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Semi-Infinite Optimization: 

Structure and Stability of the Feasible Set 1 

a .  T.  J O N G E N ,  2 F. TWILT,  3 A N D  G.  W. W E B E R  4 

Communicated by O. L. Mangasarian 

Abstract. The problem of the minimization of a function f :  R ~ --~ 
under finitely many equality constraints and perhaps infinitely many 

inequality constraints gives rise to a structural analysis of the feasible 

set M[ H, G] = {x ~ ~" t H ( x ) = O, G( x, y) >-. O, y ~ Y} with compact Y c 
W. An extension of the well-known Mangasarian-Fromovitz constraint 
qualification (EMFCQ) is introduced. The main result for compact 

M[H, G] is the equivalence of the topological stability of the feasible 

set M[H, G] and the validity of EMFCQ. As a byproduct, we obtain 

under EMFCQ that the feasible set admits local linearizations and also 

that M[H, G] depends continuously on the pair (H, G). Moreover, 

EMFCQ is shown to be satisfied generically. 

Key Words. Semi-infinite optimization, topological stability, reduction 
principle, structure of the feasible set, genericity. 

1. Introduction 

An optimization problem of  semi-infinite type has the following specific 

property: the feasible set is described by means of  infinitely many  inequality 

constraints. In this paper,  we consider semi-infinite optimization problems 

of  the following form: 

(SIP) minimize f on M[H,  G], ( la)  

m [ H , G ] = { x c ~ " l H ( x ) = O  ,G(x , y )>_O, fora l l  y ~  Y}, ( lb)  

Y c  ~ compact.  ( lc)  
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In (1), the mappings f : R n ~ R ,  H=(hl , . . . ,hm):Nn~R m, re<n, 
G : R n x ~r ~ R are assumed to be continuously differentiable. 

We are interested in the local structure of  the feasible set M[H, G] 
and its topological stability depending on the pair (H, G). The ideas in this 

paper  extend and generalize the work done in Ref. 1. In fact, in Ref. 1 the 

set Y c ~  r, the index set of inequality constraints, was assumed to be a 

finite set. In the present paper, however, the index set Y might be a 

continuum, such as an interval, a rectangle, or more generally a compact 

manifold with boundary. 

A central role will be played by an appropriate extension of the so-called 

Mangasarian-Fromovitz constraint qualification (cf. Ref. 2). Under assump- 

tion of the extended Mangasarian-Fromovitz constraint qualification 

(EMFCQ),  it will be shown that the set M[H, G] is a Lipschitzian manifold 

with boundary.  Moreover, if M[H, G] is compact, then for all (H, G) 

sufficiently close to (H, G) (the topology to be specified below), the corres- 

ponding set M [ H ,  O] is homeomorphic  with M[H, G] if and only if 

EMFCQ is satisfied on M[H, G]. This characterization will be our main 

result. The compactness of M[H, G] and the validity of  EMFCQ 

also guarantee locally the continuity of the set-valued mapping 

(H, G)~--', M[H, G]. Finally, we prove that the fulfilment of  EMFCQ turns 

out to be generically true. 

A first and easy approach to the study of the structure of the feasible 

set M[H, G] is that of a local reduction to a set described by means of a 

finite number of  ditterentiable constraints. This can be done as follows (cf. 

Refs. 3 and 4). Let us introduce the marginal function, 

gaG(X) = min G(x, y), (2) 
y c Y  

and the extremal set Eo(x) (the index set of active inequality constraints), 

EG(X)={y~ YlG(x,y)=O}, x~M[H, G]. (3) 

An easy but important observation is the following: for ~ e M[H, G], 
each y ~ EG(Y~) is a global minimum for G(g, • )Iv. Now, if each y ~ EG(~) 
is nondegenerate (to be specified below), then the set EG(Y~) is discrete, 

and hence finite (recall that Y is a compact set), say EG(~) = { y l , . . . ,  yp}. 

Then, application of the implicit function theorem around each point (2, y;), 

gives rise to a local minimum yi(x) for G(x, ")Iv depending on x. As a 

consequence, we obtain in a neighborhood 0// of 2~ the representation 

6 b ( x ) ,  ~ G(x, y (x)), (4) 6 ~ ( x )  = gaG(X)= min 
i=l,...,p 

and the set M[H, G] ~ ~ can be described by means of a finite number of 
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differentiable constraints, 

M[H,G]c~° l l={x6aglH(x)=O,d)b(x )>-O, i=l , . . . , p} .  (5) 

Unfortunately this latter reduction principle cannot be applied at all 

feasible points. In fact, we will show, using ideas from singularity theory 

(cf. Ref. 5), that the violation of the assumptions for applying the reduction 

principle might be stable under perturbations of the defining pair (H, G). 

In spite of the latter negative result, it was shown in Ref. 6 that the reduction 

principle is generically applicable in a neighborhood of the local minima 

of (SIP). In the present paper, we use the reduction principle at certain 

points in the proofs in order to be able to exploit the results from Ref. 1. 

This paper is organized as follows. In Section 2, we  state the main 

theorems and discuss the reduction principle. Section 3 contains several 

lemmas and the proof of the theorems. 

2. Definitions and Main Results 

Let ck(N n, R m) denote the space of k-times continuously differentiable 

mappings from R" to R m. 

The index set Y in (1) will be described by means of a finite number 

of smooth (in)equality constraints, 

Y = {y ~ R~[ U(y) = O, V(y) >- 0}, Y compact, (6) 

where 

U=(u l , . . . , u=)~C~(~r ,~=) ,  c~<r, 

V =  ( / - ) 1 ,  - • • , '0~q) E C°°(~ r, ~ ) .  

Throughout this paper, it is assumed that the linear independence constraint 

qualification (LICQ) is satisfied at all y ~ Y, i.e., 

(LICQ) {Dui05), Dvj(2f); i c A , j  ~ BOO5)} is a linearly independent 
set, )5 c Y, where 

a = { 1 , . . . , a } ,  B = { 1 , . . . , 3 } ,  (7a) 

Bo05) = {j 6 B I vj07) = 0}, (7b) 

and where Dui(~) stands for the row vector of first partial derivatives of ui 

evaluated at the point )5, Dvj(y) being defined similarly. 

The validity of (LICQ) on Y assures that the set Y is a smooth manifold 

with boundary and corners (cf. Ref. 7), such as an interval, a rectangle, etc. 

An extension of (LICQ) above can be formulated (and will be used) 

for sets of the type M[H, G] as introduced in Section 1 (Dx denoting partial 

differentiation with respect to x). 
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Definition 2.1. The extended linear independence constraint quali- 

fication (ELICQ) is said to hold at 2 c M[H, G] if the conditions below 

are satisfied: 

(ELICQ1) the extremal set E~(2) is finite; 

(ELICQ2) the set {Dhi(~), D~G(£, y); i = 1 , . . . ,  m, y e Ec(2)} is 

linearly independent. 

Note that, formally, condition (ELICQ2) implies (ELICQ1). The fol- 

lowing constraint qualification (EMFCQ) will play a crucial role in this 

paper; it is not difficult to see that (ELICQ) implies the validity of  (EMFCQ), 

the converse being false. 

Definition 2.2. The extended Mangasarian-Fromovitz constraint 

qualification (EMFCQ) is said to hold at 2 ~ M[H, G] if the conditions 

below are satisfied: 

(EMFCQ1) rank DH(£) = m; 

(EMFCQ2) there exists a vector ~ ~ R" satisfying 

DH(2). £ = 0, (8a) 

D~,G(g,y).~>O, for all yeEc(2). (85) 

A vector ~e  N" satisfying (8a) and (8b) will be called an EMF-vector at 2. 

Before stating our first theorem, we have to introduce the notion of a 

Lipschitzian manifold, which is a special type of  topological manifold. Let 

H" denote the nonnegative orthant in •", i.e., 

H" = { x e R n  Ix->0}. (9) 

Definition 2.3. A subset M c R" is called a Lipschitzian manifold 

(with boundary) of dimension k if, for each g ~ M, there exist open neighbor- 

hoods o~, of g and ~V of  the origin and a bijective mapping ~:  q/-> ~V, with 

both qb and qb -1 Lipschitz-continuous, sending £ onto the origin, such that 

either 

o r  

qb(q/n M)  = eKc~ ({O,-k} × Rk), 

q~(~ c~ M) = ~'c~ ({On-k} × H I x Rk-I); 

in the latter case, £ is called boundary point. The set of all boundary points 

will be denoted by OM. 
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Theorem 2.1. Manifold Theorem. Suppose that (EMFCQ) is satisfied 

at all points of M[H, G]. Then, M[H, G] is a Lipschitzian manifold 

(with boundary) of dimension n - m, and the boundary OM[H, G] equals 

{xe " IH(x) =o, 

In the following theorems, we use several topologies which we now 

introduce. For r_< k, the space Ck(~ ", ~) will be topologized by means of 

the strong Cr-topology (also called Cr-Whitney topology), denoted by C~ 

(cf. Ref. 8). In fact, for finite r, the C~-topology is generated by allowing 

perturbations of  the functions and their derivatives up to order r which are 

controlled by continuous positive functions e(. ): ~ " ~  • (rather than posi- 

tive constants E); note that the infimurn of E(. ) over R" might be zero. The 

C~-topology for C°(R ", R) is generated by means of the union of the bases 

for the C~-topology, r=O, 1 , 2 , . . . .  The C~-topology for Ck(R ", R ~) is 

obtained by means of  the product-topology induced by C~ on the m-fold 

product Ck(R ", R) x .  • • x Ck(~ ", R). 

In order to state our continuity theorem, we need the notions of lower 

and upper sernicontinuity of a point-to-set mapping ~ from a topological 

space T into the family ~ ( ~ ' )  of all subsets of ~". Following Berge, Ref. 

9~ we call A¢ lower semicontinuous (1.s.c.) at ~ T if, for any open set 

¢//c R" with M(15) c~ ~ ~ Q, there exists a neighborhood °F of ~ such that 

d~(v) n ~ /~  Q whenever v c °V. The mapping M is said to be upper sernicon- 

tinuous (u.s.c.) at ~ ~ T if, for any open set q / c  ~" with Jd(~) c ¢g, there 

exists a neighborhood °V of ~5 such that d/t(v) ~ ~ whenever v~ °V. 

For an extensive study of these two notions (and of  related ones) in 

parametric optimization, see Ref. 10. 

The family of all compact subsets of ~" endowed with the Hausdorff 

metric (of. Ref. 9) is denoted by ~ ( ~ ' ) .  

Now, we have the following theorem. 

Theorem 2.2. Continuity Theorem. Let H ~ C2(~ ", W'),  and suppose 

that (EMFCQ) is satisfied for all x~M[H, G]. Then, there exists a 

CX~-neighborhood 6 c C2(~ ", R~) x C~(W ' × W, ~) such that the set-valued 

mapping ~t, 

/a: (f,, (a0) 

is both upper sernicontinuous and lower semicontinuous at all (/4, G) ~ ~. 

Moreover, if in addition M[H, G] is compact, then 6 can be chosen in 

such a way that ~44 maps ~ to ~¢(R')  and is continuous as well. 

We emphasize that continuity of a mapping F: T ~  ~ ( ~ ' ) ,  with T a 

topological space, cannot prevent bifurcations of the set F( t ) ,  when t 

traverses T. This is illustrated in the next example. 
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Example 2.1. Let T=  ( -m,  1), and define F: T +  ~ ( R " )  as follows: 

F(t)={x~[-1, 1]lx2-t>-0}. (11) 

The continuity of F is easily verified. Note that, when t traverses zero from 

negative to positive values, the set F(t) bifurcates from one connected 

component into two components. 

The subsequent stability theorem, however, shows that, under the 

assumptions of Theorem 2.2, bifurcations of the feasible set do not occur. 

Definition 2.4. Let H ~ C2(R ", R"). The set M[H, G] is called stable 

if there exists a C~-neighborhood t7 of (H,G) in C2(~" ,~")x  

Cl(~" ×R~,R) such that, for every (H, G) ~ ~, the corresponding feasible 

set M[ H, G] is homeomorphic with M[ H, G]. 

Now, we can state our main theorem. 

Theorem 2.3. Stability Theorem. Let H e  C 2 ( ~ n , ~ m ) ,  and suppose 

that M[H, G] is compact. Then, the feasible set M[H, G] is stable if and 

only if (EMFCQ) holds at every point x ~ M[H, G]. 

A subset of a topological space T is called generic if it contains a 

countable intersection of open and dense subsets. If T is a so-called Baire 

space, then a generic subset is also dense. In particular, the space ck(R ~, R) 
endowed with the ck-topology is a Baire space (cf. Refs. 8 and 11). 

Theorem 2.4. Genericity Theorem. 

(a) Let CO(R,,~m)x C~(R" xR' ,R) be endowed with the 

CT-topology. Then, there exists a generic subset M c  

C~(R",R')xC~(R"xRr, R) such that, for each (H, G)e.~/, it 

holds that (ELICQ) is fulfilled at every x ~ M[H, G]. 
(b) Let ~ be the subset of CI(R ", R m) x C~(R" x R ~, R) consisting of 

those pairs (H, G) for which (EMFCQ) holds at all points x 

M[H, G]. Then, ~ is C]-open and Clfdense. 

We shall end this section with a discussion on the reduction principle. 

For omitted details, we refer to Refs. 4, 11, and 12. For our aim, we now 

suppose that G ~ C2(~" x R ~, R) and recall that, for ~ ~ M[H, G], each point 

)~e Eo(ff) is a global minimum for G(ff, .)tr. 

Definition 2.5. A point y ~ Y is called a critical point for G(X, • )1 r if 

there exist reals ~ ,  i~ A, and/2j, j ~  Bo07), such that 

DyG(*,y)= E A,Du,(y)+ E 12~Dv,(;). (12) 
i~.A jEBo(.f) 
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A critical point 35 for G07, ")i Y is said to be nondegenerate if the conditions 

below hold: 

(ND1) /2j~0 for a t l jeB0(Y);  

(ND2) the matrix V r. D2L(2, fi). V is nonsingular, where 

L(x, y) = G ( x , y ) -  E Aiu~(y)- E ¢~vj(y), (13) 
i ~ A  j~Bo( . f  ) 

and where the columns of the matrix V constitute a basis for 

the tangent space T(35), 

T(f )  = O Ker Du~(35)~ 0 Ker Dvj(35). (14) 
i ~A  j~Bo(Y)  

In particular, a point )7 ~ Y is a nondegenerate local minimum for G(2, ")fY 

if, besides (12), (ND1), and (ND2), the numbers Cj are positive and 

moreover V T. D~.L(~Y, :9)" V is positive definite. 

In the above definition, 2 DyL stands for the matrix of second-order 

partial derivatives of L with respect to y, and 

Ker Dui(y) = {rl ~ W IDui(~)r~ = 0}. (15) 

Suppose that ~ ~ Y is a nondegenerate critical point for G(2, - )t Y" Let 

us introduce the critical point map 3-, 

where A and /x are [A[-vectors and [Bo(y)l-vectors, respectively. We note 

that 3- is a Cl-mapping from N p+" to ~P, with 

p = r+lAl+lBo(Y)]. 

Further, we have 3-(y, X,/2, ~) = 0, and the Jacobian matrix of 3- with respect 

to z = (y, ;t, b~) at the point (35, X, #, 2) is nonsingular, 

[D~L(2,35) I E] 
DJ(y, X, ~, 2)= L-- ~=T---'-6-J, (17a) 

E = --[OTu,(y), i ~ A]DTvj(y),j  c B0(y)]. (17b) 

The latter nonsingularity follows from (ND2) and the fact that r ank (E)=  

tAI + tBo(y)I, so,  we can apply the implicit function theorem, and we locally 

obtain a Cl-mapping x~--~(y(x), A(x),/x(x)) such that 

3-(y(x),  A(x), ~(x) ,  x) ~ o. (18) 
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Moreover, y(x) is a nondegenerate critical point for G(x, ")IY" Let us 

introduce the local marginal function ~b [cf. also Section 1, Eqs. (4)], 

q~(x) = G(x, y(x)). (19) 

Then, it follows that 

D6(x) = DxG(x, y(x)), (20) 

and hence ~b is a C2-function. 
For later constructions, we also need the structure of the second 

derivative of ~b at ~ [cf. I Ref. 7, Eq. (4.1.12)]: 

D2th(~) = D~G(~, g) 

-[DxDrYGo(x'Y)]'.[DzJ-(~, )7)]-1. [DxDyrG(x' )7)]. (21) 

Definition 2.6. Suppose that G e C2(R ~ x R r, R). For X ~ M[H, G], the 

extremal set Eo(X) is called nondegenerate if each y ~ Ea(~) is a nondegen- 

erate minimum for G(~, ")1 g. The reduction principle is said to hold at 

~ M[H, G] if Eo(~) is nondegenerate. 

Suppose that the reduction principle holds at g c M[H, G]. Then, each 

)7c Eo(~) is an isolated minimum for G(~, ")lY" Since Y is compact, it 

follows that Eo(~) is a finite set, say Eo($ )=  {)71,..., 37P}. Around each 

point (~, yi), the implicit function theorem is applicable; as a consequence, 
we obtain, in a neighborhood of ~, the representation of the marginal 

function qSo as the minimum of the C2-functions ~b~, i = l , . . . , p ;  cf. 

Section 1, Eqs. (4). 

Unfortunately, the violation of the reduction principle might be stable 

under perturbations of the problem data. This will now be explained with 

a simple example arising from an analysis based on singularity theory (cf. 

Ref. 5). 

Example2.2. Let Y = [ - 1 ,  1], andlet G~ C~(R3xR, R) be defined by 

G ( X ,  y )  = y4"t- x l y 2  + x2y-'l- x 3 . 

There are no equality constraints, and we are interested in the feasible set 

M[G] in a neighborhood of the origin. A careful calculation shows that 

(ELICQ) is satisfied for x ~ M[G] near the origin. However, the reduction 

principle is violated at the point (~, fi)= (0, 0). The special feature at the 

origin is represented by means of the mapping ~F, 

J;: (x, y)~--~( G, DrG, DyDyG, OyO, DyG)(x,y~. (22) 

Note that ~ vanishes at the origin, but the Jacobian matrix D ~  at the origin 
is nonsingular. From this, it follows, basically in virtue of the implicit 
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function theorem in Banach spaces (cf. Ref. 13), that the violation of  the 

reduction principle persists under small C~-perturbations of the defining 

function G. For details on the application of  the implicit function theorem 

up to C4-stability, we refer to the expos6 in Ref. 11, Chapter  6. 

3. Lemmas and Proofs of the Theorems 

The proof  of  the subsequent lemma will be deleted, since it runs almost 

identically along the lines of the proof  of Lemma 2ol in Ref. 1. 

Lemma 3.1. The extended Mangasarian-Fromovitz constraint qualifi- 

cation is invariant under local C~-coordinate transformations. 

Remark 3.1. Let ff c M[H,  G], and suppose that (EMFCQ) holds at 

9~. Then, for a local analysis, we may delete the equality constraints, since 

the zero set of  H is a Cl-manifold  in a neighborhood of  2. In fact, choose 

~ R n, j = m + 1 , . . . ,  n, such that the vectors DVh~(2), i = 1 . . . .  , m, and ~, 

j = m + l , . . . ,  n, form a basis for ~". Put 

y = qb(x), 

where 

Yi = hi(x), 

yi : ~f" ( x - ~ ) ,  

Then, qb is of  class C ~ 

(23a) 

i =  1 , . . . ,  m, (23b) 

j =  m +  1 , . . . ,  n. (23c) 

and the Jacobian matrix D ~ ( ~ )  is nonsingular. 

Consequently, qb is a locally invertible and hence a local C~-coordinate 

transformation sending Y onto the origin. Now, the set H- I (0 )  is locally 

transformed under qb to the set {Ore} x ~ - ' .  Note that, if H is of class C k, 

k-> 2, then ~ is also of  class C k. Lemma 3.1 implies that (EMFCQ) remains 

valid in the new coordinates. 

The next lemma on the solvability of a compact system of linear 

inequalities is well known. Let conv(.  ) denote the convex hull. 

Lemma 3.2. See Ref. 14. Let K c E "  be a nonempty compact set. 

Then, the system of  linear inequalities 

VT~: > 0, V ~ K, (24) 

is solvable if and only if 0~ conv(K) .  

For a locally Lipschitz continuous function q~: R" ~ E, let O4J(x) denote 

the Clarke subdifferential (cf. Ref. 15) evaluated at the point x. 
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Lemraa 3.3. The marginal function ~bo is locally Lipschitz continuous, 

and for the Clarke subdifferential a~bo the following inclusion holds: 

a6o(x)~conv{D~G(x,y)lyc{we YIG(x, w) = ¢,G(x)}}. (25) 

Proof. The proof follows immediately from Ref. 15, Section 2.8, using 

the fact that G is a C~-function and that Y is a compact set. [] 

Definition 3.1. Let h, g: R n--> N be given. Then, h and g are said to 

be Lipschitzian equivalent at (2, 5) e R" x R n if there exist neighborhoods 

q / a n d  ~F of ~ and 5, respectively, and a bijective mapping cb: ~//--> ~F, both 

qb and qb -1 Lipschitz continuous, sending ~ onto ~, such that ho~-l=g 
on ~. 

The following lemma is a combination of the linearization theorem in 

Ref. 16, Theorem 2.2 and Ref. 16, Remark 2.2, 

Lemma 3.4. Let h: R" -~ R be a locally Lipschitz continuous function, 

and suppose that, at the point ~ ~ R n, the origin is not contained in the 

subdifferential oh(:~). Then, h and g are Lipschitzian equivalent at (if, 0), 

where 

g ( y l , . . . ,  yn) = h(:~)+yl. (26) 

In the case where there are no equality constraints (m = 0), resp. no 

inequality constraints ( Y = Q ) ,  we write M[G], resp. M [ H ] ,  instead of 

M[ H, G]. 

Proof of Theorem 2.1. Suppose that (EMFCQ) is satisfied at all points 

of M[H, G]. The proof that M[H, G] is a Lipschitzian manifold (with 

boundary) consists of  a local analysis. Hence, in virtue of  Remark 3.1, we 

can delete the equality constraints. So, we are dealing with a set 'of the type 

M[G]. Let ~ belong to M[G]. If  ~b~(~)> 0, then by continuity a whole 

neighborhood of ff belongs to M[ G], and the manifold condition is trivially 

fulfilled at ~. Now, suppose that tho(~) = 0. From the validity of (EMFCQ), 

especially (EMFCQ2), it follows that the system of linear inequalities 

DxG(~,y).~>O, ycEo(~), (27) 

is solvable. The extremal set EG(ff) is a closed subset of Y, and hence is 

compact. So, it follows from Lemma 3.2 that the origin does not belong to 

conv{D,~G(:~,y)lyEEo(~)}. Consequently, from Lemma 3.3, we see 

0~a~bo(~). A combination of Lemma 3.3 and Lemma 3.4 shows that the 

and g are Lipschitzian equivalent at (~, 0), where g(y~,..., y,,)=Yl. But 
from this, it follows that the Lipschitzian manifold condition is fulfilled at 

~. This completes the proof. [] 
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In order to prove our continuity theorem, we need several preliminary 

lemmas. 

Lemma 3.5. 

(i) The set-valued mapping g': (x, G)~--*Eo(x) is upper semicon- 

tinuous on R" x C~(R" x W, R). 

(ii) If  (EMFCQ) holds for all x ~ M[H, G], then a C~-neighborhood 

~ c  C~(R ~, ~ ' )  x C~(~" xN ~, ~) exists such that (EMFCQ) is 

fulfilled for all x ~ M[H, G] whenever (.~, G) ~ ft. 

Proof. Using the compactness of Y, this follows directly by a con- 

tinuity argument. Note that, for the proof of part (ii), we need (i). [] 

Let ff be a vector field on an open subset a//of ~", i.e., ~ is a mapping 

from ~d to R". I f~ is of the class C k, k -> 1 (resp. locally Lipschitz continuous), 

then ~ admits a unique flow (say qb) which is defined on an open neighbor- 

hood of ag x {0} c R " x  R, and which is of class C k as well (resp. locally 

Lipschitz continuous). Recall that, for any g c ~,  we have 

a~(~, o) = ~, o/at[a,(y:, t)] = ~ ( ~ ( ~ ,  t)); 

this means that @(~, t) represents the ~'-trajectory through g, where t stands 

for the integration time. For proofs and more details on this subject, see 

Ref. 17. 

In the following lemma, we restrict ourselves to the case where rn = 0 

(no equality constraints). 

Lemma 3.6. Let ~ e M[G], such that q~o(X) = O, be given. Moreover, 

let ~" be a C~-vector field (with flow cb) on the open neighborhood °d of 2. 

We assume that (EMFCQ) holds at 2, with ff(~) as an EMF-vector. Finally, 

let ~ ~ q /be  a point on the ~-trajectory through 2, i.e., ~ = ~(~, -F) for some 

76 ~. Then, there exist an open neighborhood ~ of :~, a positive real a, 

and a unique Lipschitz continuous function T: ~F~ [T-a,  ?+ a]  satisfying: 

(i) ~b(x, t) is well-defined on ~ x [ ? - a ,  ?+cr]; 

(ii) when, for x c ~ arbitrary but fixed, t traverses the interval [ ~ -  

a, ?+ a] ,  the composition ~bo(qb(x, t)) vanishes iff t =  T(x), and 

moreover it changes sign. 

Proof. We only discuss the case where ~ ~ ~ and i >  0; in the other 
cases, the proof runs along the same lines. 

Since ~ is a C'-vector field, its flow @ is a C~-mapping on a suitably 

chosen neighborhood of (~, 0); this essentially demonstrates (i). Moreover, 
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the composition G(cb(x, t),y) is of the class C 1 as well. Since ~(g)= 

(a/ot)~(~, t-) is an EMF-vector at ~, we have that, for any fie E~(g), 

G(~(~,  t-), 37) = 0, (28a) 

(O/Ot)G(q~('~, t-), 37) = DxG(~(~, t-), 37). ~(g) > 0. (28b) 

Now, application of the implicit function theorem using the compactness 

of  EG(g) yields the existence of an open neighborhood ~ / o f  R, a compact 

neighborhood ~¢" of E~(g) in Y, and a unique Cl-function T: °Vx ~/¢'-~ 

[ f - a ,  ~-+ a] ,  with a > 0 ,  such that 

T(x ~, y) = ~', for all y ~ E~(g), (29a) 

G(d~(x, t), y) = 0, iff t = T(x, y), whenever (x, y) e °V x ~/¢'. (29b) 

By a continuity argument (as used for Lemma 3.5), we may assume (possibly 

after shrinking ~, ~4/') that Ec(x)c  ~ and ~'(x) is an EMF-vector at x, 

whenever x e ~. Now, it is not difficult to prove (using ?> 0, and possibly 

after shrinking ~, 7K, a)  that, for all (x, y ) e  Y'x °/42, we have 

G(dP(x, t), y) < 0 (resp. > 0), 

if f - a < - t < T ( x , y )  (resp. if T(x,y)<t<-?+a). 

We define 

T(x) = rain{ T(x, y)lY e 7/K}. 

Since T(x, y) is of the class C ~, and thus locally Lipschitzian, we find that 

T(x) is locally Lipschitz continuous; compare Ref. 15, Section 2.8. Finally, 

it is easily shown that T(x) satisfies (ii). This completes the proof. [] 

Proof of Theorem 2.2. As far as the upper semicontinuity of d/ is 

concerned, the proof is a direct consequence of the definition of the C 1- 

Whitney topology and the following definitions: 

(i) M[/4 ,  G] = {x R'lll H(x)II --- 0, -> 0}, where I1" II stands for 
Euclidean norm; 

(ii) both mappings (2,/4)~11/4(x)11 and (x, G),-~gao(x) are con- 

tinuous w.r.t, the topologies induced by I1" II and C1,. 

Next, we prove that ~ is lower semicontinuous. 
Assume that this is not true. Then, there exists a point ~7 e M[H, G] 

and a compact neighborhood a// of ~ (with smooth boundary) such that, 

in any open Cl,-neighborhood ff of (H, G), we can select a pair (H °, G °) 

with d / ( H  °, G°)c~ ~t = Q .  
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In the sequel, we consider only neighborhoods (7 such as in Lemma 

3.5(ii). This means that, for all (H, G ) e  (7, we may apply the manifold 

theorem. We distinguish between two cases. 

Case 1. E ~ ( ~ ) =  ~ .  In this case, locally around ~ our feasible sets 

are merely given by equality constraints. So, we may restrict ourselves to 

feasible sets of the type M [ H ] ,  with /-) in some C~-neighborhood of 

H. Since H(~)  = 0 and since (EMFCQ1) holds at ~, we can apply the implicit 

function theorem for Banach spaces, the actual Banach space being 

the set of  all restrictions /ql~, endowed with the norm I1~11,= 
max~{ll/-i(x)ll + IIO (x)ll}; cf. also Ref. 7, Theorem 3.1.3. Consequently, 

there exists an open neighborhood ~ of  H and a C~-Frechet differentiable 

mapping x( .  ) on ~ such that, for all H e ~, we have x ( / 4 ) e  M [ H ]  n OR. 

This latter conclusion, however, is in contradiction with our assumption. 

Case 2. EG(~) # ~ .  In this case, the point ~ is situated on the boun- 

dary OM[H, G]. For v~N sufficiently large, we treat a special selection 

{(7 ~} from the above neighborhoods (7 of  (/4, G) such that (H, G)~  (7~ 

implies II(H-/~, G-~)11, < Here, [1. II, is defined as above, but now 

w.r.t. OR x ~3, where Y3 is a compact neighborhood of Y having a smooth 

boundary. In accordance with our assumption, we choose in each (7~ a pair 

( H  ~, G ~) such that ~ ( H  ~, G ~) n OR = Q. 

For v sufficiently large, we may assume that H and H ~ coincide on 

OR. This can be proved with the aid of  certain Cl-diffeomorphisms (construc- 

ted from linear homotopies connecting H ~ with H), which send M[H ~] c~ OR 
onto M[H] n °R. For these constructions, we merely refer to Ref. 1 or Ref. 

11, Chapter 6; here, we use the fact that the mappings H, H ~ are of  class 

C 2. So, by virtue of Remark 3.1, we may restrict ourselves, locally around 

)7, to feasible sets of  the type M[G ~] and M[G]. 
Now, we proceed as in the proof  of Lemma 3.6. Let ff(~) be an 

EMF-vector at 9~ for G, and consider the constant vector field ~'(x) := ff(~). 

Then, ~" generates a flow qb. Interpreting G as an additional variable [and 

in view of ~cOM[G], (EMFCQ 2)], we may apply the implicit function 

theorem for Banach spaces to the equation G(qb(x, t),y)=O. As in the 

proof  of  Lemma 3.6, it follows that, for any (~ sufficiently close to G, the 

~'-trajectory through 9~ (and restricted to a suitable compact neighborhood, 

again denoted by °R, of  9~) intersects OM[G] in exactly one point. In this 

way, we associate with (G ~) a unique sequence of  points (x ~) such that 

x" cOM[G~]. (30) 

Since OR is compact, we may assume (x ~) to converge to a point x°~ OR. 

Due to the continuity of the mapping (x, G)~--~d~o(x) and to the very 
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selection of the mappings G ~, we arrive at 

~bo(x °) = lim(~bo~(x~)). (31) 
1,---~ o O  

From (30) and (31), it follows that x°~aM[G]. Since the ~-trajectory 

through g intersects aM[G] in exactly one point, it follows that g = x °. 

This, however, is violated by our initial assumption that At(G ~) c~ q /=  Q 

for all t,. 
Finally, in order to prove the last part of the theorem, let M[H, G] be 

compact, and let o/4/. be a compact neighborhood of M[H, G] in R ". Since 

At is upper semicontinuous, M[H, G] is contained in ~¢', and thus is 

compact, for any (H, G) in a suitable Cl~-open neighborhood 6 of (H, G). 

Now, we are in the position to apply Ref. 9, Chapter 6, Section 6. Both 

the upper and lower semicontinuity of  At being already demonstrated, we 

conclude that (after restricting/~ and G to ~ and ~¢" x Y, respectively) At 

[as a single-valued mapping from t7 to ~ ( R " ) ]  is continuous. [] 

The next lemma is in the same spirit as Ref. 1, Lemma 2.4. The proof 

(see also Ref. 11, Chapter 7), which is based on Sard's theorem, will be 

omitted. Let H ~ C°~(R ", R") ,  and let c¢1, c¢2 be disjoint dosed subsets of 

R ~. Let H ~ C~(R ~, R")  belong to ~(c¢~, ~2) if and only if the conditions 

below are satisfied: 

(i) /~ coincides with H on c#1; 

(ii) rank DIZI(x)=m, at all x~  ~ 2 n H - l ( 0 ) .  

Lemma 3.7. Let HeC°°(R~,Rm).  Then, for each k e N ,  the set 

ff(qgl, ~f2) intersects every C~-neighborhood of H, and ~ (O ,  c¢2) is 

Cl~-open. 

Proof of  Theorem 2.4. 

Part (a). We wilt confine ourselves merely to a sketch of the proof. 

From Lemma 3.7, we see that there exists a CT-open and dense subset 
O c  C~(R ", R m) with the following property for H E G: 

rank DH(x) = m, for all x ~ H-l(0) .  

Hence, for H ~ G, the set H-l (0)  is a C°~-manifold. As a consequence, we 

can delete the equality constraints in our further investigation, since the 

subsequent ideas from transversality theory extend to smooth manifolds. 

The set Y need not to be compact in the rest of the proof. Since Y is 

a smooth manifold with boundary and corners, it suffices to explain the 

method of proof in the case Y = H r. The main tool consists of application 
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of  the multijet transversality theorem (cf. Ref. 11, Chapter 7). Let g ~ R ~ be 

given. Then, for )7 ~ Y = H r to belong to Ec(~) ,  and thus y to be a minimum 

for G()7, .)iy, the following conditions are necessary: 

(i) )7 - 0, (32a) 

(ii) D,.G(~, 29) >- O, (32b) 

(iii) DyG(~, y).37 = 0. (32c) 

Formula (32) gives rise to the introduction of  the following complementarity 
subset E c R r x R r, 

E = { ( v ,  W ) ~ R r X ~ r l V ~ 0 ,  W-->0, vTw=0} 

={(V,W)~RrXRrlVi>--O,w~>--O,v~'wi=O,i=l . . . .  ,r}. (33) 

For fixed i, the set {v~-  > 0, w i -  > 0, v ~. w ~= 0} can be partitioned (stratified) 

into three manifolds, 

{(0, 0)}, {0} x (N1\{0}), (H'\{0}) x {0}. (34) 

In this way, the set E has been partitioned into products of  srnooth manifolds 

(product stratification), and the highest dimension of  such a product mani- 

fold is equal to r. 

Next, consider the 1-jet extension j~G of G, 

jIG: (x, y)~--~(x, y, O, OxG, DrG). (35) 

We are interested in those points (x, y) satisfying 

G(x, y) = 0 and (y, DryG(x, y)) ~ E. 

These points lie in the subset /~ of  the image space ofj~G defined by 

={(W 1, W 2, W 3, W 4, w S ) ~  n X~r  Nff~X~ rt N ~ r I w 3 = O ,  (W 2, wS) E E}. (36) 

The set /~ can again be partitioned into manifolds (in an analogous way 

as the set E),  and the least number of defining equations (least codimension) 

is equal to r + 1 (the entry 1 corresponding to w 3= 0). Considering the set 

Eo(x), which consists of  p elements, gives rise (roughly speaking) to p 

copies of  mappings j~G as defined in (35). The available dimension then 

equals p(n + r), corresponding to p copies of  (x, y). However, there are at 
least (p -1 )n+p(r+l )  restrictions to be fulfilled. The number ( p - 1 ) n  

reflects the fact that the copies (x ~, y ~ ) , . . . ,  (x p, yP), corresponding to Eo (x), 

have to satisfy the p - 1 systems of  equations 

X 1 ~. X 2  X 2 ~ X 3  . . . ~ X p - I  ~ X p. 
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In the transversal case, which happens to be generic in virtue of the multijet 

transversality theorem (cf. Ref. 11, Chapter 7), we must have the following 

inequality: 

Number  of  restrictions (codimension) <- available dimension. 

Hence,  in the transversal case the following inequality should be satisfied: 

( p -  1)n +p(r + 1) <- p(n + r), (37) 

and we obtain 

p <- n. (38) 

This shows the generic finiteness of  Eo(x), and hence (ELICQ1). 

The validity of  (ELICQ2) follows from a sharpened calculation of  

restrictions (codimension), taking the p copies of D~G into account. The 

violation of (ELICQ2),  in case p -< n, means that 

rank{Dr~ G(x, y~), i = 1 , . . . ,  p} -< p - 1. (39) 

In the case of the mildest violation, i.e., the case where the least number 

of  restrictions occur in (39), the n x p  matrix in the left-hand side of (39) 

has rank p - 1. Now, the set of n x p matrices, p --- n, having rank equal to 

p -  1 constitutes in ~nP  a manifold of  codimension n - p  + 1 (cf. Ref. 11). 

Hence, in the transversal case, the inequality (38) with n - p  + 1 added in 

the left-hand side should hold, which obviously is false. Therefore, such a 

situation does not occur generically. This completes the sketch of  the proof  

of  Theorem 2.4, Part (a). 

Part  (b). This follows immediately from Lemma 3.5, the C~- 

density of  COO(Rk, R) in C~(g~k,R), and the fact that (ELICQ) implies 

(EMFCQ).  [] 

Remark 3.2. Theorem 2.4 can be refined in the following way. Let us 

forget about equality constraints at this point. Instead of  perturbing the 

function G on the space I~ n x R r, we can refine the perturbation by firstly 

deleting, for some 2 ~ R  ", the set {2} ×R r from R " x  R r. Note that q/:= 

(~n x Rr)\({2} x R r) is an open subset of  g~" x R r. Then, we can endow the 

space Coo(q/, R) again with the C~-topology;  and again, the multijet trans- 

versality theory can be applied, but now regarding the open subset q / a s  a 

smooth manifold. Now, let 6 be a neighborhood of Gbou consisting of those 

elements from C°°(q/, R) whose functional values and derivatives up to 

order two differ from GI~ up to a continuous positive function e(.  ): q / ~  R, 

where e(x, y) --- d ((x, y), {2} x Rr) and where d stands for the Euclidean 

distance. Then, any t~ c ~ can be extended to a CZ-function on R " x  R ~, 

just by defining the derivatives up to order two on the set {if} x R ~ to be 
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those of G. This allows quite delicate perturbations which will be used in 

the proof of  Theorem 2.3. [] 

For the next lemma, see Ref. 1, Lemma 2.3. 

Lemma 3.8. Let f c  C~(R ", N), and let 2 e R'. Then, every C]-neigh- 

borhood o f f  contains an f satisfying: 

(i) ]e  c~(R°,m; 
( i i ) )7 (2 )  = f (2 ) ,  D)7(2) = Of(2) .  

Remark 3.3. In the proof of Theorem 2.3, we sometimes use the 

expression "we add locally at K a function g to the function h," where K 

is a compact set. By this expression, we mean that we actually add the 

function g(x )~ (x )  to h(x), where ((x)  is a C~-function having the following 

properties: 

(i) 0<_ ~(x)_< I; 
(ii) ~ has a compact support; 

(iii) ~:(x) is identically equal to one in some neighborhood of K. 

For the proof of  our stability theorem, we need one more lemma. 

Lemma 3.9. Let 2 e  M[G].  Moreover, we suppose that Ec(2)  is non- 

empty and finite, say Ec~(2)={)7~,.. . ,yv}. Then, any open C]-neigh- 

borhood 6 of G contains an element (~ such that the following properties 
hold: 

(i) (~e C~(~" xRr, R); 

(ii) "2 e M[G] ,  and E6(2) = {Y . . . .  ,37P}; 

(iii) each )Tic Ed(2) is a nondegenerate minimum for 6(2, . )1v;  

(iv) Dxd(~, )7 ~) = D~G(~, y ) ,  i = 1 , . . . ,  p. 

Proof. The proof consists of  three steps, each providing us with an 

arbitrarily good approximation of G. 

Step 1. In this step, we proceed as in Remark 3.2. Let the open subset 
°R of E" x Er be defined by 

OR = (R ~ x ~ r ) \ { ( & y i ) ] i =  1 , . : . , p } ,  

and consider a positive function e: ~ -> R with the property that 

e(x, y)  <- min{ II (x, y) - (2, V)II, i = I , . . . ,  p, G(~, y)}, 

whenever (x, y) c OR admits y e Y. (40) 
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The Cls-density of C°°(q, R) in C~(°?/, R) yields the existence of a function 

E C°°(a//, R) such that G - G is controlled, in the sense of the Cls-topology, 

by e(. ). We extend G to the whole R" × R r by defining 

G(£, )7 i) = 0 = G(£, -i (41) y) ,  i= l , . . . , p .  

A straightforward verification shows that the extended function (again 

denoted G) is continuously differentiable at (x, y ), and moreover, 

G ( £ , y ) > 0 ,  for all yE Y\Eo(£), (42) 

DxG(£, ~i) = D~G(£, ~'), (43) 

E M[ G]. (44) 

So, we are able to approximate our function G arbitrarily well (in the 

C~-sense) by a function G which already is of class Coo on ~// [and still 

fulfills (ii) and (iv)]. 

Step 2. In this step, we approximate G (see Stej0 1) by G, which is 

C °~ on the whole R" x ~'. The function G differs from G only in a neighbor- 

hood of the points (~,)7~), i = 1 , . . . ,  p. Moreover, 

DxG(~,.~')=D)cG(~,?~'), i = l , . . . , p .  

By Bi(38), we denote open balls in R " x  R ~, centered at (~, 37 ~) with radii 

36, 8 being chosen so small that the closures/3~(36) are disjoint. 

From the special features of  Y (cf. Section 2), it follows that, locally 

around each 37 ~ and w.r.t, suitable C~-coordinates, the set Y can be regarded 

as an open H ~ x R'-t-neighborhood of  the origin 0 ( y  corresponding to 0, 

and I denoting the number of  inequality constraints for Y which are active 

at y~); see also Remark 3.1 and ReL 7, Lemma 3.1.2. 
~ l r - - I  

Possibly after shrinking 6, we may write y = (y, y) E H × R , whenever 

(x,y)~B/38) and yE Y, especially )7~=(0,0). On Bi(8), we define the 

function R~ as follows: 

R~(x,y)=-G(x,y)+DxG(:~,O).(x-~)+D~G(~,O)'f. (45) 

Note that R~ is of the class C ~ at ()7, 0), whereas R~ is of class Coo (smooth) 

everywhere else on B~(8). 

For e > 0 sufficiently small, we may assume that the lower level set ~ , ,  

given by G(x, y) <-- e, is contained in B~(6). Then, using a partition-of-the- 

unity argument (Ref. 7), we extend R~I~z ° smoothly to a function (again 

denoted Ri) on B~(36) which outside q/, is controlled (in the C]-sense) by 

E and the C L n o r m  on B~(6) of the original R~; moreover, R~ vanishes on 

the ring B~(3~)\/~i(26). Now, we extend R~ to a global function by defining 

R~ := 0 outside B~(36). 
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Put Gi = G - k R  i. Then, G; is of the class C ° on the whole B~(36). 

Moreover, by shrinking 6 and e appropriately, we assure (~ to be arbitrarily 

close (in the Cls-sense) to G. 

Now, it is easily seen that, for i = 1 , . . . ,  p, 

DxG~ = DxG, at (2, 0) = (2, 37~), (46) 

(~i(2, y) -> 0, for all y c Y, (47a) 

Gi(ff, y) = 0, if y = 37 g, i = 1 , . . . ,  p. (47b) 

Finally, we add all functions R~ to G and obtain the announced function G. 

Step 3. In this final step, we approximate G (see Step 2) by a function 

as required in the lemma. 

We deal with the linear Y-coordinates around 7 as introduced in the 

preceding step, and emphasize that, w.r.t, these Y-coordinates, the Hessian 

matrix of  G is completely annihilated in some neighborhood of (2, 0 )=  
(2, 37~). By 33', we denote the partition of 33 corresponding to the active 

inequality constraints at 3~ with vanishing Lagrange multipliers for G(2,. ); 

cf. Definition 2.5. 

Firstly, we perturb G locally around each (2, 37 ~) in such a way that 

the resulting function (~ fulfills condition (ND1) of  Definition 2.5 [without 

losing the already obtained qualifications (i), (ii), and (iv)]. This is done 

by adding to (~, locally at each/~i(36), a linear function of  the type 

(33')v. n', (48) 

where the positive entries of  the vector ~7' are chosen suitably small. Finally, 

in order to assure condition (ND2) of  Definition 2.5, we add to ~, locally 

at each /~(3~) ,  a quadratic polynomial of  the type 

(37) "r- A. 37, (49) 

where the matrix A is symmetric, positive-definite with sufficiently small 
entries. In this way, we obtain our function (~ as required. D 

Proof of Theorem 2.3. 

Sufficiency. The proof  is essentially based on Theorem 2.1, Lemmas 

3.5, and 3.6, these results being direct generalizations, to the case where Y 

is an infinite compact index set, of  results which were already obtained in 

Ref. 1. For the rest, the proof  is identical to that in Ref. 1. Therefore, the 
proof  of the sufficiency part will be deleted here. 

Necessity. Suppose that (EMFCQ) is violated at 2~  M[H, G]. The 

main idea is to approximate H, G (arbitrary well in the C~-sense) by means 
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of  mappings/~,  G, (resp./-), (~), such that M [ H ,  8 ]  is not homeomorphic 

with M[H, G]. In the sequel, we assume (no loss of  generality) that ~ = 0. 

Casel .  RankDH(g)<m. IfEc('Y)~Q, weaddlocallyatK:={g}x Y 
a small positive constant to the function G. Then, we approximate G, H 

by means of  C°°-function G , / ~  such that 

/~(g) = H(~)  and D/-)(~) = DH(~) ;  

cE Lemma 3.8; we denote the function G, H again by G, H. The situation 

now is the following: M[H, G] is compact, the functions H, G are of class 

C °°, ~ ~ M[H, G], and Ec(g)  = Q. Next, as in Ref. 1, we add locally at 

= 0 linear functions (with arbitrarily small derivatives) to the functions 

h~, i = 1 , . . . ,  m, such that, after this perturbation, we have at ~: 

r ank (DH)  = rank(Drh~ I" "" ] Drhm-~) = rn - 1. 

Then, in a neighborhood of  ~, the common zero set of the functions 

h ~ , . . . ,  hm_~, denoted by M[m - 1], is a smooth manifold (cf. also Remark 

3.1); moreover, the point g is a critical point for hm~ME~_~ ~ (cf. Definition 

2.5). Then, we add locally at g - - 0  a homogeneous polynomial of  degree 

two (with arbitrarily small coefficients) to the function hm in order that, 

after this perturbation, the point ~ is a nondegenerate critical point for 

hml~E,,_~; cf. Definition 2.5; only (ND2) is now relevant. Finally, we approxi- 

mate G and, outside a sufficiently small neighborhood of ~, we approximate 

H, both in the Cl~-sense, by means of/~,  G, such that M[H,  G] is compact, 

E6(~) = O (cf. Lemma 3.7); moreover (cf. Theorem 2.4), (ELICQ) should 

be satisfied at all points of  M[/-7/, 8] \{g}.  From the very construction, we 

see that the feasible set M[H, G] coincides with M[H] in some neighbor- 

hood of ~. The following reasoning is analogous to that in Ref. 1, but for 

better understanding we have to repeat it here. We distinguish between two 

subcases. 

Case la. The point ~ is a local minimum (resp. local maximum) for 
h,,iMt,,,_~; recall that hm and /~,, coincide in a neighborhood of  ~. Since :~, 

as a nondegenerate critical point, is isolated, we see that :~ is an isolated 

feasible point. If  we add locally at ff a small negative (resp. positive) constant 

to the function /~m, thereby obtaining the function /~m, we get: M[H,  8 ]  = 

M[/-), G] u {~} (disjoint union), where h~ =/~, i ~ m, and G = G. But then 

the number of  connected components of  M[/-), G] [finite, since M[/Q, G] 

is a compact Lipschitzian manifold with boundary] is one less than the 

corresponding number for M [ H , G ] .  Consequently, M[/7/ ,G] and 
M[H, G] cannot be homeomorphic. 

Case lb. The point ~ is neither a local minimum nor a local maximum 

for /~m~Mt .... j. Then, application of the Morse lemma, in local coordinates 
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for Mira - 1] (cf. Ref. 7), yields that the feasible set M[H, G] in a neighbor- 

hood of ~ is represented by means of  the fol]owing set ~ in R~-"÷I: 

Y . = { w e R  ~-"+~ "-~+'±w~=0},i=~ (50) 

where in (50) at least one positive as well as one negative square appears. 

But then, using homotopy groups, it is shown in Ref. 1, Lemma 2.10 that 
Y. is not the germ of a topological manifold at w = 0. Next, we add an 

arbitrarily small constant to/~,~, locally at ~, and we obtain, in view of (50), 

that (ELICQ) is satisfied at all points of  M[/-), G]; hence, in virtue of 

Theorem 2.1, M[/~, ~ ]  is actually a Lipschitzian manifold with boundary. 

Here, h~ =/~,, i ~ m, h~ is the perturbed hm, and G = G. Consequently, we 

conclude that M[H, G] is not homeomorphic with M[/-), G]. 

Case 2. Rank DH(2)  = rn. In this case, the set H-~(0) is (eventually 

after smooth approximation, cf. Lemma 3.8) a C%manifold in a neighbor- 

hood of ~ and so, for a further local analysis, we may delete H, i.e., we 

put m = 0. 

Since (EMFCQ),  in particular (EMFCQ2),  is not satisfied at 2, it 

follows that Eo(2)  ~ Q and that the system of  linear inequalities 

DxG('Y,y)'~>O, yeEo( '2) ,  (51) 

is not solvable. Since Eo(~)  is compact, we can apply Lemma 3.2, and hence, 

0e  conv{D~G(2, y ) ly  ~ E~(~Z)}. 

Next, we choose a minimal (finite) subset, say 

{37 ~ . . . .  ,37P} c Eo(~),  s.t. 0 ~ conv{D~G(2, 37'), i = 1 , . . . ,  p}. 

Consequently, there exist unique numbers ~ eR ,  i = 1 , . . .  ,p, such that 

P P 

Y. ~D~G(~,37~)=0, ~ > 0 ,  ~] ~ = 1 .  (52) 
i = l  i = 1  

Put d = {(2, )71),... ,(2, 37P)}, and let ~ be a bounded, open neighborhood 

of {2} x Y. Then, by a classical result due to Whitney (cf. Ref. 18), there 

exists a function ff e C°°(R" x R ~, R) such that 

qJ(x, y ) -  0, (53a) 

~ ( x , y ) = 0 ,  i f f ( x , y ) e ~ [ ( R "  xR~)\°V]. (53b) 

Note that (53) implies that 

J9¢,(2, y )  = 0, i = 10 . . . ,  p. 
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If  the positive real h is chosen suitably small, then the function G := G + h~ 

will be arbitrary C~-close to G. Moreover, we obviously have 

g ~ M [ G ] ,  Ec3(g) : {)7 ' , . . . ,  37P}, (54) 

DxG(g, yi) = DxG(~, yi), i = 1,. . . ,  p. (55) 

Now, we may apply Lemma 3.9 to the Chfunct ion G. We approximate 

arbitrarily well by a Coo-function (again denoted G), such that G fulfills 

(54), (55), thus also (52), and moreover, 

each )7 ~ is nondegenerate as a local minimum for G(g, .  )Iv. (56) 

Let ~b~(x):= G(x, y~(x)) denote the local marginal functions as introduced 

in Section 1, Eqs. (4). Then, in a neighborhood 0g of ~, the feasible set 

M[H, G] is equal to the following set: 

{x[maxfi(x)<-O,i=l, . . . ,p},  f'(x):=-~b~(x). (57) 

Recalling (20) and (21), we have 

Df'(:g) = -DxG(~, -' y ), D2f,(g)  2 - -, = -DxG(x,y )+ W, (58) 

where the entries of the matrix W i consist of derivatives with respect to y 

and mixed derivatives with respect to x and y. We proceed by adding 

to the function G, locally at K (={g} x Y), a function of the type (1 /2 ) (x -  

g)v. C. ( x - g ) ,  C being a symmetric n x n matrix with arbitrarily small 

entries. The matrix C is chosen in such a way that the matrix 

v t .  ( i ~  ~(D2fi(g)+ C ) ) . V  (59) 

becomes nonsingular, V being a fixed chosen matrix whose columns form 

a basis for the linear space 

P P 

f-~ Ker Dff(£) = ~ Ker DxG(~, y~). (60) 
i ~ l  i = 1  

After the choice of the matrix C, let k denote the number of negative 

eigenvalues of the nonsingular matrix in (59). 

Following Remark 3.2, we perturb H outside {g} and the C°°-function 

G outside the set {g} x R ~ such that: 

(i) the perturbed function G is a C2-function on ~" x R'; 

(ii) the derivatives up to order two of G and G coincide on {g} x R';  

(iii) M[/-), G] is compact; 

(iv) (ELICQ) holds at all points of M[/-), G]\{~}. 
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Denote H, G again by H, G. Recall that the implicitly perturbed local 

marginal functions are also of  class C 2 (cf. Section 2). Now, we are in the 

following situation: in a neighborhood of  ~, the feasible set has the structure 

of  a lower level set of  a function of  maximum type in a neighborhood of 

a nondegenerate (+) Kuhn-Tucker  point of  quadratic index k (cf. Ref. 7, 

Chapter  4). From this point, we can complete the proof  as in Ref. 1. The 

local addition of an arbitrarily small positive (resp. negative) constant to 

the function G at K as above gives rise to two feasible sets, M[H,  (~] and 

M[H,  G], respectively, both of  them compact and satisfying (ELICQ) at 

all feasible points with the property that M[H,  G] is homotopy-equivatent 

to M[H,  G] with a k-cell attached. But then (cf. Ref. 7), M[H,  G] and 

M[/4,  G] do not have the same homotopy type as compact Lipschitzian 

manifolds with boundary. As a consequence, they cannot be homeomorphic.  

This completes the proof. V1 
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