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Abstract. Recently Matsumoto [1] introduced the idea of Lorentzian para contact structure and
studied its several properties. In the present paper we studied the integrability condition of the
distribution on semi-invariant submanifolds of LP-Sasakian manifold.

1. Introduction

Let M be an n-dimensional real differentiable manifold of differentiability class C*
endowed with a C« -vector valued linear function ¢, a C= vector field &, 1-form n

and Lorentzian metric g of type (0,2) such that for each peM, the tensor
9p: Tp M x T, M —>R is a non-degenerate inner product of signature
(= +, + =, +), Where Tpl\T denotes the tangent vector space of M at p and R is
the real number space, which satisfies

#2(X) = X + n(X) ¢, (1.1)
n(&)=

a(¢X, Y) 9(X,Y) + 7(X)n(Y), (1.2)
9(X, &) = n(X),

for all vector fields X,Y tangent to M. Such structure (g, &, n, g) is termed as

Lorentzian para contact [1].
In a Lorentzian para-contact structure the following holds

¢5 =0, n(¢x) =0
rank (¢) = n-1.

A Lorentzian para contact manifold M is called Lorentzian para-Sasakian
(LP-Sasakian) manifold if [1]

(Vx)(Y) = g(X,Y)& + n(Y)X + 2p(X) n(Y)¢&, (1.3)
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and from (1.3), we find
Vxé = ¢X (1.4)

Vv X,Y tangentto M, where V isthe Riemannian connection with respect to g.

Let us put
@(X,Y) = g(¢X,Y)

then the tensor field @ is symmetric (0,2) - tensor field. Thus we have,

@(X,Y) = oY, X),
and
@(X,Y) = (Vyxn)¥).

Definition 1.1. The submanifold M of the LP-Sasakian manifold M is said to be semi-
invariant if it is endowed with the pair of orthogonal distribution (D, DL) satisfying
the conditions

(i) TM=D@®DL®{¢&},
(ii) the distribution D is invariant under ¢, that is

gD, = Dy, foreach xe M,

(iii) the distribution D+ is anti-invariant under ¢, that is

¢DF < T,M <L, foreach xeM.

The distribution D (respectively D-L) is called the horizontal (respectively vertical)
distribution. A semi-invariant submanifold M is said to be invariant (respectively anti-
invariant) submanifold if we have D¢ ={0} respectively (D, =0) for each x e M.
We say that M is a proper semi-invariant submanifold if it is a semi-invariant
submanifold, which is neither an invariant nor an anti-invariant submanifold.

We denote by same symbol g both metrices on M and M. The projection
morphisms of TM to D and D-< are denoted by P and Q respectively. For any
Xel(TM)and N e 7"(TM+), we have

X = PX + QX + n(X)¢& (1.5)
#N = BN + CN (1.6)

where BN (respectively CN) denotes the tangential (respectively normal) component of

aN.
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The equations of Gauss and Weingarten for the immersion of M in M are given by

VxY = VyY + h(X,Y), (1.7)
VxN = —AyX + VLN, (1.8)

forany X,Y e7(TM) and N eTM<, where Vv is the Levi-Civita connection on M,

V< is the linear connection induced by V on the normal bundle TM L, h is the second
fundamental form of M and Ay is the fundamental tensor of Weingarten with respect to
the normal section N. Also we have

g(h(X,Y),N) = g(AyX,Y) (1.9)

forany X,Y e I'(TM), N e I"(TM1).

2. Basic Lemmas
For X,Y el"(TM), we put
u(X,Y) = Vy gPY — Ay X. (2.1)
We begin with the following lemma.

Lemma?2.1l. Let M be a semi-invariant submanifold of LP-Sasakian manifold M.
Then we have

P(U(X,Y)) = gPVyY + n(Y)PX + 27(X) n(Y)PE + g(X,Y)P& 2.2)
Q(u(X,Y)) = Bh(X,Y) + n(Y)QX + 2n(X) n(Y)(Q&) + g(X,Y)Qs (2.3)
h(X, #PY) + VLgQY = gQVyY + Ch(X,Y) (2.4)
n(u(X,Y)) = —g(gX, ¢Y), (2.5)

forall X,Y eTM.

Proof. By using the decompositions (1.5), (1.6), (1.7), (1.8) in (1.3), we obtain (2.2),
(2.3), (2.4) and (2.5) respectively.
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Lemma?2.2. Let M be a semi-invariant submanifold of LP-Sasakian manifold M,
then we have

V& = ¢X, h(X, &)=0, forany X e I'(D); (2.6)
Vyé =0, h(Y,&) = ¢Y, foranyY e (DL); (2.7
V£ =0, h( &) =0. (2.8)

Proof. In consequence of (1.4) and (1.5), we obtain

Vxé& = Vy& + h(X, &)
or Vxé + h(X, &) = gPX + ¢QX. (2.9)

Thus, (2.6)—(2.8) follows from (2.9).

Lemma?2.3. Let M be a semi-invariant submanifold of LP-Sasakian manifold M.
Then we have

AxY = —AxX, (2.10)
forall X,Y e "(D1).

Proof. By using (1.2), (1.7), (1.9), we get

o(AxY.Z) = g(h(¥,2), ¢X) = g(V2Y, ¢x)
a(#V2Y, x) = g(Vzev, X)
—g(#¥,V2x) = —g(g¥,n(X,2))
—9(Ax X, 2),

forall X,Y e I(DL) and Z e I(TM), which proves (2.10).

Lemma?2.4. Let M be a semi-invariant submanifold of LP-Sasakian manifold M.
Then we find
VU er(D), forany Uer (D),

VNV er(DL), forany V er(DL).

The proof is obvious.
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Lemma?2.5. Let M be a semi-invariant submanifold of LP-Sasakian manifold M.
Then we obtain

[X,&] er(D), forany X e (D), (2.11)
[Y,&] er(DL), forany Y e I(DL). (2.12)

The proof follows from Lemma 2.4.

3. Integrability of distribution on a semi-invariant submanifold in a
LP-Sasakian manifold

Theorem 3.1.  Let M be a semi-invariant submanifold in LP-Sasakian manifold M.
Then the distribution D is integrable if and only if

h(X, ¢Y) = h(Y, ¢X).
Proof. We have from (2.6)
9([X.Y]. &) = 9(VxY -VyX, &)
g(VXY! 5) - g(vY xvé:)

—g(Y.¢X) + g(X, 4Y)
=0,

forall X,Y e (D).
In consequence of (2.4), we find

h(X,¢Y) — h(Y, ¢X) = ¢Q[X,Y],
which proves the theorem.

Corollary 3.1. The distribution D@®{&} is integrable if and only if
h(X, ¢¥) = h(Y, ¢X) is satisfied.

Proof follows from Theorem 3.1 and (2.11).

Theorem 3.2.  Let M be semi-invariant submanifold in LP-Sasakian manifold M.
Then the distribution D+ is never integrable.

Proof. From (2.1), we have for X,Y e I"(D1)

u(xX,Y) = — Ay X.
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Operating ¢ in (2.2) and using (1.1), we get
PVxY = gP(Ax X), (3.1)
forany X,Y e"(D1). By virtue of Lemma 2.3, (3.1) reduces to

P([X,Y]) = 2¢P(Ay X),

which proves the statement.

Corollary 3.2.  The distribution on D+ @ { &} is never integrable.

Proof follows from Theorem 3.2 and (2.12).
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