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Abstract. We propose a new method for human action recognition from
video sequences using latent topic models. Video sequences are repre-
sented by a novel “bag-of-words” representation, where each frame cor-
responds to a “word”. The major difference between our model and pre-
vious latent topic models for recognition problems in computer vision is
that, our model is trained in a “semi-supervised” way. Our model has
several advantages over other similar models. First of all, the training
1s much easier due to the decoupling of the model parameters. Secondly,
it naturally solves the problem of how to choose the appropriate number
of latent topics. Thirdly, it achieves much better performance by utiliz-
ing the information provided by the class labels in the training set. We
present action classification and irregularity detection results, and show
improvement over previous methods.

1 Introduction

Recognizing human actions from image sequences is a challenging problem in
computer vision. It has applications in many areas, e.g., motion capture, med-
ical bio-mechanical analysis, ergonomic analysis, human-computer interaction,
surveillance and security, environmental control and monitoring, sport and enter-
tainment analysis, etc. Various visual cues (e.g., motion [6, 8, 16, 20] and shape [26])
can be used for recognizing actions. In this paper, we focus on recognizing the
action of a person in an image sequence based on motion cues. We develop a
novel model of human actions based on the “bag-of-words” paradigm.

Our model is motivated by the recent success of “bag-of-words” representa-
tion for object recognition problems in computer vision. The common paradigm
of these approaches consists of extracting local features from a collection of
images, constructing a codebook of visual words by vector quantization, and
building a probabilistic model to represent the collection of visual words. While
these models of an object as a collection of local parts are certainly not “cor-
rect” ones, for example they only model a few parts of objects and often ignore
much structure, they have been demonstrated to be quite effective in object
recognition tasks [9,12,15].



In this paper we explore the use of a similar model, for recognizing human
actions. Figure 1 shows an overview of our “bag-of-words” representation. In
our model, each frame in an image sequence is assigned to a visual word by
analyzing the motion of the person it contains. The unordered set of these words
over the image sequence becomes our bag of words. As with the object recogni-
tion approaches, some structure has been lost by moving to this representation.
However, this model is much simpler than one which explicitly models temporal
structure. Instead we capture “temporal smoothing” via co-occurrence statistics
amongst these visual words, i.e., which actions tend to appear together in a sin-
gle track. For example, in a single track of a person, the combination of “walk
left” and “walk right” actions is much more common than the combination of
“run left” “run right” “run up” “run down”. In this paper we provide evidence
that this simple model can be quite effective in recognizing actions.
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Fig. 1. The processing pipeline of getting the “bag-of-words” representation: (a) given
a video sequence, (b) track and stabilize each human figure, (c) represent each frame by
a “motion word”, (d) ignore the ordering of words and represent the image sequences
of a tracked person as a histogram over “motion words”.
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In particular, our model is based on the latent Dirichlet allocation (LDA) [2]
model. LDA, the probabilistic Latent Semantic Indexing (pLSI) [13] model, and
their variants have been applied to various computer vision applications, such as
scene recognition [5,10], object recognition [11,22,25], action recognition [19],
human detection [1], etc.

Despite the great success achieved, there are some unsolved, important issues
remaining in this line of research. First of all, it is not clear how to choose the
right number of latent topics in one of these models. Previous methods usually
take a rather ad-hoc approach, e.g., by trying several different numbers. But
this is often not possible in realistic settings. Secondly, most of the previous
approaches use their models for some specific recognition problem, say object
class recognition. However, there is no guarantee that the latent topics found by
their algorithms will necessarily correspond to object classes. Thirdly, the fea-
tures used in these approaches are usually SIFT-like local features computed at
locations found by interest-point detectors. The only exceptions are histogram
of oriented gradients in Bissacco et al. [1] and multiple segmentations in Russell
et al. [22]. Features based on local patches may be appropriate for certain recog-
nition problems, such as scene recognition or object recognition. But for human



action recognition, it is not clear that they can by sufficiently informative about
the action being performed. Instead, we use descriptors that can capture the
large-scale properties of human figures, and compare these results to approaches
using local patches.

In this paper, we attempt to address the above mentioned issues in two
aspects. First of all, we introduce a new “bag-of-words” representation for image
sequences. Our representation is dramatically different from previous ones (e.g.,
Niebles et al. [19]) in that we represent a frame in an image sequence as a
“single word”, rather than a “collection of words” computed at some spatial-
temporal interest points. Our main motivation for this new representation is that
human actions may be characterized by large-scale features, rather than local
patches. Secondly, we propose a new topic model called Semi-Latent Dirichlet
Allocation (S-LDA). The major difference between our model and the Latent
Dirichlet Allocation (LDA) model is that some of the latent variables in LDA are
observed during the training stage in S-LDA. We show that our model naturally
solves the problem of choosing the right number of latent topics. Also by pushing
the information provided by class labels of training data directly into our model,
we can guide the latent topics to be our class labels, and consequently achieve
much better performance.

The rest of this paper is organized as follows. In Sect. 2 we review previous
work. Section 3 gives the details of our approach. We present experimental results
in Sect. 4 and conclude in Sect. 5.

2 Previous Work

A lot of work has been done in recognizing actions from both still images and
video sequences. Much of this work is focused on analyzing patterns of motion.
For example, Cutler & Davis [6], and Polana & Nelson [20] detect and classify
periodic motions. Little & Boyd [16] analyze the periodic structure of optical
flow patterns for gait recognition. Rao et al. [21] describe a view-invariant rep-
resentation for 2D trajectories of tracked skin blobs. Others consider the shape
of human figure. For example, Sullivan & Carlsson [26] use “order structure”
to compare the shape of extracted edges for the purpose of action recognition.
There is also work using both motion and shape cues. For example, Bobick &
Davis [3] use a representation known as “temporal templates” to capture both
motion and shape, represented as evolving silhouettes. Zhong et al. [27] cluster
segments of long video sequences by looking at co-occurrences of patterns of
motion and appearance.

Our approach is closely related to a body of work on recognition using “bag-
of-words”. The “bag-of-words” model was originally proposed for analyzing text
documents [2, 13]. Recently, researchers in the computer vision community have
used “bag-of-words” models for various recognition problems. Fei-Fei & Per-
ona [10] use a variant of LDA for natural scene categorization. Sivic et al. [25],
Fergus et al. [11] and Russell et al. [22] use pLSI for unsupervised object class
recognition and segmentation. Niebles et al. [19] use pLSI for action recognition



using spatial-temporal visual words. Bissacco et al. [1] use LDA for human pose
classification from vector-quantized words from histograms of oriented gradients.

3 Our Approach

Similar to Niebles et al. [19], we represent a video sequence as a “bag of words”.
But our representation is different from Niebles et al. [19] in two aspects. First
of all, our method represents a frame as a single word, rather than a collec-
tion of words from vector quantization of space-time interest points. In other
words, a “word” corresponds to a “frame”, and a “document” corresponds to a
“video sequence” in our representation. Secondly, our model is trained in a semi-
supervised fashion. We will show that by utilizing the class labels, we can greatly
simplify the training algorithm, and achieve much better recognition accuracy.

3.1 Motion Features and Codebook

We use the motion descriptor in Efros et al. [8] to represent the video sequences.
This motion descriptor has been shown to perform reliably with noisy image
sequences, and has been applied in various tasks, such as action classification,
motion synthesis, etc.

To calculate the motion descriptor, we first need to track and stabilize the
persons in a video sequence. We use the human detection method in Sabzmeydani
& Mori [23] in some of our experiments. But any tracking or human detection
methods can be used, since the motion descriptor we use is very robust to jitters
introduced by the tracking.

Given a stabilized video sequence in which the person of interest appears in
the center of the field of view, we compute the optical flow at each frame using
the Lucas-Kanade [17] algorithm. The optical flow vector field F is then split
into two scalar fields F}, and Fy, corresponding to the x and y components of F'.
F, and F), are further half-wave rectified into four non-negative channels F",
F.,Ff, F;, sothat F, = F,f —F, and F, = F,} — F,". These four non-negative
channels are then blurred with a Gaussian kernel and normalized to obtain the
final four channels Fb;‘,Fb;,Fb;‘,Fby_ (see Fig. 2).

The motion descriptors of two different frames are compared using a version
of the normalized correlation. Suppose the fours channels for frame A are aq,
as, az and a4, similarly, the four channels for frame B are by, bs, b3 and by, then
the similarity between frame A and frame B is:

S(A,B) = Z Z ac(,y)be(z,y) (1)

c=1z,ycl

where I is the spatial extent of the motion descriptors. In Efros et al. [8], a
temporal smoothing is also used, but we found the simplified version without
temporal smoothing works good enough for our application.
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Fig. 2. Construction of the motion descriptor

To construct the codebook, we randomly select a subset from all the frames,
compute the affinity matrix A on this subset of frames, where each entry in the
affinity matrix is the similarity between frame ¢ and frame j calculated using the
normalized correlation described above. Then we run k-medoid clustering on this
affinity matrix to obtain V clusters. Codewords are then defined as the centers
of the obtained clusters. In the end, all the video sequences are converted to
the “bag-of-words” representation by replacing each frame by its corresponding
codeword.

3.2 Latent Dirichlet Allocation

Our model is based the Latent Dirichlet Allocation (LDA) [2]. In the following,
we briefly introduce LDA model using the terminology in our context.

Suppose we are given a collection D of video sequences {wi, wa,...,wps}.
Each video sequence w is a collection of frames w = (w1, wa, ..., wy ), where w;
is the motion word representing the i-th frame. A motion word is the basic item
from a codebook (see Sect.3.1) indexed by {1,2,...,V}.

The LDA model assumes there are K underlying latent topics (i.e., action
class labels) according to which video sequences are generated. Each topic is
represented by a multinomial distribution over the |V| motion words. A video
sequence is generated by sampling a mixture of these topics, then sampling mo-
tion words conditioning on a particular topic. The generative process of LDA for
a video sequence w in the collection can be formalized as follows (see Fig. 3(a)):

1. Choose 6 ~ Dir(«)
2. For each of the N motion words wy,:
(a) Choose an action label (i.e., topic) z, ~ Mult(6);



(b) Choose a motion word wy, from wy, ~ p(wy|z,, §), a multinomial proba-
bility conditioned on z,.
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Fig. 3. (a) Graphical representation of LDA model, adopted from Blei et al. [2]; (b)
Graphical representation of the variational distribution.

The parameter 6 indicates the mixing proportion of different actions labels in
a particular video sequence. « is the parameter of a Dirichlet distribution that
controls how the mixing proportions 6 vary among different video sequences.
[ is the parameter of a set of multinomial distributions, each of them indi-
cates the distribution of motion words within a particular action label. Learning
a LDA model from a collection of video sequences D = {wy,ws,..., wps} in-
volves finding « and § that maximize the log likelihood of the data I(a, 8) =
Z¢11\/I:1 logP(wg|a, 8). This parameter estimation problem can be solved by the
variational EM algorithm developed in Blei et al. [2].

3.3 Semi-Latent Dirichlet Allocation

In the original LDA, we are only given the word (wy,ws,...,wx) in each video
sequence, but we do not know the topic z; for the word w;, nor the mixing pro-
portion @ of topics in the sequence. In order to use LDA for classification prob-
lems, people have applied various tricks. For example, Blei et al. [2] use LDA
to project a document onto the topic simplex, then train an SVM model based
on this new representation, rather than the original vector representation of a
document based on words. Although this simplex is a much compact representa-
tion for the documents, the final SVM classifier based on this new representation
actually performs worse than the SVM classifier trained on the original vector
representation based on words. Sivic et al. [25] use a simpler method by classi-
fying an image to a topic in which the latent topics of this document is most
likely to be drawn from. There are two problems with this approach. First of all,
there is no guarantee that a “topic” found by LDA corresponds to a particular
“object class”. Secondly, it is not clear how many “topics” to choose.

In this paper, we are interested in the action classification problem, where all
the frames in the training video sequences have action class labels associated with



them. In this case, there is no reason to ignore this important information. In this
section, we introduce a semi-supervised version of the LDA model called Semi-
Latent Dirichlet Allocation (S-LDA). S-LDA utilizes class labels by enforcing a
one-to-one correspondence between topics and class labels. Since we use a word
w; to represent a frame in a video sequence w = (wy,ws, ..., wy), the topic z;
for the word w; is simply the class label of w;. The graphical representation of
S-LDA model is shown in Fig. 4. We should emphasize that the model in Fig. 4
is only for training (i.e., estimating o and ). In testing, we will use the same
model shown in Fig. 3(a), together with estimated model parameters « and (3.
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Fig. 4. Graphical representation of the Semi-Latent Dirichlet Allocation (S-LDA) for
training. Note the difference from Fig. 3(a) is that z is observed in this case.

Our model has three major advantages over previous approaches of using a
topic model for classification problems. First of all, choosing the right number
of topics is trivial, since it is simply the number of class labels in the training
sequences. Secondly, the training process of the S-LDA model is much easier than
the original LDA. Thirdly, we can achieve much better recognition accuracy by
taking advantage of the class labels (see Sect. 4).

In LDA (see Fig. 3(a)), the parameters o and 3 are coupled, conditioning on
the observed words w. In that case, the model parameters (o and ) have to
be estimated jointly, which is difficult. Various approximation approaches (e.g.,
sampling, variational EM, etc) have to be used. However, in S-LDA (Fig. 4),
the parameters a and (8 become independent, conditioning on observed words
w and their corresponding topics (i.e., class labels) z. So we can estimate o and
0 separately, which makes the training procedure much easier. In the following,
we describe the details of estimating these parameters.

The parameter 5 can be represented by a matrix of size K x V, where K is
the number of possible topics (i.e., class labels) and V' is the number of possible
words. The i-th row of this matrix (/3;) is a V-dimensional vector that sums to 1.
B; is the parameter for a multinomial distribution, which defines the probability
of drawing each word in the i-th topic. The maximum-likelihood estimate of
0B; can be calculated by simply counting the frequency of each word appearing
together with topic z;, i.e., ;; = n;;j/n,., where n;. is the count of the i-th topic
in the corpus, and n;; is the count of i-th topic with j-th word in the corpus.



The estimation of the Dirichlet parameter « is a bit more involved. The
Dirichlet distribution is a model of how topic mixing proportions § vary among

documents. This distribution has the form p(6|a) = % [1,62% . In order
k

to estimate a, we first need to compute 6 for each document w = (wy, wa, ..., wn ).
Suppose the topics (i.e., the class labels of the words) of the document are
z = (21,22, ..., 2N ), then the i-th coordinate 6; of 6 can be calculated as 6; =
Hi:zj =1, =1,2,.,N}/N. After we collect all the 6" (¢t = 1,2,..., M) val-
ues (as a notation convention, we use subscripts to denote coordinates of 6 and
superscripts to denote document numbers), the parameter « can be estimated
from © = {6,602, ...,0M} using generalized Newton Raphson iterations [18].

3.4 Classification of New Video Sequences

Given a new video sequence for testing, we would like to classify each frame in the
sequence. Suppose the test video sequence is represented as w = (w1, wa, ..., Wy ),
i.e., there are N frames in the sequence, and the i-th frame is represented by
the motion word w;. Then, we need to calculate p(z;|w,a, 8) (i = 1,2,...,N).
The frame w; is classified to be action class k if k = argmax;p(z; = jlw,a, 3).
Notice that we use p(z;|w) instead of p(z;|w;) for classification. This reflects our
assumption that the class label z; not only depends on its corresponding word
wj, but also depends on the video sequence w = (w1, wa, ..., wy) as a whole.

To calculate p(z;|w,a, 3), we use the variational inference algorithm pro-
posed in Blei et al. [2]. The basic idea of the variational inference is to ap-
proximate the distribution p(f,z|w,a, 3) by a simplified family of variational
probability distributions ¢(6,z) with the form ¢(8,2z) = ¢(8]y) Hr]:[:1 q(zn|dn)-
The graphical representation of ¢(6,z|y,$) is shown in Fig. 3(b). In order to
make the approximation as close to the original distribution as possible, we need
to find (v*, ¢*) that minimize the Kullback-Leibler (KL) divergence between the
variational distribution ¢(6, z|vy, ¢) and the true distribution p(6, z|w, «, §), i.e.,
(v*,¢*) = argmin ) D(q(0, 2|7y, 9)||p(0, 2|w, o, 3)), where D(-|-) is the KL di-
vergence. Finding (v*, ¢*) can be achieved by iteratively updating (v, ¢) using
the following update rules (see Blei et al. [2] for detailed derivation):

K

Oni X Biv eXp(W(’W) - W(Z ’Yj)) (2)
N "

Yi = o + Z i (3)

Several insights can be drawn from examining the variational parameters
(v*(w), ¢*(w)). First of all, (v*(w), ¢*(w)) are document-specific. For a partic-
ular document z, v*(w) provides a representation of a document in the topic
simplex. Also notice that Dir(y*(w)) is the distribution from which the mix-
ing proportion 6 for the document w is drawn. We can imagine that if we



draw a sample § ~ Dir(y*(w)), 6 will tend to peak towards the true mixing
proportion 6* of topics for the document w. So the true mixing proportion
0* can be approximated by the empirical mean of a set of samples 6; drawn
from Dir(y*(w)). The second insight comes from examining the ¢,, parameters.
These distributions approximate p(z,|wy,). The third insight is that, since the
topic zy, is drawn from Mult(6*), 8* is an approximation of p(z,). Then we can
get p(zn|W) o< p(2n|0%)p(2n|wn) ~ 0} ¢-,w, . This equation has a very appeal-
ing intuition. It basically says the class label z, is determined by two factors,
the first factor 67 tells us the probability of generating topic 2z, in a document
with mixing proportion *, the second factor ¢, ., tells us the probability of
generating topic z, conditioning on a particular word w,,.

3.5 Irregularity Detection in Video Sequences

An interesting application of our method is detecting irregularities (i.e., novelty)
in video sequences. This has a lot of potential applications in surveillance and
monitoring. Previous approaches to irregularity detection can be broadly classi-
fied into two classes: rule-based method and statistical methods [4]. Our method
falls into the statistical methods, which try to learn a model of regularity from
data, and infer about irregularity using the model.

There are various notions of “irregularity”. For example, one possibility is to
define all the actions that never appears in the training set to be “irregular”.
But in this paper, we focus on another case, where “irregularity” is defined
by the composition of different actions, rather than the actions themselves. For
example, loitering in a parking lot is composed of actions which by themselves are
regular. But taken together, those regular actions form an unusual and suspicious
behavior. This irregularity is characterized by the unique combination of regular
actions. Other irregularity detection algorithms using only low-level cues (e.g.
Boiman & Irani [4]) would not be able to identify it.

The application of our method to irregularity detection is quite straight-
forward. We first build our S-LDA model from a collection of training video
sequences that are considered to be “regular”, i.e., estimating the model pa-
rameters  and 3 using the method in Sect. 3.3. Given a new testing video
sequence w, we calculate the likelihood I(w; o, 3) = p(w]|a, 3) using the method
in Sect. 3.4. If w is very different from those in the training set, i.e., it is not
generated by the LDA model defined by « and 3, it will probably have a very low
likelihood under the model. So the likelihood of this new testing video sequence
is an indicator of “irregularity”. Lower likelihood means being more “irregular”.

4 Experiments

We test our algorithm on two datasets: KTH human motion dataset [24] and
soccer dataset [8].



Fig. 5. Representative frames in KTH dataset

4.1 Action Classification on KTH Dataset

The KTH human motion dataset is one of the largest video datasets of human
actions. It contains six types of human actions (walking, jogging, running, box-
ing, hand waving and hand clapping) performed several times by 25 subjects in
four different scenarios: outdoors, outdoors with scale variation, outdoors with
different clothes and indoors. Representative frames of this dataset are shown in
Fig. 5.

We first run an automatic preprocessing step to track and stabilize the video
sequences using the algorithm in Sabzmeydani &Mori [23], so that all the fig-
ures appear in the center of the field of view. We perform leave-one-out cross-
validation on this dataset. For each run, we choose the video sequences of one
subject as the test set, and build our model on the rest of the video sequences.
We run the same process on each of the video sequence. For each run, we take
the features obtained from Sect. 3.1 as the feature vectors. Then these feature
vectors are quantized by k-medoid clustering to form the motion words. Since
the number of feature vectors is huge, we randomly select a small number (about
30 frames) from each training video sequence for the k-mediod clustering.

The confusion matrix for the KTH dataset using 550 codewords is shown
in Fig. 6(a). We can see that the algorithm correctly classifies most of actions.
Most of the mistakes the algorithm makes are confusion between “running” and
“jogging” actions. This is intuitively reasonable, since “running” and “jogging”
are similar actions.

We also test the effect of the codebook size on the overall accuracy. The
result is shown in Fig. 6(b). The best accuracy is achieved with 550 codewords,
but is relatively stable.

We compare our results with previous approaches on the same dataset, as
shown in Table 1. We would like to point out that the numbers in Table 1 are
not directly comparable, since different approaches use different split of training
and test data. In particular, the first three approaches use “leave-one-out” cross
validation, while the remaining two approaches equally split the dataset into
training, validation, and test sets. Nevertheless, Our method achieves better
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Fig.6. (a) Confusion matrix for KTH dataset wusing 550 code-
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accuracy vs. codebook size for KTH dataset

performance by a large margin. As a sanity check, we also run our experiment
by equally splitting the dataset into training and test sets (our algorithm does
not need a validation set), the recognition accuracy is similar.

Table 1. Comparison of different methods in terms of recognition accuracy on the
KTH dataset

| methods |rec0gnition accuracy(%)|
Our method 92.43
Niebles et al. [19] 81.50
Dollér et al. [7] 81.17
Schuldt et al. [24] 71.72
Ke et al. [14] 62.96

4.2 Action Classification on Soccer Dataset

The soccer dataset we use is from Efros et al. [8]'. This dataset contains several
minutes of digitized World Cup football game from an NTSC video tape. A
preprocessing step is taken to track and stabilize each human figure. In the end,
we obtain 35 video sequences, each corresponding to a person moving in the

! Unfortunately, other datasets (tennis, ballet) used in this paper were not available.



center of the field of view. All the frames in these video sequences are hand-
labeled with one of 8 action labels: “run left 45°”, “run left”, “walk left”, “walk
in/out”, “run in/out”, “walk right”, “run right”, “run right 45 °”. Representative
frames of a single tracked person are shown in Fig. 1(b).

Again, we perform leave-one-out cross-validation on the dataset. The con-
fusion matrix using 350 codewords is shown in Fig. 7(a). The overall accuracy
is 79.19%. Table 2 shows the main diagonal, compared with the main diagonal
from Efros et al. [8], which used a k-nearest neighbor classifier based on the tem-
porally smoothed motion feature vectors. We can see that our method performs
better by a large margin for most of the class labels. Also, we can see that a lot
of the mistakes made by our algorithm makes intuitive sense. For example, “run
left 45°” is confused with “run left” and “run in/out”, “walk right” is confused
with “walk in/out” and “run right”, etc. In addition to achieving a higher accu-
racy, our algorithm has the added advantage that it is faster to classify a new
video sequence, since we do not have to search over all the video sequences in
the training set, as required by k-nearest neighbor classifiers.

We test the effect the codebook size on the overall accuracy. The result is
shown in Fig. 7(b). The best accuracy peaks at around 350.

Table 2. Comparison of the main diagonal of the confusion matrix of our method and
the method in Efros et al. [8] on the soccer dataset

| |Our method|Efros et al. [8]]

run left 45 ° 0.64 0.67
run left 0.77 0.58
walk left 1.00 0.68

walk in/out 0.86 0.79

run in/out 0.81 0.59

walk right 0.86 0.68
run right 0.71 0.58
run right 45° 0.66 0.66

4.3 Irregularity Detection

Since all the video sequences in the KTH dataset only contain a single action,
we only test the irregularity detection of our algorithm on the soccer dataset.
Our experimental setting is similar to that in Sect. 4.2. For each run, we choose
one video sequence as the test set, and build our model from the remaining
video sequences. Then we calculate the likelihood p(w|c, 3) of the testing video
sequence under the built model. The likelihood value gives us some indication
on how “irregular” this testing video sequence is, compared with the remaining
video sequences.
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Fig.7. (a)Confusion matrix for soccer dataset using 350 codewords (overall
accuracy=79.19%). Horizontal rows are ground truth, and vertical columns are pre-
dictions. The action labels are “run left 45°” “run left”,“walk left”, “walk in/out”,
“run in/out”, “walk right”, “run right”, “run right 45 °”; (b) classification accuracy vs.
codebook size for the soccer dataset

We repeat the above process for all the video sequences, then rank them
according to the increasing order of their likelihood values p(w|c, 3). Under our
assumption, the top few videos in the list should be considered to be “irregular”.

Since there is no ground truth in this experiment, we can only report our
results empirically. Table 3(a) shows the frame labels in the top five video se-
quences (i.e., the most “irregular” ones). We can see that the videos in Ta-
ble 3(a) are in general “irregular”. For example, they all involve a human figure
runs/walks out of the scene. In fact, the combinations of the frame labels only
appear once or twice in our training set. Table 3(b) shows the frame labels in the
bottom five video sequences (i.e., the most “regular” or boring ones). They are
obviously “boring” video sequences, since they only contain people running. It is
interesting to see that the “boring” video sequences picked out by our algorithms
are not necessarily the ones with a single action (see sequence 33 in Table 3(a)
and sequence 2 in Table 3(b)).

5 Conclusion

We have presented a hierarchical probabilistic model (semi-latent Dirichlet al-
location) for action recognition based on motion words, where each word corre-
sponds to a frame in the video sequence. By naturally exploiting class labels of
training data in our model, we are able to achieve much better results, compared
with previous “bag-of-words” methods.

Of course, our method has its own limitations. For example, it requires a pre-
processing stage of tracking and stabilizing human figures. However, we believe



Table 3. Results of irregularity detection: (a) top five “irregular” video sequences; (b)
top five “regular” video sequences.

|Sequence No.| frame labels |
sequence 6 |“run right” “run right 45°” “walk in/out” “walk right”
sequence b “walk right” “walk in/out”
sequence 9 | “run left” “run left 45°” “run in/out” “run right 45 °”
sequence 32 “run in/out” “walk in/out”
sequence 33 “walk in/out”
(a)
|Sequence No.| frame labels |
sequence 1 “run left”
sequence 2 |“run left 45°” “run left”
sequence 29 “run left”
sequence 4 “run left”
sequence 3 “run left”

(b)

this is a reasonable assumption in many scenarios. In fact, all the video se-
quences in our experiments are pre-processed by off-the-shelf tracking/detection
algorithms without much efforts.
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