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Abstract

The aim of this paper is to give a survey of some basic theory of semi-infinite
programming. In particular, we discuss various approaches to derivations of duality,
discretization, and first and second order optimality conditions. Some of the surveyed
results are well known while others seem to be less noticed in that area of research.
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1 Introduction

The aim of this paper is to give a survey of some basic theory of semi-infinite programming
problems of the form

Min
x∈Rn

f(x) subject to g(x, ω) ≤ 0, ω ∈ Ω. (1.1)

Here Ω is a (possibly infinite) index set, R = R ∪ {+∞} ∪ {−∞} denotes the extended
real line, f : R

n → R and g : R
n × Ω → R. The above optimization problem is performed

in the finite dimensional space R
n and, if the index set Ω is infinite, is a subject to an

infinite number of constraints, therefore it is referred to as a semi-infinite programming
(SIP) problem.

There are numerous applications which lead to SIP problems. We can refer the interested
reader to survey papers [11, 12, 21, 27] where many such examples are described. There
are also several books where semi-infinite programming is discussed from theoretical and
computational points of view (e.g., [4, 9, 10, 22, 23, 31]). Compared with recent surveys
[11, 21], we use a somewhat different approach, although, of course, there is a certain
overlap with these papers. For some of the presented results, for the sake of completeness,
we outline proofs while more involved assertions will be referred to the literature.

It is convenient to view the objective function f(x) as an extended real valued function
which is allowed to take +∞ or −∞ values. In fact, we always assume in the subsequent
analysis that f(x) is proper, i.e., its domain

domf = {x ∈ R
n : f(x) < +∞}

is nonempty and f(x) > −∞ for all x ∈ R
n. Of course, it suffices to perform optimization

in (1.1) over x ∈ domf . In that formulation an additional constraint of the form x ∈ X,
where X is a subset of R

n, can be absorbed into the objective function by adding to it the
indicator function IX(·) (recall that IX(x) = 0, if x ∈ X, and IX(x) = +∞, if x 6= X). As
we progress in the analysis we will need to impose more structure on the involved functions.

It is said that the SIP problem (1.1) is linear if the objective function and the constraints
are linear in x, i.e., it can be written in the form

Min
x∈Rn

cTx subject to a(ω)Tx+ b(ω) ≤ 0, ω ∈ Ω, (1.2)

for some vector c ∈ R
n and functions a : Ω → R

n, b : Ω → R.

Definition 1.1 We say that the SIP problem (1.1) is convex if for every ω ∈ Ω the function
g(·, ω) : R

n → R is convex and the objective function f(·) is proper convex and lower
semicontinuous.

Of course, the linear SIP problem (1.2) is convex.
This paper is organized as follows. In the next section we discuss duality of convex SIP

problems from two points of view. Namely, first without assuming any particular structure
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of the index set Ω, and then by assuming certain topological properties of Ω and g(x, ω).
There exists an extensive literature on duality of convex semi-infinite programming problems
(see, e.g., [12] and [10], and more recent surveys [11, 21]). The approach that we use is
based on conjugate duality (cf., Rockafellar [24, 25]). In section 3 we review some results on
discretization of SIP problems with relation to their duality properties. Section 4 is devoted
to first order optimality conditions for convex and for smooth (differentiable) SIP problems.
In section 5 we review second order necessary and/or sufficient optimality conditions. The
material of that section is based, to some extend, on [4]. Finally, in section 6 we discuss
rates of convergence of optimal solutions of finite discretizations of SIP problems.

We use the following notation and terminology throughout the paper. The notation
“:=” stands for “equal by definition”. We denote by F the feasible set of problem (1.1),

F := {x ∈ domf : g(x, ω) ≤ 0, ω ∈ Ω}.

Of course, if f : R
n → R is real valued, then domf = R

n. For a matrix (vector) A we
denote by AT its transpose. A vector x ∈ R

n is assumed to be a column vector, so that
xT y =

∑n
i=1 xiyi is the scalar product of two vectors x, y ∈ R

n. For a function v : R
n → R

we denote by v∗(x∗) = supx{(x
∗)Tx − v(x)} its conjugate, and by v∗∗(x) its biconjugate,

i.e., conjugate of v∗(x∗). The subdifferential ∂v(x), at a point x where v(x) is finite, is
defined as the set of vectors γ such that

v(y) ≥ v(x) + γT (y − x), ∀y ∈ R
n.

It is said that v(·) is subdifferentiable at a point x if v(x) is finite and ∂v(x) is nonempty.
Unless stated otherwise, the subdifferential ∂g(x, ω), gradient ∇g(x, ω) and Hessian matrix
∇2g(x, ω) of function g(x, ω) are taken with respect to x. By Df(x) and D2f(x) we denote
the first and second order derivatives of the function (mapping) f(x). Note that if f : R

n →
R is differentiable, then Df(x)h = hT∇f(x) and D2f(x)(h, h) = hT∇2f(x)h.

For a set S ⊂ R
n, we denote by int(S) its interior, by conv(S) its convex hull and by

dist(x, S) := infy∈S ‖x− y‖. For two sets A,B ⊂ R
n we denote by

D(A,B) := sup
x∈A

dist(x,B)

deviation of set A from set B. The support function of set S is

σS(x) := sup
h∈S

hTx,

also denoted σ(x, S). Note that this support function remains the same if the set S is
replaced by the topological closure of conv(S). The contingent cone TS(x), to S at point
x ∈ S, is formed by vectors h such that there exist sequences tk ↓ 0 and hk → h such that
x+tkhk ∈ S for all k ≥ 1. It is said that a function f : R

n → R is directionally differentiable
at a point x ∈ R

n if its directional derivative

f ′(x, h) := lim
t↓0

f(x+ th) − f(x)

t
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exists for every h ∈ R
n. Moreover, it is said f(·) is Hadamard directionally differentiable at

x if

f ′(x, h) = lim
t↓0

h′→h

f(x+ th′) − f(x)

t
.

For locally Lipschitz functions directional differentiability implies Hadamard directional
differentiability (e.g., [28]). By δ(ω) we denote the (Dirac) measure of mass one at the
point ω ∈ Ω.

2 Duality

In order to formulate a dual of the SIP problem (1.1) we need to embed the constraints
into an appropriate functional space paired with a dual space. That is, let Y be a linear
space of functions γ : Ω → R. Consider the mapping G : x 7→ g(x, ·) from R

n into Y, i.e.,
G(x) = g(x, ·) ∈ Y is a real valued function defined on the set Ω. Depending on what we
assume about the index set Ω and the constraint functions g(x, ·), we can consider various
constructions of the space Y. In the following analysis we deal with the following two
constructions.

In the general framework when we do not make any structural assumptions, we can
take Y := R

Ω to be the space of all functions γ : Ω → R equipped with natural algebraic
operations of addition and multiplication by a scalar. We associate with this space the
linear space Y∗ of functions γ∗ : Ω → R such that only a finite number of values γ∗(ω),
ω ∈ Ω, are nonzero. For γ∗ ∈ Y∗ we denote by

supp(γ∗) := {ω ∈ Ω : γ∗(ω) 6= 0}

its support set, and for γ∗ ∈ Y∗ and γ ∈ Y define the scalar product

〈γ∗, γ〉 :=
∑

γ∗(ω)γ(ω), (2.1)

where the summation in (2.1) is performed over ω in the (finite) set supp(γ∗).
Another important case, which we discuss in details, is when the following assumption

holds.

(A1) The set Ω is a compact metric space and the function g : R
n × Ω → R is continuous

on R
n × Ω.

In that case we can take Y := C(Ω), where C(Ω) denotes the space of continuous functions
γ : Ω → R equipped with the sup-norm ‖γ‖ := supω∈Ω |γ(ω)|. The space C(Ω) is a Banach
space and its dual Y∗ is the space of finite signed measures on (Ω,B), where B is the Borel
sigma algebra of Ω, with the scalar product of µ ∈ Y∗ and γ ∈ Y given by the integral

〈µ, γ〉 :=
∫

Ω γ(ω)dµ(ω). (2.2)

The dual norm of µ ∈ C(Ω)∗ is |µ|(Ω), where |µ| is the total variation of measure µ. For a
measure µ ∈ C(Ω)∗ we denote by supp(µ) its support, i.e., supp(µ) is the smallest closed
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subset Υ of Ω such that |µ|(Ω \ Υ) = 0. Of course, if µ =
∑m

i=1 λiδ(ωi), then µ has finite
support consisting of points ωi such that λi 6= 0, i = 1, ...,m. Note that assumption (A1)
implies that the mapping G(x), from R

n into the normed space C(Ω), is continuous.
The constraints g(x, ω) ≤ 0, ω ∈ Ω, can be written in the form G(x) ∈ K, where

K := {γ ∈ Y : γ(ω) ≤ 0, ω ∈ Ω} (2.3)

is the cone of nonpositive valued functions in the corresponding functional space Y. The
polar (negative dual) of this cone is the cone

K∗ := {γ∗ ∈ Y∗ : 〈γ∗, γ〉 ≤ 0, ∀γ ∈ K} . (2.4)

We have that K∗ = {λ ∈ Y∗ : λ � 0}, where for Y = R
Ω we mean by λ � 0 that λ(ω) ≥ 0

for all ω ∈ Ω, and for Y = C(Ω) we mean by λ � 0 that measure λ is nonnegative (i.e.,
λ(A) ≥ 0 for any A ∈ B). Note also that in the same way we can define the negative dual
K∗∗ ⊂ Y of the cone K∗. In both cases of considered paired spaces we have that K∗∗ = K.

We associate with problem (1.1) its Lagrangian L(x, λ) := f(x) + 〈λ,G(x)〉, where
(x, λ) ∈ R

n × Y∗. That is,

L(x, λ) = f(x) +
∑

ω∈supp(λ)

λ(ω)g(x, ω), for Y = R
Ω, (2.5)

and

L(x, λ) = f(x) +

∫

Ω
g(x, ω)dλ(ω), for Y = C(Ω). (2.6)

In both cases we have that

sup
λ�0

L(x, λ) =

{

f(x), if g(x, ω) ≤ 0, ∀ω ∈ Ω,
+∞, otherwise,

(2.7)

and hence the primal problem (1.1) can be written as

Min
x∈Rn

sup
λ�0

L(x, λ). (2.8)

Its Lagrangian dual is obtained by interchanging the ‘Min’ and ‘Max’ operators, that is

Max
λ�0

inf
x∈Rn

L(x, λ). (2.9)

We denote by (P ) and (D) the primal problem (1.1) and its dual (2.9), respectively,
and by val(P ) and val(D) and Sol(P ) and Sol(D) their respective optimal values and sets
of optimal solutions. It follows immediately from the minimax formulations (2.8) and (2.9)
that val(P ) ≥ val(D), i.e., the weak duality always holds here. It is said that the “no
duality gap” property holds if val(P ) = val(D), and the “strong duality” property holds if
val(P ) = val(D) and the dual problem has an optimal solution.
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In order to proceed let us embed the dual problem into the parametric family

Max
λ∈Y∗

ϕ(λ, y), (2.10)

where

ϕ(λ, y) :=

{

infx∈Rn

{

L(x, λ) − yTx
}

, if λ ∈ K∗,
−∞, if λ 6∈ K∗.

(2.11)

Note that the function ϕ : Y∗ × R
n → R is the infimum of affine functions, and hence is

concave. It follows that the min-function

ϑ(y) := inf
λ∈Y∗

{−ϕ(λ, y)} = − sup
λ∈Y∗

ϕ(λ, y) (2.12)

is a an extended real valued convex function. Clearly val(D) = −ϑ(0).
It is not difficult to calculate (cf., [30]) that the conjugate of the function ϑ(y) is

ϑ∗(y∗) = sup
λ∈K∗

L∗∗(y∗, λ), (2.13)

where L∗∗(·, λ) is the biconjugate of the function L(·, λ). If, moreover, the SIP problem
(1.1) is convex, then for every λ ∈ K∗, the function L(·, λ) is proper convex and lower
semicontinuous. By the Fenchel-Moreau theorem it follows that for all λ ∈ K∗, the function
L∗∗(·, λ) coincides with L(·, λ), and hence

ϑ∗(y∗) = sup
λ∈K∗

L(y∗, λ). (2.14)

Since ϑ∗∗(0) = − infy∗∈Rn ϑ∗(y∗), it follows by (2.8) that val(P ) = −ϑ∗∗(0). Moreover, if
ϑ∗∗(0) is finite, then

∂ϑ∗∗(0) = arg maxy∗∈Rn{−ϑ∗(y∗)} = − arg miny∗∈Rn {supλ∈K∗ L(y∗, λ)} ,

and hence Sol(P ) = −∂ϑ∗∗(0). By the theory of conjugate duality [25], we have the following
results (cf., [30]).

Theorem 2.1 Suppose that the SIP problem (1.1) is convex and ϑ∗∗(0) < +∞. Then the
following holds: (i) val(D) = val(P ) iff the function ϑ(y) is lower semicontinuous at y = 0,
(ii) val(D) = val(P ) and Sol(P ) is nonempty iff the function ϑ(y) is subdifferentiable at
y = 0, in which case Sol(P ) = −∂ϑ(0).

The assertion (i) of the above theorem gives necessary and sufficient conditions for the
“no duality gap” property in terms of lower semicontinuity of the min-function ϑ(y). How-
ever, it could be not easy to verify the lower semicontinuity of ϑ(y) in particular situations.
Of course, if ϑ(y) is continuous at y = 0, then it is lower semicontinuous at y = 0. By con-
vexity of ϑ(·) we have that if ϑ(0) is finite, then ϑ(y) is continuous at y = 0 iff ϑ(y) < +∞
for all y in a neighborhood of 0. This leads to the following result (cf., [30]).
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Theorem 2.2 Suppose that the SIP problem (1.1) is convex and val(P ) is finite. Then
the following statements are equivalent: (i) the min-function ϑ(y) is continuous at y = 0,
(ii) Sol(P ) is nonempty and bounded, (iii) val(D) = val(P ) and Sol(P ) is nonempty and
bounded, (iv) the following condition holds: there exists a neighborhood N of 0 ∈ R

n such
that for every y ∈ N there exists λ ∈ K∗ such that

inf
x∈Rn

{

L(x, λ) − yTx
}

> −∞. (2.15)

In particular, we have that if the SIP problem (P ) is convex and its optimal solutions set
Sol(P ) is nonempty and bounded, then the “no duality gap” property follows.

The above results do not involve any structural assumptions about the index set Ω
and constraint functions g(x, ·) and do not say anything about the existence of an optimal
solution of the dual problem (D). Suppose now that the assumption (A1) holds. As it was
discussed earlier, in that case we can take Y = C(Ω) and use its dual space Y∗ = C(Ω)∗ of
finite signed Borel measures on Ω. Consider the following problem

Min
x∈Rn

f(x) subject to g(x, ω) + z(ω) ≤ 0, ω ∈ Ω, (2.16)

parameterized by z ∈ Y. Let v(z) be the optimal value of the above problem (2.16). Clearly
for z = 0, problem (2.16) coincides with the SIP problem (P ) and hence v(0) = val(P ).
By the standard theory of conjugate duality we have here that val(D) = v∗∗(0), where the
dual problem (D) and conjugate operations are evaluated with respect to the paired spaces
Y = C(Ω) and Y∗ = C(Ω)∗. Also if problem (P ) is convex, then the (extended real valued)
function v : C(Ω) → R is convex. Therefore, by the Fenchel-Moreau theorem, it follows
that if problem (P ) is convex and val(D) is finite, then val(P ) = val(D) iff the function
v(z) is lower semicontinuous at z = 0 (in the norm topology of C(Ω)).

Definition 2.1 It is said that Slater condition holds for the problem (P ) if there exists
x̄ ∈ domf such that g(x̄, ω) < 0 for all ω ∈ Ω.

Since, under assumption (A1), Ω is compact and g(x̄, ·) is continuous, the condition
“g(x̄, ω) < 0 for all ω ∈ Ω” implies that there is ε > 0 such that g(x̄, ω) < −ε for all ω ∈ Ω.
That is, Slater condition means that G(x̄) belongs to the interior of the set K ⊂ C(Ω)
(recall that G(x̄) is the function g(x̄, ·) viewed as an element of the space C(Ω)). This, in
turn, implies that v(z) ≤ f(x̄) < +∞ for all z in a neighborhood of 0 ∈ C(Ω), i.e., that

0 ∈ int(dom v). (2.17)

It is possible to show that the converse is also true and the following results hold (e.g., [4,
section 2.5.1]).

Theorem 2.3 Suppose that problem (P ) is convex, assumption (A1) is fulfilled and val(P )
is finite. Then the following statements are equivalent: (i) the optimal value function v(z)
is continuous at z = 0, (ii) the regularity condition (2.17) holds, (iii) Slater condition holds,
(iv) the set Sol(D) is nonempty and bounded, (v) val(P ) = val(D) and the set Sol(D) is
nonempty and bounded.
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By boundedness of the set Sol(D) we mean that it is bounded in the total variation
norm of C(Ω)∗, which is the dual of the sup-norm of C(Ω). Note that if µ ∈ C(Ω)∗ is a non-
negative measure, then its total variation norm is equal to µ(Ω), and if µ =

∑m
i=1 λiδ(ωi),

then the total variation norm of µ is equal to
∑m

i=1 |λi|.

Consider now the linear SIP problem (1.2). In the framework of Y = R
Ω its Lagrangian

dual is
Max
λ�0

∑

λ(ω)b(ω) subject to c+
∑

λ(ω)a(ω) = 0. (2.18)

Recall that λ ∈ Y∗ and the summation in (2.18) is taken over ω ∈ supp(λ). The min-
function ϑ(y), defined in (2.12), takes here the form

ϑ(y) = inf
{

−
∑

λ(ω)b(ω) : c+
∑

λ(ω)a(ω) = y, λ ∈ K∗
}

. (2.19)

Therefore for the linear SIP, conditions (i)–(iv) of Theorem 2.2 are equivalent to the condi-
tion:

0 ∈ int
{

y ∈ R
n : y = c+

∑

λ(ω)a(ω), λ ∈ K∗
}

. (2.20)

Condition (2.20) is well known in the duality theory of linear SIP (cf., [9]). It is equivalent
to the condition that −c ∈ int(M), where M is the convex cone generated by the vectors
a(ω)ω∈Ω (cf., [10]).

3 Discretization

It turns out that the “no duality gap” and “strong duality” properties are closely related to
the discretization of the semi-infinite problem (1.1). That is, for a given (nonempty) finite
set {ω1, ..., ωm} ⊂ Ω consider the following optimization problem

Min
x∈Rn

f(x) subject to g(x, ωi) ≤ 0, i = 1, ...,m, (3.1)

denoted (Pm). Clearly the feasible set of problem (P ) is included in the feasible set of (Pm),
and hence val(P ) ≥ val(Pm). Together with [10] we use the following terminology.

Definition 3.1 It is said that problem (P ) is reducible if there exists a discretization (Pm)
such that val(P ) = val(Pm), and it is said that problem (P ) is discretizable if for any ε > 0
there exists a discretization (Pm) such that val(Pm) ≥ val(P ) − ε.

In other words, the problem (P ) is discretizable if there exists a sequence (Pm) of finite
discretizations such that val(Pm) → val(P ). In [21] this property is called weak discretiz-
ability, in order to distinguish it from convergence val(Pm) → val(P ) for any sequence of
finite discretizations with the corresponding meshsize tending to zero. We will discuss this
further in section 6.

The Lagrangian dual of problem (3.1) is

Max
λ≥0

inf
x∈Rn

Lm(x, λ), (3.2)
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where

Lm(x, λ) := f(x) +
m

∑

i=1

λig(x, ωi), (x, λ) ∈ R
n × R

m, (3.3)

is the Lagrangian of the discretized problem. Problem (3.2) will be denoted as (Dm). By
the weak duality for the discretized problem we have that val(Pm) ≥ val(Dm). In both
frameworks of Y = R

Ω and Y = C(Ω), for λ ∈ Y∗ with supp(λ) = {ω1, ..., ωm}, we have
that L(x, λ) = Lm(x, λ) and hence val(D) ≥ val(Dm). Here with some abuse of notation
we denote by the same λ, an m-dimensional vector formed from nonzero elements of λ(ω)
in case of λ ∈ (RΩ)∗, and λ =

∑m
i=1 λiδ(ωi) in case of λ ∈ C(Ω)∗.

In the subsequent analysis of this section we use the following condition.

(A2) For any discretization such that val(Pm) is finite it holds that val(Pm) = val(Dm) and
(Dm) has an optimal solution.

This condition holds in the following two important cases: when the SIP problem (1.1) is
linear, and hence its discretization (Pm) is a linear programming problem, or when problem
(1.1) is convex and the Slater condition is satisfied. Note that, of course, if Slater condition
holds for the problem (P ), then it holds for any discretization (Pm). For linear SIP problems
the following result is given in [10, Theorems 8.3 and 8.4].

Theorem 3.1 In the setting of Y = R
Ω, let (D) be the corresponding dual of (P ). Then

the following holds: (i) if val(P ) = val(D), then problem (P ) is discretizable, (ii) if val(P ) =
val(D) and the dual problem (D) has an optimal solution, then problem (P ) is reducible.
Moreover, if condition (A2) is fulfilled, then the converse of (i) and (ii) also holds.

Proof. Suppose that val(P ) = val(D). By the definition of the dual problem (D) we
have that for any ε > 0 there exists λ̄ ∈ Y∗ such that λ̄ � 0 and that

inf
x∈X

L(x, λ̄) ≥ val(D) − ε. (3.4)

In the considered case of Y = R
Ω, we have that L(x, λ̄) is the Lagrangian of the dis-

cretized problem (Pm) associated with the set {ω1, ..., ωm} = supp(λ̄). Hence val(Pm) ≥
infx∈X L(x, λ̄). It follows that

val(Pm) ≥ inf
x∈X

L(x, λ̄) ≥ val(D) − ε = val(P ) − ε, (3.5)

and hence (P ) is discretizable.
Now suppose that val(P ) = val(D) and problem (D) has an optimal solution λ̄. Then

(3.4) holds with ε = 0. Consequently (3.5) holds with ε = 0, which together with the
inequality val(P ) ≥ val(Pm) implies that val(P ) = val(Pm), and hence (P ) is reducible.

Conversely, suppose that condition (A2) holds and problem (P ) is discretizable. That
is, for ε > 0 there exists a discretization (Pm) such that val(Pm) ≥ val(P ) − ε. Then

val(Pm) + ε ≥ val(P ) ≥ val(D) ≥ val(Dm) = val(Pm).
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It follows that |val(P ) − val(D)| ≤ ε, and since ε > 0 is arbitrary, that val(P ) = val(D).
In order to show the converse of (ii) observe that if val(P ) = val(Pm) and λ ∈ R

m is an
optimal solution of the dual problem (Dm), then the corresponding λ ∈ Y∗ is an optimal
solution of problem (D).

The above theorem together with results of section 2 give various sufficient/necessary
conditions for discretizability and reducibility of problem (P ). In particular, by Theorem
2.2(ii) we have the following.

Corollary 3.1 Suppose that problem (P ) is convex and the set Sol(P ) is nonempty and
bounded. Then problem (P ) is discretizable.

In order to verify reducibility of problem (P ) we need to ensure that the corresponding
dual problem (D) has an optimal solution. For that we need to impose additional conditions
of a topological type. Let us assume now that condition (A1) holds and use the space
Y = C(Ω). The dual Y∗ of this space is the space of finite signed Borel measures on Ω.
In particular we can consider measures of the form µ =

∑m
i=1 λiδ(ωi), i.e., measures with

finite support (which is a subset of {ω1, ..., ωm} consisting of points ωi such that λi 6= 0).
For such measure µ we have that

L(x, µ) = f(x) +

∫

Ω
g(x, ω)dµ(w) = f(x) +

m
∑

i=1

λig(x, ωi) = Lm(x, λ), (3.6)

and hence it follows that val(D) ≥ val(Dm). By Theorem 2.3 we have that if problem (P )
is convex and Slater condition holds, then the set Sol(D) is nonempty and bounded. Note
that here the dual problem (D) is performed over Borel measures and a priory there is no
guarantee that the set Sol(D) contains a measure with a finite support. In that respect we
have the following, quite a nontrivial, result due to Levin [20] (see also [5]).

Theorem 3.2 Suppose that problem (P ) is convex, the set domf is closed, assumption
(A1) is fulfilled, val(P ) < +∞ and the following condition holds:

(A3) For any points ω′
1, ..., ω

′
n+1 ∈ Ω there exists a point x̄ ∈ domf such that g(x̄, ω′

i) < 0,
i = 1, ..., n+ 1.

Then there exist points ω1, ..., ωm ∈ Ω, with m ≤ n, such that for the corresponding dis-
cretization (Pm) and its dual (Dm) the following holds

val(P ) = val(Pm) = val(Dm) = val(D). (3.7)

Condition (A3) means that the Slater condition holds for any discretization (Pm) with
m ≤ n + 1. This in turn implies that Sol(Dm) is nonempty and bounded, provided that
val(Pm) is finite (see Theorem 2.3). Of course, Slater condition for the problem (P ) implies
condition (A3). Under the assumptions of Theorem 3.2 we have that val(P ) = val(D). If,
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moreover, val(P ) is finite, then there exists a discretization with m ≤ n points such that
Sol(Dm) is nonempty and is a subset of Sol(D), and hence the dual problem (D) (in the
sense of the space Y = R

Ω and its dual Y∗) has an optimal solution.
By the definition, problem (P ) is reducible if there exists discretization (Pm) such that

val(P ) = val(Pm). If, moreover, (P ) is convex, then there exists such discretization with
the following bounds on m. Recall that Helly’s theorem says that if Ai, i ∈ I, is a finite
family of convex subsets of R

n such that the intersection of any n + 1 sets of this family
is nonempty, then ∩i∈IAi is nonempty (use of Helly’s theorem to derive such bounds for
semi-infinite programs seemingly is going back to [20]).

Theorem 3.3 Suppose that problem (P ) is convex and reducible. Then then there exists
discretization (Pm) such that val(P ) = val(Pm) and: (i) m ≤ n + 1 if val(P ) = +∞, (ii)
m ≤ n if val(P ) < +∞.

Proof. Let (Pk) be a discretization of (P ) such that val(Pk) = val(P ) and {ω1, ..., ωk}
be the corresponding discretization set. Consider sets A0 := {x ∈ R

n : f(x) < val(P )} and
Ai := {x ∈ R

n : g(x, ωi) ≤ 0}, i = 1, ..., k. Since functions f(·) and g(·, ωi), i = 1, ..., k, are
convex, these sets are convex.

Suppose that val(P ) = +∞. Note that in this case A0 = domf . Since val(Pk) = +∞, we
have that the set ∩k

i=0Ai is empty. By Helly’s theorem it follows that there exists a subfamily
of the family A0, ..., Ak with empty intersection and no more than n+1 members. Depending
on whether this subfamily contains set A0 or not, we have the required discretization (Pm)
with val(Pm) = +∞ and m ≤ n or m ≤ n+ 1. This proves (i).

Suppose now that val(P ) < +∞. In order to prove (ii) we argue by a contradiction.
Suppose that the assertion is false. Then the intersection of A0 and any n sets of the
family Ai, 1 ≤ i ≤ k, is nonempty. Note that the intersection of all sets Ai, 1 ≤ i ≤ k, is
nonempty since otherwise the feasible set of problem (Pk) will be empty and consequently
val(Pk) will be +∞. It follows that the intersection of any n + 1 sets of the family Ai,
i ∈ {0, 1, ..., k} is nonempty. By Helly’s theorem this implies that the intersection of all sets
Ai, i ∈ {0, 1, ..., k}, is nonempty. Let x̄ be a point of the set ∩k

i=0Ai. Since x̄ ∈ ∩k
i=1Ai, the

point x̄ is a feasible point of problem (Pk), and since x̄ ∈ A0, we have that f(x̄) < val(Pk).
This is a required contradiction.

4 First order optimality conditions

It follows from the minimax representations (2.8) and (2.9) that if x̄ is an optimal solution
of problem (P ) and λ̄ is an optimal solution of its dual (D) and val(P ) = val(D), then (x̄, λ̄)
is a saddle point of the Lagrangian L(x, λ), i.e.,

x̄ ∈ arg min
x∈Rn

L(x, λ̄) and λ̄ ∈ arg max
λ∈K∗

L(x̄, λ). (4.1)

Conversely, if (x̄, λ̄) is a saddle point of L(x, λ), then x̄ is an optimal solution of (P ), λ̄ is
an optimal solution of (D) and val(P ) = val(D). The second condition in (4.1) means that
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λ̄ is a maximizer of 〈λ,G(x̄)〉 over λ ∈ K∗. If G(x̄) 6∈ K, then supλ∈K∗〈λ,G(x̄)〉 = +∞,
and hence necessarily G(x̄) ∈ K. Since G(x̄) ∈ K, we have that 〈λ,G(x̄)〉 ≤ 0 and hence
this maximum is attained at λ = 0 and is 0. That is, the second condition in (4.1) holds
iff G(x̄) ∈ K, λ ∈ K∗ and 〈λ̄, G(x̄)〉 = 0. Note that for G(x̄) ∈ K and λ̄ ∈ K∗, condition
〈λ̄, G(x̄)〉 = 0 is equivalent to the condition supp(λ̄) ⊂ ∆(x̄), where

∆(x̄) := {ω ∈ Ω : g(x̄, ω) = 0} (4.2)

is the index set of active at x constraints. The above arguments hold for both frameworks
of Y = R

Ω and Y = C(Ω).

In the subsequent analysis we will use the following result due to Rogosinsky [26].

Theorem 4.1 Let Ω be a metric space equipped with its Borel sigma algebra B, qi : Ω → R,
i = 1, ..., k, be measurable functions, and µ be a (nonnegative) measure on (Ω,B) such that
q1, ..., qk are µ-integrable. Then there exists a (nonnegative) measure η on (Ω,B) with a
finite support of at most k points such that

∫

Ω qidµ =
∫

Ω qidη for all i = 1, ..., k.

4.1 Convex case

We assume in this subsection that problem (P ) is convex. If λ̄ ∈ K∗, then L(·, λ̄) is convex,
and hence the first condition in (4.1) holds iff 0 belongs to the subdifferential ∂L(x̄, λ̄) of
L(·, λ̄) at the point x̄. Therefore conditions (4.1) can be written in the following equivalent
form1

0 ∈ ∂L(x̄, λ̄); g(x̄, ω) ≤ 0, ω ∈ Ω; λ̄ � 0; supp(λ̄) ⊂ ∆(x̄). (4.3)

We can view conditions (4.3) as first order optimality conditions for both frameworks of
Y = R

Ω and Y = C(Ω). We denote by Λ(x̄) the set of (Lagrange multipliers) λ̄ ∈ Y∗

satisfying conditions (4.3).
For the linear SIP problem (1.2) and the framework of Y = C(Ω), we have that

∂L(x̄, µ) = {∇L(x̄, µ)} =
{

c+
∫

Ω a(ω)dµ(ω)
}

, (4.4)

and hence the above conditions (4.3) take the form

a(ω)T x̄+ b(ω) ≤ 0, ω ∈ Ω, (4.5)

c+

∫

Ω
a(ω)dµ(ω) = 0, µ � 0, (4.6)

∫

Ω
[a(ω)T x̄+ b(ω)]dµ(ω) = 0. (4.7)

In the framework of Y = R
Ω the integrals in (4.6) and (4.7) should be replaced by the

respective sums. Conditions (4.5) and (4.6) represent feasibility conditions for the linear SIP
(1.2) and its dual (2.18), respectively, and condition (4.7) is the complementarity condition.

1All subdifferentials and gradients are taken here with respect to x.
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As it was discussed above, conditions (4.3) mean that (x̄, λ̄) is a saddle point of L(x, λ).
Therefore we have the following result.

Theorem 4.2 Suppose that problem (P ) is convex and let x̄ ∈ Y and λ̄ ∈ Y∗ be points
satisfying conditions (4.3) (in either of frameworks of Y = R

Ω or Y = C(Ω)). Then x̄ and
λ̄ are optimal solutions of problems (P ) and (D), respectively, and val(P ) = val(D).

As the above theorem states, sufficiency of conditions (4.3) does not require a constraint
qualification. On the other hand, in order to ensure existence of Lagrange multipliers there
is a need for additional conditions. By Theorem 2.3 we have the following result.

Theorem 4.3 Suppose that problem (P ) is convex, assumption (A1) is fulfilled and let x̄ be
an optimal solution of (P ). Then, in the framework of Y = C(Ω), the set Λ(x̄) of Lagrange
multipliers is nonempty and bounded iff Slater condition holds.

The above shows that Slater condition ensures existence of Lagrange multipliers in a
form of measures. Let us denote by Λm(x̄) the set of measures satisfying conditions (4.3)
and with a finite support of at most m points. That is, µ ∈ Λm(x̄) if µ =

∑m
i=1 λiδ(ωi) and

0 ∈ ∂ [f(x̄) +
∑m

i=1 λig(x̄, ωi)] ; g(x̄, ω) ≤ 0, ω ∈ Ω; λ ≥ 0; {ω1, ..., ωm} ⊂ ∆(x̄). (4.8)

Note that by the Moreau-Rockafellar theorem ([24]) we have that for λ ≥ 0,

∂ [f(x̄) +
∑m

i=1 λig(x̄, ωi)] = ∂f(x̄) +
∑m

i=1 λi∂g(x̄, ωi). (4.9)

The required regularity conditions for the above formula to hold are satisfied here since
functions g(·, ωi) are continuous.

Theorem 4.4 Suppose that problem (P ) is convex, assumption (A1) is fulfilled and let x̄ be
an optimal solution of (P ). Then the set Λn(x̄) is nonempty and bounded if Slater condition
holds. Conversely, if Λn+1(x̄) is nonempty and bounded, then Slater condition holds.

Proof. Assuming Slater condition let us show that Λn(x̄) is nonempty. Recall that
under Slater condition, the set Λ(x̄) is nonempty and bounded. Since Λn(x̄) is a subset of
Λ(x̄), it follows that Λn(x̄) is bounded. Let µ ∈ C(Ω)∗ be a measure satisfying conditions
(4.3), i.e., µ ∈ Λ(x̄). Consider function h(x) :=

∫

Ω g(x, ω)dµ(ω). Since g(·, ω), ω ∈ Ω, are
convex real valued functions and µ � 0, the function h(·) is convex, and since g(x, ·) is
continuous and Ω is compact, the function g(x, ·) is bounded and hence h(x) is real valued.
Therefore, by Moreau–Rockafellar Theorem, ∂L(x̄, µ) = ∂f(x̄) + ∂h(x̄). By a theorem due
to Strassen [33] we have that ∂h(x̄) =

∫

Ω ∂g(x̄, ω)dµ(ω), i.e., ∂h(x̄) consists of vectors of
the form

∫

Ω γ(ω)dµ(ω), for measurable selections γ(ω) ∈ ∂g(x̄, ω). Therefore the first of
conditions (4.3) means that

q +

∫

Ω
γ(ω)dµ(ω) = 0 (4.10)

for some q ∈ ∂f(x̄) and a certain measurable selection γ(ω) ∈ ∂g(x̄, ω).
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Consider a measurable selection γ(ω) ∈ ∂g(x̄, ω) satisfying (4.10). By Theorem 4.1 we
have that there exists a measure η � 0 with a finite support {ω1, ..., ωm} ⊂ supp(µ) such
that m ≤ n and

∫

Ω γ(ω)dµ(ω) =
∫

Ω γ(ω)dη(ω). Since

∫

Ω γ(ω)dη(ω) ∈
∫

Ω ∂g(x̄, ω)dη(ω) = ∂
∫

Ω g(x̄, ω)dη(ω),

it follows by (4.10) that 0 ∈ q + ∂
∫

Ω g(x̄, ω)dη(ω) and hence η ∈ Λn(x̄). This shows that
Λn(x̄) is nonempty.

Conversely, suppose that Λn+1(x̄) is nonempty and bounded. We need to show that then
Λ(x̄) is bounded. Indeed, let every element of Λn+1(x̄) has norm less than a constant c > 0.
Arguing by a contradiction suppose that there is an element µ ∈ Λ(x̄) having the (total
variation) norm c′ > c. Since µ � 0, its total variation norm is equal to µ(Ω). Consider
the set {µ′ ∈ Λ(x̄) : µ′(Ω) = c′}. This set is nonempty, since µ belongs to this set, and by
Theorem 4.1 this set contains a measure η with a finite support of at most n+1 points (note
that we added one more constraint

∫

Ω dµ
′ = c′ to this set). It follows that η ∈ Λn+1(x̄) and

has norm c′ > c. This is a contradiction.

4.2 Smooth case

In this subsection we discuss first order optimality conditions for smooth (not necessarily
convex) SIP problems. We make the following assumption in this subsection.

(A4) The set Ω is a compact metric space, the functions g(·, ω), ω ∈ Ω, and f(·) are real
valued continuously differentiable, and ∇g(·, ·) is continuous on R

n × Ω.

The above condition (A4) implies that the mapping G : x 7→ g(x, ·) is differentiable and its
derivative DG(x) : h 7→ hT∇g(x, ·).

Let x̄ be a locally optimal solution of the SIP problem (P ). Linearization of optimality
conditions (4.8) lead to the following conditions

∇f(x̄) +
∑m

i=1 λi∇g(x̄, ωi) = 0; g(x̄, ω) ≤ 0, ω ∈ Ω; λ ≥ 0; {ω1, ..., ωm} ⊂ ∆(x̄). (4.11)

We denote by Λm(x̄) the set of measures µ =
∑m

i=1 λiδ(ωi) satisfying conditions (4.11).
If the problem (P ) is convex, then since L(·, µ) is differentiable we have that ∂L(x̄, µ) =
{∇L(x̄, µ)}, and hence in that case conditions (4.11) coincide with conditions (4.8). There
are several ways how it can be shown existence of Lagrange multipliers satisfying conditions
(4.11). We proceed as follows.

Consider functions

g(x) := sup
ω∈Ω

g(x, ω) and f(x) := max{f(x) − f(x̄), g(x)}. (4.12)

The SIP problem (1.1) can be written in the following equivalent form

Min
x∈Rn

f(x) subject to g(x) ≤ 0. (4.13)
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By the assumption (A4), the set Ω is compact and the function g(x, ·) is continuous, and
hence the set

Ω∗(x) := arg max
ω∈Ω

g(x, ω) (4.14)

is nonempty and compact for any x ∈ R
n. Since x̄ is a feasible point of problem (P ), it

follows that g(x̄) ≤ 0, and g(x̄) = 0 iff the index set ∆(x̄), defined in (4.2), of active at
x̄ constraints, is nonempty, in which case ∆(x̄) = Ω∗(x). By Danskin Theorem [8] the
max-function g(x) is directionally differentiable and its directional derivatives are given by

g′(x, h) = sup
ω∈Ω∗(x)

hT∇g(x, ω). (4.15)

Moreover, g(x) is locally Lipschitz continuous and hence is directionally differentiable in
the Hadamard sense.

By feasibility of x̄ we have that g(x̄) ≤ 0 and hence f(x̄) = 0. Moreover, it follows from
local optimality of x̄, that f(x) ≥ f(x̄) for all x in a neighborhood of x̄, i.e., x̄ is a local
minimizer of f(x). Unless stated otherwise, we assume that the index set ∆(x̄), of active at
x̄ constraints, is nonempty, and hence g(x̄) = 0.

Consider the set
A := {∇f(x̄)} ∪ {∇g(x̄, ω), ω ∈ ∆(x̄)} . (4.16)

By (4.15) the function f(x) is directionally differentiable at x = x̄ and

f′(x̄, ·) = σA(·) (4.17)

(recall that σA(·) denotes the support function of set A). Since x̄ is a local minimizer of
f(·) it follows that f′(x̄, h) ≥ 0 for all h ∈ R

n, which together with (4.16) imply that

0 ∈ conv(A). (4.18)

Note that the set A is compact and therefore its convex hull is also compact and hence is
closed.

Condition (4.18) means that there exist multipliers λi ≥ 0, i = 0, 1, ...,m, not all of
them zeros, and points ωi ∈ ∆(x̄), i = 1, ...,m, such that

λ0∇f(x̄) +
∑m

i=1 λi∇g(x̄, ωi) = 0. (4.19)

The above condition (4.19) is Fritz John type optimality condition. In order to ensure that
the multiplier λ0 in (4.19) is not zero we need a constraint qualification.

Definition 4.1 It is said that the extended Mangasarian-Fromovitz constraint qualification
(MFCQ) holds at the point x̄ if there exists h ∈ R

n such that

hT∇g(x̄, ω) < 0, ∀ω ∈ ∆(x̄). (4.20)
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This is a natural extension of the Mangasarian-Fromovitz constraint qualification used in
nonlinear programming when the index set Ω is finite. In the considered case (under con-
dition (A4)) the extended Mangasarian-Fromovitz constraint qualification is equivalent to
Robinson’s constraint qualification (e.g., [17], [4, Example 2.102]), and in the convex case to
Slater condition. We have the following result (cf., [18, Theorem 2.3], [4, Theorem 5.111]).

Theorem 4.5 Let x̄ be a locally optimal solution of problem (P ) such that the index set
∆(x̄) is nonempty. Suppose that condition (A4) is fulfilled and the MFCQ holds. Then the
set Λn(x̄) is nonempty and bounded. Conversely, if condition (A4) is fulfilled and the set
Λn+1(x̄) is nonempty and bounded, then the MFCQ holds.

Proof. Suppose that the MFCQ holds. Let λi ≥ 0, i = 0, 1, ...,m, be multipliers
and ωi ∈ ∆(x̄), i = 1, ...,m, be points satisfying conditions (4.17). By the above discussion,
under condition (A4), such multipliers (not all of them zeros) always exist. We need to show
that λ0 6= 0. Arguing by a contradiction suppose that λ0 = 0. Let h be a vector satisfying
condition (4.20). Then since λ0 = 0, we have that hT

(
∑m

i=1 λi∇g(x̄, ωi)
)

= 0. On the
other hand, because of (4.20) we have that hT

(
∑m

i=1 λi∇g(x̄, ωi)
)

< 0, which gives us a
contradiction. This shows that, for some positive integer m, the set Λm(x̄) is nonempty. To
conclude that we can take m ≤ n observe that any extreme point of the set of vectors λ ≥ 0
satisfying first equation in (4.11) (for fixed points ωi) has at most n nonzero components.

Let us show that Λm(x̄) is bounded (for any positive integer m). Since ∆(x̄) is compact,
it follows by (4.20) that there exists h ∈ R

n and ε > 0 such that hT∇g(x̄, ω) < −ε for all
ω ∈ ∆(x̄). Then by the first equation of (4.11) we have

hT∇f(x̄) = −
∑m

i=1 λih
T∇g(x̄, ωi) ≥ ε

∑m
i=1 λi,

and hence
∑m

i=1 λi is bounded by the constant ε−1hT∇f(x̄).
The converse assertion can be proved in a way similar to the proof of Theorem 4.5 (see

[4, Theorem 5.111] for details).

Let us finally discuss first order sufficient conditions. We will need the following useful
result. It is difficult to give a correct reference for this result since it was discovered and
rediscovered by many authors. Recall that F denotes the feasible set of problem (P ).

Lemma 4.1 Suppose that condition (A4) is fulfilled. Let x̄ be a feasible point of problem
(P ) such that the index set ∆(x̄) is nonempty. Then TF (x̄) ⊂ Γ(x̄), where

Γ(x̄) :=
{

h ∈ R
n : hT∇g(x̄, ω) ≤ 0, ω ∈ ∆(x̄)

}

. (4.21)

If, moreover, the MFCQ holds at x̄, then TF (x̄) = Γ(x̄).

Proof. Let h ∈ TF (x̄). Then there exist sequences tk ↓ 0 and hk → h such that
x̄+ tkhk ∈ F , and hence g(x̄+ tkhk) ≤ 0. Since g(·) is Hadamard directionally differentiable
at x̄ and g(x̄) = 0, it follows that g′(x̄, h) ≤ 0. Together with (4.15) this implies that
h ∈ Γ(x̄). This shows that TF (x̄) ⊂ Γ(x̄).
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In order to show the equality TF (x̄) = Γ(x̄) under MFCQ, we argue as follows. Note that
F = G−1(K). Also TK(γ) = {η ∈ C(Ω) : η(ω) ≤ 0, ω ∈ ∆(x̄)}, where γ(·) := g(x̄, ·) (e.g.,
[4, Example 2.63]). In the considered framework the MFCQ is equivalent to Robinson’s
constraint qualification (e.g., [4, Example 2.102]), and hence TF (x̄) = DG(x̄)−1[TK(γ)]
(e.g., [4, p.66]). It remains to note that DG(x̄) : h 7→ hT∇g(x̄, ·).

Definition 4.2 For p > 0 it is said that the p-th order growth condition holds at a feasible
point x̄ ∈ F if there exist constant c > 0 and a neighborhood V of x̄ such that

f(x) ≥ f(x̄) + c‖x− x̄‖p, ∀x ∈ F ∩ V. (4.22)

In the literature the first order (i.e., for p = 1) growth condition at x̄ is also referred to as x̄
being a strongly unique local solution of (P ) in [12], and strict local minimizer of order p = 1
in [21]. The second order (i.e., for p = 2) growth condition is referred to as the quadratic
growth condition.

Theorem 4.6 Suppose that condition (A4) is fulfilled. Let x̄ be a feasible point of problem
(P ) such that the index set ∆(x̄) is nonempty. Then condition

hT∇f(x̄) > 0, ∀h ∈ Γ(x̄) \ {0} (4.23)

is sufficient and, if the MFCQ holds at x̄, is necessary for the first order growth condition
to hold at x̄.

Proof. Let us observe that the first order growth condition holds at a point x̄ ∈ F iff

hT∇f(x̄) > 0, ∀h ∈ TF (x̄) \ {0}. (4.24)

Indeed, suppose that (4.22) holds (for p = 1) and let h ∈ TF (x̄) \ {0}. Then there exist
sequences tk ↓ 0 and hk → h such that x̄+ tkhk ∈ F . By (4.22) we have that f(x̄+ tkhk)−
f(x̄) ≥ c tk‖hk‖ for all k large enough. Since f(x) is continuously differentiable we also have
that

f(x̄+ tkhk) − f(x̄) = tkh
T∇f(x̄) + o(tk). (4.25)

It follows that tkh
T∇f(x̄) + o(tk) ≥ c tk‖hk‖, which implies that hT∇f(x̄) ≥ c‖h‖.

To show the converse we argue by contradiction. Suppose that condition (4.22) does
not hold. Then there exist sequences ck ↓ 0 and F ∋ xk → x̄ such that

f(xk) < f(x̄) + ck‖xk − x̄‖. (4.26)

Consider tk := ‖xk − x̄‖ and hk := (xk − x̄)/tk. Note that ‖hk‖ = 1. By passing to a
subsequence if necessary, we can assume that hk converges to a vector h. It follows that
h ∈ TF (x̄) and ‖h‖ = 1, and hence h 6= 0. Moreover, by (4.25) we have [f(x̄ + tkhk) −
f(x̄)]/tk ≤ ck. Together with (4.25) this implies that hT∇f(x̄) ≤ 0, a contradiction with
(4.24).
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Now by Lemma 4.1 we have that TF (x̄) ⊂ Γ(x̄), and hence sufficiency of (4.23) follows.
If, moreover, the MFCQ holds, then TF (x̄) = Γ(x̄), and hence the necessity of (4.22) follows.

By Farkas lemma, condition (4.23) is equivalent to

−∇f(x̄) ∈ int[conv(A′)], (4.27)

where A′ := {∇g(x̄, ω), ω ∈ ∆(x̄)}. Therefore, condition (4.27) is sufficient, and under the
MFCQ is necessary, for the first order growth to hold at x̄. The sufficiency of conditions
(4.23) and (4.27) is well known (see, e.g., [12, Lemma 3.4 and Theorem 3.6]).

Let us finally mention the following result about uniqueness of Lagrange multipliers, in
the framework of Y = C(Ω), [29] (see also [4, Theorem 5.114]). Note that if µ ∈ C(Ω)∗ is a
unique Lagrange multipliers measure, then necessarily vectors ∇g(x̄, ω), ω ∈ supp(µ), are
linearly independent, and hence the support of µ has no more than n points.

Theorem 4.7 Suppose that condition (A4) is fulfilled and let µ =
∑m

i=1 λiδ(ωi) be a La-
grange multipliers measure satisfying the first order necessary conditions (4.11) with λi > 0,
i = 1, ...,m. Then the set Λ(x̄) = {µ} is a singleton (i.e., µ is unique) if and only if the
following two conditions hold: (i) the gradient vectors ∇g(x̄, ωi), i = 1, ...,m, are linearly
independent, (ii) for any neighborhood W ⊂ Ω of the set {ω1, ..., ωm} there exists h ∈ R

n

such that
hT∇g(x̄, ωi) = 0, i = 1, ...,m,
hT∇g(x̄, ω) < 0, ω ∈ ∆(x̄) \W.

(4.28)

If the set Ω is finite, then (4.28) is equivalent to

hT∇g(x̄, ωi) = 0, i = 1, ...,m,
hT∇g(x̄, ω) < 0, ω ∈ ∆(x̄) \ {ω1, ..., ωm},

(4.29)

and conditions (i)-(ii) of the above theorem become standard necessary and sufficient con-
ditions for uniqueness of the Lagrange multipliers vector (cf., [19]). For SIP problems
dependence of vector h on the neighborhood W in (4.28) is essential (see [29, example 3.1]).

5 Second order optimality conditions

In this section we discuss second order necessary and/or sufficient optimality conditions
for the SIP problem (P ). We make the following assumption throughout this section and,
unless stated otherwise, use the framework of the space Y = C(Ω) and its dual space of
measures.

(A5) The set Ω is a compact metric space, the functions g(·, ω), ω ∈ Ω, and f(·) are real
valued twice continuously differentiable, and ∇2g(·, ·) is continuous on R

n × Ω.
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The above condition (A5) implies that the mapping G : x 7→ g(x, ·), from R
n into C(Ω), is

twice continuously differentiable and its second order derivativeD2G(x)(h, h) = hT∇2g(x, ·)h.
Also recall that Df(x)h = hT∇f(x) and D2f(x)(h, h) = hT∇2f(x)h.

We can write problem (P ) as
Min
x∈F

f(x), (5.1)

where F = G−1(K) is the feasible set of problem (P ). We will use the following concepts
in this section. The set

T 2
F (x, h) :=

{

z ∈ R
n : dist

(

x+ th+ 1

2
t2z,F

)

= o(t2), t ≥ 0
}

(5.2)

is called the (inner) second order tangent set to F at the point x ∈ F in the direction h.
That is, the set T 2

F (x, h) is formed by vectors z such that x+ th+ 1

2
t2z+ r(t) ∈ F for some

r(t) = o(t2), t ≥ 0. Note that this implies that x + th + o(t) ∈ F , and hence T 2
F (x, h) can

be nonempty only if h ∈ TF (x). In a similar way are defined second order tangent sets to
the set K ⊂ C(Ω).

The upper and lower (parabolic) second order directional derivatives of a (directionally
differentiable) function φ : R

n → R are defined as

φ′′+(x;h, z) := lim sup
t↓0

φ(x+ th+ 1

2
t2z) − φ(x) − tφ′(x, h)

1

2
t2

, (5.3)

and

φ′′−(x;h, z) := lim inf
t↓0

φ(x+ th+ 1

2
t2z) − φ(x) − tφ′(x, h)

1

2
t2

, (5.4)

respectively. Clearly φ′′+(x;h, z) ≥ φ′′−(x;h, z). If φ′′+(x;h, ·) = φ′′−(x;h, ·), then it is said
that φ is second order directionally differentiable at x in direction h, and the correspond-
ing second order directional derivative is denoted φ′′(x;h, z). If φ(·) is twice continuously
differentiable at x, then

φ′′(x;h, z) = zTφ(x) + hT∇2φ(x)h. (5.5)

5.1 Second order necessary conditions

We assume in this subsection that x̄ ∈ F is a locally optimal solution of problem (P )
and that the index set ∆(x̄), of active at x̄ constraints, is nonempty. It follows from local
optimality of x̄ that

hT∇f(x̄) ≥ 0, ∀h ∈ TF (x̄). (5.6)

Consider the set (cone)

C(x̄) :=
{

h ∈ TF (x̄) : hT∇f(x̄) = 0
}

. (5.7)

The cone C(x̄) represents those feasible directions along which the first order approximation
of f(x) at x̄ is zero, and is called the critical cone. Note that because of (5.6), we have that
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C(x̄) = {0} iff condition (4.24) holds, which in turn is a necessary and sufficient condition
for first order growth at x̄ (see the proof of Theorem 4.7).

For some h ∈ C(x̄) and z ∈ T 2
F (x̄, h) consider the (parabolic) curve x(t) := x̄+th+ 1

2
t2z.

By the definition of the second order tangent set, we have that there exists r(t) = o(t2) such
that x(t) + r(t) ∈ F , t ≥ 0. It follows by local optimality of x̄ that f (x(t) + r(t)) ≥ f(x̄)
for all t ≥ 0 small enough. By the second order Taylor expansion we have

f
(

x(t) + o(t2)
)

= f(x̄) + tDf(x̄)h+ 1

2
t2[Df(x̄)z +D2f(x̄)(h, h)] + o(t2). (5.8)

Since for h ∈ C(x̄) the second term in the right hand side of (5.8) vanishes, this implies the
following second order necessary condition:

Df(x̄)z +D2f(x̄)(h, h) ≥ 0, ∀h ∈ C(x̄), ∀z ∈ T 2
F (x̄, h). (5.9)

This condition can be written in the form:

inf
z∈T 2

F
(x̄,h)

{

Df(x̄)z +D2f(x̄)(h, h)
}

≥ 0, ∀h ∈ C(x̄). (5.10)

The term
inf

z∈T 2
F

(x̄,h)
Df(x̄)z = −σ

(

−∇f(x̄), T 2
F (x̄, h)

)

(5.11)

corresponds to a curvature of the set F at x̄. Of course, the second order necessary condition
(5.10) can be written in the following equivalent form

hT∇2f(x̄)h− σ
(

−∇f(x̄), T 2
F (x̄, h)

)

≥ 0, ∀h ∈ C(x̄). (5.12)

We are going now to calculate this curvature term in a dual form.
Similar to (5.8), by the second order Taylor expansion of G(x) along the curve x(t) we

have

G
(

x(t) + o(t2)
)

= G(x̄) + tDG(x̄)h+ 1

2
t2

[

DG(x̄)z +D2G(x̄)(h, h)
]

+ o(t2). (5.13)

If z ∈ T 2
F (x̄, h), then x(t) + o(t2) ∈ F and hence G

(

x(t) + o(t2)
)

∈ K for t ≥ 0 small
enough, and thus

DG(x̄)z +D2G(x̄)(h, h) ∈ T 2
K(G(x̄), DG(x̄)h). (5.14)

It is possible to show that the converse implication follows under the MFCQ, and hence we
have the following chain rule for the second order tangent sets (e.g., [6])

T 2
F (x̄, h) = DG(x̄)−1

[

T 2
K(G(x̄), DG(x̄)h) −D2G(x̄)(h, h)

]

. (5.15)

Consequently, assuming the MFCQ, we can write the minimization problem in the left hand
side of (5.10) in the form

Min
z∈Rn

Df(x̄)z +D2f(x̄)(h, h)

s.t. DG(x̄)z +D2G(x̄)(h, h) ∈ T 2
K(G(x̄), DG(x̄)h).

(5.16)
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The second order tangent set T 2
K(G(x̄), DG(x̄)h), to the cone K ⊂ C(Ω) at the point

γ = G(x̄) ∈ K in the direction η = DG(x̄)h, is computed in Kawasaki [14, 15] (see also [7]
and [4, pp.387-400] for a further discussion). That is,

T 2
K(G(x̄), DG(x̄)h) = {α ∈ C(Ω) : α(ω) ≤ τx̄,h(ω), ω ∈ Ω} , (5.17)

where τx̄,h : Ω → R is a lower semicontinuous extended real valued function, given by

τx̄,h(ω) :=















0, if ω ∈ int(∆(x̄)) and η(ω) = 0,

lim inf
ω′→ω

γ(ω′)<0

([η(ω′)]+)2

2γ(ω′) , if ω ∈ bdr(∆(x̄)) and η(ω) = 0,

+∞, otherwise,

(5.18)

and bdr(∆(x̄)) = ∆(x̄) \ int(∆(x̄)). Note that since g(x̄, ·) is continuous, the index set
∆(x̄), of active at x̄ constraints, is closed and hence is compact. If ∆(x̄) is empty, then
τx̄,h(·) ≡ +∞ and T 2

K(G(x̄), DG(x̄)h) = C(Ω). This is not surprising since in that case γ is
an interior point of the set K.

It follows that problem (5.16) is a linear SIP problem:

Min
z∈Rn

zT∇f(x̄) + hT∇2f(x̄)h

s.t. zT g(x̄, ω) + hT∇2g(x̄, ω)h ≤ τx̄,h(ω), ω ∈ Ω.
(5.19)

Its dual is the problem

Max
λ∈Λ(x̄)

{

hT∇2
xxL(x̄, λ)h− σ(λ, T 2(h))

}

, (5.20)

where T 2(h) := T 2
K(G(x̄), DG(x̄)h). In the present case, because of (5.17), for any λ ∈ Λ(x̄)

we have that

σ(λ, T 2(h)) = sup
α∈C(Ω)

{∫

Ω α(ω)dλ(ω) : α(ω) ≤ τx̄,h(ω), ω ∈ Ω
}

. (5.21)

It can happen that the function τx̄,h(·) is unbounded from below. Since τx̄,h(·) is lower
semicontinuous and Ω is compact, this happens iff there exists ω ∈ Ω such that τx̄,h(ω) =
−∞. In that case there is no α ∈ C(Ω) such that α(·) ≤ τx̄,h(·), and hence the second order
tangent set T 2(h) is empty and σ(·, T 2(h)) ≡ −∞. If τx̄,h(ω) > −∞ for all ω ∈ Ω, then
τx̄,h(·) is uniformly bounded from below and the set T 2(h) is nonempty. In that case, since
τx̄,h(·) is lower semicontinuous, it follows that

σ(λ, T 2(h)) =

∫

Ω
τx̄,h(ω)dλ(ω). (5.22)

Recall that the support of λ ∈ Λ(x̄) is a subset of ∆(x̄). Therefore, if ∆(x̄) = {ω1, ..., ωm}
is finite and τx̄,h(ωi) > −∞, i = 1, ...,m, then

σ(λ, T 2(h)) =
m

∑

i=1

λiτx̄,h(ωi), (5.23)
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with λi = λ(ωi).
Under the MFCQ, there is no duality gap between problems (5.19) and (5.20), and by

Lemma 4.1 the critical cone can be written as

C(x̄) =
{

h ∈ R
n : hT∇g(x̄, ω) ≤ 0, ω ∈ ∆(x̄), hT∇f(x̄) = 0

}

, (5.24)

or equivalently as

C(x̄) =

{

h ∈ R
n :

hT∇g(x̄, ω) = 0, ω ∈ supp(λ),
hT∇g(x̄, ω) ≤ 0, ω ∈ ∆(x̄) \ supp(λ)

}

(5.25)

for any λ ∈ Λ(x̄). This leads to the following second order necessary conditions.

Theorem 5.1 Let x̄ be a locally optimal solution of problem (P ) such that the index set
∆(x̄) is nonempty. Suppose that condition (A5) and the MFCQ are fulfilled. Then the
following second order necessary conditions hold

sup
λ∈Λ(x̄)

{

hT∇2
xxL(x̄, λ)h− σ(λ, T 2(h))

}

≥ 0, ∀h ∈ C(x̄). (5.26)

The term σ(λ, T 2(h)) is referred to as the sigma or curvature term. For any λ ∈ Λ(x̄)
and h ∈ C(x̄) we have by (5.25) that hT∇g(x̄, ω) = 0 for all ω ∈ supp(λ), and hence by
(5.18) that

∫

Ω τx̄,hdλ ≤ 0, which in turn implies that σ(λ, T 2(h)) ≤ 0. That is, the sigma
(curvature) term is always nonpositive. Therefore conditions (5.26) are implied by the
“standard” second order necessary conditions where this term is omitted. If the index set Ω
is finite, and hence problem (P ) becomes a nonlinear programming problem, the sigma term
vanishes. In a sense the sigma term measures the curvature of K at the point G(x̄) ∈ K.

For nonlinear programming problems second order necessary conditions in the form
(5.26), without the sigma term, are well known (cf., [1, 13]). Existence of an additional
term in second order optimality conditions for SIP problems was known for a long time.
Usually it was derived by the so-called reduction method under quite restrictive assumptions
(e.g., [12, section 5]). Second order parabolic directional derivatives were used in Ben-Tal
and Zowe [1, 2] and a prototype of the sigma term was given in [2, Theorem 2.1], although
Hessian of the Lagrangian and the curvature (sigma) term are not clearly distinguished
there. In an abstract form the sigma term was introduced and calculated by Kawasaki
[14, 16]. In the dual form considered here this term was derived, under Robinson constraint
qualification, by Cominetti [6]. For a detailed development of that theory we may refer to
[4, section 3.2].

Unfortunately it may be not easy to use representation (5.22) in order to compute the
sigma term. Moreover, we would like to have second order sufficient conditions in the form
(5.26) merely by replacing the inequality sign “≥ 0” by the strict inequality “> 0”. In that
case we say that there is no gap between the corresponding second order necessary and
sufficient optimality conditions. We derived second order necessary conditions by verifying
(local) optimality along parabolic curves. There is no reason a priori that in that way we
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can ensure local optimality of the considered point x̄ and hence to derive respective second
order sufficient conditions. In order to deal with this we proceed as follows.

By Lemma 4.1 and formulas (4.15) and (5.24) we have, under the MFCQ, that

C(x̄) =
{

h : g′(x̄, h) ≤ 0, hT∇f(x̄) = 0
}

. (5.27)

Consider the max-function

v(α) := sup
ω∈Ω

α(ω), α ∈ C(Ω). (5.28)

Note that since the set Ω is compact, any function α ∈ C(Ω) attains its maximum over
Ω and hence indeed the function v : C(Ω) → R is real valued. It is also straightforward
to verify that the function v(·) is convex and Lipschitz continuous with Lipschitz constant
one. Clearly the cone K ⊂ C(Ω) can be written as K = {α ∈ C(Ω) : v(α) ≤ 0} and the
max-function g(x), defined in (4.12), can be written as g(x) = v(G(x)).

Consider functions γ(·) := g(x̄, ·), η(·) := hT∇g(x̄, ·) and ζ(·) := zT∇2g(x̄, ·)z for some
vectors h, z ∈ R

n. Since the point x̄ is feasible, we have that γ ∈ K, and since ∆(x̄) is
nonempty, it follows that v(γ) = 0 and ∆(x̄) = arg maxω∈Ω γ(ω). By Danskin Theorem we
have that v(·) is directionally differentiable and

v′(γ, η) = sup
ω∈∆(x̄)

η(ω). (5.29)

Since g(x) = v(G(x)) and by (5.13) we have

g
(

x̄+ th+ 1

2
t2z

)

= v
(

G(x̄) + tDG(x̄)h+ 1

2
t2

[

DG(x̄)z +D2G(x̄)(h, h)
]

+ o(t2)
)

.

Since g′(x̄, h) = v′(γ, η) and because of Lipschitz continuity of v(·), we obtain the following
chain rule for second order directional derivatives (cf., [4, Proposition 2.53])

g′′+(x̄;h, z) = v′′+
(

G(x̄);DG(x̄)h,DG(x̄)z +D2G(x̄)(h, h)
)

. (5.30)

Also, under the MFCQ, the chain rule (5.15) for the second order tangent sets holds.
Moreover, for γ, η ∈ C(Ω) such that v(γ) = 0 we have that (cf., [4, Proposition 3.30])

T 2
K(γ, η) =

{

ζ ∈ C(Ω) : v′′+(γ; η, ζ) ≤ 0
}

, if v′(γ, η) = 0, (5.31)

and T 2
K(γ, η) = C(Ω), if v′(γ, η) < 0. Putting it all together we obtain the following.

Lemma 5.1 Suppose that condition (A5) and the MFCQ are fulfilled, and consider points
x̄, h ∈ R

n such that g(x̄) = 0. Then

T 2
F (x̄, h) =

{

z : g′′+(x̄;h, z) ≤ 0
}

, if g′(x̄, h) = 0, (5.32)

and T 2
F (x̄, h) = R

n if g′(x̄, h) < 0.
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Note that f ′(x̄, h) = hT∇f(x̄) and f ′′(x̄;h, z) = zT f(x̄)+hT∇2f(x̄)h, and if f ′(x̄, h) = 0,
then

f′′+(x̄;h, z) =

{

max
{

f ′′(x̄;h, z), g′′+(x̄;h, z)
}

, if g′+(x̄, h) = 0,
f ′′(x̄;h, z), if g′+(x̄, h) < 0.

Because of that and by Lemma 5.1, conditions (5.10) imply that

inf
z∈Rn

f′′+(x̄;h, z) ≥ 0, ∀h ∈ C(x̄). (5.33)

Recall that, under the MFCQ, conditions (5.10) and (5.26) are equivalent. It is straight-
forward to derive necessity of conditions (5.33) from the fact that the local optimality of
x̄ implies that x̄ is a local minimizer of f(x) and that if h ∈ C(x̄), then f′(x̄, h) = 0. In
such derivations there is no need to assume the MFCQ and it is possible to replace the
upper second order directional derivative of f in (5.33) by the respective lower second order
directional derivative. On the other hand, conditions (5.33) are weaker than conditions
(5.10) in the sense that they allow for situations when g′+(x̄, h) = 0 and g′′+(x̄;h, z) = 0,
while f ′′(x̄;h, z) < 0.

In order to apply second order necessary conditions (5.33) we need to calculate second
order directional derivatives of the max-function g(·). A relatively simple case is discussed
in the following example.

Example 5.1 Assume that: (i) Ω ⊂ R
ℓ, (ii) the set ∆(x̄) = {ω1, ..., ωm} is nonempty

and finite, (iii) each point ωi, i = 1, ...,m, is an interior point of the set Ω, (iv) g(x, ω)
is twice continuously differentiable on R

n × R
ℓ, (v) Hessian matrices ∇2

ωωg(x̄, ωi), i =
1, ...,m, are nonsingular. Then locally, for x in a neighborhood of x̄, the max-function g(x)
can be represented as g(x) = max{ψ1(x), ..., ψm(x)}, where ψi(·) are twice continuously
differentiable in a neighborhood of x̄ functions with

∇ψi(x̄) = ∇g(x̄, ωi), (5.34)

∇2ψi(x̄) = ∇2
xxg(x̄, ωi) −

[

∇2
xωg(x̄, ωi)

] [

∇2
ωωg(x̄, ωi)

]−1 [

∇2
ωxg(x̄, ωi)

]

, (5.35)

i = 1, ...,m. The above is not difficult to show by employing the Implicit Function Theorem
and basically is the reduction approach used in semi-infinite programming (see, e.g., [12,
section 4]). In that case for such h that g′(x̄, h) = 0 we have

g′′(x̄;h, z) = max
i∈I(x̄,h)

{

zT∇g(x̄, ωi) + hT
[

∇2ψi(x̄)
]

h
}

(5.36)

where I(x̄, h) :=
{

i : hT∇g(x̄, ωi) = 0, i = 1, ...,m
}

, and assuming the MFCQ,

T 2
F (x̄, h) =

{

z : zT∇g(x̄, ωi) + hT
[

∇2ψi(x̄)
]

h ≤ 0 : i ∈ I(x̄, h)
}

. (5.37)

Moreover, assuming the MFCQ, the corresponding second order necessary conditions
(5.26) can be written as

sup
λ∈Λ(x̄)

{

hT∇2L(x̄, λ)h−
∑m

i=1 λih
THih

}

≥ 0, ∀h ∈ C(x̄). (5.38)
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where
Hi :=

[

∇2
xωg(x̄, ωi)

] [

∇2
ωωg(x̄, ωi)

]−1 [

∇2
ωxg(x̄, ωi)

]

. (5.39)

The sigma term here is σ(λ, T 2(h)) =
∑m

i=1 λih
THih. Note that in the considered case the

Hessian matrices ∇2
ωωg(x̄, ωi) are negative definite and hence this sigma term is less than

or equal to zero, as it should be.

It is possible to derive second order directional derivatives of the max-function g(·) in
more involved cases and hence to write the corresponding second order necessary conditions.
We will discuss this further in the next subsection.

5.2 Second order sufficient conditions

In this subsection we assume that x̄ ∈ F is a feasible point of problem (P ) satisfying the
first order necessary conditions (5.6). Consider the following condition

inf
z∈T 2

F
(x̄,h)

{

Df(x̄)z +D2f(x̄)(h, h)
}

> 0, ∀h ∈ C(x̄) \ {0}. (5.40)

This condition is obtained from the second order necessary condition (5.10) by replacing
“≥ 0” sign with the strict inequality sign “> 0”. Necessity of (5.10) was obtained by
verifying optimality of x̄ along parabolic curves. There is no reason a priori that verification
of (local) optimality along parabolic curves is sufficient to ensure local optimality of x̄.
Therefore in order to ensure sufficiency of (5.40) we need an additional condition. The
following concept of second order regularity was introduced in [3] and developed further in
[4].

Definition 5.1 It is said that the set F is second order regular at x̄ ∈ F if for any sequence
xk ∈ F of the form xk = x̄+ tkh+ 1

2
t2krk, where tk ↓ 0 and tkrk → 0, it follows that

lim
k→∞

dist
(

rk, T
2
F (x̄, h)

)

= 0. (5.41)

Note that in the above definition the term 1

2
t2krk = o(tk), and hence such a sequence xk ∈ F

can exist only if h ∈ TF (x̄).
It turns out that second order regularity can be verified in many interesting cases and

ensures sufficiency of conditions (5.40) (cf., [3],[4, section 3.3.3]). Proof of the following
result is relatively easy, so we give it for the sake of completeness.

Theorem 5.2 Let x̄ ∈ F be a feasible point of problem (P ) satisfying first order necessary
conditions (5.6). Suppose that F is second order regular at x̄. Then the second order
conditions (5.40) are necessary and sufficient for the quadratic growth at x̄ to hold.

Proof. Suppose that conditions (5.40) hold. In order to verify the quadratic growth
condition we argue by a contradiction, so suppose that it does not hold. Then there exists
a sequence xk ∈ F \ {x̄} converging to x̄ and a sequence ck ↓ 0 such that

f(xk) − f(x̄) ≤ ck‖xk − x̄‖2. (5.42)
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Denote tk := ‖xk − x̄‖ and hk := t−1
k (xk − x̄). By passing to a subsequence if necessary we

can assume that hk converges to a vector h. Clearly h 6= 0 and by the definition of TF (x̄)
it follows that h ∈ TF (x̄). Moreover, by (5.42) we have

ckt
2
k ≥ f(xk) − f(x̄) = tkDf(x̄)h+ o(tk)

and hence Df(x̄)h ≤ 0. Because of the first order necessary conditions it follows that
Df(x̄)h = 0, and hence h ∈ C(x̄).

Denote rk := 2t−1
k (hk − h). We have that xk = x̄ + tkh + 1

2
t2krk ∈ F and tkrk → 0.

Consequently it follows by the second order regularity that there exists a sequence zk ∈
T 2
F (x̄, h) such that rk − zk → 0. Since Df(x̄)h = 0, by the second order Taylor expansion

we have

f(xk) = f(x̄+ tkh+ 1

2
t2krk) = f(x̄) + 1

2
t2k[Df(x̄)zk +D2f(x̄)(h, h)] + o(t2k).

Moreover, since zk ∈ T 2
F (x̄, h) we have that

Df(x̄)zk +D2f(x̄)(h, h) ≥ c,

where c is equal to the left hand side of (5.40), which by the assumption is positive. It
follows that

f(xk) ≥ f(x̄) + 1

2
c‖xk − x̄‖2 + o(‖xk − x̄‖2),

a contradiction with (5.42).
Conversely, suppose that the quadratic growth condition (4.22) (with p = 2) holds at

x̄. It follows that the function φ(x) := f(x) − 1

2
c‖x − x̄‖2 also attains its local minimum

over F at x̄. Note that ∇φ(x̄) = ∇f(x̄) and hT∇2φ(x̄)h = hT∇2f(x̄)h − c‖h‖2. There-
fore, by the second order necessary conditions (5.10), applied to the function φ, it follows
that the left hand side of (5.40) is greater than or equal to c‖h‖2. This completes the proof.

Now consider the following counterpart of second order necessary conditions (5.26):

sup
λ∈Λ(x̄)

{

hT∇2
xxL(x̄, λ)h− σ(λ, T 2(h))

}

> 0, ∀h ∈ C(x̄) \ {0}. (5.43)

As it was argued in subsection 5.1, the left hand sides of the second order necessary condi-
tions (5.10) and (5.26) do coincide and the critical cone can be written in the form (5.24),
provided that the MFCQ holds. Therefore, under the MFCQ, conditions (5.40) and (5.43)
are equivalent. It is interesting to observe that even without the MFCQ, conditions (5.43)
imply conditions (5.40) and hence are sufficient for local optimality of x̄.

Lemma 5.2 Let x̄ ∈ F be a feasible point of problem (P ) satisfying first order necessary
conditions (5.6) and such that the set ∆(x̄) is nonempty. Then conditions (5.43) imply
conditions (5.40). If, moreover, the MFCQ holds, then conditions (5.40) and (5.43) are
equivalent.
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Proof. Recall that for the inclusion (5.14) to hold there is no need for the MFCQ. There-
fore the feasible set of problem (5.16) includes the set TF (x̄, h), and hence the optimal value
of (5.16) is less than or equal to the optimal value of (5.10). Moreover, the optimal value of
(5.16) is always greater than or equal to the optimal value of its dual problem (5.20). That
is, the optimal value of the left hand side of (5.10) is always greater than or equal to the op-
timal value of the left hand side of (5.26). Also the set in the right hand side of (5.24) always
includes the critical cone C(x̄). This completes the arguments that (5.43) implies (5.40).
Assuming the MFCQ, the equivalence of (5.40) and (5.43) was discussed in subsection 5.1.

It follows that, under the assumption of second order regularity, conditions (5.43) are
sufficient for local optimality of x̄. Without the MFCQ it can happen that the set Λ(x̄) of
Lagrange multipliers is empty. In that case the left hand side of (5.43) is −∞ and hence
conditions (5.43) cannot hold. Therefore conditions (5.43) are applicable only if Λ(x̄) is
nonempty.

It is also possible to approach derivations of second order sufficient conditions by em-
ploying the max-functions g and f. Observe that if f(x̄) = 0, i.e., x̄ ∈ F , and there exist
constant c > 0 and a neighborhood V of x̄ such that

f(x) ≥ c‖x− x̄‖2, ∀x ∈ V, (5.44)

then the quadratic growth condition (for the problem (P )) holds at x̄.
In the remainder of this section we assume that:

(A6) The function f is twice continuously differentiable, the set Ω is a compact subset of
R

ℓ and the function g(x, ω) is twice continuously differentiable on R
n ×R

ℓ (jointly in
x and ω).

Consider a point x̄ ∈ F such that the set ∆(x̄) is nonempty. Recall that, in such case,
∆(x̄) coincides with the set of maximizers of g(x̄, ·) over Ω and g(x̄) = 0. For h ∈ R

n and
ω̄ ∈ ∆(x̄), let s(h, ω̄) be the optimal value of the problem

Max
η∈C(ω̄)

{

2hT∇2
xωg(x̄, ω̄)η + ηT∇2

ωωg(x̄, ω̄)η + σ
(

∇ωg(x̄, ω̄), T 2
Ω(ω̄, η

)}

, (5.45)

where
C(ω̄) =

{

η ∈ R
ℓ : η ∈ TΩ(ω̄), ηT∇ωg(x̄, ω̄) = 0

}

is the critical cone of the problem of maximization of g(x̄, ·) over Ω. Then for any h ∈ R
n

and ω̄ ∈ ∆(x̄) the following inequality holds (cf., [4, Proposition 4.129]):

lim inf
t↓0

h̃→h

g(x̄+ th̃) − th̃T∇xg(x̄, ω̄)
1

2
t2

≥ hT∇2
xxg(x̄, ω̄)h+ s(h, ω̄). (5.46)

Note that for η = 0, the quadratic and sigma terms inside (5.45) are zero, and hence s(h, ω̄)
is always nonnegative. It can happen, however, that s(h, ω̄) = +∞.

By employing (5.46) and (5.44) it is possible to derive the following second order suffi-
cient conditions (cf., [4, Theorem 5.116]).
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Theorem 5.3 Let x̄ ∈ F be a feasible point of problem (P ) satisfying first order necessary
conditions (5.6) and such that the index set ∆(x̄) and the Lagrange multipliers set Λ(x̄) are
nonempty. Then the following conditions are sufficient for the quadratic growth to hold at
the point x̄: for every h ∈ C(x̄) \ {0} there exists λ =

∑m
i=1 λiδ(ωi) ∈ Λ(x̄) such that

hT∇2L(x̄, λ)h+

m
∑

i=1

λis(h, ωi) > 0. (5.47)

Compared with the sigma term σ(λ, T 2(h)) of second order conditions (5.43), the above
conditions (5.47) have the additional term of the form −

∑m
i=1 λis(h, ωi). In some cases the

optimal value s(h, ω̄), for ω̄ ∈ ∆(x̄), can be calculated in a closed form. Note that the sigma
term in (5.45) vanishes if there is a neighborhood of ω̄ such that the sets Ω and ω̄ + TΩ(w̄)
do coincide in that neighborhood. In particular this sigma term vanishes if the set Ω is
polyhedral.

Suppose, for instance, that ω̄ is an interior point of Ω. Then ∇ωg(x̄, ω̄) = 0, and the
sigma term in (5.45) vanishes and C(ω̄) = R

ℓ. If, moreover, the matrix ∇2
ωωg(x̄, ω̄) is

nonsingular, and hence is negative definite, then

s(h, ω̄) = −hT
[

∇2
xωg(x̄, ω̄)

] [

∇2
ωωg(x̄, ω̄)

]−1 [

∇2
ωxg(x̄, ω̄)

]

h.

In the setting of example 5.1 this gives the additional term of (5.47) exactly in the same
form as the sigma term of (5.38), and hence in that case there is no gap between the second
order necessary and sufficient conditions.

If the matrix ∇2
ωωg(x̄, ω̄) is singular, then it can happen that s(h, ω̄) = +∞. This

happens if there exists vector η such that ηT
[

∇2
ωωg(x̄, ω̄)

]

η = 0 while hT
[

∇2
xωg(x̄, ω̄)

]

η 6= 0.
As to the question of “no gap” second order conditions, it is possible to show the

following (cf., [4, Theorem 5.118]).

Theorem 5.4

The second order sufficient conditions of Theorem 5.3 are “no gap” second order conditions
if: (i) the MFCQ holds at x̄, (ii) the set ∆(x̄) is finite, (iii) for every point ω̄ ∈ ∆(x̄) the
set Ω is second order regular at ω̄, and (iv) the quadratic growth condition, for the problem
of minimization of φ(ω) = −g(x̄, ω) over ω ∈ Ω, holds at every point ω̄ ∈ ∆(x̄).

6 Rates of convergence of solutions of discretized problems

We assume in section that the optimal value val(P ) of the SIP problem (P ) is finite and
condition (A1) holds. Consider a sequence of discretizations Ωm = {ω1, ..., ωm} ⊂ Ω of
problem (P ). Let εm ↓ 0 and x̂m be an εm-optimal solution of the corresponding discretized
problem (Pm). That is, g(x̂m, ω) ≤ 0 for all ω ∈ Ωm, f(x̂m) is finite and f(x̂m) ≤ val(Pm)+
εm. What can be said about convergence of x̂m to the set of optimal solutions of problem
(P ) as the meshsize

̺m := sup
ω∈Ω

dist(ω,Ωm) (6.1)
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tends to zero. Here dist(ω,Ωm) denotes the distance from point ω to the set Ωm with
respect to the metric ρ of the space Ω, i.e., dist(ω,Ωm) = min1≤i≤m ρ(ω, ωi). Since Ωm is a
subset of Ω, the deviation of the set Ω from the set Ωm, written in the right hand side of
(6.1), in fact is the Hausdorff distance between sets Ωm and Ω.

The following result is well known, since its proof is easy we give it for the sake of
completeness.

Lemma 6.1 Suppose that assumption (A1) is fulfilled and the function f(·) is lower semi-
continuous. If εm ↓ 0 and ̺m → 0 as m → ∞, then any accumulation point of a sequence
x̂m, of εm-optimal solutions of the discretized problems (Pm), is an optimal solution of the
problem (P ).

Proof. Let x̄ be an accumulation point of the sequence {x̂m}. By passing to a sub-
sequence if necessary, we can assume that x̂m → x̄. Let us observe that g(x̄, ω) ≤ 0
for any ω ∈ Ω. Indeed, consider ω ∈ Ω. Since ̺m → 0, there exists ωm ∈ Ωm such
that ωm → ω. We have that g(x̂m, ωm) ≤ 0 and g(x̂m, ωm) → g(x̄, ω). It follows that
g(x̄, ω) ≤ 0. Now let x be a point such that g(x, ω) ≤ 0 for all ω ∈ Ω. Then g(x, ω) ≤ 0 for
all ω ∈ Ωm, and hence f(x̂m) ≤ f(x) + εm for all m. Since, because of the lower semicon-
tinuity, f(x̄) ≤ lim infm→∞ f(x̂m) and εm ↓ 0, it follows that f(x̄) ≤ f(x). Since x was an
arbitrary point of F , it follows that x̄ is an optimal solution of the problem (P ).

Assume from now on that the function f : R
n → R is real valued and continuous.

Denote by F̂m the feasible set of problem (Pm), i.e.,

F̂m := {x ∈ R
n : g(x, ωi) ≤ 0, i = 1, ...,m}.

Since g(·, ω) is continuous, the set F̂m is closed. It is said that the sets F̂m are uniformly
bounded if there is a bounded set C ⊂ R

n such that F̂m ⊂ C for all m. It is straightforward
to show, by the above lemma and compactness arguments, that if ̺m → 0 and the sets
F̂m are uniformly bounded, then D(F̂m,F) → 0 and dist (x̂m,Sol(P )) → 0. Moreover, it is
possible to estimate the rate at which D(F̂m,F) tends to zero.

Suppose that the MFCQ holds at a point x̄ ∈ F . Then there exists a neighborhood V
of x̄ and a constant α such that for all x ∈ V the following holds

dist(x,F) ≤ α
(

supω∈Ω[g(x, ω)]+
)

(6.2)

(e.g., [4, section 2.3, and example 2.94]). Suppose, further, that the set Sol(P ) is nonempty
and bounded (and hence is compact) and the MFCQ is satisfied at every point of the set
Sol(P ). It follows then by compactness arguments that there exists α and a neighborhood
W of Sol(P ) such that (6.2) holds for any x ∈ W. Suppose, further, that g(x, ·) is Lipschitz
continuous on Ω uniformly in x ∈ W, i.e., there exists a constant κ > 0 such that

|g(x, ω) − g(x, ω′)| ≤ κρ(ω, ω′), ∀ω, ω′ ∈ Ω, ∀x ∈ W. (6.3)
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Consider now a point x ∈ F̂m ∩ W. We have that for any ω ∈ Ω there exists a point
ω′ ∈ Ωm such that ρ(ω, ω′) ≤ ̺m. Moreover, since x ∈ F̂m, it follows that g(x, ω′) ≤ 0.
Together with (6.3) this implies that g(x, ω) ≤ κ̺m. It follows by (6.2) that

D(F̂m ∩W,F ∩W) = O(̺m). (6.4)

For a constant p > 0, we say that the p-th order growth condition (for the problem (P ))
holds at a (nonempty) set S ⊂ F if there exist constant c > 0 and neighborhood V of S
such that

f(x) ≥ val(P ) + c [dist(x,S)]p , ∀x ∈ F ∩ V. (6.5)

Clearly, it follows from (6.2) that S is a set of locally optimal solutions of problem (P ). In
particular, if S = {x̄} is a singleton, then condition (6.5) coincides with condition (4.22)
and hence the above definition is consistent with Definition 4.2.

For singleton S the following result is given in [32] (see also [21, Theorem 12]).

Theorem 6.1 Let S be a nonempty and bounded subset of F . Suppose that: (i) p-th order
growth condition holds at S with p = 1 or p = 2, (ii) condition (A4) is fulfilled and g(x, ·)
is Lipschitz continuous on Ω uniformly in x ∈ V, (iii) the MFCQ holds at every x ∈ S, (iv)
for εn = O(̺m), problem (Pm) has an εm-optimal solution x̂m such that dist(x̂m,S) → 0.
Then for p = 1 and p = 2,

dist (x̂m,S) = O
(

̺1/p
m

)

. (6.6)

Proof. Since the function f(x) is continuously differentiable, by reducing the neigh-
borhood V if necessary we can assume that the function f(x) is Lipschitz continuous on V,
with Lipschitz constant denoted η. By the assumption (iv) we have that x̂m ∈ V for all
m large enough. Then the following estimates hold (cf., [4, Proposition 4.37 and Remark
4.39]):

dist(x̂m,S) ≤ (1 + c−1η)dm + c−1εm, for p = 1, (6.7)

dist(x̂m,S) ≤ 2dm + c−1/2η1/2d
1/2
m + c−1/2ε

1/2
m , for p = 2, (6.8)

where dm := D
(

F̂m∩V,F∩V
)

. By (6.4) we have (reducing the neighborhood V if necessary)
that dm = O(̺m). Together with (6.7) and (6.8) this completes the proof.

Suppose, further, that Ω ⊂ R
ℓ, the function g(·, ·) is twice continuously differentiable

and for every x̄ ∈ S the set Ω∗(x̄), defined in (4.14), is contained in the interior of Ω. In
that case we have that ∇ωg(x̄, ω̄) = 0 for every ω̄ ∈ Ω∗(x̄). It follows by (6.2) that in such
case we can estimate dm, in (6.7) and (6.8), as dm = O(̺2

m). Consequently, for p = 1 and
p = 2, the estimate (6.6) can be improved to

dist (x̂m,S) = O
(

̺2/p
m

)

. (6.9)

For singleton set S this result is due to Still [32]. It was also argued in [32] that if some
of the elements of Ω∗(x̄) are boundary points of Ω, then one needs to add in Ωm boundary
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points of Ω in order to achieve such rates of convergence.
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