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SEMI-INFINITE SCHUBERT VARIETIES

AND QUANTUM K-THEORY OF FLAG MANIFOLDS

ALEXANDER BRAVERMAN AND MICHAEL FINKELBERG

1. Introduction

1.1. Spaces of quasi-maps. Let G be a semi-simple, simply connected group over
C with Lie algebra g; we will denote by ǧ the Langlands dual algebra of g. Also let
Bg denote its flag variety. We have H2(Bg,Z) = Λ, the coroot lattice of g. We will
denote by Λ+ the sub-semigroup of positive elements in Λ.

Let C ≃ P1 denote a (fixed) smooth connected projective curve (over C) of genus
0; we are going to fix a marked point ∞ ∈ C. For each α ∈ Λ+ we can consider the
space Mα

g of maps C → Bg of degree α. This is a smooth quasi-projective variety.
It has a compactification QM

α
g by means of the space of quasi-maps from C to Bg

of degree α. Set-theoretically this compactification can be described as follows:

(1.1) QM
α
g =

⊔

0≤β≤α

Mβ
g × Symα−β(C),

where Symα−β(C) stands for the space of “colored divisors” of the form
∑

γixi

where xi ∈ C, γi ∈ Λ+ and
∑

γi = α− β.
Let us fix a pair of opposite Borel subgroups B,B− ⊂ G; then we can write Bg =

G/B. We can now consider the space
◦

Zα
g of based maps (C,∞) → (Bg = G/B, e−)

(here e− ∈ G/B denotes the class of B−, and a map f : C → Bg is called based
if f(∞) = e−). This is a quasi-affine variety; the corresponding space Zα

g of based
quasi-maps (a.k.a. Zastava space in the terminology of [17] and [13]) is affine. It
possesses a stratification similar to (1.1) but with C in the right-hand side of (1.1)
replaced by C−∞.

The following theorem is the first main result of this article.

Theorem 1.2. (1) For any g and α the schemes Zα
g and QM

α
g are normal.

(2) Assume that g is simply laced. Then Zα
g (and QM

α
g ) is Gorenstein (in par-

ticular, Cohen-Macaulay) and has canonical (hence rational) singularities.

1.3. Connection to quantum K-theory of Bg. In fact, we believe that Zα
g must

have rational singularities for all g (not necessarily simply laced). Let us explain
the importance of this assertion. Recall that a scheme Z has rational singularities,

if for some (equivalently, for any) resolution π : Z̃ → Z we have Rπ∗(OZ̃) = OZ .
The scheme Zα

g has a resolution by means of the Kontsevich moduli space Mα
g of

stable maps from a nodal curve C of genus 0 to Bg × P1 which have degree (α, 1)
and with some analog of the “based” condition (cf. Section 5 for more detail). The
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space Mα
g is a smooth Deligne-Mumford stack which has a natural action of T×C∗,

where T ⊂ B ⊂ G is a maximal torus (here the action of T comes from the fact
that it acts on Bg preserving e− and the action of C∗ comes from the action on P1

preserving ∞). Let Jα be the T × C∗-equivariant pushforward of OMα
g
to Spec(C)

(i.e., the character of [RΓ(Mα
g ,OMα

g
)] of RΓ(Mα

g ,OMα
g
) with respect to T × C∗).

This is a rational function on T ×C∗ and we are going to write Jα = Jα(z, q) where
z ∈ T, q ∈ C∗.

It is explained in [19] (cf. also the Appendix to [4] for the corresponding state-
ment in cohomology (as opposed to K-theory)) that every Jα can be thought of
as some generating function of genus 0 K-theoretic Gromov-Witten invariants with

gravitational descendants of degree α. Moreover, it is shown in [24] that Jα’s de-
termine all genus zero K-theoretic Gromov-Witten invariants.1

Thus, computing Jα is an important problem. Theorem 1.2 implies that (for
simply laced g) one can replace this equivariant pushforward with the character
[OZα

g
] of the ring of polynomial functions on Zα

g with respect to the action of
T × C∗.

It is often convenient to organize all Jα into a generating function:

(1.2) Jg(z, x, q) =
∑

α∈Λ+

xαJα,

where x lies in the dual torus Ť . This function is called the equivariant K-theoretic

J-function of Bg (once again, it can be defined for any smooth projective variety
X).

1.4. Fermionic formula. The function Jg was studied in [19] for G = SL(N) and
it was shown to be an eigen-function of the quantum difference Toda integrable

system (cf. [11], [30]); this result was reproved in [7] using other methods. It was
conjectured in [19] that the same result should hold for any g.

It is actually easy to see that verbatim this conjecture is false when g is not
simply laced. The main purpose of the second part of this article is to prove the
above conjecture for any simply laced algebra g. More precisely, we are going to
prove the following.

Theorem 1.5. Assume that g is simply laced. Then the functions Jα satisfy the
following recursive relation:

(1.3) Jα =
∑

0≤β≤α

q(β,β)/2zβ
∗

(q)α−β
Jβ.

Here β �→ β∗ stands for the natural isomorphism between the coroot lattice of g
and its root lattice.

The equation (1.3) appears in [14], where the authors show that (1.3) holds
precisely if and only if the generating function of the Jα’s is an eigen-function of
the above-mentioned quantum difference Toda system. Thus, Theorem 1.5 and the
main result of [14] imply the following.

1In fact, in [24] the authors work with an arbitrary smooth projective variety X instead of Bg.
In this case the definition of Jα is similar, however technically the pushforward must be taken with
respect to certain virtual fundamental cycle in K-theory. In the case when X is a homogeneous
space of a linear algebraic group, this reduces to the usual pushforward.
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Corollary 1.6. Let g be simply laced. Then the equivariantK-theoretic J-function
of Bg is an eigen-function of the quantum difference Toda integrable system asso-
ciated with g.

One may ask whether the assumption that g is simply laced is really essential.
As was mentioned above verbatim, Theorem 1.5 (and thus also Corollary 1.6) does
not hold for non simply laced g (the reason for this is explained in Section 7). On
the other hand, in Section 7 we show how to modify the geometric problem a little
(using the recent result of [31]) in order to make a correct statement for all g. It
is worthwhile to note that the corresponding analog of Jg in that case becomes
an eigen-function of the quantum difference Toda system associated with ǧ (in the
simply laced case we have g = ǧ). The reader should compare this statement with
the main result of [22] which deals with the “usual” (i.e., cohomological) J-function
of Bg.

1.7. Representation-theoretic interpretation. In this subsection we discuss
possible interpretation of the above results in terms of geometric representation
theory; this subsection will not be used in the future, so the uninterested reader
may skip this discussion and go to Section 1.9.

Corollary 1.6 and the constructions of [30] and [14] also imply the
following.

Corollary 1.8. In the simply laced case the function Jg is equal to the Whittaker
matrix coefficient in the universal Verma of Uq(ǧ).

In [7] this result was proved directly for G = SL(N). Namely, in that case the
space Zα

g has a small resolution of singularities (usually called Laumon’s resolution)
which we will denote by Pα. In [7] we construct an action of the quantum group
Uq(sl(N)) on V = ⊕αKT×C∗(Pα)loc (here the subscript “loc” means “localized
equivariant K-theory”) and identify the corresponding Uq(sl(N)) module with the
universal Verma module. Moreover, the natural pairing on V gets identified with
the Shapovalov form on the Verma module. In addition, if we denote by 1α ∈
KT×C∗(Pα) then the formal sum

∑
α 1α (lying in some completion of V) is the

Whittaker vector in V (i.e., an eigen-vector of the positive part of Uq(sl(N))). It is
easy to see that these results imply Corollary 1.8 (we refer the reader to [7] for the
details).

It would be very interesting to prove Corollary 1.8 along similar lines, however
we don’t know how to do this, since for general g there is no resolution of Zα

g similar
to Pα. In addition we would like to mention that the notion of Whittaker vector for
g (or ǧ), which is developed in [30] (cf. [11] for a closely related approach) depends
on a choice of orientation of the Dynkin diagram of g; it would be very interesting
to understand how it can be incorporated in the above constructions (for g = sl(N)
there is a natural choice of orientation).

1.9. Idea of the proof of normality. Let us now go back and explain the idea
of the proof of Theorem 1.2(1), since in our opinion this proof is of independent
interest.

Let GrG = G((t))/G[[t]] be the affine Grassmannian of G. It is well known that
the orbits of G[[t]] on GrG are in one-to-one correspondence with the elements of
the dominant cone Λ+; for each λ ∈ Λ+ we will denote the corresponding orbit by

GrλG. Its closure Gr
λ

G is the union of all GrµG with μ ≤ λ. It is well known (cf., e.g.,
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[12]) that Gr
λ

G is normal, Cohen-Macaulay and has rational singularities (in fact,
it is also Gorenstein - cf. [9]).

The schemes Zα
g were originally defined in [17] in order to give a model for

the singularities of Gr
λ

G at a point of GrµG when both λ and μ are very large and
λ − μ = α. However, although this statement was used as a guiding principle in
many works related to Zα

g (cf. [3] for a review), it was never given any precise
meaning.

The purpose of Section 2 is to formulate some version of the above principle
precisely. This formulation immediately implies normality of Zα

g but other parts of
Theorem 1.2 still have to be proven by other means. Roughly speaking, we show
the following. Given λ and μ as above one can construct certain transversal slice

W
λ

G,µ to GrµG in Gr
λ

G. This transversal slice is also acted on by T ×C∗. In Section 2

we construct a T ×C∗-equivariant map W
λ

G,λ−α → Zα
g and we show that this map

induces an isomorphism on functions of given homogeneity degree with respect to
C∗ when λ is very large. This easily implies that Zα

g is normal.

1.10. Affine case. The definition of the schemes Zα
g was generalized in [6] to the

case when g is an untwisted affine algebra. We conjecture that Theorem 1.2 and
Theorem 1.5 hold in this case; this should be useful for studying the Nekrasov
partition function of 5-dimensional pure gauge theory compactified on S1 (cf. [27])
in the spirit of [5]. In Section 3, we prove Theorem 1.2 for g = sl(N)aff ; this easily
implies Theorem 1.5 in this case, in view of the results of [7].

1.11. Contents. This article is organized as follows. In Section 2, we discuss the

relation between Zα
g and the transversal slices W

λ

G,µ in the affine Grassmannian
and prove that the schemes Zα

g are normal. In Section 3, we use a different method
to show that the affine analogs of Zα

g are normal, Gorenstein and have rational
singularities for G = SL(N). In Section 4, we study the equation of the boundary
of Zα

g ; we use it in Section 5 in order to prove the second part of Theorem 1.2.
Theorem 1.5 is proved in Section 6. Finally, in Section 7 we explain how to extend
Theorem 1.2 and Theorem 1.5 to non simply laced case using the twisted affine
Grassmannian studied in [31].

2. Normality of Zastava spaces

via transversal slices in the affine Grassmannian

2.1. Quasi-maps and Zastava spaces. In this section we recall the definition
of QMα

g and Zα
g , cf., e.g., [17, Section 3]. Choose a Borel subgroup B ⊂ G with

unipotent radical U . The quotient G/U is a quasi-affine variety and we denote by

G/U its affine closure. The torus T = B/U acts on G/U on the right and this

action extends to G/U .
Let FT be a T -bundle over C. For every weight λ̌ : T → Gm of T we may

consider the associated line bundle Fλ̌
T on C. We say that FT has degree α ∈ Λ

if for every λ̌ as above the bundle Fλ̌
T has degree 〈λ̌, α〉. Then the scheme QM

α
g

parametrizes the following data:
a) T -bundle FT on C of degree −α;

b) a T -equivariant map κ : FT → C × G/U of fibre bundles over C such that
over the generic point of C this map goes to C×G/U .
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More explicitly, giving κ is equivalent to specifying the following data: for every

dominant λ̌ the map we need to specify an embedding of locally free sheaves κλ̌ :

Fλ̌
T → OC⊗V (λ̌) (where V (λ̌) denotes the corresponding irreducible representation

of G). The maps κλ must satisfy certain Plücker relations; we refer the reader to
[3] for the details. It is easy to make the above into a modular problem, which
defines QMα

g as a scheme, which is reduced, irreducible, and projective of dimension
2|α|+dim(G/B) (here |α| = 〈ρ̌g, α〉, where ρ̌g denotes the half-sum of the positive
roots of g).

Given (FT , κ) as above let U ⊂ C be the open subset of C over which κ lands
in C×G/U . If x ∈ U then we will say that the quasi-map (FT , κ) has no defect at
x. It is clear that κ defines a map f : U → G/B. The (open dense) subset of QMα

g

consisting of those quasi-maps for which U = C is precisely the space Mα
g of maps

f : C → Bg = G/B of degree α.
Let us now fix another Borel subgroup B− such that B ∩ B− ≃ T ; then B−

defines a point e− ∈ Bg = G/B. The scheme Zα
g is a locally closed subscheme of

QM
α
g which corresponds to those quasi-maps which have no defect at ∞ ∈ C and

such that f(∞) = e− where f is as above. The scheme Zα
g is an affine, reduced,

and irreducible scheme of dimension 2|α|. The intersection
◦

Zα
g = Zα

g ∩Mα
g is the

space of based maps f : (C,∞) → (Bg, e−) (i.e., those maps which send ∞ to e−).
The schemes QMα

g and Zα
g possess the following stratification:

(2.1) QM
α
g =

⊔

0≤β≤α

Mβ
g × Symα−β(C); Zα

g =
⊔

0≤β≤α

◦

Zβ
g × Symα−β(C−∞).

Here for any curve X and γ ∈ Λ+ we denote by Symγ(X) the scheme parametrizing
“colored divisors”

∑
γixi where xi ∈ X, γi ∈ Λ+ and

∑
γi = γ.

2.2. The affine Grassmannian. Let K = C((t)), O = C[[t]]. By the affine

Grassmannian of G we will mean the quotient GrG = G(K)/G(O). It is known
(cf. [1, 25]) that GrG is the set of C-points of an ind-scheme over C, which we will
denote by the same symbol.

Since G is simply connected, its coweight (=cocharacter) lattice coincides with
the coroot lattice Λ = ΛG. We will denote the cone of dominant coweights by
Λ+ ⊂ Λ. Let Λ∨ denote the dual lattice (this is the weight lattice of G). We let
2ρ̌G denote the sum of the positive roots of G.

The group-scheme G(O) acts on GrG on the left and its orbits can be described
as follows. One can identify the lattice ΛG with the quotient T (K)/T (O). Fix

λ ∈ ΛG and let tλ denote any lift of λ to T (K). Let GrλG denote the G(O)-orbit
of tλ (this is clearly independent of the choice of tλ). The following result is well
known.

Lemma 2.3. (1)

GrG =
⋃

λ∈ΛG

GrλG .

(2) We have GrλG = GrµG if and only if λ and μ belong to the same W -orbit on
ΛG (here W is the Weyl group of G). In particular,

GrG =
⊔

λ∈Λ+
G

GrλG .
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(3) For every λ ∈ Λ+ the orbit GrλG is finite-dimensional and its dimension is
equal to 〈λ, 2ρ̌g〉.

Let GrG
λ
denote the closure of GrλG in GrG; this is an irreducible projective

algebraic variety. One has GrµG ⊂ GrG
λ
if and only if λ − μ is a sum of positive

roots of Ǧ.

2.4. Transversal slices. Consider the group G[t−1] = G(C[t−1]) ⊂ G((t)) =
G(C((t))); let us denote by G1 = G[t−1]1 the kernel of the natural (“evaluation
at ∞”) homomorphism G[t−1] → G. For any λ ∈ Λ let GrG,λ = G[t−1] · tλ. Then
it is easy to see that one has

GrG =
⊔

λ∈Λ+

GrG,λ.

Let also WG,λ denote the G1-orbit of t
λ. For any λ, μ ∈ Λ+, λ ≥ μ set

GrλG,µ = GrλG ∩GrG,µ, Gr
λ

G,µ = Gr
λ

G ∩GrG,µ

and

Wλ
G,µ = GrλG ∩WG,µ, W

λ

G,µ = Gr
λ

G ∩WG,µ.

Note that W
λ

G,µ contains the point tµ in it.
Let Gm = C∗ act on GrG by loop rotation.

Lemma 2.5. (1) The point tµ is the only C∗-fixed point in W
λ

G,µ. The action

of C∗ onW
λ

G,µ is “repelling”, i.e., for any w ∈ W
λ

G,µ we have lim
a→∞

a(w) = tµ.

(2) The orbit G · tµ is a connected component of the C∗-fixed point set GrC
∗

G ,
isomorphic to a partial flag variety of G. The action of C∗ on GrG,µ is
“repelling”, i.e., for any w ∈ GrG,µ we have lim

a→∞
a(w) ∈ G · tµ.

(3) There exists an open subset U in GrµG and an open embedding U×W
λ

G,µ →֒

Gr
λ

G such that the diagram

U× {tµ} −−−−→ GrµG ×{tµ}
⏐⏐�

⏐⏐�

U×W
λ

G,µ −−−−→ Gr
λ

G

is commutative. In other words, W
λ

G,µ is a transversal slice to GrµG inside

Gr
λ

G. �

Proof. The first two statements are obvious, and the third one follows from [21,
Propositions 1.3.1 and 1.3.2]. �

2.6. Functions on WG,µ. Let C[W
λ

G,µ] denote the ring of functions on W
λ

G,µ and
let

C[WG,µ] = lim
←

C[W
λ

G,µ]

be the ring of functions on the ind-scheme WG,µ. The group T ×C∗ acts on W
λ

G,µ

and WG,µ and thus it acts on the corresponding ring of functions.
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For any linear algebraic group H, we are going to denote by Hn the subgroup of
H[t−1] consisting of those maps h(t) which are equal to the identity e ∈ H modulo
t−n; in particular, H0 = H[t−1]. Also, let Rn = C[t−1]/t−n; for any scheme X over
C we can consider the scheme of maps Spec(Rn) → X which (abusing slightly the
notation) we will denote by X(Rn). Also, given a C-point x ∈ X we will denote by
X(Rn)based the closed sub-scheme of based maps Spec(Rn) → X (i.e., those maps
which send the unique C-point of Spec(Rn) to x). In particular, if H is an algebraic
group over C then H1/Hn = H(Rn)based (where the role of the point x is played
by the identity e ∈ H).

Let Stµ ⊂ G1 be the stabilizer of tµ in G1. Thus, Wµ = G1/ Stµ.

Lemma 2.7. (1) Fix n ∈ Z>0 and let μ ∈ Λ+ satisfy the following condition:

(2.2) 〈μ, α̌〉 ≥ n for every positive root α̌ of g.

Then the image of Stµ in G1/Gn = G(Rn)based is equal to U−(Rn)based. In
particular, we have a natural map πµ,n : WG,µ → G(Rn)based/U−(Rn)based.

(2) Assume that condition (2.2) is satisfied. Then for every k < n the map
π∗
µ,n : C[G(Rn)based/U−(Rn)based] → C[WG,µ] induces an isomorphism on

functions of homogeneity degree k with respect to C∗.

Proof. (1) is obvious, so let us prove (2). First, let us discuss some preliminary
facts about the algebra C[G1]. It is clear that any regular function F : G → C

defines a map of ind-schemes F1 : G1 → C[t−1] such that for any g(t) ∈ G1 the
constant term of F1(g(t)) is equal to F (e). Thus, for any i > 0 we can define the
function aF,i on G1 as the coefficient of t−i in F1. It is easy to see that the algebra
C[G1] is topologically generated by all the aF,i. Since every aF,i has degree i with
respect to C∗, it follows that any function of homogeneity degree < n lies in the
subalgebra generated by aF,i with i < n. On the other hand, if i < n then any aF,i

is invariant under the (normal) subgroup Gn of G1. Hence, any function on G1 of
homogeneity degree < n is invariant under Gn.

Let f be a function on WG,µ of homogeneity degree k with respect to C∗. Then
we can think of f as a function on G1 which is invariant on the right under Stµ.
Then the above discussion shows that f is automatically (left and right) invariant
under Gn. In addition, since f is invariant under Stµ it follows from (1) that (under

the condition (2.2)) the function f comes from a function f on G1/Gn · Stµ =
G(Rn)based/U−(Rn)based. �

Now we pass to the main technical result of this section. Let α ∈ Λ+. Then we
have a natural map Zα

g → G1/U−,1. This map is defined as follows: let (FT , κ)
be a quasi-map in Zα

g . The fiber of FT at ∞ is automatically trivialized. This
trivialization uniquely extends to C−{0} and thus we get a based map C−{0} →

G/U−. Restricting this map to n-th infinitesimal neighborhood of ∞ in C we get
a natural morphism Zα

g → G(Rn)based/U−(Rn)based.

Theorem 2.8. (1) Let λ, μ ∈ Λ+ such that λ ≥ μ and let α = λ − μ. Then

there exists a natural birational T ×C∗-equivariant morphism sλµ : W
λ

G,µ →
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Zα
g , such that for any n satisfying (2.2), the following diagram is commu-

tative:

(2.3)

W
λ

G,µ

sλµ
−−−−→ Zα

g

πµ,n

⏐⏐�
⏐⏐�

G(Rn)based/U−(Rn)based
id

−−−−→ G(Rn)based/U−(Rn)based

(here we use the right vertical map described above).
(2) Assume again that (2.2) is satisfied. Then the map (sλµ)

∗ : C[Zα
g ] →

C[W
λ

G,µ] induces an isomorphism on functions of degree < n.

Proof. First of all, we claim that (1) implies (2). Indeed, since sλµ is birational, it

follows that (sλµ)
∗ is injective. On the other hand, it is surjective by Lemma 2.7(2)

in view of (2.3).
Hence, it is enough to explain the construction of sλµ. We start with a modular

description of W
λ

µ. Recall that GrG is the ind-scheme parametrizing a G-bundle FG

on C together with a trivialization on C − {0}. Also, the isomorphism classes of
G-bundles on C are in one-to-one correspondence with Λ+ = Λ/W (see [20] or [28]).
This identification can be described as follows: it is obvious that T -bundles on C

are in one-to-one correspondence with elements of Λ. On the other hand, it is well
known that any G-bundle on C has a reduction to T . Thus, we get a surjective
map from Λ to isomorphism classes of G-bundles on C and it is easy to see that
two T -bundles on C give the isomorphic induced G-bundles if and only if one is
obtained from the other by means of twist by some w ∈ W . The G[t−1]-orbit
GrG,µ ⊂ GrG (see Section 2.4) parametrizes the G-bundles of isomorphism type
Wμ equipped with a trivialization on C − {0}. According to Lemma 2.5 we have
a contraction c : GrG,µ → G · tµ, and WG,µ = c−1(tµ). It remains to describe the
contraction c to the partial flag variety G · tµ in modular terms.

Recall that the Harder-Narasimhan flag of aG-bundle FG is a canonical reduction
of FG to a parabolic subgroup P ⊂ G, [29]. In case FG is of isomorphism type Wμ,
the corresponding parabolic subgroup is nothing but the stabilizer of tµ in G. Let
HN(FG) be the Harder-Narasimhan flag of a G-bundle FG ∈ GrG,µ. Since FG is
trivialized off 0 ∈ C, the fiber of HN(FG) at ∞ ∈ C lies in the partial flag variety
G · tµ. So the value of c(FG) is just the fiber of the Harder-Narasimhan flag of FG

at ∞ ∈ C. All in all, W
λ

µ ⊂ GrG parametrizes G-bundles on C equipped with a
trivialization off 0 ∈ C with a pole of order ≤ λ at 0, such that the isomorphism
class of FG is Wμ, and the fiber of the Harder-Narasimhan flag of FG at ∞ ∈ C is
the base point tµ ∈ G · tµ.

Now let us view the Harder-Narasimhan flag of FG ∈ W
λ

G,µ as a reduction FP

of FG to a parabolic subgroup P ⊂ G (the stabilizer of tµ, containing B−). Let L
be the Levi quotient of P , and let L′ be the quotient of L modulo center. Then

IndL
′

P FP is trivial. Hence, the standard reduction to the Borel B in the fiber of FG

at ∞ ∈ C canonically extends to the reduction of IndL
′

P FP . Thus, any FG ∈ W
λ

G,µ

is canonically equipped with a reduction κ to B with the standard fiber e− at
∞ ∈ C.

Finally, we are ready for the construction of sλµ. Given FG ∈ W
λ

G,µ equipped

with an isomorphism σ : FG
∼
−→Ftriv

G defined off 0 ∈ C, we transfer the canonical
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reduction κ to Ftriv
G to obtain a B-structure σ(κ) on Ftriv

G with a singularity at

0 ∈ C. Twisting by λ ·0 (i.e., in notations of Section 2.1 replacing Fλ̌
T → OC⊗V (λ̌)

by Fλ̌
T (−〈λ, λ̌〉 ·0) → OC⊗V (λ̌)) we obtain a (regular) generalized B-structure κ on

Ftriv
G with an a priori defect at 0 ∈ C (cf. [17, Section 11]). Clearly, κ has no defect

off 0 ∈ C, its value at ∞ ∈ C is e−, and the degree of κ equals α = λ−μ. We define

sλµ(FG, σ) = κ. It follows from loc. cit. that sλµ maps Sλ ∩ W
λ

G,µ isomorphically

onto
◦

Zα
g . Here Sλ is the semi-infinite orbit U((t)) · tλ.

The theorem is proved. �

Remark 2.9. Recall the notations of [17, Definition 11.7]: GrλG
p
← GZ

−µ
λ

q
→ Zα

G

is the restricted convolution diagram (as before, α = λ − μ). The locally closed

subvariety W
λ

G,µ ⊂ GrλG is open dense in the image of p, and the restriction of p to

(the preimage of) W
λ

G,µ is an isomorphism. The proof of the theorem shows that

sλµ = qp−1|
W

λ
G,µ

.

Corollary 2.10. Zα
g is normal.

Proof. Gr
λ

G is normal (see [12]); hence W
λ

G,µ is normal by Lemma 2.5(3). Suppose

a function f ∈ C(Zα
g ) is a root of a unitary polynomial fr+ar−1f

r−1+ · · ·+a0 = 0
with coefficients in C[Zα

g ]. We choose n bigger than the degrees of the (homogeneous

components) of the coefficients ai, 1 ≤ i ≤ r. Now we choose μ ∈ Λ+ satisfying (2.2)

and such that λ = μ + α ∈ Λ+. Then all the coefficients ai lie in C[W
λ

G,µ]. Hence,

f ∈ C(Zα
g ) = C(W

λ

G,µ) lies in C[W
λ

G,µ]. Moreover, the degree of (the highest
homogeneous component of) f is less than n. Hence, f ∈ C[Zα

g ]. �

3. Normality of affine Zastava for G = SL(N)

The purpose of this section is to give another prove of normality of Zastava for
G = SL(N) which works also in the affine case.

3.1. Notations. We denote by I the set of simple coroots of the affine group
Gaff = SL(N)aff . For α ∈ N[I] we denote by Zα the Drinfeld Zastava space.
In [18] and [8] we have constructed a normal scheme Zα together with a morphism
η : Zα → Zα giving a bijection at the level of C-points. In this section we prove
that η is an isomorphism.

Recall that Zα is defined as the categorical quotient Mα//Gα where Mα is the
moduli scheme of representations of a certain chainsaw quiver with relations Q of
dimension α. According to [8, 2.3–2.5], the stacky quotient Mα/Gα is the mod-
uli stack Pervα(SN ,D∞) of perverse coherent sheaves on the Deligne-Mumford
stack SN equipped with a framing at the divisor D∞ ⊂ SN . Let us denote
by gZ : Pervα(SN ,D∞) → Zα the canonical map, and let us denote by gZ :
Pervα(SN ,D∞) → Zα the composition of gZ with η. Let us denote by zZ0 ∈ Zα

(resp. zZ0 ∈ Zα) the unique point fixed by the loop rotation action of Gm. Accord-
ing to [6, 5.14], in order to prove that η is an isomorphism over the base field C, it

suffices to check that the inclusion g−1
Z (zZ0 ) →֒ g−1

Z (zZ0 ) is an equality. We will do
this mimicking the argument of [6, 5.16–5.17].
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3.2. Perverse sheaves framed off the origin. We consider the following closed
substack Pervα(SN , SN −0): for a scheme S, its S-points are S-families of coherent
perverse sheaves on SN of degree α equipped with a framing on SN − 0, i.e., an
isomorphism F|SN−0 ≃ OSN

⊕ OSN
(−D0)⊕ · · · ⊕ OSN

((1−N)D0), and satisfying
the following condition: for any choice of presentation hc : SN = C × XN and
the corresponding factorization map πc : Zα → (C−∞c)

α the composition S →
Pervα(SN ,D∞) → Zα → (C−∞c)

α sends S to the point α · 0C.
Note that the choices of hc are parametrized by c ∈ A1 according to the choices

of vertical directions dv in [6, 5.14]. Similarly to [6, Proposition 5.16] we have the
following.

Lemma 3.3. The composition Pervα(SN , SN − 0) → Pervα(SN ,D∞) → Zα is the

constant map to the point zZ0 ∈ Zα.

Proof. For a collection (Al, Bl, pl, ql)l∈Z/NZ representing a point of Pervα(SN ,D∞),
let us denote by TWl

any endomorphism of the line Wl obtained by composing the
maps Ak, Bi, pj , qr, and by TVl

any similarly obtained endomorphism of Vl. It is
well known that the ring of regular functions on Zα is generated by all the possible
TWl

’s and the traces of all the possible TVl
’s.

Let F be an S-point of Pervα(SN , SN−0). For an integerm, let F′ be the constant
S-family of coherent perverse sheaves on SN corresponding to the torsion-free sheaf
mm

0 ⊕mm
0 (−D0)⊕· · ·⊕mm

0 ((1−N)D0) where m0 is the maximal ideal of the point
0 ∈ SN . Then, when m is large enough, we can find a map F′ → F respecting
the framings of both sheaves on SN − 0. The cone of this map is set-theoretically
supported at 0 ∈ SN and has cohomology in degrees 0, 1.

Let (Vl,Wl, Al, Bl, pl, ql)l∈Z/NZ (resp. (V ′
l ,W

′
l , A

′
l, B

′
l, p

′
l, q

′
l)l∈Z/NZ) be the linear

algebra data corresponding to F (resp. F′). From the constructions of [8, 2.3–2.5]

it follows that there are maps V ′
l → Vl, W ′

l
∼
−→Wl which commute with all the

homomorphisms. Moreover, q′l ≡ 0. From this we obtain that all the TWl
’s vanish,

and the only nonzero TVl
’s are matrices of the form Ak1

l1
◦Bk2 ◦Ak3

l3
◦ · · · ◦BkM−1 ◦

AkM

lM
where l1 = lM = l, and Bk2i stands for the composition of k2i successive

(composable) matrices of the form Br, and l2i+1 + k2i = l2i−1. It remains to show
that any such matrix is traceless.

As we already noted, for any matrix T ′
Vl

defined as in the previous paragraph but
with certain Br replaced by pr+1qr, the trace vanishes (due to the cyclic invariance
of the trace of a product, being equal to the trace of the corresponding endomor-
phism T ′

V ′

l
= 0). Using the relation Ar+1Br −BrAr +pr+1qr = 0 repeatedly we see

that TrTVl
= Tr(Ak

l (Bl−1 ◦Bl−2 ◦ · · · ◦Bl)
k′

) = Tr((Bl−1 ◦Bl−2 ◦ · · · ◦Bl)
k′

Ak
l ) for

certain k, k′. Therefore, it suffices to show that the characteristic polynomial of a
matrix Al+ cBl−1 ◦Bl−2 ◦ · · · ◦Bl equals t

dimVl for all c ∈ C. However, this charac-
teristic polynomial is nothing but the value at our point (Al, Bl, pl, ql)l∈Z/NZ ∈ Mα

of the l-th component of the factorization map Mα → Zα → Zα πc−→ Aα → A(al)

(here al is the l-the component of α ∈ N[I]). This completes the proof of the lemma.
�

Lemma 3.4. For a scheme S, any S-point of the stack g−1
Z (zZ0 ) factors through an

S-point of Pervα(SN , SN − 0).

Proof. Repeats the argument of [6, 5.17]. One has only to replace the word “trivi-
alization” in loc. cit. by “framing”, and S by SN . �
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Now an application of [6, Lemma 5.15] establishes the following.

Theorem 3.5. Over the base field C, the morphism η : Zα → Zα is an isomor-
phism.

Corollary 3.6. Over the base field C, the Zastava scheme Zα is reduced, normal,
Gorenstein, and has rational singularities.

Proof. Zα is proved to be reduced and normal in [18, Theorem 2.7]. Recall the
resolution ̟ : Pα → Zα by the affine Laumon space (see, e.g., loc. cit.). We
will prove that Pα is Calabi-Yau. Then it follows by the Grauert-Riemenschneider
Theorem that Zα has rational singularities and is Gorenstein. In order to prove that
Pα is Calabi-Yau, note that if the support of α is not the whole of I = Z/NZ, then
we are in the finite (as opposed to affine) situation, and the Calabi-Yau property
of Laumon resolution is proved in [19, Theorem 3] (cf. [15, Corollary 4.3]). If
the support of α is full, recall the boundary divisor ∂Zα ⊂ Zα introduced in [6,
11.8]. The proof of [6, Theorem 11.9] shows that for an integer M ∈ N the divisor
M∂Zα (i.e., all the components ∂lZ

α, l ∈ I, of the boundary enter with the same
multiplicity M) is a principal divisor. Let us denote η−1(∂lZ

α) by ∂lP
α. We see

that M
∑

l∈I ∂lP
α is a principal divisor in Pα.

Now recall the meromorphic symplectic form Ω on Pα (see [18, 3.1–3.2]). Let
ω = ΛtopΩ be the corresponding meromorphic volume form on Pα. The calculation
of [18, Proposition 3.5] shows that the divisor of poles of ω equals

∑
l∈I ∂lP

α. We
conclude that the canonical class of Pα is torsion. However, the Picard group of Pα

has no torsion since Pα is cellular. This completes the proof of the corollary. �

Corollary 3.7. The resolution by the affine Laumon space ̟ : Pα → Zα induces
an isomorphism ̟∗ : Γ(Zα,OZα)

∼
−→Γ(Pα,OPα). The higher cohomology of the

structure sheaf of the affine Laumon space vanishes: Hk(Pα,OPα) = 0 for k > 0.

4. The boundary of Zastava

4.1. The Cartier property. In this section g will be an arbitrary finite dimen-
sional simple or untwisted affine Lie algebra with coroot lattice Λg. Let Λ+

g ⊂ Λg

denote the cone of positive linear combinations of positive simple coroots. Let T
be the torus with the cocharacter lattice Λg. For α ∈ Λ+

g , the Zastava scheme Zα
g

is constructed in [6, Section 9] (under the name of Uα
G,B). It is a certain closure of

the (smooth) scheme
◦

Zα
g of degree α based maps from (P1,∞) to the Kashiwara

flag scheme Bg of g. In case g = sl(N)aff we have Zα
g = Zα of Section 3. The

complement ∂Zα
g := Zα

g −
◦

Zα
g (the boundary) is a quasi-effective Cartier divisor in

Zα
g according to [6, Theorem 11.9]. More precisely, there is a rational function Fα

on Zα
g whose lift to the normalization of Zα

g is regular and has the preimage of ∂Zα
g

as the zero-divisor.
In general, the boundary ∂Zα

g is not irreducible; its irreducible components
∂αi

Zα
g are numbered by the simple coroots αi which enter α with a nonzero coef-

ficient. The argument in [6, 11.5–11.7] gives the order of vanishing of Fα at the
generic point of ∂αi

Zα
g . To formulate the answer we assume that all the simple

coroots enter α with nonzero coefficients (i.e., α has full support); otherwise, the
question reduces to the similar one for a Levi subalgebra of g.
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Lemma 4.2. If αi is a short coroot, the order of vanishing of Fα at the generic
point of ∂αi

Zα
g is 1; if αi is a long coroot, the order of vanishing of Fα at the generic

point of ∂αi
Zα
g is the square length ratio of a long and a short coroot (that is, 1, 2

or 3).

Proof. First let g be simply laced. Since the restriction of the adjoint representa-
tion to a basic sl2-subalgebra slαi

2 ⊂ g is independent of αi as an sl2-module, the
argument of [6, Proof of Theorem 11.6] shows that the order of vanishing of Fα

along each boundary component ∂αi
Zα
g is the same, namely 1.

If g is not simply laced, we realize it as the folding of a simply laced g̃, i.e.,
invariants of a pinning-preserving automorphism σ : g̃

∼
−→g̃. We have Λ+(g) =

Λ+(g̃)
σ, and given α ∈ Λ+(g) we will denote the corresponding σ-invariant element

of Λ+(g̃)
σ by α̃. Then Zα

g ≃ (Zα̃
g̃ )

σ, and Fα = Fα̃|Zα
g
. Now if αi is short, α̃i is

a σ-invariant simple coroot of g̃, say βi, and generically ∂αi
Zα
g is the transversal

intersection of ∂βi
Zα̃
g̃ with Zα

g . If αj is long, α̃j is a sum of
(αj ,αj)
(αi,αi)

(= 2 or 3) simple

coroots, say βj , βj′ , βj′′ . They are all disjoint in the Dynkin diagram of g̃, and the
intersection ∂βj

Zα̃
g̃ ∩ ∂βj′

Zα̃
g̃ ∩ ∂βj′′

Zα̃
g̃ is generically transversal. Moreover, each

of ∂βj
Zα̃
g̃ , ∂βj′

Zα̃
g̃ , ∂βj′′

Zα̃
g̃ is generically transversal to Zα

g ⊂ Zα̃
g̃ , and generically

∂αi
Zα
g = Zα

g ∩∂βj
Zα̃
g̃ = Zα

g ∩∂βj′
Zα̃
g̃ = Zα

g ∩∂βj′′
Zα̃
g̃ = Zα

g ∩∂βj
Zα̃
g̃ ∩∂βj′

Zα̃
g̃ ∩∂βj′′

Zα̃
g̃ .

The lemma follows. �

4.3. The degree of Fα. The function Fα is an eigenfunction of the torus T ×
G∗

m. Here, T (the Cartan torus) acts on Zα
g via the change of framing at infinity,

and G∗
m (loop rotations) acts on the source (P1,∞), and hence on Zα

g via the
transport of structure. We denote the coordinates on T ×G∗

m by (z, q). We define
an isomorphism α �→ α∗ from the coroot lattice of (G, T ) to the root lattice of (G, T )
in the basis of simple coroots as follows: α∗

i := α̌i (the corresponding simple root).

For an element α of the coroot lattice of (G, T ) we denote by zα
∗

the corresponding
character of T .

Proposition 4.4. The eigencharacter of Fα is q(α,α)/2zα
∗

.

The proposition will be proved in Section 4.9.

4.5. Deligne pairing. In order to compute the eigencharacter of Fα we recall the
construction of Fα following Faltings [12]. To this end recall that given a family
f : X → S of smooth projective curves and two line bundles L1 and L2 on X Deligne
defines a line bundle 〈L1,L2〉 on S. In terms of determinant bundles the definition
is simply

〈L1,L2〉 = detRf∗(L1 ⊗ L2)⊗ detRf∗(OX)

⊗ (detRf∗(L1)⊗ detRf∗(L2))
−1.(4.1)

Deligne shows that the resulting pairing Pic(X) × Pic(X) → Pic(S) is symmetric
(obvious) and bilinear (not obvious).

4.6. Determinant bundles on BunT . Let T be a torus and for consistency let
Λ (resp. Λ∨) denote its coweight (resp. weight) lattice. Let also (·, ·) be an even
pairing on Λ.

Let also C be a smooth projective curve (say, over the field C) and let BunT
denote the moduli stack of T -bundles on C. Then to the above data one associates
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a line bundle D on BunT in the following way. Let e1, . . . , en be a basis of Λ and let
f1, . . . , fn be the dual basis. For every i = 1, . . . , n let Li denote the line bundle on
BunT ×C associated to the weight fi. Let also aij = (ei, ej) ∈ Z. Then we define

(4.2) D =

(
n⊗

i=1

〈Li,Li〉
⊗

aii
2

)
⊗

⎛
⎝ ⊗

1≤i<j≤n

〈Li,Lj〉
⊗aij

⎞
⎠ .

It is easy to see that D does not depend on the choice of the basis (here, of course,
we have to use the statement that Deligne’s pairing is bilinear).

4.7. The case C = C. Let now C = C (the projective line). In this case let
us denote by ′ Bun(T ) the space of T -bundles trivialized at ∞. This a scheme
isomorphic to Λ × Spec(C). We shall denote the pull-back of D to ′ BunT also
by ′D.

Recall that Gm acts on C. If v stands for a coordinate on Gm, and c stands for a
coordinate on C = P1, we need the action v(c) := v2c. Note that for this action any
line bundle on C can be equipped with a Gm-equivariant structure. Comparing to
the action of Section 4.3 we have q = v2. The Gm-action extends to an action on
′ BunT and BunT . Since the construction of D is completely natural, it follows that
′D is Gm-equivariant. Since every component of ′ BunT is a point, this equivariance
is given by a character of Gm (i.e., an integer) for every γ ∈ Λ.

Lemma 4.8. The above integer is equal to (γ, γ).

Proof. The main observation is the following. Let L be a line bundle on P1 of
degree n. It is isomorphic to O(n) and therefore it has a unique Gm-equivariant
structure such that the action of Gm on the fiber at ∞ is trivial (this makes sense
since ∞ is a fixed point of Gm). Then we claim that with respect to this equivariant
structure Gm acts on detRΓ(L) by the character v �→ vn(n+1). Indeed, if n ≥ 0
then H1(L) = 0 and H0(L) has dimension n+1 with weights 0, 2, . . . , 2n and their
sum is n(n + 1). If n < 0 then H0(L) = 0 and H1(L) has dimension −n − 1
with weights −2,−4, . . . ,−2− 2(−n− 2) and their sum is equal to −2(−n− 1) −
(−n− 1)(−n− 2) = −(−n)(−n− 1) = −n(n+ 1).

Let now L1 and L2 be two line bundles on P1 of degrees n1 and n2. Then the
action of Gm on 〈L1,L2〉 with respect to the above Gm-equivariant structure on
L1 and L2 corresponds to the integer

(4.3) (n1 + n2 + 1)(n1 + n2)− (n1 + 1)n1 − (n2 + 1)n2 = 2n1n2.

Let now F be a T -bundle of degree γ and let Li be the line bundle associated
with fi ∈ Λ∨. Then the degree of Li is ni = fi(γ). Note that γ =

∑
niei and hence

(γ, γ) =
n∑

i=1

aiin
2
i +

∑

1≤i<j≤n

2aijninj .

Therefore according to (4.3) the action of Gm on the fiber of ′D at F is by the
character v �→ vm where

m =
n∑

i=1

aii
2
(2n2

i ) +
∑

1≤i<j≤n

2aijninj = (γ, γ).

�
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4.9. Determinant bundle on Zastava space. In this section g is an arbitrary
symmetrizable Kac-Moody Lie algebra, and T is the torus with the cocharacter
lattice Λ = Λg: the coroot lattice of g. The Kashiwara flag scheme of g is denoted

by Bg, and
◦

Zγ denotes the space of based maps (P1,∞) → Bg of degree γ (see [6,
Theorem 18.1]). We let (·, ·) be the minimal even W -invariant form on Λ. Then

we have the natural maps fγ :
◦

Zγ → BunγT ,
′fγ :

◦

Zγ → ′ BunγT . Consider the line

bundle f∗
γD = ′f∗

γ (
′D) on

◦

Zγ .
This line bundle acquires two different trivializations for the following reasons.
1) Since ′ BunγT is just one point, the line bundle ′D is trivial there and hence

its pull-back is trivial as well.
2) According to Faltings [12, Section 7], there is a trivialization of the similar

bundle on the space of all maps from any smooth projective curve C to Bg (Faltings
proves this only for finite-dimensional g but his proof works word by word for any g).

Moreover, the line bundle f∗
γD is naturally Gm-equivariant (Gm acts on ev-

erything); both trivializations 1) and 2) are compatible with this structure if in
1) we let Gm act on the trivial bundle via the character v �→ v(γ,γ) (this follows
from Lemma 4.8) and in 2) we let Gm act trivially on the trivial bundle (this
follows from the fact that Faltings’ construction is natural with respect to every-

thing). Thus, 1) and 2) together give us an invertible function Fγ on
◦

Zγ such that

Fγ(vφ) = v(γ,γ)Fγ(φ), that is Fγ(qφ) = q(γ,γ)/2Fγ(φ).
This completes the proof of the main part of Proposition 4.4: we have found the

eigencharacter of Fα with respect to the loop rotations. It remains to compute the
eigencharacter of Fα with respect to the Cartan torus. We must check the following.
Given a one-parametric subgroup β : Gm → T , and a general point φ ∈ Zα

g , the

action map Gm → Zα
g , c �→ β(c) · φ, extends to the map a : Gm ⊂ A1 → Zα

g .

We must check that the function Fα ◦ a on A1 has the order of vanishing 〈β, α∗〉
at the origin. By the factorization property of Zα

g the question reduces to the case
g = sl(2), α = 1, which is obvious. It follows in particular that the function Fα

vanishes along the boundary of Zα
g . �

5. Gorenstein property of Zastava

Suppose g is a simply laced simple Lie algebra.

Proposition 5.1. Zα
g is a Gorenstein (hence, Cohen-Macaulay) scheme with

canonical (hence rational) singularities.

Proof. We are going to apply Elkik’s criterion [10] in order to prove that Zα
g has

rational singularities. To this end we will use the Kontsevich resolution π : Mα
g →

Zα
g (see [13, Section 8]). We will show that the discrepancy of π is strictly positive,

that is the singularities of Zα
g are canonical, hence rational.

Recall that M0,0(P
1×Bg, (1, α)) is the moduli space of stable maps from curves

of genus zero without marked points of degree (1, α) to P1 × Bg. It is a smooth
Deligne-Mumford stack equipped with a birational projection to the space of Drin-
feld quasimaps from P1 to Bg. If C is such a curve of genus 0, then it has a
distinguished irreducible component Ch (h for horizontal) which maps isomorphi-
cally onto P1. Using this isomorphism to identify Ch with P1 we obtain the points
0,∞ ∈ Ch. Now Mα

g ⊂ M0,0(P
1 × Bg, (1, α)) is the locally closed substack cut
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out by the open condition that ∞ ∈ Ch is a smooth point of C, and by the closed
condition that the stable map φ : C → P1 ×Bg takes ∞ ∈ Ch ⊂ C to the marked
point e− ∈ Bg.

The open substack
◦

Mα
g ≃

◦

Zα
g of genuine-based maps is formed by the pairs

(C, φ) such that C is irreducible. The complement is a normal crossing divisor
with irreducible components Dβ numbered by all β ≤ α. The generic point of Dβ

parametrizes the pairs (C, φ) such that C = Ch ∪ Cv is a union of 2 irreducible
components (v for vertical), and the degree of φ|Cv

equals (0, β). If β = αi is a
simple root, then π : Dαi

→ Zα
g is a birational isomorphism onto the boundary

component ∂αi
Zα
g ⊂ Zα

g . If β is not a simple root, then Dβ is an exceptional divisor
of the Kontsevich resolution π : Mα

g → Zα
g .

Recall the symplectic form Ω on
◦

Zα
g constructed in [16]. Its top exterior power

Λ|α|Ω is a nonvanishing section of the canonical line bundle on
◦

Zα
g . It is well

known that the complement
•

Zα
g ⊂ Zα

g to the union of codimension at least 2

boundary components is smooth. Let us denote its canonical line bundle by
•
ω.

Then according to [16, Remark 3], Λ|α|Ω has poles of order 1 at all the boundary

divisors ∂αi
Zα
g ⊂

•

Zα
g . According to Lemma 4.2, the product FαΛ

|α|Ω is a regular

nowhere vanishing section of
•
ω, hence

•
ω is a trivial line bundle. We conclude that

Zα
g is Q-Gorenstein with trivial canonical class ωZ , and the discrepancy of the

Kontsevich resolution π : Mα
g → Zα

g is isomorphic to its canonical class ωM . We

have ωM ⊗ π∗ω−1
Z =

∑
β≤α mβDβ . We know that for β = αi a simple root the

multiplicity mαi
is 0, and we will compute the multiplicities for all the rest β, and

show that they are all strictly positive. In fact, due to the factorization property
of Zastava, it suffices to compute a single multiplicity mβ : for β = α.

Lemma 5.2. mα = |α|+ (α,α)
2 − 2.

Proof. The loop rotations group Gm (cf. Section 4.3) acts on Mα
g via its action on

the target P1. The fixed point set DGm
α contains all the pairs (C, φ) such that C

consists of 2 irreducible components, Ch and Cv, intersecting at the point 0 ∈ Ch.
We will compute mα via comparison of the Gm-actions in the fibers of ωM and the
normal bundle N to Dα at such a fixed point (C, φ) ∈ DGm

α .
The fiber of the normal bundle N(C,φ) equals the tensor product of the tangent

spaces at 0 to Ch and Cv. Hence, Gm acts on N(C,φ) via the character q−1 (recall
that in the normalization of Section 4.3 and Section 4.7 Gm acts on the coordinate
function on P1 ≃ Ch via the character q; hence, it acts on the tangent space at 0
via the character q−1).

According to [23, 1.3], the tangent space T(C,φ)Dα is H1(C,F•(−∞)) where

F• = F0 → F1 is the following complex of sheaves in degrees 0,1: F0 is the sheaf of
vector fields on C vanishing at 0; while F1 = φ∗TP1×Bg

is the pullback of the tangent

sheaf of the target. Moreover, according to loc. cit., H0(C,F•) = H2(C,F•) = 0.
It is immediate to check that H•(C,F0(−∞)) = H0(C,F0(−∞)) is a

3-dimensional vector space with Gm-character 1 + 1 + 1, hence it con-
tributes to detH1(C,F•(−∞)) the Gm-character 1. It is also clear that
H•(C, φ∗TP1×Bg

(−∞)) = H0(C, φ∗TP1×Bg
(−∞)) is a direct sum of a 2|α|-

dimensional vector space with trivial Gm-action, and a 2-dimensional vector
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space with Gm-character 1 + q−1. Hence, it contributes the Gm-character q−1 to
detH1(C,F•(−∞)). All in all, Gm acts on detT(C,φ)M

α
g with the character q−2,

and on the fiber of the canonical bundle ωM,(C,φ) with the character q2.
Now recall that the canonical class ωZ of Zα

g is trivialized by the section

FαΛ
|α|Ω which is an eigensection of Gm with the character q

(α,α)
2 +|α|; this

follows from Proposition 4.4 and [16, Remark 3]. Hence, Gm acts on the
fiber at (C, φ) of the discrepancy line bundle ωM ⊗ π∗ω−1

Z with the character

q2−
(α,α)

2 −|α|. It coincides with the character of Gm in the fiber N(C,φ) raised to

the power (α,α)
2 + |α| − 2. Hence, O(Dα) must enter ωM ⊗ π∗ω−1

Z with coefficient
(α,α)

2 + |α| − 2. This completes the proof of the lemma. �

We return to the proof of the proposition. Since mα is positive for nonsimple α,
the singularities of Zα

g are canonical, hence rational, therefore Cohen-Macaulay. It
remains to prove the Gorenstein property. Let us denote by j the open embedding

of
•

Zα
g into Zα

g . Let us denote by DZ the dualizing sheaf of Zα
g . We have to check

that the natural map ψ : DZ → j∗
•
ω is an isomorphism (the RHS is a trivial line

bundle on Zα
g ). Let ̟ : Zα

g → Y be a finite map to a smooth affine scheme. Then
DZ is locally free over Y , and ̟∗ψ is an isomorphism, hence ψ is an isomorphism
itself.

The proposition is proved. �

6. Fermionic formulas and the boundary of Zastava

6.1. Structure of the boundary. If α = β + γ for α, β, γ ∈ Λ+
g , then according

to [6, Section 10], we have a finite morphism ιβ,γ : Zβ
g × (C − ∞)γ → Zα

g . Its
image (a closed reduced subscheme of Zα

g ) will be denoted by ∂γZ
α
g . We will denote

Zβ
g × (C − ∞)γ (resp. ∂Zβ

g × (C − ∞)γ) by ∂̃γZ
α
g (resp. ∂∂̃γZ

α
g ) for short. The

image of ∂∂̃γZ
α
g in ∂γZ

α
g (a closed reduced subscheme of ∂γZ

α
g ) will be denoted by

∂∂γZ
α
g . The union of ∂γZ

α
g over all γ ∈ Λ+

g such that α − γ ∈ Λ+
g and |γ| = n (a

closed reduced equidimensional subscheme of Zα
g of codimension n) will be denoted

∂nZ
α
g . Here for γ =

∑
ciαi we set |γ| =

∑
ci. The disjoint union of ∂̃γZ

α
g (resp.

∂∂̃γZ
α
g ) over all γ ∈ Λ+

g such that α − γ ∈ Λ+
g and |γ| = n will be denoted by

∂̃nZ
α
g (resp. ∂∂̃nZ

α
g ). Thus we have a finite morphism ιn : ∂̃nZ

α
g → ∂nZ

α
g , and

the reduced preimage of ∂n+1Z
α
g ⊂ ∂nZ

α
g is ∂∂̃nZ

α
g ⊂ ∂̃nZ

α
g . Hence, we have an

embedding ι∗n : Γ(∂nZ
α
g ,O∂nZα

g
(−∂n+1Z

α
g )) →֒ Γ(∂̃nZ

α
g ,O∂̃nZα

g

(−∂∂̃nZ
α
g )).

6.2. Equivariant K-theory of affine Laumon spaces. This subsection deals
with the case g = sl(N)aff . We recall some facts from [7] and [14]. We consider the
equivariant K-theory of the affine Laumon spaces Pα with respect to certain torus

T̂ = T̃ ×C∗×C∗. Here T̃ is a certain 2N−1-fold cover of a Cartan torus T ⊂ SL(N)
acting on Pα via the change of framing at infinity, while C∗ × C∗ acts on SN by

dilations, and hence on Pα by the transport of structure. The coordinates on T̂
are denoted by (t1, . . . , tN , u, v), t1 · . . . · tN = 1. Certain natural correspondences
between the affine Laumon spaces give rise to the action of the affine quantum
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group U of type ÃN−1 (a C[v±1]-algebra) on M =
⊕

α Mα :=
⊕

α K T̂ (Pα)⊗KT̂ (pt)

Frac(K T̂ (pt)). The Cartan subalgebra of U is U0 = C[v±1, C±1, L±1
i , 0 ≤ i ≤

N − 1] in notations of [7, 3.5]. Now M contains the universal Verma module

M′ over U′ = U ⊗ Frac(U0); here C acts as uvN , while for α =
∑N−1

i=0 diαi the

action of Li on Mα is given by t−1
1 · · · t−1

i vdi+i(n−i)/2, see [7, 3.4,3.17]. A certain

completion M̂′ contains the Whittaker vector u =
∑

α uα, and the dual Whittaker
vector n′ =

∑
α n′α. According to [7, Corollary 3.21], the Shapovalov scalar product

(n′α, uα) ∈ C(t1, . . . , tN , u, v) equals the class Jα := [RΓ(Pα,OPα)] ∈ Frac(K T̂ (pt))
up to a monomial in t, u, v. Comparing with [14, Theorem 3.1] we see that the
collection of rational functions Jα is uniquely characterized by the condition J0 = 1,
and the recursion relation

(6.1) Jα =
∑

0≤β≤α

q(β,β)/2zβ
∗

(q)α−β
Jβ,

where q = v2, and (q)γ :=
∏N−1

i=0

∏ci
s=1(1 − qs) for γ =

∑N−1
i=0 ciαi; while zγ

∗

:=∏N−1
i=0 zcii and zi = ti+1t

−1
i uδ0,i corresponds to the highest weight of the standard

Cartan generator Ki = L2
iL

−1
i+1L

−1
i−1C

δi,0 ∈ U0 (i is understood as a residue mod N
in the latter formula). Now Corollary 3.7 yields the following.

Corollary 6.3. The classes Jα = [Γ(Zα,OZα)] ∈ Frac(K T̂ (pt)) satisfy the recur-
sion relation (6.1).

Proposition 6.4. Let g be a simply laced finite or affine Lie algebra such that
Zα
g is normal for every α. The embedding ι∗n : Γ(∂nZ

α
g ,O∂nZα

g
(−∂∂nZ

α
g )) →֒

Γ(∂̃nZ
α
g ,O∂̃nZα

g

(−∂∂̃nZ
α
g )) is an isomorphism for any n (equivalently,

ι∗|γ| : Γ(∂γZ
α
g ,O∂γZα

g
(−∂∂γZ

α
g )) →֒ Γ(∂̃γZ

α
g ,O∂̃γZα

g

(−∂∂̃γZ
α
g )) is an isomorphism

for any γ ≤ α), if and only if the fermionic recursion (1.3) holds for any α. �

Proof. We have [Γ(∂̃γZ
α
g ,O∂̃γZα

g

)] = J
g
α−γ · 1

(q)γ
where J

g
β stands for the class of

[Γ(Zβ
g ,OZβ

g

)] in Frac(KT×C
∗

(pt)). Also, [Γ(∂Zβ
g ,O∂Zβ

g

)] = (1− q(β,β)/2zβ
∗

)Jgβ since

the (reduced) subscheme ∂Zβ
g ⊂ Zβ

g is cut out by the equation Fβ whose T ×Gm-
degree is given by Proposition 4.4. In effect, the zero-subscheme of Fβ is generically
reduced (at each irreducible component) by Lemma 4.2, and hence reduced due to

normality of Zβ
g . In effect, we must check that any function f ∈ Γ(Zβ

g ,OZβ
g

)

vanishing at the boundary is divisible by Fβ . The rational function f/Fβ is regular
at the generic points of all the components of the boundary due to Lemma 4.2, so

it is regular due to normality of Zβ
g .

All in all we see that [Γ(∂̃γZ
α
g ,O∂̃γZα

g

(−∂∂̃γZ
α
g ))] is equal to

[Γ(∂̃γZ
α
g ,O∂̃γZα

g

)]− [Γ(∂∂̃γZ
α
g ,O∂∂̃γZα

g

)] =
q(α−γ,α−γ)/2z(α−γ)∗

(q)γ
Jα−γ .

Furthermore, since [Γ(∂nZ
α
g ,O∂nZα

g
(−∂n+1Z

α
g ))] = [Γ(∂nZ

α
g ,O∂nZα

g
)] −

[Γ(∂n+1Z
α
g ,O∂n+1Zα

g
)]wehave [Γ(Zα

g ,OZα
g
)] =

∑
n≥0[Γ(∂nZ

α
g ,O∂nZα

g
(−∂n+1Z

α
g ))] =∑

γ≤α[Γ(∂γZ
α
g ,O∂γZα

g
(−∂∂γZ

α
g ))]. Let us view this equality as an equality of
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formal power series in q, z with nonnegative powers and with nonnegative integral

coefficients. Note that [Γ(∂̃γZ
α
g ,O∂̃γZα

g

(−∂∂̃γZ
α
g ))] � [Γ(∂γZ

α
g ,O∂γZα

g
(−∂∂γZ

α
g ))]

(meaning that the LHS series is termwise bigger than or equal to the RHS series)

since Γ(∂γZ
α
g ,O∂γZα

g
(−∂∂γZ

α
g )) →֒ Γ(∂̃γZ

α
g ,O∂̃γZα

g

(−∂∂̃γZ
α
g )).

Comparing to the equality (1.3), in view of the equality

[Γ(∂̃γZ
α
g ,O∂̃γZα

g

(−∂∂̃γZ
α
g ))] = q(α−γ,α−γ)/2z(α−γ)∗

(q)γ
Jα−γ , we must have

[Γ(∂̃γZ
α
g ,O∂̃γZα

g

(−∂∂̃γZ
α
g ))] = [Γ(∂γZ

α
g ,O∂γZα

g
(−∂∂γZ

α
g ))] which completes the

proof of the proposition. �

6.5. Proof of Theorem 1.5.

Lemma 6.6. The factorization morphism π : Zα
g → Aα = (C−∞)α is flat.

Proof. According to Proposition 5.1, Zα
g is Cohen-Macaulay. Evidently, Aα is regu-

lar. It is well-known that all the fibers of π have the same dimension |α|. It remains
to apply [26, Theorem 23.1]. �

Let Fα
g = π−1(α · 0) stand for the scheme-theoretic fiber of π : Zα

g → Aα over

α · 0 ∈ Aα. Let Iα = [Γ(Fα
g ,OFα

g
)] ∈ Frac(KT×C

∗

(pt)) be the character of the ring
of regular functions on the central fiber of π.

Corollary 6.7. Iα = (q)αJα.

Proof. First, [Γ(Aα,OAα)] = (q)−1
α . Second, the flatness of π implies that π∗OZα

g
is

a direct sum of finite dimensional T ×C∗-equivariant vector bundles Vξ s.t. T ×C∗

acts in the fiber of Vξ over α · 0 via a character ξ of T × C∗. Finally, the fiber of
π∗OZα

g
over α · 0 is nothing but Γ(Fα

g ,OFα
g
). �

Now the fermionic recursion (1.3) is equivalent to

(6.2) Iα =
∑

β≤α

q(β,β)/2zβ
∗

(
α

β

)

q

Iβ ,

where for α =
∑

i∈I aiαi, β =
∑

i∈I biαi we set
(
α
β

)
q
:=

∏
i∈I

∏ai

s=1(1−qs)
∏bi

s=1(1−

qs)−1
∏ai−bi

s=1 (1 − qs)−1. We will prove the fermionic recursion (1.3) in the equiva-
lent formulation (6.2). To this end, we introduce the schemes (cf. notations of Sec-

tion 6.1): ∂γF
α
g , ∂̃γF

α
g , ∂∂̃γF

α
g , ∂∂γF

α
g , ∂̃nF

α
g , ∂∂̃nF

α
g as the scheme-theoretic

fibers over α · 0 ∈ Aα of the corresponding morphisms ∂γZ
α
g → Aα etc. (“the fiber

of Z is F”).

As in the proof of Proposition 6.4, we see that [Γ(∂̃γF
α
g ,O∂̃γF

α
g

(−∂∂̃γF
α
g ))] is

equal to

[Γ(∂̃γF
α
g ,O∂̃γF

α
g

)]− [Γ(∂∂̃γF
α
g ,O∂∂̃γF

α
g

)] = q(α−γ,α−γ)/2z(α−γ)∗
(
α

γ

)

q

Iα−γ .

In effect, ∂̃γF
α
g projects to the fiber of Aα−γ × Aγ → Aα over α · 0. The character

of the ring of regular functions on this fiber equals
(
α
γ

)
q
, the projection is flat, and

its fiber over (α− γ) · 0× γ · 0 is nothing but Fα−γ
g .

Furthermore, since [Γ(∂nF
α
g ,O∂nF

α
g
(−∂n+1F

α
g ))] = [Γ(∂nF

α
g ,O∂nF

α
g
)] −

[Γ(∂n+1F
α
g ,O∂n+1F

α
g
)] we have [Γ(Fα

g ,OFα
g
)] =

∑
n≥0[Γ(∂nF

α
g ,O∂nF

α
g
(−∂n+1F

α
g ))] =
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∑
γ≤α[Γ(∂γF

α
g ,O∂γF

α
g
(−∂∂γF

α
g ))]. Let us view this equality as an equality of formal

power series in q, z with nonnegative powers and with nonnegative integral coeffi-

cients. Note that [Γ(∂̃γF
α
g ,O∂̃γF

α
g

(−∂∂̃γF
α
g ))] � [Γ(∂γF

α
g ,O∂γF

α
g
(−∂∂γF

α
g ))] (mean-

ing that the LHS series is termwise bigger than or equal to the RHS series) since

Γ(∂γF
α
g ,O∂γF

α
g
(−∂∂γF

α
g )) →֒ Γ(∂̃γF

α
g ,O∂̃γF

α
g

(−∂∂̃γF
α
g )). We conclude that the

recursion (6.2) holds iff [Γ(∂̃γF
α
g ,O∂̃γF

α
g

(−∂∂̃γF
α
g ))] = [Γ(∂γF

α
g ,O∂γF

α
g
(−∂∂γF

α
g ))].

Note that both sides of the above equality are well defined at q = 1, and since we
already know the inequality LHS�RHS, it suffices to check the equality at q = 1.
Let us denote Iα|q=1 by I′α. Then I′α is the class of [Γ( ′Fα

g ,O′Fα
g
)] ∈ Frac(KT (pt))

where ′Fα
g is an arbitrary fiber of π : Zα

g → Aα. If x ∈ Aα is a general point

(a configuration of distinct points), then by factorization π−1(x) is isomorphic to∏
i∈I A

ai , and I′α =
∏

i∈I(1 − zi)
−ai . The fermionic recursion (6.2) at q = 1

becomes the evident equality I′α =
∑

β≤α zβ
∗
(
α
β

)
I′β . This completes the proof

of Theorem 1.5.

7. Non simply laced case

7.1. As mentioned before, Theorem 1.5 does not hold verbatim for non-simply laced
g. It is reasonable to ask whether one can modify the statement so that an analog
of Theorem 1.5 becomes true in the non-simply laced case. For this one should
either modify the geometric problem (i.e., modify the definition of Jα) or modify
the equations that we want our J-function to satisfy. Apparently, both ways are
possible, however the former is much easier than the latter. In this last section we
explain how to modify the definition of Jα and sketch a proof of the corresponding
analog of Theorem 1.5. Details (as well as other variants of Theorem 1.5 in the
non-simply laced case) will appear in another publication.

7.2. Fermionic recursion. We recall the results of [14]. Let ǧ be a simple Lie
algebra with the corresponding adjoint Lie group Ǧ. Let Ť be a Cartan torus of Ǧ.
We choose a Borel subgroup B̌ ⊃ Ť . It defines the set of simple roots {αi, i ∈ I}.
Let G ⊃ T be the Langlands dual groups. We define an isomorphism α �→ α∗ from
the root lattice of (Ǧ, Ť ) to the root lattice of (G, T ) in the basis of simple roots
as follows: α∗

i := α̌i (the corresponding simple coroot). For two elements α, β of
the root lattice of (Ǧ, Ť ) we say β ≤ α if α−β is a nonnegative linear combination
of {αi, i ∈ I}. For such α we denote by zα

∗

the corresponding character of

T . As usual, q stands for the identity character of Gm. We set di = (αi,αi)
2 ,

and qi = qdi . For γ =
∑

i∈I ciαi, we set (q)γ :=
∏

i∈I

∏ci
s=1(1 − qsi ). According

to [14, Theorem 3.1], the recurrence relations

Jα =
∑

0≤β≤α

q(β,β)/2zβ
∗

(q)α−β
Jβ

uniquely define a collection of rational functions Jα, α ≥ 0, on T × Gm, provided
J0 = 1. Moreover, these functions are nothing but the Shapovalov scalar products
of the weight components of the Whittaker vectors in the universal Verma module
over the corresponding quantum group.

We can now explain why Theorem 1.5 doesn’t literally hold for non-simply laced
g. This can be seen, for example, in the following way. Let αi be a simple coroot
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of g. Then it is easy to see that we have

Jαi
(z, q) =

1

(1− zα
∗

i qi)(1− qi)
.

However, the character of C[Zαi
g ] is simply 1

(1−zαi
∗

q)(1−q)
. Moreover, in this case

Zαi
g is isomorphic to the affine plane A2, so it obviously has rational singularities.

Therefore the character of C[Zαi
g ] is equal to Jαi

. Hence, we see that if qi �= q then
Jαi

�= Jαi
.

7.3. Geometric interpretation of Jα. We are now going to introduce a scheme

Ẑα
g equipped with the action of T × Gm such that the character of C[Ẑα

g ] equals
Jα.

To this end we realize ǧ as a folding of a simple simply laced Lie algebra ǧ′,
i.e., as invariants of an outer automorphism σ of ǧ′ preserving a Cartan subalgebra
ť′ ⊂ ǧ′ and acting on the root system of (ǧ′, ť′). In particular, σ gives rise to the
same named automorphism of the Langlands dual Lie algebras g′ ⊃ t′. We denote
by Ξ the finite cyclic group generated by σ. Let G′ ⊃ T ′ denote the corresponding
simply connected Lie group and its Cartan torus. The coinvariants X∗(T

′)σ of
σ on the coroot lattice X∗(T

′) of (g′, t′) coincide with the root lattice of ǧ. We
have an injective map a : X∗(T

′)σ → X∗(T
′)σ from coinvariants to invariants

defined as follows: given a coinvariant ᾱ with a representative α ∈ X∗(T
′) we set

a(ᾱ) :=
∑

ξ∈Ξ ξ(α). Given ᾱ ≥ 0 in the root lattice of ǧ, we define an automorphism

ς of the based quasimaps’ space Z
a(ᾱ)
g′ as follows. It is the composition of two

automorphisms: a) σ on the target and b) multiplication by ζ on the source C ∼= P1.
Here, ζ is a primitive root of unity of the order equal to the order of σ. One can

check that the fixed point set (
◦

Z
a(ᾱ)
g′ )ς is connected. We define Ẑᾱ

g as the closure

of (
◦

Z
a(ᾱ)
g′ )ς in Z

a(ᾱ)
g′ .

The equality Jᾱ = [C[Ẑᾱ
g ]] is proved along the lines of the argument of the

previous sections. In particular, the role of the affine Grassmannian of G in the
simply laced case is played by the ramified Grassmannian of (G′, σ), see [31].
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pp. 335–368. MR1363062 (97d:14077)

[24] Y.-P. Lee and R. Pandharipande, A reconstruction theorem in quantum cohomology and
quantum K-theory, Amer. J. Math. 126 (2004), no. 6, 1367–1379. MR2102400 (2006c:14082)
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