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In the theory of operators on a Hubert space, the latter actually does not
function as a particular Banach space (whose norm satisfies the parallelo-
gram law), but rather as an inner-product space. It is in terms of the inner-
product space structure that most of the terminology and techniques are
developed. On the other hand, this type of Hubert space considerations find
no real parallel in the general Banach space setting.

Some time ago, while trying to carry over a Hubert space argument to a
general Banach space situation, we were led to use a suitable mapping from a
Banach space into its dual in order to make up for the lack of an inner-
product.

Our procedure suggested the existence of a general theory which it seemed
should be useful in the study of operator (normed) algebras by providing
better insight on known facts, a more adequate language to "classify" special
types of operators, as well as new techniques. These ideas evolved into a
theory of semi-inner-product spaces which is presented in this paper (to-
gether with certain applications)(').

We shall consider vector spaces on which instead of a bilinear form there
is defined a form [x, y] which is linear in one component only, strictly posi-
tive, and satisfies a Schwarz inequality. Such a form induces a norm, by
setting ||x|| = ([x, x])1/2; and for every normed space one can construct at
least one such form (and, in general, infinitely many) consistent with the
norm in the sense [x, x] = ||x||2. In such a setting, one can then, for instance,
talk about a pseudo quadratic form (we shall use the term "numerical
range") of an operator T, i.e., [Tx, x]; one can define hermitian operators as
those for which [Tx, x] is real; and one can extend the concept of a point
state w to the case of an arbitrary algebra of normed space operators, by
defining co(T) = [Tx, x], with x fixed.

The important fact is that, roughly speaking, a semi-inner-product still
provides one with sufficient structure to obtain certain nontrivial general
results.

The definitions and general results are given in parts I and II. Part I
centers around the numerical range (pseudo quadratic form) WiT) associated
with an operator. In particular, it is shown that, despite the loss of the essen-
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tial algebraic properties of a quadratic form, it still holds in the case of
complex semi-inner-product spaces, that the norm of an operator is bounded
in terms of W(T). Part II deals with states and point states on algebras of
operators on a semi-inner-product (normed) space. Here the main result is
that the cone of states is the closed convex hull of the point states. This re-
sult extends a theorem of Bohnenblust and Karlin [2]—and is actually a
noncommutative extension of the representation theorem of F. Riesz.

In part III, by considering normed spaces, and algebras, as semi-inner-
product spaces, we give new simple proofs of results by Bohnenblust and
Karlin [2] and slightly extend one of these results in connection with the
renorming of a linear space. We consider furthermore a "natural" definition
of hermiticity for operators on any semi-inner-product space, i.e., [Tx, x]
real, which when applied to operators on a normed space is consistent with
the different semi-inner-products which this space admits. It turns out that
this approach from a completely different point of view supports a definition
of hermiticity given by I. Vidav [12], i.e., ||/4-î'ar|| = 14-o(o:), a real.

In part IV, we consider * algebras, and derive a very simple (and we be-
lieve technically illuminating) new proof of the fact that B* algebras are C*.
Finally we prove that, the C* character of a * algebra with identity e (at
least within equivalent renorming) does not depend on a global condition
connecting the involution and the norm, but rather on "local differential
condition" near the identity; i.e., if in a * algebra A we have ||a;*jc||/||x|| \\x*\\
= 14-o(r), r = ||e — x\\, lor small r, then A is (at least within equivalent re-
norming) a C* algebra (in particular A is symmetric, and this, again, implies
directly that B* is C*)(2).

Sides results, certain examples and applications, and a few proofs have
been left out in order not to distract the reader from the main issues.

Prerequisites and notations. The reader is assumed to be familiar with the
current terminology of functional analysis. The latter as well as the notation
is close to that used in [7]. In principle [7], also [l], [5] (for Hubert space
results, and [lO] (for terminology and results on C* algebras) may be used
as general references.

Only a few unusual terms (or notations), seem to call for an explanation:
Given a set S of numbers, we write \S\ for sup{ \s\ : sES}. We write a + ßS,
a and ß numbers, for {a+ßs: sES}. 5^0, means 5 real and ^0 for all sES
(and of course 5 = 0 stands for 5= {o}).

We shall call a subset C of a normed linear space a cone, if it is convex
and positive-homogeneous (i.e., if xEC, ax EC for a real ^0). We shall also
refer to the set {xEC: \\x\\ = 1} as the base of the cone C.

(2) In this paper, virtually, only bounded operators on semi-inner-product spaces are
considered.

Unbounded operators on a semi-inner-product space have been considered recently in con-
nection with "dissipative" operators on a Banach sDace, in a forthcoming paper by R. S. Phillips
and the author.
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I. Semi-inner-products
1. Semi-inner-product spaces.
Definition 1. Let X be a complex (real) vector space. We shall say that

a complex (real) semi-inner-product is defined on X, if to any x, yEX there
corresponds a complex (real) number [x, y] and the following properties hold:

(i)   [x + y,z] = [x, 2] + [y, 2]

[Xx, y] = X[x, y]    for    x, y, 2 E X;   X complex (real),

(ii) [x, x] > 0   for   xj* 0,

(iii)      I [x, y}\2 ¿ [x, x][y, y].

We then call X a complex (real) semi-inner-product space (in short s.i.p.s.).
The concrete significance of the previous notion is shown by the following

Theorem 2. A semi-inner-product space is a normed linear space with the
norm [x, x]1/2. Every normed linear space can be made into a semi-inner-
product space iin general, in infinitely many different ways).

Proof. We first show that [|x|| = [x, x]1/2 is a norm.

11* +HI2 = [x + y, x + y} = [x, x + y} + [y, x + y] ̂  (||x|| + ||y||)||* + y\\,
\\x + y\\ Ú ||*|| + ||y||,

||Xx||2 = X[x, Xx] ̂   I X I ||x|| |[Xx||,

^ (l/|x|)||Xx||.

Thus

||Xx|| =   I X| ||x||.

On the other hand let X he a normed linear space, and X* its dual. For each
xEX, there exists by the Hahn-Banach theorem at least one (and we shall
choose exactly one) functional WxEX* such that (x, Wx) = ||x||2. Given any
such mapping W from X into X* (and there exist in general for a given X
infinitely many such mappings), it is at once verified that [x, y] = (x, Wy)
defines a semi-inner-product.

Unless stated differently, the topology on a s.i.p.s. will be the one induced
by the norm [x, x]1/2, and it will be in this sense that we shall refer to
"bounded operators."

Two immediate and natural questions are the following: when is a s.i.p.s.
a Hubert space; moreover, when is there a unique semi-inner-product asso-
ciated to a given normed linear space. The answer is quite elementary;
namely we have

Xx    <     X ForX ?¿0, \\x\\
1

— Xx
X
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Theorem 3. A Hubert space H can be made into a s.i.p.s. in a unique way;
a semi-inner-product is an inner-product if and only if the norm it induces
verifies the parallelogram law.

Proof. Given any semi-inner-product on H, [x, y] is for fixed y9^0, a
linear bounded functional on H, and by a well known theorem there exists
zEH, such that [x, y] = (x, a), the latter bracket denoting here the usual
inner-product. From this, ||y||=||a||, and from ||y||2 = (y, a) by the strict
Schwarz inequality it follows that a=Xy; but again (y, Xy)=||y||2 so that
a = y. If one had a pre-Hilbert space to start with, one would use its comple-
tion arriving at the same end result.

In general, one shows easily that a normed linear space can be made into
a semi-inner-product space in a unique way if and only if its unit sphere is—
what is usually called—smooth (i.e., there is a unique support hyperplane
at each point of the unit surface).

2. The numerical range of an operator. The notion of a quadratic form
associated with a matrix, leads in the theory of operators on a Hubert space
to that of the numerical range W(T) of an operator T, defined by W(T)
= {(Tx, x): ||íc|| = l}. Here we introduce an extension of this concept that
will play an important role in our future considerations.

Definition 4. Let X he any s.i.p.s., and T any operator (linear trans-
formation) on X. The set of numbers W(T)= { [Tx, x]: [x, x] = l} will be
called the numerical range of the operator T. That the above concept of a
numerical range actually extends the classical one follows at once from
Theorem 3.

The following elementary properties are readily verified: Let T, T' be
any operators on a s.i.p.s., I the identity operator, and a, ß numbers, then

\w(T)\ s||r||,
W(aT + ßl) = aW(T) + ß,
W(T + V) E W(T) + W(T'),

hence | W(aT)\ =\a\ \W(T)\ and \W(T+T')\ ú\W(T)\+\W(T')\ so that
| W( ) | defines a seminorm. In fact we shall see later that it actually defines
a norm.

Next, denote the spectrum of an operator T by a(T), and by ir(T) its
approximate point spectrum [ll, p. 231 ](3). Let d stand for "boundary of."
Then we have

Theorem 4. Let T be any bounded operator on a s.i.p.s. X, then w(T)
C [W(T) ]~: In particular d<r(T) E [W(T) ]". " denotes "closure."

Proof. If \Eir(T), there exist x„£X, such that [x„, x„] = ||x„||2= 1, and
QJ-T)x„-+0. Now

(3) Another reference is: [6, p. 145].
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|| (XI — T)xn\\ ^  | [(X7 - T)xn, xn} I   =  I X — [Txn, xn} | .

Thus [Txn, x„]—>X, and hence X£ [W^T)]-.
It is well known that daCT) EriT), thus in particular óV(ÍT) C [W(2")]_.

Also notice that consequently one always has |<r(r)| á | W(r)|.
Deeper and more important is the consideration of 0(x, y) = [Tx, y] as

compared with <£(x) = [Tx, x], where T is a bounded operator on any s.i.p.s.
X; x, y EX. When X is a complex Hubert space, p is sesquilinear, p is the
associated quadratic form;

H0II =      sup       I 4>ix,y)\   = \\T\\,
M-uM-i

and \\p\\ = I W(T)\. In this case it is well known that if <£(x) =0, then T=0
and moreover \\t\\ ^2 W^(r)|. If the inner-product is replaced by a semi-
inner-product, though the algebraic connection between cp and p is lost, one
still obtains a very similar result.

Theorem 5. If X is any complex s.i.p.s., and T any bounded operator on X,
then ||r||^4| W(r)|. In particular if [Tx, x] = 0, then T = 0.

Proof. Since | aiT) | t% | WiT) |, the operator valued function of a complex
variable P(X) = (7+XT)-1 is defined and analytical for |X| <1/| W(r)|, and
a fortiori for |x| £R=l/2\ WiT) .

For xEX, \\x\\ = l; ||*+X7*| ^\[(I+XT)x, x]|=|l+X[7x, *]|àl/2,
if |X|^P. Hence for all xEX, ||(J+X7>|| è||*||/2 if |X| £R, thus also
||p(X)||g2 for |X| = P.

On the other hand, FÇX)= I—TX+T2X2 • • • , and the Cauchy estimates
[7, p. 97] applied to the coefficient of X give ||r|| ^2/P = 4| WiT)\.

Notice that for Theorem 5 it is essential that X be complex. The theorem
fails to hold for real spaces, even when the space is the finite dimensional
Hubert space Rn; for instance let-C"3on Ri.

Consider next the case when the s.i.p.s. A is an algebra. In this case each
aEA defines an operator (a) on A, by setting (a)x = ax for all xEA; and
this leads us to define a numerical range of a.

Definition 6. Given a s.i.p.s. A which is also an algebra, the numerical
range of any aEA is the set of numbers Wia) = { [ax, x] : [x, x] = 1}.

We shall be particularly interested in the case in which [xy, xy ] ^ [x, x ] [y, y ]
(i.e., when we have a Banach algebra or rather a "normed algebra"). In this
case, if A has an identity, the algebra A is isomorphic and isometric to
iA) = {(a) : aEA}, and the results of this section carry over without change.

3. Example and comments. As an example of the use of the previous
methods—although in principle the discussion of applications is relegated to
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later sections—we mention here a simple "Hubert space like" proof of the
fact that in the algebra B(X) of bounded operators on any complex Banach
space X, the identity / is an extreme point of the unit sphere: Consider Xas
a s.i.p.s.; then all we have to prove is that for any TEB(X), \\l +T\\=^\l —T\\
= 1 implies r = 0. Define D=\\ complex: |x| Si}. Then \W(T±I)\ SI
gives {W(T)±l}ED. It follows W(T) E(D + l)C\(D-l)=0; thus from
Theorem 5, T = 0.

At this point, a few comments on the previous section seem appropriate.
For one thing, the reader might wonder about the convexity of W(T) in the
general situation. The answer is no; i.e., W(T) is not necessarily convex in
the general case. This will become clear later.

Particular propositions involving the numerical range of Hilbert space
operators, which seem to have no special interest or application in a more
general context, have not been considered here. Yet one may point out that
the existence of an inner-product is often not essential for such properties to
hold. As an example let us consider

Proposition 7. Let X be a s.i.p.s. such that the unit sphere in the induced
norm is uniformly convex. Let T be a bounded operator on X. Then
{X complex: |X| =\\T\\}r\[W(T)]-Edo(T): in particular, if | W(T)\ =\\t\\
then \o(T)\ =\\T\\.

Proof. Suppose X0G {X: |X| =|| r|| }r\[W(T)]~. We may without loss of
generality suppose that || 7]| = 1, and Xo= 1. Hence there exist xnEX, ||x„|| = 1,
such that [Txn, x„] —* 1, and we have then: [(x„ 4- Txn)/2, x„] —» 1;
1 sê||(x„4-rx„)/2|] = | [(xn+Tx„)/2, x„]|. Hence ||x„4-rxn/2||—»1. From the
uniform convexity it follows that ||x„— 7x„|| = ||(J — P)x„|| —>0, hence lEo-(T).

In the case of X being a Hilbert space, this proposition is often used as
an elementary starting point in the spectral theory of hermitian operators.
From  (Tx,  Tx) = (T2x, x)  one has   | W(T2)\ =|| P|| =||r||2 hence   ¡aCH)]
= |ff(P)|2 = ||r||2.

II. States and point states

4. Definitions. Consider any real or complex s.i.p.s. X. Let B(X) be the
normed algebra of all bounded operators on X. Let A be any normed sub-
algebra of B, containing I.

Definition 8. A bounded linear functional co on A will be called a state,
if \\u\\ =<i)(I). If \\w\\ = 1, we shall call w a normalized state.

Definition 9. A state of the form u(T) = [Tx, x], where x is a fixed vec-
tor, will be called a point state.

It is clear that a point state on A, is a point state on its completion A~,
and that the states of A~ are formed exactly by all the extensions of the states
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of A. Furthermore, we shall need the following simple facts, the proofs of
which are left to the reader.

Proposition 10. Let Œ be the set of all states on A, and S20 the set of all
normalized states. Then SI is a cone of weakly compact convex base Oo.

5. States as generated by point states. In the present theory the follow-
ing result, which extends a theorem of H. F. Bohnenblust and S. Karlin
covering the case of C* algebras [2, p. 228], is important.

Theorem 11. Let X be any real or complex s.i.p.s., A any normed algebra
of bounded operators on X, containing I. Let us denote by ß the cone of states
on A, by r the set of all point states. Let fío denote the base of fl, and 7r0 the set of
all normalized point states. Then the weakly closed convex hull of ro is flo;
similarly ß is the weakly closed convex hull of r.

Proof. We first suppose that X and A are both complete. We recall that if
TEA, the limit, limc,_0+ (||/+a7"|| — l)/a = S(7") (a real) always exists (the
existence of this Gâteaux differential follows, for instance, from the fact that
||/+ar|| is a convex function of a).

The first part of the proof will consist in the establishing of a relation
between 5(1") and WiT), namely we shall show that 5(T)=sup Re WiT).
For x E X, ||x|| = 1, ||(7 + a7')x|| è | [x + a7x, x]| = | 1 + a[Tx, x}\
= (l+2aRe[7x, x]+a2| [Tx, x]| 2)1/2è (l+2a inf Re WiT))1'2. Here Re
stands for "real part of"; and inf Re W(T)='mi Re{X: XEW(T)}. Now, for a
small Fia) = il+aT)"1 exists, and from the above inequality it follows

||(/ + ar)x|| ^ (1 + 2a inf Re W(r))1/2||x|| for all x E X,

1
||P(a)|| Û il + 2a inf Re WiT))112

On the other hand, one verifies easily that Fia) = 1 — aT+a2T2Fia) and it
follows that

11/ - o;r||  - 1                ||P(a)||  - 1
hi-T) = lim- = lim "       "-

a->0+ a a-J>+ a

< lim — (-1 )
a^0+ a \(1 + 2a inf Re W(T))1'2        )

= - inf Re WiT).

Next, replace T by —T, and notice that —inf Re Wi~ T) =sup Re WiT) ; it
follows that Í(D ^sup Re WiT).

The reversed inequality is easily obtained, since
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Re[Px, x] = lim — ((1 4- 2a Re[Tx, x] + a2 \ [Tx, x] |2)1/2 - 1)
a->0+   a

11/4- aP|| - 1
< lim-

Next we use the following general lemma on Banach spaces (a proof can
be found in [2]). Let X be any Banach space, X* its dual. Let C be a weakly
compact convex subset of X* normalized at a point (i.e., there exists x0£X
such that (xo, c) = 1 for all cEC), and 5 a subset of Csuch that supseS| (x, s) \
= maxcec| (x, c)\ lor all x£X Then the weak closure of 5 contains the ex-
treme points of C.

Now for any state tü£ß0, and any TEA:

w(I + aT) - 1      11/4- a/ll - 1
w(T) =-S -- for a > 0;

a a

hence

max | (P, w) | =    sup   ô(eieT) =   max   Re W(eieT) =   max   Re (ei6W(T))

=  I W(T) |   =   sup    | [Tx, x] I   = sup  I (to, T) | .
11*11-1 »e»,

Hence the above lemma applies, since flo is convex weakly compact and
normalized at /. The rest of our statement now follows from the Krein-
Milman theorem.

When neither X nor A are complete, the same result is obtained by
modifying the proof slightly, ßo is still compact. Although F(a) may not exist,
this is no serious difficulty since actually all one needs is a partial sum of
I-aT+a2T2

For the sake of ready reference, we list separately the formula obtained
in the proof above.

Lemma 12. For any bounded operator Tona s.i.p.s., lima^o+(||/4-ar|| — l)/a
= sup Re W(T).

Again one can apply the previous considerations to the case in which our
s.i.p.s. is an algebra A, and in particular a normed algebra. Explicitly one is
led to

Definition 8'. Let A be an algebra with identity e, which is also a s.i.p.s.,
a linear bounded functional w on A is called a state if ||«|| =w(e). A state of
norm 1, is said "normalized." A state to of the form co(y) = [yx, x] where x is
a fixed element of A, is called a point state.

Thus, let A be an algebra, as well as a s.i.p.s., such that the induced
norm makes it a normed algebra (i.e., [xy, xy] S [x, x] [y, y] holds for x, yEA).
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Consider the algebra 73(A) of all bounded operators on A, and the algebra
iA) of right-multiplication operators on A (i.e., (a) EiA) defined by (a)x = ax
for xEA). If co is a state on A, then it induces a state to on BiA), by defining
¿¿(T) =co(Te) for TEBiA). Conversely, given a state ¿> on BiA), it induces
a state co on A, by co(a) =¿>((a)), (a)E(A). This corresponds between states
on A and 5(A) is one-one, affine and isometric. A similar situation holds for
the point states. Hence the previous theorem can be applied directly.

Theorem 13. Let A be an algebra, as well as a s.i.p.s. such that the induced
norm makes it into a normed algebra (i.e., [xy, xy]:g[x, x][y, y] holds for
x, yEA). Let fi be the cone of states on A, fi0 its base (i.e., the set of all normalized
states) ; r and r0 the set of all point states and all normalized point states respec-
tively. Then the weakly closed convex hull of ro is fio and the weakly closed con-
vex hull of r is ST..

6. Banach space operators. We have already seen that a Banach space X
can always be made into a s.i.p.s., by constructing an isometric mapping W
from Xinto X* such that (x, Wx) =||x||2, and setting [x, y] = (x, Wy). Let T
be an operator on X; then for each W, considered as an operator on the cor-
responding s.i.p.s., T has a numerical range which we shall call the "W de-
termination" of the numerical range of the Banach space operator T. Natu-
rally this leads to the question of the relation between different determina-
tions of the numerical range.

Theorem 11 provides a reasonably good answer, since it shows that for
any operator Ton a s.i.p.s. the convex hull of W(T) is the set {«(/"): co£fi0},
fio being the set of normalized states; and the latter is essentially the same
for all W. In conclusion

Theorem 14. All determinations of the numerical range of an operator have
the same convex hull.

Corollary. // the numerical range of a Banach space operator is real valued
for any determination, then it is real valued for all determinations.

Similar considerations concerning determinations of the numerical range
arise for Banach algebras; the situation is analogous to the one considered
above and requires no further discussion.

7. Remarks on CiK) as a s.i.p.s. Let us now briefly consider the case
when X=CiK), the algebra of all continuous complex valued functions on
the compact Hausdorff space K, normed with the "sup" norm.

Theorem 15. There exists a semi-inner-product on CiK) which is consistent
with the "sup" norm and such that for fECiK), Wif) = {/(£): tEK.}.

Proof. For ££/C, there exists x¡EC(K) such that xj(£) = 1 and ||x||=l.
For such X{, we define [2, xj]=z(£). Now, if x£C(K)- {xj}, pick l-EK such
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that |x(£)| =||x||, and define [a, x] = x(£)a(£). In this fashion a semi-inner-
product on C(K) is obtained; and for ||x|| = 1, fEC(K), [fx, x] = (/x)(£)x(£)
= /(£). Hence W(f) C {/(£) : %EK}. But since [fx(, x£] =/(£), the reversed inclu-
sion also holds; this completes the proof. From this we see at once that the
numerical range is not convex in general.

A certain similarity between the role played by point states on noncom-
mutative operator algebras and homomorphisms on commutative ones can
now be easily illustrated. Let B denote a subalgebra of C(K), and let A de-
note the algebra of multiplication operators generated by B itself and 1. It is
immediate that a point state on A is a homomorphism and application of
Theorem 11 (with X=B, and A the algebra defined above) then easily
yields the Silov boundary theorem.

III. Normed algebras
8. On a result of H. F. Bohnenblust and S. Karlin. Let A be a normed

algebra with identity e. A point u on the surface of the unit sphere 5 of A
will be called a vertex, if the intersection of all the support hyperplanes to 5
at u is precisely u. This amounts to saying that « is a vertex if whenever
(a, a*) =0 for aEA and all a*EA* such that (u, a*) = 1 and ||a*|| = 1, then
a = 0. A vertex is always an extreme point. Bohnenblust and Karlin have
shown [2] the following:

Theorem 16. Let A be any Banach algebra with identity e, then e is a vertex
of the unit sphere S of A.

Consideration of A as a s.i.p.s. leads us to a new proof, namely: If in the
above definition of a vertex we take u = e, then a* becomes a normalized
state. Considering, in particular, normalized point states a* of the form
a*= [-x, x] with [x, x] = l, we see that the hypothesis (a, a*)=0, implies
that the numerical range W(a) =0; hence a = 0 and the theorem is proved.

Bearing in mind the problem of renorming a given normed algebra we
shall follow these considerations a little further and introduce the following:

Definition 17. Let u be a point on the surface of the unit sphere 5 of a
normed space X We shall say that u is a point of local uniform convexity
(in short l.u.c), if (x„4-y„)/2—>u with x„£5, ynES, (n=l, 2, ■ ■ • ), implies
x„—>m and y„—>w (or equivalently ||xn — y„||—»0). A point of l.u.c. of 5 is of
course not always a vertex, but clearly it is an extreme point of 5.

Theorem 18. Let A be any normed algebra with identity e, then e is a point
of l.u.c. of the unit sphere S of A.

Proof. We may consider A as a s.i.p.s., and use as before the notation
W( ) for the numerical range. Use will be made of the following elementary
fact: if a, ß, X, are complex numbers laying in the (closed) unit disc, and if
X=(a4-|8)/2,   and   |l-X|Sl/2,   then   11 -a\ S (2| 1 -X| )1/2   and   \l-ß\
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g(2| l-X|)1/2.Nowsupposea,6GA,||a|| =||o|| = l.Wehave| W(e-(a + b)/2)\
= \l-W((a+b)/2)\ ^\\e-(a+b)/2\\.

But since for x E A, [x, x] = 1, one has: [((a + b)/2)x, x]
= ([ax, x]+[bx, x])/2 and since [((a+b)/2)x, x], [ax, x], [bx, x] are in the
unit disc, it follows that 11 - W(a) \ = \ W(e-a) \ ^ (2||e- (a+ô)/2||)1'2, when-
ever ||e-(o + ft)/2|| Ú 1/2.

Now from Theorem 5 we see that ||e— ö|| ^4(2||e — ia+b)/2\\)112, when-
ever ||e— (o+¿»)/2|| ^1/2; same for ||e — b\\. This completes the proof.

The identity of a normed algebra is thus a vertex as well as a point of l.u.c.
under any admissible norm. An example showing that a vertex is not always
a point of l.u.c. was suggested to us by V. L. Klee, Jr. An elaboration of his
idea enables one to show that given a normed linear space X—rather than
a normed algebra—and an arbitrary point u on the surface of the unit
sphere, then a renorming such that it is a vertex but not a point of l.u.c.
of the new unit sphere exists, provided X is infinite dimensional. For exposi-
tory reasons we omit the proof of this fact.

9. Hermitian elements. Vidav's definition. The question of extending the
notion of hermiticity to operators on any Banach space—or elements of any
Banach algebra seems to have no obvious answer.

I. Vidav [12], in a paper to which we shall make further reference later
on, introduces the following notion of hermiticity: an element A of a Banach
algebra A with identity e will be called hermitian if ||e-H«^|| = 1+0(0;) for a
real. It is interesting to notice that the present theory supports this defini-
tion as being a "natural" one. In fact, if T is any operator on a Hubert
space, then T is hermitian if and only if (Tx, x) is real for all x, in other
words WiT) is real. It is "natural" then, to call an operator on a s.i.p.s.
hermitian if and only if WiT) is real. Similarly, for any operator T on a
Banach space; here we have, in principle, many determinations for WiT),
but the corollary of Theorem 14 shows that this does not lead to ambiguity.
In consequence T is hermitian if and only if sup Re WiiT) =sup Re W( — iT)
= 0, and by Lemma 12, this is equivalent to HZ-t-w*/]! = \+o(a), i.e., to
hermiticity in the sense of Vidav's definition.

At this point our circle of ideas leads us to a new proof of a result due to
Kadison [8] (another proof is given by Bohnenblust and Karlin [2]), namely:

Theorem. In a Banach algebra with identity, there is at most one involution
which makes it a C* algebra.

Proof. By a well-known result of Gelfand and Naimark [4], a given C*
algebra A can be mapped isomorphically and isometrically onto an algebra
A' of operators on a Hubert space. An element in A is self-adjoint if and only
if its image in A' is hermitian (i.e., has a real numerical range). But the above
map takes the states on A onto the states on A', and since the closed convex
hull of any element (in A or A') is determined by the cone of states (of A
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or A'), we conclude that the self-adjoint elements of A are the elements hav-
ing real numerical range and are determined by the states (hence by the
norm). Thus the involution itself is determined by the norm.

10. States and positive functionals. A functional p on a C* algebra A, is
called positive if p(x*x) ^0 for all xEA. We shall suppose A has an identity
e; then it is well known that the positivity of p implies that p(x) SpO)||x||,
whence a positive functional is a state. The converse is also true though less
trivial. For the commutative case it follows easily from the Gelfand repre-
sentation and the Riesz theorem; for the general case it was proved more
recently in [2]. This result follows now immediately from Theorem 11. In
fact, as before A can be represented on an algebra A' of operators on a Hilbert
space H. A state on A is taken into a state on A', and is positive if and only
if its image is positive. On the other hand for a point state on A' we have
o)(T*T) = (T*Tx, x) = || 7x||2^0, xEH. The desired conclusion follows now
from Theorem 11. However for more general * algebras (see next section for
this terminology) states and positive functionals in the above sense are
diverging concepts. As for the connection in general between states and func-
tionals positive in the * sense, we mention without proof, the following result:

Theorem 19. If A is a * algebra with identity for which the cone of states
coincides with the cone of positive functionals, then (within equivalent renorm-
ing) A is a C* algebra.

IV. * Algebras

11. Terminology. We shall call an algebra A, a * algebra, if there is de-
fined on it an involution x—>x* with the usual algebraic properties, i.e.,

(**)* = x,

(ax + ßy)* = äx* + ßy*,

(xy)* = y*x*.

Notice that no continuity of the involution is assumed.
A * algebra A (with identity e) is called symmetric if e4-x*x has an inverse

for every xEA. A B* algebra is a * algebra in which the relation ||x*x||
= ||x||2 holds for all x. A C* algebra is thus a symmetric B* algebra.

The study of the representations of C* algebras goes back to Gelfand and
Naimark [4]. They also conjectured that symmetry was a superfluous as-
sumption, i.e., that B* algebras are automatically C*.

Fukamiya proved the conjecture implicitly in 1952 [3], the implication
being noticed first by I. Kaplansky who then communicated an elaborated
version. (See for instance [9, appendix].)

12. On a new proof that B* algebras are C*. The results on s.i.p.s. provide
a rather simple and "natural" proof of the fact that B* algebras are C*. We
limit ourselves to establish Fukamiya's lemma, and start with:
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Lemma 20. // A is any B* algebra with unit e, and x is an element of A such
that x* = x, then the numerical range Wix) of x is real and has same l.u.b. and
g.l.b. as the spectrum cr(x) of x.

Proof. If x* = x, then ||e+iax||2 = ||(e-Ho:x)(e — iax)\\ = ||e+o:2x2|| =1
+o(a), for a real. Hence directly from Lemma 12—or else by observing that
x is "hermitian"—it follows that Re Wiix) =0, i.e., Wix) is real valued.

On the other hand, using Theorem 1 and the fact that ||x2|| =||x||2, we
have, ||x|| = |cr(x)| ^ | W(x)| á||x||. The fact that |<r(x)| = | IF(x)| when ap-
plied to ae+x for large real values of a and —a, together with aiae+x)
= a-f-cr(x) and Wiae+x) =a+ Wix), shows at once that <r(x) and Wix) have
the same upper and lower bounds.

Lemma (Fukamiya). If A is a B* algebra and x, y are elements of A such
that x* = x, y* = y, <r(x) ^0, c(y) ^0, then also cr(x+y) ^0.

Proof. Let 7ro denote the set of all normalized point states of A. By
Lemma 20, for any co E r0, co(x) ^ 0, co(y) ^ 0; hence g.l.b. <r(x + y)
= g.l.b. co(x+y) = g.l.b. (co(x)+co(y)) ^0.

The reader will of course notice the relation between this proof and the
manner in which one disposes of the commutative case by means of the
Gelfand theory.

13. C* as a local "differential condition." The preceding facts suggest,
and we shall indeed prove that, at least within equivalent renorming, the C*
character of a * algebra (again assumed to have an identity e) depends only
on a suitable local "differential condition" connecting the involution and the
norm, near the identity; and hence the C* character of a * algebra is pre-
served by mapping (in particular renormings) behaving suitably near the
identity.

In the proof we make use of a result of Vidav [12], which we state here
for convenience:

Suppose A is any Banach algebra with identity e. Let H be the set of all
hermitian elements of A (i.e., H= {hEA: \\e+iah\\ = l+o(a)}). We assume
that: (a) Every aEA, has a representation a = u+iv, uEH, vEH: (b) If
hEH, then there is a representation h2 = u+iv such that uEH, vEH and
uv-vu. Then A is (within equivalent renorming) a C* algebra.

Theorem 21. Suppose A is a * algebra with identity e, such that the condi-
tion ||x*x||/||x|| ||x*|| = l+o(r), r = ||e — x||, holds near e. Then A is iwithin
equivalence) a C* algebra.

Proof. Let H be the set of all hermitian elements of A, and 5 the set of all
self-adjoint elements in A.

Now observe that what we know about S, is precisely what we would need
to know about H in order to be able to use Vidav's result (i.e., for aEA,
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a = u+iv where uES, vES; furthermore, if uES, u2ES). Thus our problems
will be solved if we show that H=S.

Suppose therefore, that uES, 119^0. We have:
i o     oil\\e + a'u'n

h    ,   .    nu-7-¡i = 1 + <>(r), a>0,
\\e + iau\\ \\e — iau\\

and r = a||w||, so that ||e4-a2x2||/14-o(r) = 14-o(a). It follows that, denoting
the numerical range of u by W(u), and using Lemma 12:

||e 4-jaw|| - 1 (1 + o(a))/\\e - iau\\ - 1
sup Re W(tu) = hm - = hm-

a—o+ a a->o+ a

|| e — iau\\ — 1
= — lim-= — sup Re W( — iu) = 'míReW(iu).

a->o+ a

But it is clear that the spectrum a(u) of u is symmetric about the real axis.
Hence (from Theorem 4) sup Re W(iu) èO, inf Re W(iu) SO. It follows that
W(u) is real valued, whence uEH.

Conversely, suppose hEH, and write h = u+iv with u, vES. Let iro, be
the set of all normalized point states. Since hEH, W(h) is real valued, and
since we have just shown that SEH, also u(u) and u(v) are real valued,
w£ir0; hence for any togiro, co(v)=0; from this, by Theorem 5, v = 0, i.e.,
h = uES, and the proof is complete.

As an immediate consequence we have

Corollary. // A is a * algebra with identity e, such that ||x*x||/||x|| ||x*||
= l+o(r), r = ||e — x||, holds near e, then A is symmetric.

Hence we obtain again, now directly and without using Fukamiya's
lemma:

Corollary. B* algebras are C* algebras.
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