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Abstract.    Recently  Matsumoto [1]  introduced the idea of Lorentzian para contact structure and 
studied its several properties.  In the present paper we studied the integrability condition of the 
distribution on semi-invariant submanifolds of LP-Sasakian manifold. 

 
 
1. Introduction 
 
Let M  be an n-dimensional real differentiable manifold of differentiability class ∞C   
endowed with a  ∞C -vector valued linear function φ,  a ∞C  vector field ,ξ  1-form η 
and Lorentzian metric g of type )2 ,0(  such that for each ,Mp∈  the tensor  

RMTMTg ppp →×     :  is a non-degenerate inner product of signature 

( ),  ,  ,  ,  , +++−  where MTp   denotes the tangent vector space of M   at  p and R  is 
the real number space, which satisfies 
 
   ( ) ( ) ,   2 ξηφ XXX +=   (1.1) 
   ( ) ,1−=ξη   
   ( ) ( ) ( ) ( ),     ,, YXYXgYXg ηηφφ +=   (1.2) 
  ( ) ( ) ,, XXg ηξ =   
 
for all vector fields YX , tangent to .M   Such structure ( )g  ,  ,  , ηξφ  is termed as 
Lorentzian para contact [1]. 
 In a Lorentzian para-contact structure the following holds 
  
   ( ) ,0  ,0 == Xφηφξ   
   rank ( ) .1−= nφ   
 
 A Lorentzian para contact manifold M  is called Lorentzian para-Sasakian             
(LP-Sasakian) manifold if [1] 
 
   ( )( ) ( ) ( ) ( ) ,)(  2    , ξηηηξφ YXXYYXgYX ++=∇  (1.3) 
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and from (1.3), we find 
   XX φξ =∇  (1.4) 
 

YX ,  ∀  tangent to ,M  where ∇  is the Riemannian connection with respect to g. 
 
 Let us put 

( ) ( )YXgYX ,, φΦ =  
 
then the tensor field  Φ  is symmetric )2,0( - tensor field.  Thus we have, 
 

( ) ( ),,,  XYYX ΦΦ =  
and 

( ) ( )( )., YYX XηΦ ∇=  
 
Definition 1.1. The submanifold M of the LP-Sasakian manifold M  is said to be semi-
invariant if it is endowed with the pair of orthogonal distribution  ),( ⊥DD  satisfying 
the conditions  
 
 (i) { }, ξ⊕⊕= ⊥DDTM  
 (ii) the distribution D  is invariant under φ,  that is  
    

  ,xx DD =φ for each ,Mx∈  
 
 (iii) the distribution ⊥D  is anti-invariant under φ,  that is  
 

,⊥⊥ ⊂ MTD xxφ   for each  .Mx∈  
 
 The distribution D (respectively ⊥D )  is called the horizontal (respectively vertical) 
distribution.   A semi-invariant submanifold M is said to be invariant (respectively anti-
invariant) submanifold if we have { }0=⊥xD  respectively )0( =xD   for each .Mx∈   
We say that M is a proper semi-invariant submanifold if it is a semi-invariant 
submanifold, which is neither an invariant nor an anti-invariant submanifold. 
 We denote by same symbol g both metrices on  M  and M.  The projection 
morphisms of TM to D  and  ⊥D  are denoted by P and Q respectively.  For any 

( )TMX Γ∈  and ( ),⊥∈ TMN Γ  we have 
  ( )ξη XQXPXX ++=  (1.5) 
  CNBNN +=φ   (1.6) 
 
where BN (respectively CN) denotes the tangential (respectively normal) component of 

.Nφ  
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 The equations of Gauss and Weingarten for the immersion of M in M are given by 
 
  ( ),, YXhYY XX +∇=∇  (1.7) 

  ,NXAN XNX ⊥∇+−=∇  (1.8) 
 
for any ( )TMYX Γ∈,   and ,⊥∈TMN  where ∇  is the Levi-Civita connection on M, 

⊥∇  is the linear connection induced by ∇  on the  normal bundle ,⊥TM  h is the second 
fundamental form of M and NA  is the fundamental tensor of Weingarten with respect to 
the normal section N.  Also we have 
 
 ( )( ) ( )YXAgNYXhg N ,,, =   (1.9) 
 
for any ( ) ( ).  ,, ⊥∈∈ TMNTMYX ΓΓ   
 
 
2. Basic Lemmas 
 
For  ( ),, TMYX Γ∈  we put 
 
  ( ) ., XAPYYXu QYX φφ −∇=  (2.1) 
 
 We begin with the following lemma. 
 
Lemma 2.1.  Let M be a semi-invariant submanifold of LP-Sasakian manifold .M  
Then we have 
 
 ( ) ξξηηηφ PYXgPYXPXYYPYXuP X ),(  )()(2 )(  ),( +++∇=  (2.2) 
 ( ) ξξηηη QYXgQYXQXYYXBhYXuQ ),(  ))(()(2  )(  ),(),( +++=  (2.3) 
 ),(    ),( YXChYQQYPYXh XX +∇=∇+ ⊥ φφφ  (2.4) 
 ( ) ,),(),( YXgYXu φφη −=  (2.5) 
 
for all ., TMYX ∈   
 
Proof. By using the decompositions (1.5), (1.6), (1.7), (1.8) in (1.3), we obtain (2.2), 
(2.3), (2.4) and (2.5)  respectively. 
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Lemma 2.2. Let M be a semi-invariant submanifold of LP-Sasakian manifold ,M  
then we have 
 
  ( ) ,0 ,  , ==∇ ξφξ XhXX   for any ( ) ;DX Γ∈  (2.6) 
  ( ) ,,  ,0 YYhY φξξ ==∇     for any ( ) ;⊥∈ DY Γ  (2.7) 
  ( ) .0 , ,0 ==∇ ξξξξ h  (2.8) 
 
Proof. In consequence of (1.4) and (1.5), we obtain 
 
  ( )ξξξ  ,XhXX +∇=∇     
or    ( ) ., QXPXXhX φφξξ +=+∇  (2.9) 
 
Thus, ( ) ( )8.26.2 −  follows from (2.9). 
 
Lemma 2.3. Let M be a semi-invariant submanifold of LP-Sasakian manifold .M   
Then we have 
     ,XAYA YX φφ −=  (2.10) 
 
for all ( ) ., ⊥∈ DYX Γ   
 
Proof. By using (1.2), (1.7), (1.9), we get 

 
( ) ( )( ) ( )XYgXZYhgZYAg ZX φφφ ,,, ,   ∇==  

   ( ) ( )XYgXYg ZZ ,      ,   φφ ∇=∇=  

   ( ) ( )),(,  , ZXhYgXYg Z φφ −=∇−=  
   ,),( ZXAg Yφ−=  
 
for all ( )⊥∈ DYX Γ,  and ( ),TMZ Γ∈  which proves (2.10). 
 
Lemma 2.4. Let M be a semi-invariant submanifold of LP-Sasakian manifold .M  
Then we find   
  ( ),DU Γξ ∈∇     for any  ( ),DU Γ∈   
  ( ),⊥∈∇ DV Γξ  for any  ( ).⊥∈ DV Γ   

 The proof is obvious. 
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Lemma 2.5. Let M be a semi-invariant submanifold of LP-Sasakian manifold .M   
Then we obtain 
 
  [ ] ( ),, DX Γξ ∈     for any  ( ) ,DX Γ∈  (2.11) 
  [ ] ( )  ,, ⊥∈ DY Γξ  for any  ( ).⊥∈ DY Γ  (2.12) 
 
 The proof follows from Lemma 2.4. 
 
 
3. Integrability of distribution on a semi-invariant submanifold in a         

LP-Sasakian manifold 
 
Theorem 3.1. Let M be a semi-invariant submanifold in LP-Sasakian manifold .M  
Then the distribution D is integrable if and only if 
  

( ) ( ).,, XYhYXh φφ =  
 
Proof. We have from (2.6) 
 
   [ ]( ) ( )ξξ ,  ,,   XYgYXg YX ∇−∇=  
    ( ) ( )ξξ , , XgYg YX ∇−∇=  
    ( ) ( )YXgXYg φφ ,, +−=  
     ,0=  
for all ( )., DYX Γ∈  
 In consequence of (2.4), we find 
 

 ( ) ( ) [ ] ,,,,   YXQXYhYXh φφφ =−  
   

which proves the theorem. 
 
Corollary 3.1. The distribution { }ξ ⊕D  is integrable if and only if  
( ) ),(, XYhYXh φφ =  is satisfied. 

 
 Proof follows from Theorem 3.1 and (2.11). 
 
Theorem 3.2.  Let M be semi-invariant submanifold in LP-Sasakian manifold .M  
Then the distribution ⊥D  is never integrable.  
 
Proof. From (2.1), we have for  )(, ⊥∈ DYX Γ  
 

( ) ., XAYXu Yφ−=  
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Operating φ  in (2.2) and using (1.1), we get 
 
   ,)( XAPYP YX φφ=∇  (3.1) 
 
for any .)(, ⊥∈ DYX Γ   By virtue of Lemma 2.3, (3.1) reduces to  
 

[ ]( ) ( ),2, XAPYXP Yφφ=  
which proves the statement. 
 
Corollary 3.2. The distribution on { }  ξ⊕⊥D  is never integrable.   
 
 Proof follows from Theorem 3.2 and (2.12). 
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