamic 21,177-bus model
of the European transmission system.

Index Terms— Transient stability analysis, differential-
algebraic equations (DAEs), implicit time integration scheme.

I. INTRODUCTION

A. Motivation

POWER systems models for transient stability analysis

are traditionally defined as a set of explicit differential-

algebraic equations (DAEs) [1]–[4]:

ẋ = f(x,y) (1)

0 = g(x,y)

where f are the differential equations, g are the algebraic

equations, x are the state variables, and y are the algebraic

variables.

Equations (1) are ubiquitous in the literature on the dynamic

analysis of power systems. The explicit formulation, however,

is not the only possible formulation of DAEs. This paper

shows that (1) are not the most efficient for the numerical

solution of time domain integration and proposes the following

semi-implicit form:

T (x,y)ẋ = f̃(x,y) (2)

R(x,y)ẋ = g̃(x,y)

where T (x,y) and R(x,y) are time-variant, not necessarily

diagonal nor full-rank matrices. Equations (2) provide several

advantages with respect to (1), namely, reduce the number

of operations to compute equations and the elements of the

Jacobian matrix of the DAE; increase the sparsity of the

Jacobian matrix of the DAE; and allow effortlessly switching

state variables to algebraic ones.
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B. Literature Review

As said above, (1) is the most common formulation and

is used in all textbooks and seminal works on transient

stability analysis. The literature based on (1) spreads in several

directions. Relevant topics are, to cite some, stability analysis

[5], [6]; inverse problems [7]; methods to improve compu-

tational efficiency [8], [9]; parallelization techniques [10]–

[13]; variable time step methods [14], [15]; implicit integration

schemes [16], [17]; multi-time scales and integration of power

systems and electronic circuits [18], [19]; methods for long

term dynamic models [20], [21]; modified augmented nodal

analysis (MANA) [22]; and quasi-static simulation [23], [24].

Moreover, all most important proprietary software tools for

power system analysis are based on the explicit formulation

(1). Thanks to its generality, the proposed semi-implicit formu-

lation (2) can be directly applied to all numerical techniques

considered above.

To the best of the knowledge of the author, there are no

previous examples in the literature of implicit or semi-implicit

formulations of power systems similar to (2). The closest form

is that proposed in [12], where state variable dynamics can be

switched off by means of a diagonal matrix that pre-multiplies

the ẋ vector. However, in [12], the authors use an explicit

formulation. Section II shows that the formulation given in

[12] is a special case of the one proposed in this paper.

C. Contributions

The novel contributions of the paper are twofold.

• A semi-implicit formulation of DAEs for power system

time domain analysis. The formulation is general and can

be applied to any dynamic continuous system. However,

it appears particularly suited for the DAE describing

HV transmission grids as the differential equations of

common devices and controllers used in power systems

result simplified if written according to the proposed

semi-implicit formulation.

• A detailed description on how to numerically exploit

the features of the proposed semi-implicit formulation

through implicit integration schemes.

D. Paper Organization

The remainder of the paper is organized as follows. Section

II provides the definitions of explicit and semi-implicit for-

mulations and describes how the former is a special case of

the latter. Implicit time integration schemes are also described

in this section. Section III provides a variety of examples to

illustrate the properties of the proposed semi-implicit DAE



model and compares it with the conventional explicit model.

Section IV presents simulation results based on a dynamic

21,177-bus model of the European ENTSO-E transmission

system. Conclusions are drawn in Section V.

II. DIFFERENTIAL-ALGEBRAIC EQUATIONS FOR POWER

SYSTEM MODELLING

The conventional explicit DAE model for transient stability

analysis is recalled in Subsection II-A. The proposed semi-

implicit formulation is presented and duly discussed in Sub-

section II-B. Subsections II-C and II-D discuss the numerical

advantages of the proposed technique when it is coupled to an

implicit integration scheme. Finally, Subsections II-E and II-

F provide a quick overview on the quasi-steady-state analysis

and on how the proposed semi-implicit formulation affects the

computation of the state matrix of the system, respectively.

A. Conventional Explicit DAE Formulation

The set of explicit DAEs (1) can be written in a slightly

more general form considering discrete events. The following

model is considered in the remainder of this paper [7]:

ẋ = f(x,y,u) (3)

0 = g(x,y,u)

where f (f : Rn+m+p 7→ R
n) are the differential equations, g

(g : Rn+m+p 7→ R
m) are the algebraic equations, x (x ∈ R

n)

are the state variables, y (y ∈ R
m) are the algebraic variables,

and u (u ∈ R
p) are discrete variables modeling events, e.g.,

line outages and faults. In common practice, equations (3) are

split into a collection of subsystems where discrete variables u

are substituted for if-then rules. Thus, (3) can be conveniently

rewritten as a finite collection of continuous DAEs, one per

each discrete variable change (see the definition of the hybrid

automaton given in [7]).

B. Proposed Semi-Implicit DAE Formulation

The proposed semi-implicit DAE model with inclusion of

discrete events is as follows:

T (x,y)ẋ = f̃(x,y,u) (4)

R(x,y)ẋ = g̃(x,y,u)

where T (x,y) and R(x,y) are n × n and m × n matrices.

In general, as stated in the introduction, T and R are time-

variant, non-diagonal and non-full rank. Equations f̃ (f̃ :
R

n+m+p 7→ R
n) are the explicit part of differential equations,

while g̃ (g̃ : Rn+m+p 7→ R
m) are the explicit part of algebraic

equations. Clearly, f̃ 6= f and g̃ 6= g unless T = In, where

In is the identity matrix of order n, and R = 0.

The explicit model (3) can be obtained from (4) if and only

if T is full rank. Then, one has:

f = T−1f̃ (5)

g = g̃ −R · T−1f̃

where the dependence on x, y and u has been omitted for

simplicity.

In some recent papers, e.g., [12], the following formulation

is proposed:

Γẋ = f(x,y,u) (6)

0 = g(x,y,u)

where Γ is a n × n time-invariant diagonal matrix. The

elements of Γ, say γi,i, are as follows:
{

γi,i = 1, if the dynamic of xi is retained,

γi,i = 0, otherwise.

Equations (6), however, are explicit and their only added

value with respect to (3) is the ability to transform state

variables into algebraic ones. This feature is a byproduct of

(4); (6), in fact, is a particular case of (4).

Equation (4) could be rewritten in a more general way by

defining a total vector of variable z = [xT ,yT ]T :

Ξ(z)ż = F (z,u) (7)

where F = [f̃
T
, g̃T ]T and

Ξ(z) =

[

T (z) 0

R(z) 0

]

(8)

Equation (7) is a compact notation and is the preferred one in

mathematical monographs (see, for example, [25]). Based on

(7), it is straightforward to define the fully implicit form of

differential equation, as follows:

0 = Φ(ż, z,u) (9)

The implicit forms (7) and (9) indicate that the distinction

between state and algebraic variables, namely x and y, is

actually unnecessary from the mathematical viewpoint. In

the remainder of this paper, however, the notation of (4) is

preferred because of the following considerations:

• Equations (4) – similarly to (6) – allow distinguish-

ing between variables that always have infinitely fast

dynamics, i.e., algebraic variables, and state variables,

whose time constants can be null in occasions. From

an engineering point of view this distinction can help

understand the physical meaning and behaviour of the

variables. For example, in the standard transient stability

analysis, bus voltage phasors are algebraic variables and

are conceptually different from, say, synchronous ma-

chine rotor fluxes. The latter, in fact, are associated with

differential equations whose dynamics can be enabled

or not. On the other hand, the dynamics of bus voltage

phasors, in particular if using polar coordinates, cannot

be easily recovered – unless the admittance matrix model

is dropped and the transmission system is modelled

using dynamic electromagnetic equations. The difference

between algebraic and state variables is also evident if

one considers extra algebraic constraints as in the MANA

approach [22] (see also Subsection II-D).

• The formulation as in (4) allows for a simpler comparison

with the standard explicit model (3). For the same reason,

the authors of [12] proposed (6).
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• Equations (4) suggest how to move from the explicit

formulation (3) to the semi-explicit one. This can be

useful in case an interested reader decides to modify

a software tool based on (3) and implement the semi-

explicit formulation. Equations (4) also indicate that (3) is

a special case of (4). The explicit formulation can, in fact,

coexist with the semi-implicit one (see also Subsection

II-D).

• Depending on the integration scheme, (4) can lead to

a slightly lighter computational burden than (7), as dis-

cussed in the following subsection.

C. Implicit Integration Schemes for DAEs

Power system dynamic models are known to be stiff [25],

i.e., time constants can span several orders of magnitude.

DAEs are actually an extreme case of stiff problems, as the

time constants associated with algebraic variables are null.

Explicit methods such as Runge-Kutta schemes of linear multi-

step methods cannot deal properly with stiffness and, for this

reason, implicit schemes are the most commonly used methods

for the dynamic analysis of power systems [15]–[17].

When using implicit methods, each step of the numerical

integration is obtained as the solution of a set of nonlinear

equations. At a generic time t, and assuming a step length h,

one has to solve:

0 = p(x(t+ h),y(t+ h),u(t+ h), h) (10)

0 = q(x(t+ h),y(t+ h),u(t+ h), h)

where p, (p : Rn+m+p 7→ R
n) and q, (q : Rn+m+p 7→ R

m)

are nonlinear functions that depend on the DAE and on

the implicit numerical method. In particular, p accounts for

differential equations, while q for algebraic ones.

Since (10) are nonlinear, their solution is generally obtained

by means of a direct solver, e.g., Newton’s method, which, in

turn, consists in computing iteratively the increments ∆x(i)

and ∆y(i) and updating state and algebraic variables:
[

∆x(i)

∆y(i)

]

= −[A(i)]−1

[

p(i)

q(i)

]

(11)

[

x(i+1)(t+ h)

y(i+1)(t+ h)

]

=

[

x(i)(t+ h)

y(i)(t+ h)

]

+

[

∆x(i)

∆y(i)

]

where A(i) is the Jacobian matrix of (10), as follows:

A(i) =

[

p
(i)
x p

(i)
y

q
(i)
x q

(i)
y

]

(12)

To understand the discussion below, it is important to note

that time derivatives ẋ do not appear explicitly in (10) and

(11). The proposed semi-implicit formulation is based on this

observation, which has a relevant impact on the computational

burden of (10), on the sparsity pattern of the Jacobian matrix

A(i) in (12) and, in turn, on the performance of the solution

of the numerical integration. This is illustrated through some

examples of implicit method schemes. To simplify the notation

of the following subsections, the dependence on t+h and the

iteration index i are omitted. So, for example, x ≡ x(i)(t+h).

1) Backward Euler Method (BEM): The BEM is a first

order implicit method. It is often used to restart multi-step

methods such as those based on backward differentiation

formulæ. Applying the BEM to the conventional DAE for-

mulation (3) leads to:

p = ξ − hf (13)

q = −hg

where ξ = x − x(t), and x(t) is the known vector of state

variables computed at the previous step. The expression of q

is obtained by scaling the algebraic equations through the step

length h. While this is not strictly necessary when using the

explicit form (3), scaling the algebraic equations g can reduce

the number of iterations required to solve (11). From (13), one

can readily obtain:

A =

[

In − hf
x

−hf
y

−hg
x

−hg
y

]

(14)

As observed above, ẋ does not appear explicitly in (13).

The time derivatives, in fact, are approximated with a finite

difference, namely ẋ ≈ ξ/h.

The BEM applied to the proposed semi-implicit form (4)

leads to the following expression:

p̃ = T · ξ − hf̃ (15)

q̃ = R · ξ − hg̃

and

Ã =

[

T + T xξ − hf̃
x

T yξ − hf̃
y

R+Rxξ − hg̃
x

Ryξ − hg̃
y

]

(16)

where T x and T y are the gradients of T with respect to x

and y, respectively, and Rx and Ry are defined similarly.

Note that, in this case, scaling the expression of q with the

step length h is mandatory, otherwise the term Rξ does not

approximate Rẋ/h.

2) Implicit Trapezoidal Method (ITM): The Crank-

Nicolson’s or ITM is the workhorse solver for electro-

mechanical DAE, and is widely used, in a variety of flavors, in

most commercial and non-commercial power system software

packages. The ITM has proved to be very robust and reliable

for a variety of stiff ODE and DAE systems. Using the same

notation as for the BEM, p are q for the ITM are:

p = ξ − 0.5h(f + f(t)) (17)

q = −hg

f(t) is the known vector of state variable derivatives computed

at the previous step. The Jacobian matrix of (17) is:

A =

[

In − 0.5hf
x

−0.5hf
y

−hg
x

−hg
y

]

(18)

The expressions of p̃ and q̃ for the semi-explicit formulation

are straightforwardly obtained:

p̃ = T · ξ − 0.5h(f̃ + f̃(t)) (19)

q̃ = R · ξ − hg̃
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and

Ã =

[

T + T xξ − 0.5hf̃
x

T yξ − 0.5hf̃
y

R+Rxξ − hg̃
x

Ryξ − hg̃
y

]

(20)

3) Backward Differentiation Formulæ (BDF): These are a

family of implicit methods and are largely used for circuit and

power system analysis due to their L-stability properties. The

BDF formula of order ν for the explicit form (3) is given by

[26]:

p = ξ̃ − βhf (21)

q = −hg

where

ξ̃ = x−

ν
∑

ℓ=1

γℓx(t− (ℓ− 1)h) (22)

and, for simplicity but without a substantial loss of generality,

a constant step length h is assumed for x(t−(ℓ−1)h) values.

The Jacobian matrix of (21), is as follows:

A =

[

In − βhf
x

−βhf
y

−hg
x

−hg
y

]

(23)

The coefficients γℓ and β are computed according to a

straightforward procedure given in [16].

The semi-implicit counterparts of (21) and (23) are as

follows:

p̃ = T · ξ̃ − βh(f̃ + κf̃(t)) (24)

q̃ = R · ξ̃ − hg̃

and

Ã =

[

T + T xξ̃ − βhf̃
x

T y ξ̃ − βhf̃
y

R+Rxξ̃ − hg̃
x

Ry ξ̃ − hg̃
y

]

(25)

where the coefficient κ is included to generalize (24) and

allow using it for both BDF and ITM. Table I summarizes the

coefficients for the BEM, ITM and order-2 BDF. Note that,

from the computer implementation point of view, expressions

(24) and (25) can be used for both the implicit and semi-

implicit formulations of the DAE. In fact, (21) is a particular

case of (24) where T = In and R = 0 (see also the discussion

above on (5)). The software tool Dome [27] used for obtaining

the results that are discussed in Section IV is based on (24)

and (25). Note also that the BEM is the order-1 BDF, as well-

known, as the first order approximation is unique [28].

Implicit methods of order higher than 2 are not considered in

this paper. The proposed semi-implicit formulation, however,

is not limited to second-order methods. For example, the

Hammer-Hollingsworth 4th order method discussed in [17]

can be straightforwardly formulated using (4).

D. Remarks on Implicit Integration Methods

Semi-implicit expressions (24) and (25) may look more

involved and computationally demanding than the expressions

obtained using the explicit formulations (21) and (23). Actu-

ally, this is not the case in practice. The following remarks are

relevant:

TABLE I

COEFFICIENTS OF THE ORDER 1 AND ORDER 2 BDF AND ITM

Scheme Order γ1 γ2 β κ

BEM 1 1 - 1 0

BDF 2 4/3 −1/3 2/3 0

ITM 2 1 - 0.5 1

• Matrices T and R are very sparse and typically sparser

than f
x

and g
x

. T is almost diagonal while R contains

only very few off-diagonal elements. Off-diagonal ele-

ments of T and R, however, allow increasing the sparsity

of the Jacobian matrices of f̃ and g̃. As a result, Ã is

consistently sparser than A.1

• In practical power system models almost all elements of

T and R are constant. In (25), the terms that multiply

ξ̃ are null or almost all null. Non-null terms, however, if

any, improve the sparsity of the full Jacobian matrix Ã.

• The additional operations required to compute (24) and

(25) are largely compensated by the fact that the computa-

tional burden of f̃ and g̃ and their Jacobians is lower than

that of f and g and their Jacobians. The latter statement

is true only if sparsity is exploited but this is a given of

any efficient power system software tool.

• From observing (15) and (19) – or the general expression

(24) – one may conclude that the integration scheme of

algebraic constraints is different than that of differential

equations. In particular, it may seem that algebraic con-

straints are always integrated using the BEM. This is

actually not the case. For algebraic constraints, in fact,

ẏ ≡ 0, ∀t. Hence, the set of algebraic constraints does

not need to be “integrated” as it happens to differential

equations, but just “solved” at each step of the time

domain simulation. Moreover, note that, in (19) – and

in (24) – the step length h multiplies the algebraic

constraints for consistency with the term R · ξ. The

ratio ξ/h is, in fact, the numerical approximation of

ẋ. The accuracy of the term ξ/h does depend on the

integration scheme (hence ITM and BDF will provide

better estimations than BEM) but, since ẏ ≡ 0, no

estimation is needed for algebraic variables and their

accuracy is the same regardless the integration scheme.

The latter point also indicates that exploiting the knowledge

that ẏ ≡ 0 and, hence, using (4) instead of (7), allows

slightly reducing the number of operations if implicit inte-

gration schemes of order higher than 1 are used. For example,

considering (24), it appears that one does not have to compute

the algebraic counterpart of ξ̃ and the term κg̃(t) is not

required to compute q̃.

Sections III and IV support the statements above by means

of several analytically examples and a large real-world power

1It may appear confusing or, at least, counter-intuitive that the existence
of off-diagonal elements of matrices T and R lead Ã to be sparser than A.
This is so because Ã is obtained as the sum of T and R with f

x
and g

x
,

respectively. Each off-diagonal element of T and R often allows removing
two or more off-diagonal elements of f̃

x
and g̃

x
. Moreover, the positions

occupied by off-diagonal elements of T and R are generally also occupied
by some non-zero elements of f̃

x
and g̃

x
. These considerations justify the

statements above.
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system model.

E. Steady-state Analysis and Quasi-Static Simulation

In steady-state, ẋ = 0 and (4) reduces to:

0 = f̃(x,y,u) (26)

0 = g̃(x,y,u)

This model is also adequate for quasi-static simulations (QSS).

Since f̃ and g̃ require less operations than explicit expressions

f and g, the QSS analysis based on the semi-implicit for-

mulation results computationally more efficient. The Jacobian

matrix for QSS is simplified with respect to (25), as follows:

Ã
QSS

=

[

−βhf̃
x

−βhf̃
y

−hg̃
x

−hg̃
y

]

(27)

Coefficients β and h can be dropped in this case as ξ̃ = 0, ∀t.
Empirical observations by the author on several test cases

have shown that solving (26) tends to be numerically more

stable and/or require less iterations than solving (3) for ẋ = 0.

F. Small-signal Stability Analysis

As it is well-known, the state matrix of the explicit form

(3) is:

As = f
x
− f

y
g−1
y

g
x

(28)

and the n roots of the characteristic equation:

det(As − λIn) = 0 (29)

are the n eigenvalues of (28).

To define the state matrix As is more involved for the semi-

implicit form (4) as more matrix factorizations are required,

as follows. Differentiating (4) at an equilibrium point leads to:

T∆ẋ = f̃
x
∆x+ f̃

y
∆y (30)

R∆ẋ = g̃
x
∆x+ g̃

y
∆y

Note that the terms T xẋ, T yẋ, etc., are null. In fact, at the

equilibrium point ẋ = 0. Then one has:

B̃s∆ẋ = Ãs∆x (31)

where

Ãs = f̃
x
− f̃

y
g̃−1
y

g̃
x

(32)

B̃s = T − f̃
y
g̃−1
y

R

Let define the pencil Ãs − λB̃s, then the generalized eigen-

value problem of (31) is as follows [29]:

det(Ãs − λB̃s) = 0 (33)

Hence, two factorizations of the Jacobian matrix g̃
y

are

required for the semi-implicit form, as opposed to one fac-

torization of g
y

required to compute (28).

If the rank matrix T is n − k, i.e., T is not full-rank, k
eigenvalues of (33) are infinite. Robust algorithms that solve

(33) should return only the n−k finite eigenvalues [30], [31].

Note that, if T is not full-rank, one cannot compute As =

B̃
−1

s Ãs and solve the conventional eigenvalue problem (29) as

B̃s is not invertible. In fact, if T has a null diagonal element,

say Ti,i = 0, then also the whole i-th columns of T and R

are null as ẋi = 0, ∀t must apply. Hence, B̃s is singular as

its i-th column is null.

The small-signal stability analysis of the semi-implicit form

is thus more computationally demanding than that of the

explicit one. However, the computation of (33) is only required

once per equilibrium point of (4).

A further generalization of the matrix pencil makes unnec-

essary to factorize g̃
y

. In fact, one can solve the following

augmented general eigenvalue problem:

det(Ãc − λB̃c) = 0 (34)

where:

Ãc =

[

f̃x f̃y

g̃x g̃y

]

, and B̃c =

[

T 0

R 0

]

.

In (34), the number of infinite eigenvalues is k+m and clearly,

the size of the problem is n ·m× n ·m. The size increase is

compensated by the fact that Ãc is typically much sparser than

Ãs. Note that B̃c is structurally identical to Ξ(z) in (8), but

is composed of constant elements computed at the equilibrium

point.

The generalized eigenvalue problem can be clearly defined

also for the explicit formulation (3) and its variant (6). For

example, in the case of (6), one has:

det(Ac − λBc) = 0 (35)

where:

Ac =

[

fx fy

gx gy

]

, and Bc =

[

Γ 0

0 0

]

.

The analysis on the performance and numerical features and

issues of (33) and (34) is beyond the scope of this paper and

will considered in future work.

III. EXAMPLES

As disclosed in the introduction, the semi-implicit formu-

lation reduces the complexity and increases the sparsity of

the Jacobian matrices of the right-hand side of the DAE. This

statement is best explained through examples. Common power

system devices and regulators are considered in this section to

illustrate the advantages of (4) over (3).

A. Common Control Blocks

Some basic control blocks are considered in this subsection,

namely the lag, the lead-lag and the PI control blocks, whose

transfer functions are shown in Fig. 1.
1) Lag Block: The conventional time-domain formulation

of the lag function is:

ẋ = (Ku− x)/T (36)

Using the proposed semi-implicit form, one obtains:

T ẋ = Ku− x (37)

In this case, the number of operations of (36) and (37) is

the same, but (37) allows using T = 0 and is not prone to

numerical issues for small values of T .
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Fig. 1. Transfer functions of common control blocks.
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Fig. 2. Implementations of the Lead-lag diagram: (a) parallel model, and
(b) series model.

2) Lead-Lag Block: The non-uniqueness of the time-

domain representation of a transfer function is well illustrated

through the lead-lag block. Figure 2 shows two conventional

representations of a lead-lag transfer function. The “parallel”

model is described by:

ẋ = ((1− T1/T2)u− x)/T2 (38)

w = (T1/T2)u+ x

whereas the “series” model leads to the following DAE

system:

ẋ′ = (u− x′)/T2 (39)

w = (T1/T2)(u− x′) + x′

The state variable x in (38) takes different values than x′ in

(39) but the output w is the same for the two models.

The semi-implicit formulation of the lead-lag block is:

T2ẋ = u− x (40)

−T1ẋ = x− w

Note that also the semi-implicit formulation is not unique.

Another implementation is:

T2ẋ− T1u̇ = u− x (41)

0 = x− w

which requires the same number of operations as (40) but can

be defined only if u is a state variable or function of state

variables. (40) and (41) show less operations and a sparser

Jacobian matrix than (38) and (39). The latter property is

best illustrated by the example on the PSS controller given

in Subsection III-D.
3) PI Block: PIs are very common blocks found in many

regulators of power system devices. The conventional PI

implementation is depicted in Fig. 3.a, as follows:

ẋ = Kiu (42)

0 = Kpu+ x− w

Equations (42) are both explicit and semi-implicit. An alter-

native semi-implicit formulation, shown in Fig. 3.b, is:

Tiẋ = Kpu (43)

−Tiẋ = x− w

(a) (b)

+

+

s

uu

x

ww
Kp(1 + Tis)

Tis

Kp

Ki

Fig. 3. PI controller: (a) conventional scheme; (b) modified scheme to exploit
the semi-implicit formulation.

where Ti = Kp/Ki. Equations (43) lead to a sparser Jacobian

matrix than (42), especially if the input u is a function of more

than one variable, as it is often the case.

B. Synchronous machine model

A conventional synchronous machine model in explicit form

is as follows [32]:

ė′q = (−e′q − (xd − x′d)(id − γd2ψ
′′

d (44)

− (1− γd1)id + γd2e
′

q) + vf )/T
′

d0

ė′d = (−e′d + (xq − x′q)(iq − γq2ψ
′′

q

− (1− γq1)iq − γd2e
′

d))/T
′

q0

ψ̇′′

d = (−ψ′′

d + e′q − (x′d − xℓ)id)/T
′′

d0

ψ̇′′

q = (−ψ′′

q − e′d − (x′q − xℓ)iq)/T
′′

q0

where:

γd1 =
x′′d − xℓ
x′d − xℓ

, γq1=
x′′q − xℓ

x′q − xℓ
(45)

γd2 =
1− γd1
x′d − xℓ

, γq2=
1− γq1
x′q − xℓ

The proposed semi-implicit model is:

T ′

d0ė
′

q + T̃ ′′

d0ψ̇
′′

d = −e′q − (xd − x′d)id + vf (46)

T ′

q0ė
′

d − T̃ ′′

q0ψ̇
′′

q = −e′d + (xq − x′q)iq

T ′′

d0ψ̇
′′

d = −ψ′′

d + e′q − (x′d − xℓ)id

T ′′

q0ψ̇
′′

q = −ψ′′

q − e′d − (x′q − xℓ)iq

where

T̃ ′′

d0 = (xd − x′d)γd2T
′′

d0 (47)

T̃ ′′

q0 = (xq − x′q)γq2T
′′

q0

Several models of reduced order can be obtained based on the

6th order model. For example, a commonly-used 5th order

model assumes T ′

q0 = 0 [33]. Note that, while reduced order

models require rewriting part of the equations of (44), to

reduce the dynamic order of (46), it is sufficient to set to

zero a time constant on the left-hand side of (46).
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+

+ +

−−

−vref

vk

vm

Ka

Kfs

veva

vf

vb

vin

vmax
a

vmin
a

1

1

Tms+ 1

Tas+ 1 Tes+Ke

Tfs+ 1

Tbs+ 1

Tcs+ 1

Stabilizing feedback

Amplifier

Measure

Exciter

Se

Fig. 4. Control diagram of the IEEE automatic voltage regulator Type DC1
[34].

C. IEEE Type DC1 Exciter and Controller

The control scheme of the IEEE Type DC1 exciter is shown

in Fig. 4 [34]. An explicit formulation of this regulator is:

v̇m = (vk − vm)/Tm (48)

v̇b = ((1−
Tc
Tb

)(vref − vm − vf −
Kf

Tf
ve)− vb)/Tb

v̇a =
Tc
Tb

(Ka(v
ref − vm − vf −

Kf

Tf
ve) + vb − va)/Ta

v̇f = −(
Kf

Tf
ve + va)/Tf

v̇e = −((Ke + Se(ve))ve − va)/Te

where vk is the regulated voltage at the generator terminal bus

k. Details on the ceiling function Se can be found in [32]. A

possible semi-implicit formulation reads:

Tmv̇m = vk − vm (49)

Tbv̇b +Kav̇f = Ka(v
ref − vm)− vb

Tav̇a − Tcv̇b = vb − va

Tf v̇f = Kfve − vf

Tev̇e = va − (Ke + Se(ve))ve

The anti-windup limiter of the amplifier has to be handled

carefully in the semi-implicit formulation. For anti-windup

limiters, the sign of the time derivative of the state variable is

part of the limiter logic, as follows:

if va ≥ vmax
a and v̇a ≥ 0 ⇒ va = vmax

a and v̇a = 0 (50)

if va ≤ vmin
a and v̇a ≤ 0 ⇒ va = vmin

a and v̇a = 0

otherwise ⇒ Tav̇a = vin − va

where vin is the amplifier input signal (see Fig. 4), whose

expression depends on the DAE formulation. Hence, the sign

of v̇a, not only the value of va, defines the behaviour of the

anti-windup limiter. With the explicit formulation (48), the

sign of v̇a is the same as that of its right-hand-side differential

equation. With the semi-implicit formulation (49), however,

the right-hand-side might not have the same sign of v̇a due

to the term Kav̇f . Thus, sign(f̃) 6= sign(f) ≡ sign(ẋ), in

general.

Note that the input signal to the stabilizing feedback of the

AVR is a state variable, namely, ve. Hence, an alternative semi-

implicit model can be defined by using the time derivative

Kw

v1 v2 v3vin vout

vmax
out

vmin
out

Tws

Tws+ 1

T1s+ 1

T2s+ 1

T3s+ 1

T4s+ 1

Fig. 5. Control scheme of a common power system stabilizer.

of the input rather than the output signal of the stabilizing

feedback. The resulting model is:

Tmv̇m = vh − vm (51)

Tbv̇b = Ka(v
ref − vm − vf )− vb

Tav̇a − Tcv̇b = vb − va

Tf v̇f −Kf v̇e = −vf

Tev̇e = va − (Ke + Se(ve))ve .

D. Power System Stabilizer

Figure 5 shows a common PSS model consisting of a

cascade of washout and lead-lag blocks. An explicit form is:

v̇1 = −(Kwvin + v1)/Tw (52)

v̇2 = ((1−
T1
T2

)(Kwvin + v1)− v2)/T2

v̇3 = ((1−
T3
T4

)(v2 + (
T1
T2

(Kwvin + v1)))− v3)/T4

0 = v3 +
T3
T4

(v2 +
T1
T2

(Kwvin + v1))− vout

Another set of explicit DAEs is as follows:

v̇1 = (Kwvin − v1)/Tw (53)

v̇2 = (Kwvin − v1 − v2)/T2

v̇3 = (K1v2 +
T1
T2

(Kwvin − v1)− v3)/T4

0 = (K2v3 +
T3
T4

(K1v2 +
T1
T2

(Kwvin − v1))− vout

where K1 = 1 − T1/T2 and K2 = 1 − T3/T4. Note that the

Jacobian matrices of the two explicit models (52) and (53) are

relatively dense.

Also semi-implicit formulations are non-unique. The fol-

lowing is an implementation:

Twv̇1 = Kwvin − v1 (54)

T2v̇2 − Twv̇1 = −v2

T4v̇3 − T1v̇2 = v2 − v3

−T3v̇3 = v3 − vout

Even just from a visual inspection, (54) looks simpler than (52)

and (53). Note also that the input signal vin propagates through

(52) and (53), while it appears only in the first equation of (54).

E. Remarks on Explicit and Semi-Implicit Models

For illustration, Table II shows the number of non-zero

(NNZ) elements of the Jacobian matrices of different DAE

models for the synchronous machines, AVR and PSS devices

presented above. The last column of Table II provides the
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relative reduction of NNZ of semi-explicit formulations versus

implicit ones. The reduction is 23.5% in the worst case and

42.9% in the best one. The number of operations of semi-

implicit models is sensibly smaller than that of explicit ones.

TABLE II

NUMBER OF NON-ZERO ELEMENTS OF THE JACOBIAN MATRIX OF

DIFFERENT DAE MODELS

Device Model Eq. NNZ Red. %

Synch. Mach.
Ex. (44) 17 -

SI (46) 13 23.5

AVR

Ex. (48) 17 -

SI (49) 12 29.4
SI (51) 12 29.4

PSS

Ex. (52) 14 -

Ex. (53) 14 -

SI (54) 8 42.9

It is important to note that the proposed semi-implicit

approach allows replacing a set of – say – n differential

equations with another set of n differential equations, but

with sparser structure. However, improving the sparsity of the

Jacobian matrix of DAEs can be obtained also by artificially

adding algebraic constraints (together with the corresponding

algebraic variables) to the original DAE. The latter set of

DAEs results of larger size but, if the additional constraints are

properly chosen, it can be also much sparser than the original

DAE set. The use of “intermediate” constraints and variables is

convenient to decompose a large system automatically into its

sub-systems. Such consideration have been exploited in the

literature. An example is the MANA approach proposed in

[22] and, more recently, in [35].

The examples shown in this section are promising but are

only particular cases. To apply such transformation to a large

software tool, it would be interesting to have a systematic

approach to pass from the standard formulation (3) to the

proposed (4). Unfortunately, to the best of the knowledge of

the author, there is no such a general methodology to transform

explicit into (semi-)implicit DAEs. Further investigation on

this point will be carried out in future work.

Another aspect that can discourage one from adopting the

proposed semi-implicit formulation is the complexity and time

associated with porting an existing software tool based on on

(3) to (4). With this regard, it can be useful to note that the

changes required to adapt the implicit integration schemes to

the semi-implicit formulation are relatively small and can be

implemented quickly. For example, the author was able to im-

plement such changes in two weeks in his software tool Dome

[27]. Of course, more time consuming is to rewrite device

models. However, since the conventional implicit formulation

is a special case of the semi-implicit one, conventional explicit

models can coexist with the semi-implicit ones (this features

has been exploited for the simulations included in the case

study discussed in Section IV). Hence porting a software tool

from the explicit to the semi-explicit formulation is relatively

smooth operation that allows maintaining compatibility with

existing explicit models.

IV. CASE STUDY

In this case study, the properties and the performance of

the conventional and the proposed DAE models are compared

through a dynamic model of the ENTSO-E transmission

system.2 The model includes 21,177 buses (1,212 off-line);

30,968 transmission lines and transformers (2,352 off-line);

1,144 coupling devices, i.e., zero-impedance connections (420

off-line); 15,756 loads (364 off-line); and 4,828 power plants.

Of these power plants, 2,664 are modelled with 6th order

synchronous machines models with AVRs and turbine gov-

ernors. The remaining 2,168 machines are simulated with the

classical 2nd order model. 1,160 power plants are off-line. The

system also include 364 PSSs. The topology and the data of the

transmission system are based on the actual real-world system

provided by the ENTSO-E but dynamic data are guessed and

based on the technology of power plants.

All simulations are obtained using Dome, a Python-based

power system analysis toolbox [27]. The Dome version used

for in this case study is based on Python 3.4.1; ATLAS 3.10.1

for dense vector and matrix operations; CVXOPT 1.1.7 for

sparse matrix operations; and KLU 1.3.2 for sparse matrix

factorization. All simulations were executed on a 64-bit Linux

Fedora 21 operating system running on two Intel Xeon 4 Core

3.5 GHz CPUs, and 12 GB of RAM.

Table III shows the statistics for the ENTSO-E network

modelled with the explicit formulation (3). This consists of

39,732 state variables and 106,432 algebraic variables. In

particular, Table III shows the sparsity degree of Jacobian

matrices of (3) including the full Jacobian matrix A as defined

in (23).

TABLE III

STATISTICS FOR THE EXPLICIT MODEL OF THE ENTSO-E TRANSMISSION

SYSTEM

Matrix Rows Cols NNZ NNZ %

g
y

106, 432 106, 432 487, 599 0.00430%

g
x

106, 432 39, 732 33, 272 0.00079%
f
y

39, 732 106, 432 54, 828 0.00130%

f
x

39, 732 39, 732 80, 164 0.00508%
A 146, 164 146, 164 655, 863 0.00307%

Table IV shows the statistics for the ENTSO-E network

modelled with the semi-implicit formulation (4). In this case,

there are 49,396 differential equations and 96,768 algebraic

ones. The rank of the matrix T is 39,732, which means that

9,664 state variables have a null time constant. These are

mainly stator fluxes of synchronous machines of power plants.

Note that the total number of variables, i.e., n + m, is the

same as for the explicit formulation of Table III. The last

column of Table IV indicates the reduction, in percentage, of

the number of non-zero elements passing from the explicit

to the semi-implicit formulation.3 As expected, the semi-

implicit form allows a noticeable reduction of the NNZ of

2The data of the system has been licensed to the author by ENTSO-E. Data
can be requested through an on-line application at www.entsoe.eu.

3This reduction is based on the NNZ of Jacobian matrices. Note that this
comparison is somewhat “loose” as the number of state and algebraic variables
of the explicit and semi-implicit models is not the same. The only exact
comparison applies to full Jacobian matrices A, Ã and Ã

QSS
.
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matrices f̃
x

, f̃
y

and g
x

. The algebraic Jacobian matrix g̃
y

is also slightly sparser than the explicit matrix g
y

because of

the terms depending on ẋ. These terms are included in R,

which, however, does not increase the sparsity of g̃
x

. The full

Jacobian matrix Ã is about 14% sparser than A and the full

Jacobian matrix for QSS analysis, Ã
QSS

, is about 16% sparser

than A.

TABLE IV

STATISTICS FOR THE SEMI-IMPLICIT MODEL OF THE ENTSO-E

TRANSMISSION SYSTEM

Matrix Rows Cols NNZ NNZ % Red. %

g̃
y

96, 768 96, 768 395, 362 0.00422% 1.87%

g̃
x

96, 768 49, 396 34, 768 0.00073% 7.59%
R 96, 768 49, 396 844 0.00002% -

R+ g̃
x

96, 768 49, 396 34, 768 0.00073% 7.59%

f̃
y

49, 396 96, 768 46, 192 0.00097% 25.38%

f̃
x

49, 396 49, 396 77, 356 0.00317% 37.60%
T 49, 396 49, 396 50, 948 0.00209% -

T + f̃
x

49, 396 49, 396 89, 664 0.00367% 27.76%

Ã 146, 164 146, 164 565, 986 0.00265% 13.68%

Ã
QSS

146, 164 146, 164 553, 678 0.00259% 15.64%

A time domain simulation is carried out to compare the

performance of the explicit and semi-implicit formulations.

The case study consists in simulating a three-phase fault at

bus 129,218 occurring at t = 1 s and cleared after 200 ms.

The total simulated time is 5 s. Table V shows the CPU times

to solve the explicit and the semi-implicit DAE formulations

using the full dynamic model and the integration schemes

discussed in subsection II-C, namely, the BEM, ITM and a

second order BDF method. The latter is restarted by means

of the BEM after the short-circuit occurrence and clearance.

A standard dishonest Newton-Raphson method to solve each

point of the time domain simulation is used [11]. For com-

parison, the integration step length h and the convergence

tolerance ǫ are constant and equal for all integration methods.

In particular, h = 0.02 s and ǫ = 10−6 are used. Note that the

values shown in Table V refers to the time required to complete

the sole time integration routine, not the power flow analysis

and the initialization of dynamic models. As expected, the

semi-implicit formulation allows reducing the computational

burden. The overall gain is about 15%.

CPU times obtained using the QSS model outlined in

Subsection II-E are also shown in Table V. Times refer to

a simulation of 60 s with a time step h = 0.1 s. Loads

increase following a ramp rate of 10−5 pu/s. Also in this

case, the semi-implicit formulation performs better than the

conventional explicit one.

TABLE V

COMPUTATIONAL BURDEN OF TIME DOMAIN INTEGRATION FOR THE

ENTSO-E TRANSMISSION SYSTEM

Method Explicit Semi-Implicit Time Saving

BEM 24.67 s 21.15 s 14.26% s

ITM 38.38 s 32.72 s 16.26% s

BDF 39.04 s 32.80 s 15.98% s

QSS 27.52 s 23.76 s 13.66% s

A. Remarks on Simulation Results

From the results shown in Table V, it appears that, while

more efficient than the standard explicit DAEs, the semi-

implicit formulation does not lead to an outstanding improve-

ment of simulation times. With this regard, the following

remarks are relevant.

• The proposed semi-implicit DAE formulation can be cou-

pled with any other technique to speed up time domain

simulation software, e.g., parallelization and extra alge-

braic constraints (see also the discussion in Subsection

III-E). Hence, even if the speed up provided by the semi-

implicit formulation per se is not huge, such a speed up

can be combined with and, possibly, amplified by other

numerical techniques.

• Reducing the computational burden is not the sole benefit

of the proposed semi-implicit formulation. As discussed

in the paper, other relevant features are the intrinsic

ability to accept zero time constants, thus leading to

the possibility to seamlessly switch state variables to

algebraic ones; and a consistent reduction of the sparsity

of the Jacobian matrix. The latter is a feature that is

expected to be beneficial to further speedup the time

domain analysis if other techniques are used, as discussed

in the point above.

• The case study considered in the paper as well as the

many tests that the author has carried out to test the

semi-implicit formulation, indicate that the behaviour,

including convergence, i.e., number of iterations to com-

plete each integration step, of the considered integration

methods are effectively identical for both the explicit and

semi-implicit formulations.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a semi-implicit formulation of DAEs

for angle and voltage stability analysis of power systems. This

formulation provides several advantages with respect to the

conventional explicit one. The advantages are: (i) differential

equations are simplified and require less operations; (ii) Ja-

cobian matrices are sparser and, hence, require less time to

factorize; and (iii) state variables can effortlessly switched

to algebraic ones by simply imposing null time constants.

The case study based on a 21,177-bus model the ENTSO-E

transmission system confirms that the proposed formulation

allows reducing the computational burden of time domain

integration.

The author is currently investigating several applications of

the proposed semi-implicit formulation of DAEs. For example,

an aspect that will be considered is how (4) affects the

computation of the state matrix of the DAE and, hence, its

impact on small signal stability analysis. Future work will also

focus on the definition, if possible, of a systematic method-

ology to transform explicit DAEs into semi-implicit ones.

This will also involve the attempt to define in a mathematical

way the optimal structure of DAEs in terms of number of

operations and Jacobian matrix sparsity. Coupling the semi-

implicit approach with techniques that increase the sparsity of

Jacobian matrices through additional algebraic constraints as

9



well as with techniques that exploits different approximations

of the DAEs for time scales will be investigated. Future

work will focus also on further exploring the potential of

the semi-implicit DAE formulation model for other dynamic

systems, such as electro-magnetic models of power systems

and electronic circuits.

It appears that the possible developments of the proposed

approach are several and diverse. Reviewers’ comments on

this work have been very stimulating and suggested most of

the future work indicated above. It is the hope of the author

that this work can pave the way to a new paradigm of power

system modelling and time domain analysis.
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