Semi-Invariant Submanifolds of a Lorentzian Para-Sasakian Manifold

BHAGWAT PRASAD

Department of Mathematics, M. M. T. D. College, Ballia, India

Abstract. Recently Matsumoto [1] introduced the idea of Lorentzian para contact structure and studied its several properties. In the present paper we studied the integrability condition of the distribution on semi-invariant submanifolds of LP-Sasakian manifold.

1. Introduction

Let \overline{M} be an n-dimensional real differentiable manifold of differentiability class C^{∞} endowed with a C^{∞} -vector valued linear function ϕ , a C^{∞} vector field ξ , 1-form η and Lorentzian metric g of type (0,2) such that for each $p \in \overline{M}$, the tensor $g_p: T_p\overline{M} \times T_p\overline{M} \to R$ is a non-degenerate inner product of signature $(-,+,+,\cdots,+)$, where $T_p\overline{M}$ denotes the tangent vector space of \overline{M} at p and R is the real number space, which satisfies

$$\phi^{2}(X) = X + \eta(X) \xi,$$

$$\eta(\xi) = -1,$$

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X) \eta(Y),$$

$$g(X, \xi) = \eta(X),$$
(1.1)

for all vector fields X, Y tangent to \overline{M} . Such structure (ϕ, ξ, η, g) is termed as *Lorentzian para contact* [1].

In a Lorentzian para-contact structure the following holds

$$\phi \xi = 0$$
, $\eta(\phi X) = 0$,
rank $(\phi) = n - 1$.

A Lorentzian para contact manifold \overline{M} is called *Lorentzian para-Sasakian* (LP-Sasakian) manifold if [1]

$$(\overline{\nabla}_X \phi)(Y) = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi, \tag{1.3}$$

22 B. Prasad

and from (1.3), we find

$$\overline{\nabla}_X \xi = \phi X \tag{1.4}$$

 $\forall X, Y \text{ tangent to } \overline{M}, \text{ where } \overline{\nabla} \text{ is the Riemannian connection with respect to } g.$

Let us put

$$\Phi(X,Y) = g(\phi X,Y)$$

then the tensor field Φ is symmetric (0,2) - tensor field. Thus we have,

$$\Phi(X,Y) = \Phi(Y,X),$$

and

$$\Phi(X,Y) = (\overline{\nabla}_X \eta)(Y).$$

Definition 1.1. The submanifold M of the LP-Sasakian manifold \overline{M} is said to be semi-invariant if it is endowed with the pair of orthogonal distribution (D, D^{\perp}) satisfying the conditions

- (i) $TM = D \oplus D^{\perp} \oplus \{\xi\},$
- (ii) the distribution D is invariant under ϕ , that is

$$\phi D_x = D_x$$
, for each $x \in M$,

(iii) the distribution D^{\perp} is anti-invariant under ϕ , that is

$$\phi D_x^{\perp} \subset T_x M^{\perp}$$
, for each $x \in M$.

The distribution D (respectively D^{\perp}) is called the *horizontal* (respectively *vertical*) distribution. A semi-invariant submanifold M is said to be invariant (respectively anti-invariant) submanifold if we have $D_x^{\perp} = \{0\}$ respectively $(D_x = 0)$ for each $x \in M$. We say that M is a proper semi-invariant submanifold if it is a semi-invariant submanifold, which is neither an invariant nor an anti-invariant submanifold.

We denote by same symbol g both metrices on \overline{M} and M. The projection morphisms of TM to D and D^{\perp} are denoted by P and Q respectively. For any $X \in \Gamma(TM)$ and $N \in \Gamma(TM^{\perp})$, we have

$$X = PX + QX + \eta(X)\xi \tag{1.5}$$

$$\phi N = BN + CN \tag{1.6}$$

where BN (respectively CN) denotes the tangential (respectively normal) component of ϕN .

The equations of Gauss and Weingarten for the immersion of M in \overline{M} are given by

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y), \tag{1.7}$$

$$\overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, \tag{1.8}$$

for any $X, Y \in \Gamma(TM)$ and $N \in TM^{\perp}$, where ∇ is the Levi-Civita connection on M, ∇^{\perp} is the linear connection induced by $\overline{\nabla}$ on the normal bundle TM^{\perp} , h is the second fundamental form of M and A_N is the fundamental tensor of Weingarten with respect to the normal section N. Also we have

$$g(h(X,Y),N) = g(A_NX,Y)$$
(1.9)

for any $X, Y \in \Gamma(TM), N \in \Gamma(TM^{\perp}).$

2. Basic Lemmas

For $X, Y \in \Gamma(TM)$, we put

$$u(X,Y) = \nabla_X \phi PY - A_{\phi OY} X. \tag{2.1}$$

We begin with the following lemma.

Lemma 2.1. Let M be a semi-invariant submanifold of LP-Sasakian manifold \overline{M} . Then we have

$$P(u(X,Y)) = \phi P \nabla_X Y + \eta(Y) P X + 2\eta(X) \eta(Y) P \xi + g(X,Y) P \xi$$
 (2.2)

$$Q(u(X,Y)) = Bh(X,Y) + \eta(Y)QX + 2\eta(X)\eta(Y)(Q\xi) + g(X,Y)Q\xi$$
 (2.3)

$$h(X, \phi PY) + \nabla_X^{\perp} \phi QY = \phi Q \nabla_X Y + Ch(X, Y)$$
 (2.4)

$$\eta(u(X,Y)) = -g(\phi X, \phi Y), \tag{2.5}$$

for all $X, Y \in TM$.

Proof. By using the decompositions (1.5), (1.6), (1.7), (1.8) in (1.3), we obtain (2.2), (2.3), (2.4) and (2.5) respectively.

24 B. Prasad

Lemma 2.2. Let M be a semi-invariant submanifold of LP-Sasakian manifold \overline{M} , then we have

$$\nabla_X \xi = \phi X, \ h(X, \xi) = 0, \ \text{for any } X \in \Gamma(D);$$
 (2.6)

$$\nabla_Y \xi = 0, \ h(Y, \xi) = \phi Y, \quad \text{for any } Y \in \Gamma(D^{\perp});$$
 (2.7)

$$\nabla_{\xi}\xi = 0, \ h(\xi, \, \xi) = 0. \tag{2.8}$$

Proof. In consequence of (1.4) and (1.5), we obtain

$$\overline{\nabla}_X \xi = \nabla_X \xi + h(X, \xi)$$

$$\nabla_X \xi + h(X, \xi) = \phi P X + \phi Q X.$$
(2.9)

Thus, (2.6) - (2.8) follows from (2.9).

Lemma 2.3. Let M be a semi-invariant submanifold of LP-Sasakian manifold \overline{M} . Then we have

$$A_{\phi X}Y = -A_{\phi Y}X, \qquad (2.10)$$

for all $X, Y \in \Gamma(D^{\perp})$.

or

Proof. By using (1.2), (1.7), (1.9), we get

$$\begin{split} g\big(A_{\phi X}Y,Z\big) &= g\big(h(Y,Z),\ \phi X\big) = g\big(\overline{\nabla}_ZY,\ \phi X\big) \\ &= g\big(\phi\overline{\nabla}_ZY,X\big) &= g\big(\overline{\nabla}_Z\phi Y,X\big) \\ &= -g\big(\phi Y,\overline{\nabla}_Z X\big) = -g\big(\phi Y,h(X,Z)\big) \\ &= -g(A_{\phi Y}X,Z), \end{split}$$

for all $X, Y \in \Gamma(D^{\perp})$ and $Z \in \Gamma(TM)$, which proves (2.10).

Lemma 2.4. Let M be a semi-invariant submanifold of LP-Sasakian manifold \overline{M} . Then we find

$$\nabla_{\xi}U \in \Gamma(D)$$
, for any $U \in \Gamma(D)$, $\nabla_{\varepsilon}V \in \Gamma(D^{\perp})$, for any $V \in \Gamma(D^{\perp})$.

The proof is obvious.

Lemma 2.5. Let M be a semi-invariant submanifold of LP-Sasakian manifold \overline{M} . Then we obtain

$$[X, \xi] \in \Gamma(D), \quad \text{for any } X \in \Gamma(D),$$
 (2.11)

$$[Y, \xi] \in \Gamma(D^{\perp}), \text{ for any } Y \in \Gamma(D^{\perp}).$$
 (2.12)

The proof follows from Lemma 2.4.

3. Integrability of distribution on a semi-invariant submanifold in a LP-Sasakian manifold

Theorem 3.1. Let M be a semi-invariant submanifold in LP-Sasakian manifold \overline{M} . Then the distribution D is integrable if and only if

$$h(X, \phi Y) = h(Y, \phi X).$$

Proof. We have from (2.6)

$$g([X,Y], \xi) = g(\nabla_X Y - \nabla_Y X, \xi)$$

$$= g(\nabla_X Y, \xi) - g(\nabla_Y X, \xi)$$

$$= -g(Y, \phi X) + g(X, \phi Y)$$

$$= 0,$$

for all $X, Y \in \Gamma(D)$.

In consequence of (2.4), we find

$$h(X, \phi Y) - h(Y, \phi X) = \phi Q[X, Y],$$

which proves the theorem.

Corollary 3.1. The distribution $D \oplus \{\xi\}$ is integrable if and only if $h(X, \phi Y) = h(Y, \phi X)$ is satisfied.

Proof follows from Theorem 3.1 and (2.11).

Theorem 3.2. Let M be semi-invariant submanifold in LP-Sasakian manifold \overline{M} . Then the distribution D^{\perp} is never integrable.

Proof. From (2.1), we have for $X, Y \in \Gamma(D^{\perp})$

$$u(X,Y) = -A_{\phi Y}X.$$

26 B. Prasad

Operating ϕ in (2.2) and using (1.1), we get

$$P\nabla_X Y = \phi P(A_{\phi Y} X), \tag{3.1}$$

for any $X, Y \in \Gamma(D^{\perp})$. By virtue of Lemma 2.3, (3.1) reduces to

$$P([X,Y]) = 2\phi P(A_{\phi Y}X),$$

which proves the statement.

Corollary 3.2. The distribution on $D^{\perp} \oplus \{\xi\}$ is never integrable.

Proof follows from Theorem 3.2 and (2.12).

References

- K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamogata Univ. Nat. Sci. 12 (1989).
- A. Bejancu and N. Papaghiue, Almost semi-invariant submanifolds of a Sasakian manifold, Bull. Math. dela Soc. Sci., Math. dela R.S. Roumanie 28 (1984), 1.
- 3. N. Papaghiue, Some results on almost semi-invariant submanifolds in Sasakian manifolds, *Bull. Math. dela Soc. Sci., Math. dela R.S. Roumanie* **28** (1984), 3.
- M. Kobayashi, Semi-invariant submanifold of a certain class of almost contact manifold, Tensor, N.S. 43 (1986).
- 5. S. Prasad and R.H. Ojha, Lorentzian para contact submanifolds, *Publ. Math. Debrecen* 44 (1994), 215-223.