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Motivated by important applications, the theory of mathematical programming
has been extended to the case of infinitely many restrictions. At the same time,
this theory knew remarcable developments since invexity and its further general-
izations have been introduced as substitute of convexity. Here, we consider the
multiobjective programming with a set of restrictions indexed in a compact. We
obtain optimality criteria of Kuhn-Tucker type under new weaker invexity condi-
tions. Also some dual probles are introduced and it is proved that the weak and
strong duality properties hold within the same environement.
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INTRODUCTION

The theory of semi-infinite programming was developed in the last two
decades due to its important applications. Numerous researches and extensive
studies pushed on the limits of the classical mathematical programming theory
considering infinitely many restrictions. We refer the readers to [6], [3] and
[12] for both the theoretical progress in semi-infinite programming and for
mathematical and technical problems where this theory can be applied.

As well as in the classical case, the basic theoretical results in semi-infinite
programming are established under some additional convexity assumptions.
On the other hand, the theory of the classical single and multiobjective pro-
gramming has been considerably extended when the convexity was replaced
by weaker invexity like properties.

As this is well-known, the concept of invexity has been introduced in lite-
rature in 1981 by Craven [2], after Hanson [4] showed that both weak duality
and Kuhn-Tucker sufficiency for optimum in the mathematical programming
hold when convexity is replaced by a weaker condition. The theory of mathe-
matical programming has grown remarkably when invexity and its further
extensions were been used in the settings of optimality conditions and duality
theory. After the works of Hanson and Craven, other types of differentiable
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functions have been introduced with the intent of generalizing invex functions
from different points of view. Hanson and Mond [5] introduced the concept
of F -convexity and Jeyakumar [7] generalized Vial’s ρ-convexity ([10]) intro-
ducing the concept of ρ-invexity. The concept of generalized (F, ρ)-convexity,
introduced by Preda [8] is in turn an extension of the above properties and was
used by several authors to obtain relevant results. The (F, ρ)-convexity was re-
cently generalized to (Φ, ρ)-invexity by Caristi et al. [1] to extend fundamental
theoretical results of mathematical programming.

Now we consider the multiobjective programming to obtain necessary
and sufficient condition for optimum and duality results, in the semi-infinite
case, under new invexity type conditions. In this way we extend the classical
theory of the multiobjective programming both by allowing infinitely many
restrictions and by weakening convexity (or invexity) assumptions.

The problem to be considered here is the multiobjective programming
(vector programming) problem

(V P ) : min{f(x) | x ∈ X0, g(x, y) ≤ 0 ∀y ∈ Y },

where X0 is an open subset of Rn, Y is a nonempty compact set in a Banach
space, the objective vector function f = (f1, . . . , fp) : X0 7→ Rp is differentiable
on X0 and the restriction function g : X0 × Y 7→ R is such that g(· , y) is
differentiable on X0, for each y ∈ Y and g(x, ·) is continuous on Y , for each
x ∈ X0.

All these conditions will be always assumed but they will be not expli-
citly mentioned elsewhere. However, for necessity criteria or for some duality
results, stronger or additional properties upon g are required and we shall
specify them each time when they will be needed.

Since Y is a nonempty compact, for each x ∈ X0 the set Y (x) =
{
ŷ ∈

Y | g(x, ŷ) = sup
y∈Y

g(x, Y )
}

is also a nonempty compact.

Let us denote by X = {x ∈ X0 | g(x, y) ≤ 0, ∀y ∈ Y } the set of all
feasible solutions of the problem (V P ).

For each x ∈ X0 let be J(x) = {ŷ ∈ Y | g(x, ŷ) = 0}. If x is a feasible
solution, then J(x) is the index set of active restrictions and if x ∈ X and
J(x) 6= ∅, then J(x) = Y (x).

The gradient of fi will be denoted by ∇fi while for the vector ∂g
∂x we

prefer the symbol ∇xg.
Finally, note that as usually the operator “min” in (V P ) means that we

are required to solve the problem according to one of the following characte-
rizations of the optimum:
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Definition 1. The feasible solution a ∈ X is said to be weakly efficient if
there is no x ∈ X such that

fi(x) < fi(a), for all i = 1, . . . , p(f(x) < f(a)).

Definition 2. The feasible solution a ∈ X is said to be efficient if there
is no x ∈ X such that

fi(x) ≤ fi(a), for all i = 1, . . . , p and f(x) 6= f(a)(f(x) ≤ f(y), f(x) 6= f(y)).

Definition 3. The feasible solution a ∈ X is said to be properly efficient
if it is efficient and, there exists a constant K such that, for every x ∈ X and
i ∈ {1, . . . , p} for which fi(x) < fi(a), then there is some j ∈ {1, . . . , p} such
that fj(a) < fj(x) and

fi(a)− fi(x) ≤ K(fj(x)− fj(a)).

(Φ, ρ) AND (Φ, ρ)w-INVEXITY

First all, let us recall the definition of one usual generalization of the con-
cept of convexity, beyond topological structure. In particular, for the present
approach we consider real valued functions defined on Rn+1, or on a convex
subset C of this space.

Definition 4. Φ : C 7→ R is said to be quasi-convex if, for each α ∈ R,
the set {c ∈ C | Φ(c) ≤ α} is convex.

A stronger property is also considered in

Definition 5. Φ : C 7→ R is said to be strictly quasi-convex if it is quasi-
convex and Φ(λc1 + (1 − λ)c2) < 0, whenever Φ(c1) < 0, Φ(c2) ≤ 0 and
λ ∈ (0, 1).

Remark 1. If Φ is strictly quasi-convex and c1, . . . , ck ∈ C such that
Φ(ci) < 0 for i ∈ I and Φ(ci) ≤ 0 for i ∈ I, where ∅ 6= I ⊂ {1, . . . , n} and
I = {1, . . . , n}\I, then Φ(

∑n
i=1 λic

i) < 0 for every λ1, . . . , λn ≥ 0 such that∑n
i=1 λi = 1 and λi > 0 for at least one i ∈ I.

In the next definitions Φ is a real valued function defined on X0 ×X0 ×
Rn+1 and ρ : X0×X0 7→ R. If an element of the (n+1)-dimensional Euclidean
space Rn+1 is represented as the ordered pair (y, r), with y ∈ Rn and r ∈ R,
it is always assumed that

(1) Φ(x, a, (0, r)) ≥ 0 for every (x, a) ∈ X0 ×X0 and r ≥ 0.

Let h be a differentiable real valued function defined on X0 and a ∈ X0.
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Definition 6. 1. h is said to be (Φ, ρ)-invex at a with respect to X if, for
each x ∈ X,

(2) Φ(x, a, (∇h(a), ρ(x, a))) ≤ h(x)− h(a)

and

(3) Φ(x, a, ·) is convex on Rn+1.

2. h is said to be weakly (Φ, ρ)-invex ((Φ, ρ)w-invex) at a with respect to
X if, for each x ∈ X, it satisfies (2) and

(3′) Φ(x, a, ·) is strictly quasi-convex on Rn+1.

It is obvious that the (Φ, ρ)w-invexity generalizes the (Φ, ρ)-invexity in-
troduced in [1]. Also, for

Φ(x, a, (y, r)) = F (x, a, y) + ρd(x, y),

where F is sublinear in the third argument and ρ is constant, (Φ, ρ)-invexity
becomes the (F, ρ)-convexity of [8].

Generalizing (Φ, ρ)-invexity ((Φ, ρ)w-invexity), several other weaker con-
ditions could be also defined under the same restrictions for the function Φ.

Definition 7. ϕ is said to be
(Φ, ρ)-quasi invex ((Φ, ρ)w-quasi invex) at a with respect to X, if Φ sa-

tisfies (3) (respectively, (3′)) and

Φ(x, a, (∇ϕ(a), ρ)) ≤ 0 whenever ϕ(x)− ϕ(a) ≤ 0 for some x ∈ X;

(Φ, ρ)-semistrict quasi invex ((Φ, ρ)w-semistrict quasi invex) at a with
respect to X, if Φ satisfies (3) (respectively, (3′)) and

Φ(x, a, (∇ϕ(a)ρ)) < 0, whenever ϕ(x)− ϕ(a) < 0 for some x ∈ X;

(Φ, ρ)-strict quasi invex ((Φ, ρ)w-strict quasi invex) at a with respect to
X, if it is (Φ, ρ)-quasi invex and (Φ, ρ)-semistrict quasi invex (respectively,
(Φ, ρ)w-semistrict quasi invex and (Φ, ρ)w-semistrict quasi invex) at a with
respect to X.

Obviously, (Φ, ρ)-invexity implies (Φ, ρ)-strict quasi invexity.
As usual, we will say that the above properties hold on X0 if they are

verified for each a ∈ X0.
Everywhere in the rest of this paper, the invexity properties will be

considered as defined with respect to the set X of feasible solutions. But, for
the sake of the simplicity, we will always omit this specification.
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SUFFICIENT CONDITIONS FOR EFFICIENCY

In this section we are dealing with sufficient criteria for efficiency in the
problem (V P ). As well as in the classical case, these criteria consist of an
analogous of the Kuhn-Tucker conditions and a substitute of convexity. What
is remarkable is the fact that in the Kuhn-Tucker conditions are involved only
finitely many restrictions. As substitute of convexity to ensure the sufficiency
of the Kuhn-Tucker conditions we use (Φ, ρ)w-invexity or some generalized
(Φ, ρ)w-invexity. Thus, we extend the classical theory in two ways; allowing
infinitely many restrictions and weakening convexity (or invexity) conditions.

The first result establishes sufficient conditions for weakly efficient solu-
tions in (V P ).

Theorem 1. Let a ∈ X be a feasible solution of (V P ). Suppose that
there exist a non-negative integer k, non-negative scalars λ1, . . . , λp, µ1, . . . , µk,
and elements yj ∈ J(a), j = 1, . . . , k, such that

(4)
p∑

i=1

λi∇f i(a)+
k∑

j=1

µj∇xg(a, yj) = 0

and

(5)
p∑

i=1

λi > 0.

If for each i, fi is (Φ, ρi)w-semistrict quasi invex at a, for each j,g(· , yj) is
(Φ, ρyi)w-quasi invex at a and

∑k
i=1 λiρi(x, a) +

∑k
j=1 µjρyj (x, a) ≥ 0, for all

x ∈ X, then a is a weakly efficient solution of (V P ).

Proof. Setting w0 =
∑p

i=1 λi +
∑k

j=1 µj , vi = λi/w0, i = 1, . . . , p, wj =
µj/w0, j = 1, . . . , k, equality (4) becomes

p∑
i=1

vi∇f(a) +
k∑

j=1

wj∇xg(a, yj) = 0.

Hence, for every x ∈ X,
(6)

Φ
(
x, a,

( p∑
i=1

vi∇f(a)+
k∑

j=1

wj∇xg(a, yj),
p∑

i=1

viρi(x, a)+
k∑

j=1

wjρyj (x, a)
))

≥0.

Suppose that a is not weakly efficient. Then fi(x) < fi(a) for some
x ∈ X and for all i = 1, . . . , p. This means that Φ(x, a, (∇f(a), ρi(x, a))) < 0,
for i = 1, . . . , p. Also, for each j, g(x, yj) − g(a, yj) ≤ 0 and this implies that
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Φ(x, a, (∇xg(a, yj), ρyj (x, a))) ≤ 0. Since Φ is strictly quasi-convex in the third
argument and at least one vi is positive, we have
(7)

Φ
(
x, a,

( p∑
i=1

vi∇f(a) +
k∑

j=1

wj∇xg(a, yj),
p∑

i=1

viρi(x, a) +
k∑

j=1

wjρyj (x, a)
))

< 0

contradicting (6). �

Strengthening the assumptions concerning λ we obtain sufficient condi-
tions for efficiency.

Theorem 2. Let a ∈ X be a feasible solution of (V P ). Suppose that
there exist non-negative integer k, non-negative scalars λ1, . . . , λp, µ1, . . . , µk,
and elements yj ∈ J(a), j = 1, . . . , k, such that (4) holds and

(8) λi > 0, i = 1, . . . , p.

If for each i, fi is (Φ, ρi)w-semistrict quasi invex at a, for each j,g(· , yj) is
(Φ, ρyi)w-quasi invex at a, and

∑k
i=1 λiρi(x, a) +

∑k
j=1 µjρyj (x, a) ≥ 0 for all

x ∈ X, then a is an efficient solution of (V P ).

Proof. As in the above, if a is not efficient, we find x ∈ X for which
Φ(x, a, (∇f(a), ρi(x, a))) ≤ 0 for all i, Φ(x, a, (∇f(a), ρi(x, a))) < 0 for at
least one i. But all λi are positive so that we will arrive to the impossible
inequality (7). �

The next result concerns the proper efficiency.

Theorem 3. Let a ∈ X be a feasible solution of (V P ). Suppose that
there exist the non-negative integer k, non-negative scalars λ1, . . . , λp, µ1, . . . ,
µk, and elements yj ∈ J(a), j = 1, . . . , k, such that (4) and (8) hold. If∑p

i=1 λifi is (Φ, ρ0)w-semistrict quasi invex at a, for each j, g( · , yj) is
(Φ, ρyj )w-quasi invex at a, and ρ0(x, a) +

∑k
j=1 µjρyj (x, a) ≥ 0 for all x ∈ X,

then a is a properly efficient solution of (V P ).

Proof. Let us prove first that

(9) Φ
(

x, a,
( p∑

i=1

λi∇fi(a), ρ0(x, a)
))

≥ 0, ∀x ∈ X.

If µ = (µ1, . . . , µk) = 0 then
∑p

i=1 λi∇fi(a) = 0 and ρ0(x, a) ≥ 0, ∀x ∈
X, so that (9) is trivially satisfied.

Otherwise, if µ 6= 0, set t= 1
1+

∑k
j=1 µj

, vj = µj∑k
j=1 µj

= t
1−tµj , j = 1, . . . , k.

Then t
∑p

i=1 λi∇fi(a) + (1 − t)
∑k

j=1 vj∇xg(a, yj) = 0, and tρ0(x, a) + (1 −
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t)
∑k

j=1 vjρyj (x.a) ≥ 0, for all x ∈ X. Hence

Φ
(

x, a,
(
t

p∑
i=1

λi∇fi(a) + (1− t)
k∑

j=1

vj∇xg(a, yj), tρ0(x, a)

+(1− t)
k∑

j=1

vjρj(x.a)
))

≥ 0

for all x ∈ X.
Since for each j ∈ J(a), g(· , yj) is (Φ, ρyj )w-quasi invex at a, Φ(x, a, (∇x

g(a, yj), ρyj (x, a)) ≤ 0, hence

Φ(x, a,

( k∑
j=1

vj∇g(a, yj),
∑

j∈J(a)

vjρj(x, a)
)
≤ 0, ∀x ∈ X.

Then, the strict quasi-convexity of Φ implies again (9).
Now, let us show that a is efficient. Suppose that this is not true. Then,∑p

i=1 λi(fi(x) − fi(a)) < 0 for some x ∈ X, and since
∑p

i=1 λifi is (Φ, ρ0)w-
semistrict quasi invex at a Φ(x, a, (

∑p
i=1 λi∇fi(a), ρ0(x, a)) < 0, contradic-

ting (9).
Finally, we will prove that a is properly efficient. If not for each positive

K there exists x ∈ X and i ∈ {1, 2, . . . , p}, such that fi(a)− fi(x) > 0 and

(10) fi(a)− fi(x) > K(fj(x)− fj(a))

for every j ∈ {1, 2, . . . , p} satisfying fj(x) > fj(a). In particular, take K =
(p− 1) max1≤k,`≤p,k 6=`

λk
λ`

. Since (10) holds for every j 6= i, we have

fi(a)− fi(x) > (p− 1)
λj

λi
((fj(x)− fj(a)), ∀j 6= i.

Summing these inequalities it results
p∑

i=1

λi(fi(x)− fi(a)) < 0.

But
∑p

i=1 λifi is (Φ, ρ0)w-semistrict quasi invex at a, that implies the inequa-
lity

Φ(x, a,

( p∑
i=1

λi∇fi(a), ρ0(x, a))
)

< 0

in contradiction with (9). �

Corollary 1. Let a ∈ X be a feasible solution of (V P ). Suppose that
there exist non-negative integer k, non-negative scalars λ1, . . . , λp, µ1, . . . , µk,
and elements yj ∈ J(a), j = 1, . . . , k, such that (4) and (8) hold. If fi is
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(Φ, ρi)-invex at a, for each i, g(· , yj) is (Φ, ρyj )w-quasi invex at a for each j,

and
∑p

i=1 λiρi(x, a) +
∑k

j=1 µjρyj (x, y) ≥ 0 for all x ∈ X, then a is properly
efficient.

Proof. From the inequalities

Φ
(

x, a,
( p∑

i=1

µi∇fi(a),
p∑

i=1

µiρi

))
≤

p∑
i=1

µiΦ(x, a, (∇fi(a), ρi))

≤
p∑

i=1

µi(fi(x)− fi(a))

it results that
p∑

i=1
λifi is (Φ, ρ0)w-invex at a, where ρ0(x, a) =

p∑
i=1

µiρi(x, a). �

NECESSARY CONDITIONS

Besides the general conditions required for X0, Y and f in the definition
of the problem (V P ) we will assume, everywhere in this section, the following
properties for g:

g(· , y) ∈ C1(X0) for each y ∈ Y,(11)

g(· , ·) and ∇xg(· , ·) are continuous on X0 × Y.(12)

The main result of this section establishes that (4) and (5) hold if a
is weakly efficient and g satisfies some “constraints qualification” involving
generalized (Φ, ρ)w-invexity. Moreover, the number of restrictions involved in
(4) can be limited to at most n. That means that in the corresponding suf-
ficiency result (Theorem 1) the integer k may be also chosen as less than n.
This fact has important computational implications, because it reduces the
number of possible combinations of yj that we need to consider for finding
efficient solutions.

We begin by finding Fritz John type conditions as necessary for weak
efficiency. In some sense our result is the counterpart of those established in
[9] for the minmax programming with finitely many restrictions.

The following lemma is helpful for the proof of the main result.

Lemma 1. Let a be a feasible solution of (V P ). If J(a) 6= ∅ and there
exists η ∈ Rn such that

〈η,∇xg(a, y)〉 < 0 for all y ∈ J(a),

then there exists δ > 0 such that

a + tη ∈ X0 and g(a + tη, y) < 0 for every t ∈ (0, δ) and all y ∈ Y.
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Proof. Since the function ϕ(·) = 〈η,∇xg(a, ·)〉 is continuous on the
compact J(a), there exists some α < 0 such that sup

y∈J(a)
ϕ(y) < α. Choose

β ∈ (0,−α
2 ). Since ϕ is uniformly continuous on the compact Y, there exists

ε > 0 such that |ϕ(y) − ϕ(y′)| < β whenever y, y′ ∈ Y, ‖y − y′‖ < ε. Then
ϕ(y) < α

2 for every y in the open set Yε = {y ∈ Y | ‖y − y′‖ < ε, for some
y′ ∈ J(a)}. Hence sup

y∈Yε

ϕ(y) < 0.

Now, since 〈η,∇xg(· , ·)〉 is continuous on X0 × Y, there exists an open
neighborhood V 1

a ⊆ X0 of a such that sup
y∈Yε

〈η,∇xg(x, y)〉 < 0 for every x ∈ V 1
a .

Obviously, there exists δ1 > 0 such that a+tη ∈ V 1
a for every t ∈ (0, δ1), so that

〈η,∇xg(a + tη, y)〉 < 0 for every t ∈ (0, δ1) and all y ∈ Yε.

Pick an t ∈ (0, δ1) and let be y ∈ Yε. Since

g(a + tη, y)− g(a, y) = t 〈η,∇xg(a + ξtη, y)〉 for some ξ ∈ (0, 1),

it results that

(13) g(a + tη, y) < g(a, y) ≤ 0 for every t ∈ (0, δ1) and all y ∈ Yε.

On the other hand, g(a, y) < 0 for any y ∈ Y \ Yε. Since Y \ Yε is
compact, this implies that sup

y∈Y \Y ε
g(a, y) < 0. Invoke again the continuity

of sup
y∈Y \Y ε

g(· , y) and find an open neighborhood V 2
a ⊆ X0 of a such that

sup
y∈Y \Yε

g(x, y) < 0 for every x ∈ V 2
a . Also, find δ2 > 0 such that a + tη ∈ V 2

a

for t ∈ (0, δ2) and then

(14) g(a + tη, y) < 0, for every t ∈ (0, δ2) and all y ∈ Y \ Yε.

Finally, take δ = min{δ1, δ2} and the conclusion of the lemma follows from
(13) and (14). �

Theorem 4. Assume that a is a weakly efficient solution of (V P ). Then
there exist a non-negative integer k ≤ n + 1, vectors λ = (λ1, . . . , λp) ∈ Rp

+,

µ = (µ1, . . . , µk) ∈ Rk
+, and elements yj ∈ J(a), j = 1, . . . , k, such that the

equality (4) holds and

(15)
k∑

i=1

λi+
∑̀
j=1

µj = 1.

Proof. The system

(16) 〈η,∇fi(a)〉 < 0, i = 1, . . . , p,
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(17) 〈η,∇xg(a, y)〉 < 0, y ∈ J(a)

has no solution η in Rn. To show this, suppose the contrary and let η satisfy
(16) and (17).

If J(a) 6= ∅ apply Lemma 1 and find δ′ > 0 such that a + tη ∈ X0 and
sup
y∈Y

g(a + tη, y) < 0 for all t ∈ (0, δ′).

If J(a) = ∅ then sup
y∈Y

g(a, y) < 0 and since sup
y∈Y

g(· , y) is continuous we

can find again δ′ as above.
Now, since the objective functions are differentiable, for each i there

exists a continuous function ωi : [0,∞) with lim
t→0

ωi(0) = 0 such that

fi(a + tη)− fi(a) = 〈tη,∇fi(a)〉+ t ‖η‖ωi(t)

whenever t > 0 and a + tη ∈ X0.
Obviously, there exists δi > 0 such that a + tη ∈ X0 and 〈η,∇fi(a)〉 +

‖η‖ωi(t) < 0 for every t ∈ (0, δi). Hence a + tη ∈ X0 and

fi(a + tη)− fi(a) < 0

for every i = 1, . . . , p and t ∈ (0, δ
′′
), where δ′′ = min

1≤i≤p
δi. Taking δ =

min{δ′
, δ′′}, it follows that for any t ∈ (0, δ), a+ tη ∈ X and fi(a+ tη) < fi(a)

for i = 1, . . . , p, which is absurd.
Now, apply the strict separation theorem for the convex hull coQ of the

compact set Q = {∇xg(a, y) | y ∈ J(a)} ∪ {∇fi(a) | i = 1, . . . , p} and the
origin of Rn. If 0 /∈ co Q then 〈η, q〉 < 0 for some η and for all q ∈ co Q, so that
η would be a solution of the system (16), (17). Because this is not possible,
it follows that 0 ∈ co Q, so that 0 is a linear convex combination of at most
n + 1 points of Q. �

Remark 2. As any point in coQ may be represented as a convex linear
combination of n + 1 points in Q, the number of all non-zero components of
(λ, µ) in (4) can be limited to at most n + 1.

As well as in the classical case, the optimality implies the Kuhn-Tucker
conditions provided some constraints qualification are satisfied. Slater’s con-
dition cannot play the role of such constraints qualification without additional
convexity assumptions on the restriction functions. Following the same line as
in the previous section, we will show that the convexity can be replaced by
the weaker condition of (Φ, ρy)w-invexity.

An obvious extension of Slater’s condition to the infinite case is

there exists x0 ∈ X such that sup
y∈Y

g(x0, y) < 0.
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A weaker form of this condition appears in [6]:

(18)
for each n + 1 points y1, . . . , yn+1 ∈ Y

there exists x ∈ X such that g(x, yj) < 0, j = 1, . . . , n + 1.

Theorem 5. Let a be a weakly efficient solution of (V P ). Suppose that
(18) holds (weak Slater’s condition), and that for each y ∈ J(a), g(· , y) is
(Φ, ρy)w-semistrict quasi invex at a, where ρy(x, a) ≥ 0 for every x ∈ X.
Then (4) and (5) hold for some λ = (λ1, . . . , λp) ∈ Rp

+, λ 6= 0, 0 ≤ k ≤ n,

µ = (µ1, . . . , µk) ∈ Rk
+, and yj ∈ Y (a), j = 1, . . . , k.

Proof. By previous theorem, (4) holds for some y1, . . . , yk ∈ J(a) and
non-negative vectors λ and µ. Moreover, we can assume that the number of
non-zero components of (λ, µ) is at most n + 1. All that we need to prove is
that at least one λi should be positive.

If it is not this case, then

(19)
k∑

j=1

µj∇xg(a, yj) = 0

and µ ≥ 0,
∑k

j=1 µj = 1. Let x ∈ X satisfy (18) with respect to y1, . . . , yk.

Since g(x, yj)−g(a, yj) = g(x, yj) < 0 we have Φ(x, a, (∇xg(a, yj), ρyj (x, a))) <
0. Hence the quasi-convexity of Φ implies the inequality

Φ
(

x, a,
( k∑

j=1

µj∇xg(a, yj),
k∑

j=1

µjρyj (x, a)
))

< 0.

But the opposite inequality follows from (4) because
∑k

j=1 µjρyj (x, a) ≥ 0. �

Theorem 6. Let a be a properly efficient solution of (V P ). If all assump-
tions of one of the last two previous theorems hold, then there exist λi > 0,
i = 1, . . . , p, 0 ≤ k ≤ n, µj ≥ 0, j = 1, . . . , k and yj ∈ J(a), j = 1, . . . , k,
verifying (4).

Proof. Since a is weakly efficient, the previous theorem applies, so that
there exist λ0 ∈ Rp

+, λ0 6= 0, k0 ≤ n, µ0 ∈ Rk0
+ and y0j ∈ J(a), j = 1, . . . , k0,

such that

(20)
p∑

i=1

λ0
i∇fi(a) +

k0∑
j=1

µ0
j∇xg(a, y0j) = 0.

Set I(a) = {i ∈ {1, . . . , p} | λ0
i > 0} and I(a) = {1, . . . , p} \ I(a). If I(a) = ∅

then λ = λ0 and µ = µ0. Otherwise, I(a) 6= ∅ and I(a) 6= ∅. We are going
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to show that an equality similar with (4) is verified for a set of Lagrange
multipliers with increasing number of positive λi.

It is not hard to verify that a is an efficient solution in X of the mul-
tiobjective programming problem with objectives fi, i ∈ I(a) and Kfj + fi,

j ∈ I(a), i ∈ I(a), where K is the constant of Definition 3. Then Theorem 5
applies to this problem and we obtain a set of non-negative Lagrange multi-
pliers, λi, i ∈ I(a), λji, j ∈ I(a), i ∈ I(a) , and µj , j = 1, . . . , k, associated
to objectives, respectively, to some yj ∈ Y (a), j = 1, . . . , k, where 0 ≤ k ≤ n
such that ∑

i∈I(a)

λi∇fi(a) +
∑

j∈I(a)

∑
i∈I(a)

λji(K∇fj(a) +∇fi(a))+(21)

+
k∑

j=1

µj∇xg(a, yj) = 0.

Moreover, at least one of λi, λji is not zero. Summing (19) and (20), and
setting λ1

i = λ0
i +K

∑
j∈I(a) λij if i ∈ I(a) and λ1

i = λi +
∑

j∈I(a) λji if i ∈ I(a)
we get

(22)
p∑

i=1

λ1
i∇fi(a) +

k0∑
j=1

µ0
j∇xg(a, y0j) +

k∑
j=1

µj∇xg(a, yj) = 0.

Now, λ1
i are positive for all i ∈ I(a) and for at least one i ∈ I(a). To end

the proof we need to show that (21) can be rewritten obtaining a new null
linear combination with the same coefficients λ but with at most n nonzero
coefficients µ.

Note first that the vector q =
∑p

i=1 λ1
i∇fi(a) cannot be 0. Otherwise, the

same reasoning as in the proof of Theorem 5 leads to a contradiction. Then,
the equality (21) becomes

α0d +
k0+k∑
j=1

αj∇xg(a, yj) = 0,

where α0 = 1

1+
∑k0

j=1 µ0
j+

∑k
j=1 µj

and αj =
{

α0µ
0
j if j = 1, . . . , k0,

α0µj−k0 if j = k0+1, . . . , k0+k.

This means that 0 ∈ co Q0, where Q0 = {q,∇xg(a, y0j), j = 1, . . . , k0,
∇xg(a, yj), j = 1, . . . , k}. Hence, 0 can be written as a convex combination
of at most n + 1 vectors of Q0. Obviously, the coefficient of d should be posi-
tive, otherwise a linear combination of ∇xg(a, yj) would be zero. Thus, there
exist k1 ≤ n distinct points, say y11, . . . , y1k1 , among y01, . . . , y0k0 , y1, . . . , yk



13 Semi-infinite multiobjective programming with generalized invexity 229

such that

β0q +
k1∑

j=1

βj∇xg(a, y1j) = 0

for some β0, β1, . . . , βk1 > 0, with
∑k1

j=0 βj = 1. Dividing with β0 and denoting

µ1
j = βj

β0
, j = 1, . . . , k1, the above equality becomes

p∑
i=1

λ1
i∇fi(a) +

k1∑
j=1

µ1
j∇xg(a, y1j) = 0. �

DUALITY

For the case when Y is infinite, we introduce two duals of Mond-Weir
type. The second one reduces in the finite case to the most commonly used
formulation of the Mond-Weir dual, but the first one seems to be more in-
teresting in the general case, because it allows us to prove the basic duality
property under weaker invexity conditions.

(MWD1) : max
{

f(u) | u ∈ X0, v = (v1, . . . , vp) ∈ Rp
+,

p∑
i=1

vi = 1,

0 ≤ k ≤ n, y1, . . . , yk ∈ J(u), w = (w1, . . . , wk) ∈ Rk
+,

p∑
i=1

vi∇fi(u) +
k∑

j=1

wj∇xg(u, yj) = 0
}

,

(MWD2) : max
{

f(u) | u ∈ X0, v = (v1, . . . , vp) ∈ Rp
+,

p∑
i=1

vi = 1,

k ∈ N, y1, . . . , yk ∈ Y, w = (w1, . . . , wk) ∈ Rk
+,

p∑
i=1

vi∇fi(u) +
k∑

j=1

wj∇xg(u, yj) = 0,
k∑

j=1

wjg(u, yj) ≥ 0
}

.

The sets of feasible solutions of (MWD1) and (MWD2) will be denoted
by U1, respectively, U2, but for both the problems a feasible solution will be
represented as (u, v, (k, y1, . . . , yk), w).

The next two theorems concern (MWD1).

Theorem 7. Let x ∈ X and (u, v, (k, y1, . . . , yk), w) ∈ U1. Assume
that each fi, i = 1, . . . , p is (Φ, ρi)w-semistrict quasi invex at u and each
g(· , yj), j = 1, . . . , k, is (Φ, ρi)w-quasi invex at u, where

∑p
i=1 viρi(x, u) +∑k

j=1 wjρyj (x, u) ≥ 0. Then the relation f(u) > f(x) is impossible.
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Proof. Suppose the contrary, f(u) > f(x). Set λi = vi

1+
∑k

j=1 wj
, i =

1, . . . , p, µj = wj

1+
∑k

j=1 wj
, j = 1, . . . , k. Then

p∑
i=1

λi∇fi(u) +
k∑

j=1

µj∇xg(u, yj) = 0

and
p∑

i=1

λiρi(x, u) +
k∑

j=1

µjρyj (x, u) ≥ 0,

that imply the inequality

Φ
(
x, u,

( p∑
i=1

λi∇fi(u)+
k∑

j=1

µj∇xg(u, yj),
p∑

i=1

λiρi(x, u)+
k∑

j=1

µjρyj (x, u)
))

≥0.

On the other hand, since each fi is (Φ, ρi)w-semistrict quasi invex, the inequa-
lity fi(x) < fi(u) implies Φ(x, u, (∇fi(u), ρi(u))) < 0, and since each g(· , yj)
is (Φ, ρi)w-quasi invex, the inequality g(x, yj)− g(u, yj) = g(x, yj) ≤ 0 implies
Φ(x, u, (∇xg(u, yj), ρyj (x, u))) ≤ 0. Since some λi are positive, the strict quasi-
convexity of Φ give us the inequality

Φ
(
x, u,

( p∑
i=1

λi∇fi(u)+
k∑

j=1

µj∇xg(u, yj),
p∑

i=1

λiρi(x, u)+
k∑

j=1

µjρyj (x, u)
))

<0

contradicting the above inequality. �

Theorem 8. Assume that g satisfies (11) and (12). Assume also that
the weak Slater’s condition (18) holds. Let a be a weakly efficient solution of
(V P ). If each fi, i = 1, . . . , p, is (Φ, ρi)w-semistrict quasi invex on X0, where
ρi(a, u) ≥ 0 for every u ∈ X0, and each g(· , y), y ∈ Y is (Φ, ρy)w-strict quasi
invex on X0, where min{ρy(x, a), ρy(a, u)} ≥ 0 for every (x, u) ∈ X × X0,

then there exist v ∈ Rp
+, k ≤ n, y1, . . . , yk ∈ J(a) and w ∈ Rk

+ such that
(a, v, (k, y1, . . . , yk), w) is a weakly efficient solution of (MWD1).

Proof. By Theorem 5 there exist λ = (λ1, . . . , λp) ∈ Rp
+, λ 6= 0, k ≤ n,

y1, . . . , yk ∈ J(a) and µ = (µ1, . . . , µk) ∈ Rk
+ verifying (4). Set vi = λi∑p

i=1 λi
,

i = 1, . . . , p, and wj = µj∑p
i=1 λi

, j = 1, . . . , k, we obtain a feasible solution

(a, v, (k, y1, . . . , yk), w) of (MWD1). Moreover, this solution is weakly efficient.
Otherwise, f(u) > f(a) for some (u, v, (k, y1, . . . , yk), w) ∈ U1, that contradicts
Theorem 7. �
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Now, we will refer to the dual (MWD2). The first two theorems show
that the weak duality property hold under both (Φ, ρi)w and (Φ, ρi) invexity.

Theorem 9. Let x ∈ X and (u, v, (k, y1, . . . , yk), w) ∈ U2. Assume that
each fi, i = 1, . . . , p, is (Φ, ρi)w-semistrict quasi invex at u and

∑k
j=1 µj

g(· , yj) is (Φ, ρ0)w-quasi invex at u, where
∑p

i=1 viρi(x, u) + ρ0(x, u) ≥ 0.
Then the relation f(u) > f(x) is impossible.

Proof. Set λi = v1

1+
∑k

j=1 wj
, i = 1, . . . , p and λn+1 =

∑k
j=1 wj

1+
∑k

j=1 wj
. Ob-

viously,
∑p

i=1 λi∇fi(u) + λn+1
∑k

j=1 wj∇xg(u, yj) = 0 and
∑p

i=1 λiρi(x, u) +
λn+1ρ0(x, u) ≥ 0, and then

Φ
(
x, u,

( p∑
i=1

λi∇fi(u) + λn+1

k∑
j=1

wj∇xg(u, yj),
p∑

i=1

λiρi(x, u)+

+λn+1ρ0(x, u)
))

≥0.

Now, by way of contradiction, suppose that f(u) > f(x). Then,

Φ(x, u, (∇fi(u), ρi(u))) < 0 for all i = 1, . . . , p

since fi are (Φ, ρi)-semistrict quasi invex at u, and

Φ
(

x, u,
( k∑

j=1

wj∇xg(u, yj), ρ0(x, u)
))

≤ 0

since
∑k

j=1 wjg(x, yj)−
∑k

j=1 wjg(u, yj) ≤ 0 and
∑k

j=1 wjg(· , yj) is (Φ, ρ0)w-
quasi invex at u. Hence, at least one λi is positive. It follows that

Φ
(

x, u,
( p∑

i=1

λi∇fi(u) + λn+1

k∑
j=1

wj∇xg(u, yj),
p∑

i=1

λiρi(x, u)+

+λn+1ρ0(x, u)
))

< 0. �

Remark 3. Theorems 7 and 9 are not direct comparable because the
(Φ, ρ0)w-quasi invexity of

∑k
j=1 µjg(· , yj) is not implied nor implies the (Φ, ρ0)w

-quasi invexity of all g(· , yj).

Theorem 10. Let x ∈ X and (u, v, (k, y1, . . . , yk), w) ∈ U2. Assume that
each fi, i = 1, . . . , p, is (Φ, ρi)-semistrict quasi invex at u and each g(· , yj),
j = 1, . . . , k, is (Φ, ρyj )-invex at u, where

∑p
i=1 viρi(x, u)+

∑k
j=1 wjρyj (x, u) ≥

0. Then the relation f(u) > f(x) is impossible.
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Proof. Suppose that f(u) > f(x). Then the semistrict quasi invexity of
fi and the convexity of Φ imply the inequalities Φ(x, u, (∇fi(u), ρi(u))) < 0,
i = 1, . . . , p, hence

Φ
(

x, u,
( p∑

i=1

vi∇fi(u),
p∑

i=1

viρi(x, u)
))

≤

≤
p∑

i=1

viΦ(x, u, (∇fi(u), ρi(x, u))) < 0.

If w = 0, a contradiction easily follows from the equality
∑p

i=1 vi∇fi(u) = 0
and the inequality

∑p
i=1 viρi(x, u) ≥ 0. If w 6= 0, take w′

j = wj∑k
j=1 wj

, j =

1, . . . , k, and observe that
∑k

j=1 w′
jg(x, yj) −

∑k
j=1 w′

jg(u, yj) ≤ 0 and that∑k
j=1 w′

jg(· , yj) is (Φ, ρ0)-invex, where ρ0(x, u) =
∑k

j=1 w′
jρyj (x, u). Then,

continue as in the proof of Theorem 7 with w = w′ and use the convexity
of Φ. �

Finally, we obtain a direct duality result for (MWD2). It is similar with
those established in Theorem 8 but the (Φ, ρ0)w-invexity is replaced by the
stronger condition of (Φ, ρ0)-invexity.

Theorem 11. Assume that g satisfies (11) and (12). Assume also that
the weak Slater’s condition (18) holds. Let a be a weakly efficient solution of
(V P ). If each fi, i = 1, . . . , p, is (Φ, ρi)-semistrict quasi invex on X0, where
ρi(a, u) ≥ 0 for every u ∈ X0, and each g(· , y), y ∈ Y is (Φ, ρy)-invex on X0,
where min{ρy(x, a), ρy(a, u)} ≥ 0 for every (x, u) ∈ X ×X0, , then there exist
v ∈ Rp

+, k ∈ N,y1, . . . , yk ∈ Y and w ∈ Rk
+ such that (a, v, (k, y1, . . . , yk), w)

is a weakly efficient solution of (MWD2).

Proof. Apply Theorem 5 and use the previous result as in the proof of
Theorem 8. �
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