
Semi-Independent Partitioning: A Method for

Bounding the Solution to COP’s

David Larkin

University of California, Irvine

Abstract. In this paper we introduce a new method for bounding the
solution to constraint optimization problems called semi-independent
partitioning. We show that our method is a strict generalization of the
mini buckets algorithm [1]. We demonstrate empirically that another spe-
cialization of SIP, called greedy SIP, generally produces a better answer
than mini buckets in much less time.

1 Introduction

In this paper we introduce a new method for approximating the solution to
constraint optimization problems [5]. These problems are NP-hard in general,
but have many practical applications. State of the art methods for solving them
[3, 6, 8, 7] rely upon branch and bound search with a heuristic to compute a
lower bound on the quality of the best solution that can be found by extending
the partial assignment associated with the current node.

Our algorithm, called semi-independent partitioning, computes a lower bound
on the best solution of a COP, with the solution quality and running time being
controlled by a complexity parameter i. We will show that SIP is a generalization
of the mini buckets algorithm [1, 4]. We will present empirical results showing
that an alternative instantiation of SIP, greedy SIP, generally computes a much
better lower bound than MB in less time.

This paper is divided into several parts. Following this introduction, we in-
troduce basic concepts in Section 2. Then in Section 3 we introduce the semi-
independent partitioning algorithm and compare it with mini buckets. In Section
4 we summarize the results of an experimental comparison, and in Section 5 we
conclude.

2 Basic Concepts

A set of constraints C defined on finite-domain variables X is a set of functions
C = {C1, C2, ..., Cm}, where Ci is defined on a subset of X, Si, called its scope.
The size of the scope is called the constraint arity. Ci maps allowed tuples to
0 and disallowed tuples to 1. The cost of an assignment to X is the number of
constraints it does not satisfy, or

∑

{c∈C} c, where c is evaluated on the assign-

ment. The cost of the optimum solution then is minX

∑

{c∈C} c. The MAX-CSP
problem is to find this quantity. It is NP-hard in general.

C can be associated with a binary graph G = (X,E) called the constraint
graph. An edge {x, y} is in E if and only if there exists a constraint c in C whose
scope includes both x and y. The induced width w∗ of C’s graph is defined in
reference to an ordering of the variables in X or absolutely. In reference to an
ordering, it is calculated by removing the variables from the graph from last
to first, connecting all neighbors of a node when it is removed. The maximum
number of neighbors any node has when it is deleted is the induced width. The
absolute induced width is the minimum induced width over all orderings. Finding
the absolute induced width is NP-hard, but orderings with good induced width
can be found with heuristics. The min-degree heuristic, for example, orders the
vertices from last to first, at each point choosing the variable with minimum de-
gree in the graph, then removing it and connecting its neighbors. More material
on the induced width measure can be found in [2].

Given a variable x ∈ X, and set of constraints Cx ⊆ C defined on X ′ ⊆ X

which all mention x in their scopes, the operation of projecting x out of Cx com-
putes a new function g = minx

∑

{c∈Cx}
c which is defined on X ′−x. It occupies

O(exp(|X ′| − 1)) space and the time complexity of computing it is the same.
Variable elimination [2] is an exact algorithm for MAX-CSP whose complexity
is exponential in the induced width of the graph along an elimination ordering.
It simplifies a problem C by repeatedly applying projection operations to elimi-
nate variables from last to first. Variable x is eliminated from C by collecting all
the constraints Cx that mention x and replacing them with the function g that
results from projecting x out. The desired quantity minX

∑

{c∈C} c is the result
of projecting out all the variables in X one by one. Its correctness follows from

the fact that minX

∑

{c∈C} c = minX−x

(

∑

{c∈C−Cx}
c + minx

∑

{c′∈Cx}
c′

)

=

minX−x

∑

{c∈C−Cx}
c + g.

3 The Semi-Independent Partitioning Algorithm

In this section we introduce the semi-independent partitioning algorithm. First in
subsection 3.1 we introduce the algorithm in its most general form, which allows
any number of specific solution strategies. Then in subsection 3.2 we describe a
specialization which uses a greedy strategy. In subsection 3.3 we show that mini
buckets is another specialization.

3.1 General Semi-Independent Partitioning

Let C be a set of constraints defined on variables X, and let i be a complexity
bound. Our problem is to find a good lower bound on the cost of the optimal
solution minX

∑

{c∈C} c with O(|C||X| exp(i)) time and space complexity.
The exact method variable elimination, described in Section 2, can be used

if an ordering of C’s graph can be found with w∗ ≤ i. However in general w∗ > i

and this is not possible, and in any case finding an optimum ordering is an
NP-hard problem.

We can partition a set of constraints C defined on X into subsets C1 and
C2, where C1 ∪ C2 = C and C1 ∩ C2 = ∅, and the induced width of C1

is bounded by i. Variable elimination can be applied to completely or par-
tially solve C1, resulting in the value of its optimum solution or a function
giving the cost of the optimum extension of any assignment to its scope vari-
ables. Formally, if Y is the set of variables we wish to eliminate from C1, then
minX

∑

{c∈C} c = minX

∑

{c∈C1}
c +

∑

{c′∈C2}
c′ ≥ minX−Y (minY

∑

{c∈C1}
c)+

(minY

∑

{c′∈C2}
c′) = minX g +

∑

{c′∈C2}
c′, where g = (minY

∑

{c∈C1}
c) is the

solution of C1 that is derived by variable elimination.

Algorithm General SIP

Input: Constraints C, complexity limit i, partitioning method S.

Output: Lower bound on the solution of C.

While w∗(C) > i according to a heuristic ordering...

1. Select C1 ⊆ C s. t. w∗(C1) ≤ i with S, let C2 = C − C1.

2. Let S choose a set Y of variables to eliminate from C1 with v. e.

3. Set g = minY

∑

{c∈C1}
c, let C = g ∪ C2.

Return the solution of C found with variable elimination.

Fig. 1. The General SIP Algorithm

Pseudo-code for general SIP is given Figure 1. Each invocation of variable
elimination costs O(|X| exp(i)). Assuming at least two constraints are eliminated
each time, and that no more than one new function is generated, then the total
running time is O(|C||X| exp(i)).

3.2 Greedy SIP

Up until now we have not specified how general SIP is to partition the con-
straints or decide what variables to eliminate. In this subsection we describe an
instantiation of general SIP, called greedy SIP, which offers a practical strategy.

The basic problem is to partition a set of constraints C into C1 and C2, such
that an ordering of C1 can be found with induced width bounded by i. Greedy
SIP’s method is to greedily try to add constraints from C into C1, maintaining
at all times a heuristic ordering of C1 with bounded induced width, and refusing
to add a constraint to C1 if that makes its heuristic ordering exceed the limit.
The partitioning is completed when one attempt has been made to add every
constraint in C. The set of variables Y to be eliminated is simply all but the
first i variables in the final heuristic ordering.

For example, consider the problem shown in Figure 2. The i bound is 2, and
the initial problem C is the clique of size 6 in the upper left corner. We will use
the min-degree heuristic ordering. A greedy partitioning is shown in the upper
right corner, where C1 is to the left of the ∪ and C2 is to the right. A min-degree

x6 x5

x3

x2x1

x4 = U ≥

=

x6 x5

x3

x2x1

x4

x6 x5

x3

x2x1

x4

x6 x5

x3

x2x1

x4

x6 x5

x3

x2x1

x4

x6 x5

x3

x2x1

x4Ug
g

Fig. 2. Example of Greedy SIP

ordering of C1 is x3, x1, x2, x6, x5, x4, which has induced width 2. Note that
if we try to add any other edge from C2 to C1, the induced width of the min
degree ordering will exceed the limit. For example, if we add (x1, x5) to C1, the
min degree ordering has induced width 3.

Now greedy SIP will eliminate all but the first 2 variables x3 and x1 from
C1. The result is shown in the lower left corner. C is then set to the function
g defined on x1 and x3 joined with C2, as shown on the lower right. Since a
min degree ordering of C now has induced width 2, variable elimination can be
applied to finish the problem.

3.3 Mini Buckets

In this subsection we describe mini buckets [1, 4] as another specialization of
general SIP.

Mini buckets always maintains a variable to eliminate, x. When it partitions
a set of constraints C with complexity bound i, it selects a subset Bx of C called
x’s bucket, which is the set of all constraints in C mentioning x. Then it selects
a maximal subset of Mx of Bx called a mini bucket, such that the total number
of variables appearing in Mx is not more than i + 1, and no other member of
Bx can be added without destroying this property. Mx is chosen to be C1 and
C2 becomes C − Mx. Mx is ordered arbitrarily, except that the bucket variable
x is placed at the end of the ordering and it is selected as the only variable
to eliminate. Doing this creates a function g of arity i which does not mention
x. C is then set to g ∪ C2 and the process continues. If Bx is empty, then a
new variable x′ is selected to be eliminated next. The algorithm halts when all
variables have been eliminated.

4 Empirical Results

To compare MB and greedy SIP, we tested them on random binary MAX-CSP
problems with 55 variables and domain size 4. Every constraint had a 40 percent
chance of being present. All constraints randomly disallowed half of the possible

value pairs and allowed the other half. We averaged the results of 25 experiments
for each value of i from 6 to 9. The results are summarized in Figure 3. For all
settings of i, greedy SIP achieved a significantly better lower bound in less time
than MB. For example, at i = 6 SIP computed an average lower bound of 67.5
in 12 seconds. Even at i = 9 MB was not quite as accurate, computing a lower
bound of 64.1 in 1020 seconds.

i = 6 i = 7 i = 8 i = 9
MB SIP MB SIP MB SIP MB SIP

Lower Bound 41.9 67.5 49.7 77.4 57.1 84 64.1 90.5
Time 19s 12s 72s 39s 272s 136s 1020s 485s

Max. Memory 1.1M 0.2M 3.7M 0.6M 12M 2.2M 42M 9M

Fig. 3. Empirical results (average w∗ = 39)

5 Conclusion

In this paper, we introduced a new algorithm for computing lower bounds on the
quality of the best solution of a MAX-CSP problem. We compared it empirically
with the mini buckets method, showing that it performed significantly better.

For future work, of course it would be of interest to directly evaluate the
efficiency of our method as a heuristic for branch and bound search to find an
exact optimum. Since our method, unlike mini buckets, does not follow a natural
static variable ordering, it would have to be called dynamically at every node.

References

[1] Rina Dechter. Mini-buckets: A general scheme for generating approximations in
automated reasoning. In IJCAI, 1997.

[2] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial

Intelligence, October 1999.
[3] Rina Dechter, Kalev Kask, and Javier Larrosa. A general scheme for multiple lower

bound computation in constraint optimization. In Proc. of the Conf. on Principles

and Practice of Constraint Programming, 2001.
[4] Rina Dechter and Irina Rish. A scheme for approximating probabilistic inference.

In Proc. of the Conf. on Uncertainty in Artificial Intelligence, 1997.
[5] E. Freuder and R. Wallace. Partial constraint satisfaction. Artificial Intelligence,

58:21–70, 1992. Unobtained.
[6] Kalev Kask and Rina Dechter. A general scheme for automatic generation of search

heuristics from specification dependencies. Artificial Intelligence, 129:91–131, 2001.
[7] J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible DAC for Max-CSP.

Artificial Intelligence, 107:149–163, 1999.
[8] Javier Larrosa and Pedro Meseguer. Partition-based lower bound for Max-CSP. In

Principles and Practice of Constraint Programming, pages 305–315, 1999.

