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Semi-linear second-order elliptic equations in L'
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Let L be a linear second-order elliptic differential operator in RY, for
instance, L = —4. We consider the equation

ey Lu+ B(x, u(x) = f(x)

where f(x) is integrable on & C R¥ and u(x) vanishes on the boundary of &.
In case B(x, u) is monotone increasing in u, possibly multi-valued, we prove
the existence and uniqueness of solutions. Actually, L can be any abstract
accretive operator in L'(£2) which satisfies a ‘“ maximum principle”. In case
B(x, u) is not monotone but has the same sign as u, we prove the existence
of solutions when f{x) belongs to an Orlicz class arbitrarily close to L' Q).
We also consider equation (1) with a nonlinear boundary condition.

The linear case is considered by Stampacchia [18]. Our basic technique
is to multiply the equation by various monotone functions of w. This method
was used by Moser in his proof of the DeGiorgi-Nash regularity theorem.
The standard variational approach [12, 17] cannot be applied to our problem
for two reasons. Firstly, 8(x, #) may be rapidly increasing in % and may
even have vertical asymptotes, We can handle rapidly increasing non-
monotone B(x,u) by a lemma from [20]. We can handle (multi-valued)
monotone graphs by techniques from [6] Secondly, the merely integrable
function f(x) need not belong to the dual space of the space where an energy
estimate holds.

While this work was in progress, we learned of four other related works.
(i) Browder [4] allows rapidly increasing non-linear lower-order terms of
high-order elliptic operators. Because his approach is Vafiational, those of
his f’s which are functions must belong to a smaller space than L'(£). (ii)
Da Prato [7] considers equation (1) with L = -4, S(x) a monotone continuous
function, and f < L?(2) for p>1. (iii) Konishi [10] has a result similar to
part of our [Theorem Ilin the case when 5(x) is a monotone continuous func-
tion and £ is bounded. (His “sub-Markov” assumption is equivalent to our
assumption (II).) His methods are entirely different from ours. (iv) Crandali’s
Theorem 4.12 in is closely related to our in case L=—4. In
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a paper which is yet to be completed, we have obtained some analogous
results for parabolic equations,

§1. An abstract formulation of the monotone case.

Let B be a maximal monotone graph in X R which contains the origin.
If the pair (s, f) e B, we write { = 5(s).

Let 2 be any measure space. We denote by | |, the norm in L?(%).
Let A be an unbounded linear operator on L'(2) which satisfies the following
conditions.

(I) It is a (closed) operator with dense domain D(A) in L' (L2); for any
A>0, I+2A maps D(A) one-one onto L'(2) and {/4+2A4)! is a contraction in
LYY,

(D) For any 2>0 and fe LY{(Q2),

s%p (I4+2A)f < max {0, sgp I},
(By “sup” we mean the essential supremum. If sup f= oo, assumption (II)

is empty.)
(III) There exists a >0 such that

allul, < |Aull, for all ue D(A).

THEOREM 1. For every fe L' (), there exists a unique u < D(A) such that

@ Au(x)+pux) > f(x)  a.e

Movreover, if f,fe LY) and u, @i are the corresponding solutions of (2), then
(3) I(F— Aw)—(F—AB): < | f~F -

In particular,

@ lAG—a)), < 2] f~7 Ils -

LEMMA 2. Let y be a maximal monotone graph in RXR which contains
the origin. Assume that A satisfies (I) and (II). Let 1£p<o0 and p' =p/(p—1),
p'=oc0 if p=1. Let ucs D(AYNLP(D) with Auec L?(Q). Let g L¥(2) be such
that g(x) € y(u(x)) a.e. Then

ygAu(x)g (x)dx=0.

PROOF OF THEOREM 1. We denote, for u and fe L¥{), f € Bu whenever
f(x) e fu(x)) a.e. We first establish (3) which implies (4) and the uniqueness.
Let g=f—Au <= Bu and g:f—Aa € B, We multiply the equation

* (I) is equivalent to —A generating a linear contraction semi-group in L!(Q).
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A(u—a)+g—g=f—f
by
+1  on {u>MVig>g}

h(x) = 0 on {u=a}n{g=4g}
. | on {u<at\J{g<gl}.

Note that A(x) is defined a.e. and is measurable. Clearly A(x) € sign [u(x)—(x)]
Nsign [g(x)—4(x)], where sign[r]=+1 for >0, sign{r]J=—1 for <0,
and sign [0]=the interval [—1,1]. Applying in the case p=1,
y =sign, we have (A(u—#), h)=0. (This special case of is a con-
sequence of (I) since gign is the subdifferential of the norm.) Therefore we
obtain
lg—&l.==(g—8 W< (f~F, W= f=Fl..

This is estimate (3).

It follows that A+ B has closed range. Indeed, let v, D(A), Au,+Bu,>f,
and f,—/f in L(2). By (4) we have

”A(un’um)ul g 2” fn‘fm”l .

Hence by (III) and the closedness of the operator A, u,—u and Au,— Au in
LY(£). Since B is maximal, f—Au € Bu.

It remains to show that A4 B has dense range. (To accomplish this, we
use some arguments from [6]) Let us approximate 3 by the Lipschitz
functions

~ 1
!

(I—U42p8)"", A>0.

First we solve the equation

(5) eut+AutBu=1

for any >0, >0, J= L'(£2). Indeed, (5) can be rewritten as

Reut Adutu = Af+U+A8) M,
©) u= e (T AY I as

The operator on the right side of (6) is the product of two contractions in
LY(2) and a number less than 1, hence is a strict contraction, so that it has
a fixed point u e D(A). If in addition fe L=(2), then u and Au belong to
L=(£). For, from (II) we have

I(7+-24) gl = gl for g& L) L(D).

The same fixed point argument in the space L&) L>(2) shows that u and
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Au are essentially bounded.
Now we let 1—0, keeping fixed ¢>0 and fe L'\ L2(2). We denote
the solution of (5) by u; From (6),

luzl < (14+2e) 7 2] £+ [z}

whence

fuall =171

where | | denotes the norm in LY{(2)L>L). If we multiply equation (5)
by sign(u;) and by |B;(uz)|? 2B:(u;), make use of and let p— oo,
we also find {8;(u;)} to be bounded in L'(2) N\ L>(2) by the norm of f in that
space.

Next, {u;} and {Bi(u;)} are Cauchy sequences in L*(&). To prove this,
we subtract the equations for u; and u, and multiply the difference by u,—u,.
Using with y =identity, we obtain

elluz—1, 3+ (Ba(u)— B, L), wi—u,) =0,
The last factor may be rewritten as
Uy—u, = {u;—{+28) " uy}
HAUTHAB) w4+ pf) up H{UT+pB)  up—uy}

The middle term makes a non-negative contribution because S is monotone.
Hence

E” ul_u/t”g“}_(ﬁi(ui)“ﬁy(u,u); zﬁi(u/i)_‘taﬁ/‘(uﬂ» é 0 .

Thus {#;} is Cauchy in L¥£) as 2—0. The limit u belongs to L'({) L~(2).
By Lemma 24 of [6], {8} is also Cauchy in L*£); its limit g belongs to
L NL=(2) and g(x) < B(u(x)) a.e. since S is maximal. So we have
(el+Au,~f—g in L¥2) as 1—0. Let v=(el+ Ay (f—g). By (I) and (1), v
belongs to D(AY N\ L=(2). Clearly (el+ A)(u;—v)—0 in L*(§2). Multiplying this
expression by u,—v and using again, we obtain u;—v in L*£).
Hence u==v. By definition of v, eut+Autg=71.
Finally let f= LX) and let f*—f in L) where jf<< L)\ L=(2).
Let u* be the solution of
eut+ Auc+Buc > f°,

Using (III), together with estimate (4) with # =0 and 5 replaced by S+cl, we

have
aflwll, £ 1 Awsll, Z 20 7l .

Hence su*— 0 in L'(£2). Hence

S=lim (f*—eu®) € lim (Au*+ Bu®)
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belongs to the closure of the range of A--B.

The proof of depends on

LEMMA 3. Let T be a mapping from LY(R2) into L'(2) such that {(for
u, ve L))

(7) 1Tu—Toll, = |lu—v];.
® min {0, igf u} < Tu(x) £ max {0, s%p u} a. e.

Let j be a convex lower semi-continuous function from (—oo, co) to [0, 4-oo]
such that minj=j{0)=0. Then

[ j(Tundx < | jlu)dx
Q )

for all we LYQ) such that jou e L'({).
ProofF OF LEMMA 3. First we consider the particular convex functions

(cf. :
J'1<7r> - (7_t>+ and j2(7’> - (—T’—i)+

where ¢ is some non-negative number. Let y(x)=min {u(x), {}. Note that
ye L'($2). By (8) we have Ty(x)<t a.e. and thus

(Tu()—0* = (Tu(D=Ty()* = [Tu()-Tyx)| a.e

Integrating this inequality over £ and using (7), we obtain
j (Tu(x)——t)*dxgj Iu(x)v—y(x)ldx:j‘ (u(x)—bH*dx.
2 2 2

Note that the operator u— —T(—u) also satisfies (7) and (8. So we can
apply the result just proved to this operator to obtain

[ (=T(utey—nrdx< | @x)—tydx.
2 g

If we let v = —u, then the lemma follows for j,(r). Combining the results for
both j, and j,, we have

(9) J [HTut)—01*dx = || [u(d)—1)]*dx

for all real £

The general case follows by taking convex combinations of 7, and j,. In
fact, let j be any convex C' function on R with uniformly Lipschitz deriva-
tive such that minj=7(0)=0. Then

(10) i0=] " T - yyar

as can be easily checked by considering the cases » =0 and r <0 separately.
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Multiplying (9) by j”(¢)/|t| and integrating, we have

f :o f Q’l-!”;(“,o- [HTu(x)—]*dxdt < | i { , Jl’t_@_ CH () — 1)) dxd

By Fubini’s and [10), we obtain
§ jTuGpdxs [ jluta)ds.
) Q

If j is an arbitrary convex ls.c. function, there is a sequence {j;} of
functions as above which converges to 7 monotonically from below. For
instance, we can define (cf. [2])

i) = inf {g =t 450}
By the preceding result we have
JidTude < {jiwydx < [,

This implies j(Tu) e L'(2) and the desired inequality.

REMARK. This lemma can be regarded as an interpolation lemma in
Orlicz classes. As was kindly pointed out to us by Jodeit, in the linear case
it is essentially due to O’Neil by a different proof. In the nonlinear
case with j(u)=|u|?, the lemma follows from Peetre [16] and Lions [13].
We thank L. Tartar for some helpful discussions on this subject.

PROOF OF LEMMA 2. Let ; be the indefinite integral of y satisfying
7(0)=0. It is a convex L. s.c. function from (—oo, c0) into [0, +oc] such that
minj=0. Its subdifferential 0/ equals y. Since g(x) € 0j(u(x)) a.e., we have,
from the definition of subdifferential,

J(Tu(0)—7(uw(x)) = g (LT u(x)—u(x)]
= —Ag(X)(T;Au)x) a. e.
where T;=(+21A4)"'. Using the subdifferential property again,
JO)—ju(x) Zg(x)(0—u(x)) a.e.
Since gu is integrable, so is jou. Applying to the mapping T
we have
[ jTmadz< | jw)ds.
g P

Therefore, (g, T;Au)=0.
As is well-known, T;Au— Au in L'(&) as A—0. So we obtain the desired
result in case p=1. If 1<p= oo,

IT7Aull, < [ Aull,
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(by in case p<oco, and by (II) in case p=o0). If 1<p < oo,
T,Au— Au weakly in LP({2), which leads to the conclusion. In case p= oo,
a subsequence of 7;Au converges a.e. so that Lebesgue’s dominated con-
vergence theorem is applicable.

PROPOSITION 4. Let @ be a convex [, s.c. function from R into [0, +oo]
such that min @ =@0)=0. Let fe L'(2) be such that @of = LNQ). Under
the assumptions of Theorem 1, let u he the solution of (2). Then

j O(f— Au)dx < j O(/)dx .
2 2

In particular,

(11) I f=Aull, =/ 1,

if fel'(HNLP), 1<=p=oce,

FIRST PROOF. Let T be the mapping f—/—Au. By [Theorem 1, T" is a
contraction in L'(f2). Therefore the proposition follows from as
soon as we prove that T satisfies (8). To do this, let &= max {0, sgp f} and

let g=f—Au. We must show that g(x)<%k a.e. in £. If k does not belong
to the range of j3, this is obvious since g(x) & p(u(x)) a.e. Suppose, on the
other hand, that k< S(/) where [=0. Let h(x) be the characteristic function
of {u(x)>}\J{g(x)>k}. Clearly A(x)cy(u(x)) a.e. where y(r)=[sign (r—1)J".
By '

0=(Au, Y= (f—g B =(k—g h).

But g(x)=k a.e. on the set {u(x)>!}. Hence g(x)<Fk a.e. in £. Similarly
g(x)=min {0, iI})ff}.

SECOND PROOF., We shall give a proof only in the case when: u & D(A)
N1, Aue L=(2), fe L'(Q2)\L~(2), B is a continuous monotone function,
and @ is a C' function with uniformly Lipschitz derivative. The general
case is obtained by a passage to the limit. We multiply the equation by

$(B(w)) where ¢ =0’
(Au, (BN +(Bu), (p(u))) = (/, $(Bw)) .

The first term is non-negative by We apply Young's equality to
the second term and Young's inequality to the third term (see Appendix).
Thus

§ L)+ T (@(BaNIdr = [ [0TSR dx.

Two of these terms are identical, which leaves us with the desired inequality.
PROPOSITION 5. Let f,fe LY$). Let u, &t be the corresponding solutions,
Then
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ICC = AR)—(F— Au)]* ],  ILF—F I
If f<f a.e then f—AR<f—Au a.e. and 4 <u a.e.

A

PROOF. Let g=f—Au, g=f—Af so that g B(u), < B(®). We multiply
the equation A(@—u)+g—g=Ff—f by h(x), where h(x) is the characteristic
function of E={a(x) > u(x)}\J{g(x) > g(x)}. Note that h(x) < y(fi(x)—u(x)) a.e.
where y(r)=[sign (r)]J*. By (A(G—u), h)=0. Therefore,

f(e—gyx=[ (F-hrdxs[ (F-ryax.

By the monotonicity of 8, we have §=g on E and £=<g on the complement
of E. Thus

[ (e—grix={ (g—gyrdx

and the desired estimate follows.
Now let f<f a.e. Obviously f—AfA = f— Au a.e. from what we have just
proved. Let u,, @, be the solutions of

s AuA+fu)sf, el AdAPA) DS
We have just proved that
g.=f—Af.=f—Au,=g. a.e

where g. € eu.+ B(u.), &. € el (#.). By the monotonicity of 3, we get @, < u.
a.e. Letting e—0, #=u a.e,

PROPOSITION 6. Let f,fe LYQ) be such that A f—f)e L~Q). If u, @
are the corresponding solutions, then

lu—all. <20 A~
PrOOF. We approximate u# by the solution of
s+ Au+Plu) > fHeAf.
Letting v.=u.—A™'f, we have
ev.+Av.+g.=0 where g.€ pw.+A).
Similarly f determines #,, 9. and g.. Thus
e(0,—v)+AB.—v)+8.—g.=0.

We multiply by h(x)=the characteristic function of F where F= {i.(x)
—v(x)>k} and k=] A (f~f)|.=0. By

* We thank M. Crandall for pointing out the quantitative aspect of this ordering
property.
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e | G~vodx+ | (8—g)dx=0.
F F

But on F we have 0.+A"'f > v,4+ A", so that g.=x g. by the monotonicity of j.
Therefore I has zero measure; that is, /.—v. <k a.e. in £. So #.—u. =<2k
a.e. in £2. Finally, we pass to the limit as ¢ —0.

The following lemma is a variation of A related result may
be found in [3].

LEMMA 3*. Let T be a mapping from L'(L) to L'(L2) such that

D NTu=Tol, = lu—vl,,

(8*%) Tu(x)—Tv(x) < max {0, sgp (u—v)} a.e.

Let j be a convex function as in Lemma 3. Then
§ JTu)—=Topdz< [ ju)—vl)dx
o 2

Jor all u,ve LY(Q2) with jo(u—v)= LY(2).

PrROOF, We define y(x) = min {u(x), v(x)+¢} where t=0. Note that y(x) is
integrable and y(x)<wv(x)+{¢ a.e. By assumption (8%), Tyv(x) < Tw(x)+¢ a.e.
Thus

Tu(x)—Tv(x)—t < Tu(x)—Ty(x) a. e,

Taking the positive part of each side of this inequality and integrating over
£, we obtain

j JTu) = To()—1]*dx = j [Tu(x)—Ty(x)]*dx
< [ 1Tuxn—Ty(x)dx
= | Ju(x)—y(x) dx

= | [u(x)-v(x)—11+dx,

using assumption (7) and the definition of y(x). Now switch the roles of u
and v and let ! =~—1<0. Then

{ [To()—Tu(0+t ] dx < { to)—u@+13+dx.

Thus we have proved Lemma 3* for the particular cases j,(v)=(r—1f)* and
Jo{r)=(—r—1t)*. The proof is concluded exactly as in Lemma 3, provided u
is replaced by u—v and Tu by Tu—To.

REMARK. In an effort to unify some of the preceding work, we make the
following definition. We shall say that a (possibly nonlinear and multivalued)
operator A belongs le class A if its domain and range are included in L)
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and, for all 2>0, I41A is one-one and onto and (/4+1A4)™" satisfies (7) and (8*).

Some of the preceding results, including [Theorem 1, can be extended to
nonlinear operators of class 4 under various additional assumptions. Still
within the context of linear A, we can state

PrOPOSITION 7. If Ais a linear, densely-defined operator which is of class
A, then A+DB is also of class .

ProoOF. Applying the results of to the operators I-+1A and
2B, we see that the resolvent [[+A(A+4B)]! exists. The beginning of the
proof of shows that the resolvent is a contraction in L'(2). To
prove (8%) for the resolvent, let

= max {0, sup D)

where f,fe LY(2). 1t is necessary to show that
THR~-THx <t a.e.

In case {==0, this is the last conclusion of In case >0, a
slight change in the proof of suffices.

The rest of this section is devoted to studying different assumptions on
B and A.

REMARK. Let A satisfy (I) and (II) but not (II). Let 8 be as above but
also onto. Let 2 be of finite measure. Then, for every fe& L*(f2), there
exists ue D(A)NL7(82) such that Au e L=(§2) and equation (2) is satisfied.
(The solution may not be unique.)

PrROOF. The operator A, = A+el, ¢ >0, satisfies (I), (II) and §A.u|, = ¢lju|,.
By Theorem 1|, there is a unique solution u.< D(A) of

5usj+Aue+ge :f, g = B(us) -

By (11}, [glle=1f]~. Since B is onto, {u.} is also bounded in L=({2). From
the equation, the same is true of {Au.}. There is a sequence ¢,— 0 so that

U, —u, Au, — Au Weakly* in L=(2),

n

since A is weakly closed in L'(£). Multiplying the equation by u.—u and
using the monotonicity of A4, we have

(& se—u) = (f—ete— Au,, u—1u) < (f—eu.— Au, u.~u),
lim sup (g.,, #.,—~u)=0.
Also, g.,— f—Au weakly* in L=(£2). The maximal monotonicity of B now
implies that f— Au = Bu.
REMARK. Suppose that S depends on x as well as u. We assume that

A satisfies (I), (II) and (II1) and that £ is of finite measure. For a.e. x, let
u—f(x, #) be a maximal monotone graph with domain (—oo, o) passing
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through the origin. For each real u, let x—(/+48(x, -))"'(v) be measurable
on £. Also let

Me(x)=sup {v|ve flx, u), lul<C)
belong to L*Q) for all C. Then there is a unique solution
Au(x)+ px, ulx)) = f(x) a.e.

just as in [Theorem 1. The only difficulty occurs in the proof that A+ B has
dense range in L'({2). As in the earlier proof, we let 8,(x, u) be the Yosida
approximation of 8(x, u), we solve the equation

100+ Au(x)-F Balx, ux(x) = f(x) a.e.

where fe L7(£2), and we have the bound for {u;} in L7(£). The novelty is
that we are not allowed anymore to multiply the equation by Sa(x, ux(x)).
Instead we note that

| Balx, ;N = | B°(x, w() = M) a.e.,

so that {f;(x, uxx))} is bounded in L*(£). The rest of the proof of Theorem
1 is unchanged.

§2. Some remarks on second-order elliptic operators in L',

We consider in R¥ an open bounded set {2 with smooth boundary. On
2 we consider the differential operator

D
bu=-2 ax (“w ox, )X ox, (@)tau

where a;;, a; € CHR); ac L~(2);
az=0, a+ ﬁﬂ*—_ a.e.;

and, for some positive constant a,
iEjdufiEj‘éalElz a.e., e RN,

The Sobolev space W*?(£2) is defined as the Banach space of all functions
in L?(£2) all of whose derivatives up to order % also belong to L7({2). Wk2(£)
is the closure of D(£) in this space; 1 Sp=<co, k is a positive integer. The
norm is denoted by || ll;,. The usual L?({2) norm is denoted by | [|,. We
write H*Q) =W ().

If 1<p < oo, the natural realization of L on L?(f2) is denoted by A,. Its
domain is D(A,)=W»P(D\Wer(2). It is a closed operator which generates
a contraction semigroup in L?(2) (cf. [1]).

The case p=1 is different. We define
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D(A)={ue Wi(Q)| Luc L'(Q)}

where Lu is understood in the sense of distributions, and we define Au=Lu
for u < D(A). Equivalently, we may say that v € D(A) and Au=7f if and only
if ue Wi'(2) and

- ou  ov ov -
(12) S ax, )~ 2 5o)Haw =4, v)
for all ve Wi~(Q).
THEOREM 8%, The operator A satisfies the following properties.

(1) In the space LY (&), D(A) is dense, A is closed, [+21A is onto and
(I+2A)" is a contraction for 2>0.

(I sgp (I+2AY'f < max {0, S}}p I} for >0 and f= LY{Q).

(13) DAY WD) for 1=<g< N/(N—1); for some a=a(q)>0,
allull,o=Aul,  for uwe D(A).
(14) A is the closure in L'(Q) of the operator A,.

LEMMA 9. A coniains the closure A, in L) of A,. Also A, satisfies the
estimate tn condition (13).

PrOOF. We have D(A,) = H* (D~ H{()C Wii(2). Consider the adjoint
equation

ov oh;
Fa atrng)’zara;;jLav:—Z ox, -

Stampacchia [17] has proven that there exists a solution v H{(Q2)\ L*(§2)
whenever 4, -, hy € L?(£2) with p > N. More precisely

ey 32 2o g Jave- e
for all we HY(L2). In addition, [[v[|.=CX|hill,, We simply choose w=u
where u & [(A,). Then

(v, Ayu) = 3 (hy, 0u/ox,),

| 2 (R, Ou/ox)| = A Al Al

Therefore [jou/ox, = Cl|lA,ull,, where g¢=p/(p—1), so that A, satisfies the
estimate in [(13)

LEMMA 10, A, satisfies the conditions of (I).

PrOOF. Let f=L*2) and u=(/+1A4,)""f. Thatis, u+2ALu=f, uc D(A,).
We multiply this equation by ¢(u)=e¢ '[u—(I+e sign)"'u]; that is, ¢(u)=signu

* This theorem is not new but we could find no explicit reference to it in the
literature.
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for u|=ze and ¢(u)=u/e for |u|=e. We assert that (Lu, ¢(u)) =0. Assum-
ing this for the moment, we have

(u, pu) = (f, s =1 F1l, .

Letting e —0, flull,=<|/],. To prove [+1A4, is onto, let f< L'(2). Approxi-
mate f/ by L2:functions f,. Let u,=(+244,)f,. By what we have just
shown, {u,} converges in L'(2). The limit u belongs to D(A,) and u+214,u = f.
Finally, we prove the above assertion. (Actually it is a special case of
below.) We have -

(— E(aiju»"“"i x 1 ¢)(7,£)) = (E aijuaviu;cjr ¢,(u)) =0

since ¢ is monotone. If £(s) is defined by £’(s) = sp’(s), L(0) =0, then 0=(s)
< s¢(s) and

((aiu)xi: ¢<u)> = ’“(aiur ¢I(u)u:ci) - _'(aiv C(u)r,) = ((ai)xi! C(LL)) .
Hence
(@), +au, p(u)) = (a:)z,+a, {(u)) = 0.

LEMMA 11. I+2A 1is one-one for all 2> 0.

Proor, We will prove the slightly stronger assertion that A itself is
one-one. Suppose Au=0 where ue W) ). That is, equation holds
with f=0. We shall choose the test function v in as the solution in
WD \WEP() of L'v=g where L’ is the formal adjoint of L, g L%Q)
and p>N; cf. [11 The equation for v is understood in the sense that

E(wxir aijv:cj)—z:(wl aiuzi)+(w’ a'U) = (w9 g)

for all we 2(2). We may take any we WHi(£2). Taking w=u, we have
simply 0=(u, g). Since g is arbitrary, u must vanish.

PROOF OF THEOREM 8. Since /4 A, is onto and its extension [4-A4 is
one-one, the two operators must coincide. This proves (14), and (I). To
prove the maximum principle (II), let fe L'(2) and u={+21A4)"'f. We may
assume k=sup f is finite. Let f,(x)=max {f(x), —n}. Then f,e L>(Q) and
fo—f in LY2). Let u,={+1A)"'f,. By a known maximum principle [17],

u(x)=max {O,supf,} <k a.e.

Since u,—u in LY{2) by u(x)<k a.e.
Some of the preceding results may be summarized in the following form.
COROLLARY 12. Lei £2 be a bounded domain tn R™ with smooth boundary.
Let L be the elliptic operator defined at the beginning of this section. Let B
be a maximal monotone graph in RXR containing the origin. Let fe LY(Q).
Then there exists a unique solution in W§H'(2) of Lu+Bu) > f with Lu e LY(Q).
Furthermore, ue W) for all q < N/(N—1), In case f<LP(Q) where
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1<p< oo, we have uc WHP($). ,

REMARK. In the important case f < Llog L, we may apply
with @(s)=|s| log*|s]. We obtain Lue LlogL. Under certain conditions,
of which only special cases have appeared in the literature (cf. [I90), this
implies that u € W»'(Q).

§3. The non-monotone case.

Let 2 be a bounded open set in R¥. Let L be the elliptic operator
defined at the beginning of section 2, except that all the coefficients are
assumed to be merely in L™(Q).

The (Orlicz) space in which we will work is determined by a C* function
¢(s) which is odd, non-decreasing, ¢(0) =0, ¢(s)— +co as s— +oo. We define

o= "swar,  o6={ T,

We define ¥(r) as the conjugate convex function of @(s). See the Appendix
for relations among these functions.

We denote by A4,>0 the smallest eigenvalue of the operator
—>0/0x;(a;;0/0x;) in £ with Dirichlet boundary conditions. We postulate a
nonlinear term S(x, s) with the following properties.

(15) B(x, s) is measurable in x < £, continuous in s< R and

f sup | B(x, )ldx < o for all pe.
2

Isl = pe

(16) There exists g LY{{) such that™®

g i B 999 +2(x)
R RN (O

We denote Bu(x)= B(x, u(x)).
THEOREM 13. There exisis a solution of Lu--Bu=0 a.e. in 2 with the
following properties:

uwe Whi()  for 1=<¢<N/(N-1),
Bwe LY(Q), Bwéw)=LY(RQ),
O(u) € HY(R).

>_—21.

We postpone the proof in favor of some applications.
COROLLARY 14 (inhomogeneous equation). Let B(x, s) satisfy (15) and sB(x, s)
=0 for a.e. x< 2 and sufficiently large |s|. (The latter condition implies (16)

* This kind of condition also exists in the regularity theory [17].
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with g=—0, which is actually sufficient) Assume that
(17) s¢”(s) < const @'(s)  for |s| sufficiently large.
Then there exists a solution of
Lu(x)+ B(x, u(x)) = f(x) a.e in 2
with the properties of Theorem 13, for each measurable function f(x) for which
D(f(x)) is integrable.

PrROOF. We verify the assumptions of for the nonlinear
term B(x, s)—f(x). Obviously (15) is satisfied. We choose g(x)=@(kf(x))
where 2 >1 will be chosen below. Since @(ks)/@(s) is bounded as |s|— oo
(see Appendix), g< LY(2). Note that B(x, s)é(s)=0 by assumption. By
Young's inequality,

| f(x)p(s)| < O(f(x)+ T (R1(s)) .
Since ¥ is convex and ¥(0)=0, we have T(k'@(s)) < k¥ (¢(s)). Thus for
|s| large
CA(x, s)—f(x)Jp(s)+g(x) -1 2 (P()
0*(s) 0% (s) -
Since the last quotient is bounded as |s|—oc (see Appendix), # may be chosen
so large that (16) holds.

ExAMPLES. In this and the following example we assume s8(x, s)=0 for

large |s|. Choosing ¢(s)=|s|?"'signs, where 1<p<oco, we obtain from
orollary 14] a solution of Lu+Bu—f for any fe L?{2). For a sharper
result, see below. As a second example, we choose ¢(s)=
log (1+|s]) sign s so that 8(s) =2[(14|s|)”*—1]signs. Then we have

COROLLARY 15. For each f Llog L, there is a solution of Lu+t+Bu=f
satisfying

= —

we LYW\ WE(Q),  for ¢ < NJN=1), if N>1%,
B(u)log (1+|ul) € LY(D),
[+ 1u ) —1]signu & Hy(£2).

REMARK. While does not permit a solution for arbitrary
integrable f(x), it does allow f(x) to belong to an ‘ arbitrarily ” smaller class.
There are two restrictions on ¢(s): that it goes to infinity with s, and con-
dition (17). 1t is only the first of these which restricts the size of the class
of f’s and excludes the L' case. Thus another example of an allowable class
is. Lloglog L. .

LEMMA 16. Suppose that S(x, s) is uniformly bounded on 2XR, as well as
measurable in x and continuous in s. Then there exists a solution ue< HY(Q)
NL2(Q) of the equation Lu—+ B(u)=0. ‘

CuEWE(D) WD) if N=1.
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PrROOF. For any ve L? let u be the solution in HY2) of the linear
equation Lu+B(v)=0. Upon multiplying this equation by # and integrating
over £, we find

Cllully, = [Bvll, = | 217*] Bv].,

where C is a constant. So the mapping v—u takes L*{2}) into a compact set
in L*($). Since this mapping is continuous, it has a fixed point belonging
to HY2), by Schauder’s theorem. By the maximum principle [17], the solution
is essentially bounded.

LEMMA 17. For any ve HY2)\ L™(2), we have the inequality
(Lv, ¢(v)) = max {a[|0()[7s A l0@)]5 = 0.

PrROOF. We first consider the lower-order terms

((aiv)a}iv ¢(U)) = _(aiv, ¢,(U)U,;i)
= _(ai! w.(gﬁ(v))xz)
= ((ai):cy w‘(¢(v)))

since
s@'(s) = (sP(s)—D(s)) = [T ((s)] .

Also, since a =0,

(av, $@)) = [ a¥ (P))dx.
Adding, we find

(@w)s+av, $@) = [ (@)e+OT(GW)dx = 0.
We write the second-order terms as
_((aijv.r,;).rjv ¢(U)) = (aijv.r,-, ¢l(v)vzj)

= (aijﬂ(v)a:p H(U)z'j)

since @’(v) =¢’(v). The proof is completed by using the ellipticity and the
meaning of 4,.
PrROOF OF THEOREM 13. We truncate §(x, s) as follows:

P { B where |Bl=n
" nsign8  where |Bi=n.
For each (x, s), 8,(x, s) has the same sign as j(x, s) but decreased magnitude.
Denote the operator u(-)— B,(-, u(:)) by B, By there exists
u, € H(Q) N L() such that Lu,+B,(u,)=0.
Hypothesis (16) may be expressed as follows: There exists ¢>0 and
£ >0 such that
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Blx, $)p(s) > (e—2A)0%(s)—g(x) a.e.

for |s|= p. Hypothesis (15) gives an estimate for |s|<pg Hence

Balx, $)p(s) = min {0, B(x, s)p(s)} ,
Ba(x, 9)9(s5) Z (e—2)8*(s)—h(x)  a.e.
where A(x) is also integrable. Taking s=u,(x) and integrating, we find
(Bun), ¢(uz)) = (e— )0 E— Al
On the other hand, by Cemma 17,
(Laty, ¢(un)) = 2,110(ua)3 .

Adding, we conclude that {6(u,)} is bounded in L*({) and that both (B,(u.),
¢(u,)) and (Lu,, ¢(u,)) are bounded. By {0(u,)} is also bounded
in H{Q).

We can also make the following estimates.

JIBudd@ldr=Buw), pw=2f B )pwdx
< (Ba(un), ) +24,—e)|0(w,) 34202l
and

fiBuoldx = f1B g ldet | 1Bl dx.

The last term is bounded because the integration occurs over the set
{lu,1 = @D} and B(x, u,) is bounded by an integrable function there. Thus
(B, (u,)¢(u,)} and {B.(u,)} are both bounded in L(2). Therefore, {Lu,} =
{—B,(u,)} is also bounded in L'(2). So by [I3), {u,} is bounded in W{¥4L)
for any ¢ < N/(N—1).

By weak compactness, we can choose a subsequence (for which we do
not bother changing notation) so that {u,} converges weakly in W{4Q) and
{f(u,)} converges weakly in -H{(£2). Let u=1limu,. By strong compactness,
we may assume that u,—u a.e. and hence that 6(u,)— 08(u) a.e. as well as
weakly in H{(Q). It also follows that B,(u,)— Bu) a.e. and B,(u,)¢(u,)—
B(u)¢(u) a.e. By Fatou’s lemma, B(ux) and B(u)¢(u) are integrable on £2.
Since ¢(s)— oo as s—co, the argument of [20] shows that B,(u,) — B(u)
strongly in L'(£2). Thus each term in the approximate equation converges
in LY($), and Lu-t+Bu)=0.

Further regularity can be obtained with the use of Sobolev's inequality.
We state it only in the L?-case.

THEOREM 18. Let fe LP(Q) for some 1 <q< N/2. Let
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N—2
b="N—2q1"1"
Let s8(x, s)=0 for large s. Then there exists a solution of Lu+B(u)=f in £
satisfying:
= LNp/(N—Z)(Q) :L‘Vq/(N*Zq)(Q) ,
|| P sign u < HY(Q),
|u | 'Bu) = L'(2).

[Note that this is stronger than the example following Corollary 14 mainly
in that f need not belong to LP({).]

ProOOF. We choose the multiplier ¢(s)=|s|?!signs. By Hoélder's in-
equality,

(f, o) S [ P g =1 F llg 10l B i -
On the other hand, by Lemma 17, there is a positive number C such that

(Lu, o)) = ClO 3w in -2 = Cllull% prar—o -

Thus the solution of the truncated problem Lu,+ B,(u,)=f, remains bounded
in L¥?Y%-2 and (f,, ¢(u,)) is bounded. The proof continues as before.

THEOREM 19. (a) If fe L¥*(Q), then for some A>0 the solution satisfies
exp (A|ul) & LY@ (),

[exp(-4-1ul—1)]sign e HY@), B exp(5-ul) e L'@).

) If feld(Q) with g> N/2, then the solution is uniformly Holder-
continuous. (Assume a,; a; € CY(@2) and |slup | B(x, s) = LU82).)
Sl S p
PROOF. Part (a). We choose ¢{s)=[exp Als|—1]sign(s) so that 8(s)=
227V exp (A}s]/2)—1]sign(s). From the proof of [Theorem 13, together with
Sobolev’s inequality, the approximate solutions satisfy

02—1”31[%”2_1”3N/<N—2)+(Bn(un), ) = fallwrell e“"”"’lnzv/(zv—z)

with ¢ independent of u, 4, N, n. We need only choose 1 less than ¢/|flxx
to balance the right side. Part (a) follows.

Part (b) is essentially contained in Stampacchia [I7], but for completeness
we present a proof. We recall from [Theorem 18 that u € L?(2) for all finite
P and that

e v rv—o S (1 fllo 6P = collullBa’
(The constants are independent of p.) Hence
lllBy -2 = Cabllulds

If Jul, =1 for an infinite sequence of p’s going to -+co, then [|ul.=<1. Inthe
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contrary case, we may assume [u|,>1 for all p = p,.
the exponent (p—1) above by p. Defining

__ N 1 _
0——]-\]_—2?“>1, by=20%p,

we have

el par = (D)l (0=0,1,2, -

Iterating as in Moser [14], we have

Nl py = csllull g -

So we may replace

n

So the solution is bounded. Hence Au=f—B(u)e LYD). So ues W) and

it is Hoélder-continuous.

§4. A nonlinear boundary condition.

In this section we will solve an equation of the same form as in section

3 with the boundary condition

%L—-Jr;'(x, ) =10 on I'.

Let £ be a bounded open set in R¥ with smooth boundary /. We define L
as in section 2 with a;;, a, = C'(2) and a< L™(£2). In addition we assume

oa, ]
aza, a+279x’ =a’ a.e. in 2
: .

13

for some positive constant «’, and

SNan; =0 on I’

i

where n=(n,) is the unit outward normal on I'. We denote

0 0

ong = ?jaij"j axi‘ .
DEFINITION. Let ue WH'(2), fe LX), g L"I).
weak solution of the Neumann problem

(18) Lu=f in £, %u—:g on I’
Ry,

provided the following identity holds for all » & CY(2).
ou

We say that u is a

— ov 0
(19) a(u, v) ﬁj‘g{%au‘gz W%;—ax—l(azu)v—l—auv}dx

= jgfv dx+_frgv al’.
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Let 4 be a positive constant so small that

af,z

g—zirdx—i—a’j‘glulzdx_z_zjgiu|2dx—|—lj'r|u|2df

for all ue H(Q).

Let ¢ be a function as in Let B(x,s) and y(x, 5) be nonlinear
terms satisfying:

B(x, s) is measurable in x = £, continuous in s€ R,

y(x, s) is measurable in x [, continuous in s& R.

(20) f sup | B(x, s)|dx < 400, f sup |r(x, s)|dx < +co for all pe.
2 1=y £ sl =p

2D There exist i, = L) such that

e e B PR
it T ey 7
and h, & L)
N D) O R R Co N
e N ([6) A
We denote Bu(x)=f(x, u(x)) for a.e. x= £ and Cu(x)=y(x, ru(x)) for a.e.
x&I", where 7 is the trace operator mapping WHP(2) onto Wi~ ¥»»(["),
THEOREM 20, There exists a weak solution of

(22) Lut+Bu=0 in Q, g“ Y Cu=0 on I'
mny,

with the following properties:
ue Whi()y  for 1Zq<N/(N—-1),
Bw) and B(u)¢{u)e LY(Q),
Clw) and Cw)om)e LX),
ou)e HV(Q).
COROLLARY 21. Let B and y satisfy (20) and (21) and sB(x, s)=0 a.e. in
2, sy(x, )20 a.e. in I' for sufficiently large |s|. Let ¢(s) satisfy (17). Then

there exists a weak solution of

(23) Lu+Bu=f in £, %;‘—LA—Cu:g on I'

with the same properties as in Theorem 20, so long as O(f e LXQ) and
O(g)e LY.
THEOREM 22. Let B(x, s) and y(x,s) be monotone functions of s, in addition

to satisfying (20) and (21). For any fe L) and ge L'(I') there exists a
unique weak solution of (23) satisfying us Whi(Q) for 1 <q< N/(N-1),
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Buye L\(2), CwyeL\l).

Corollary 21 can be applied to the L? (1 <p < +o0) and Llog L cases as
in section 3.
We begin the proofs with an estimate for the linear problem [I8). This

is the analogue for the Neumann problem of
LEMMA 23. Let u be a weak solution of (18). Then we have ue Wh¥({)

Jor all 1 £q < N/(N—1) and
l%ll1,e = Coll S et 18l Lier) -

In order to prove Lemma 23, we first note the following.
LEMMA 24. Given hy hy, -, hy € D), there exists a unique ve CH L)

satisfying

(24) a*(v, Z:)—j‘ IEG,J g; aqf—za Q—i—avC}dx{—j‘ Samnpldl

f {huc+zh A }dl
for all L WHY(2). In addition,
[l CElhd,  for all p>N.

PROOF OF LEMMA 24. For all { & H'(2) we have
aa
® 2 i 2 2
QO zaf Pedat] (ot D3I ICFdxt—y | Samgpar

> [(aiF g1 +a| L] Ddx .

By the Lax-Milgram lemma, there exists ve H'(2) satisfying (24) for all
(e H'(2). From the results of [1] we know that ve CY2). Hence (24) holds
for all £ = WHY(2). In order to establish the L™ bound on v, we use Stam-
pacchia’s method. If in (24) we choose {(x)=max {v(x)—#k, 0} where 2=0,
we obtain

(v, )=, O+r [ aldxtkf (Samdgdl

= hdz+ S ac dx.

Consequently (since k=0, =0, a=0, E_ an;=0)

«f le{deraj Cidxs f neartf Th ac ~dx.

We conclude, for example as in [9] (proof of Lemma 7.3), that the stated
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bound on v is valid.

PROOF OF LEMMA 23. Let Ay, Ay, -, hy € 9(2) and let v € CY2) be given
by We take {=u in (24). On the other hand, we know from
that

a*(v, u):j‘ fvdx—l—j gvdl’ .
2 I
Therefore

§ {nout 2 h Gt ax =< o+ lgla o],
< Gl luartlgl ) S Al

for all p> N, which implies the conclusion of

LEMMA 25 (analogue of Lemma 16). Suppose that f(x, s) and y(x, s) are
uniformly bounded on QX R and on I'X R, respectively, as well as measurable
in x and continuous in s. Then there exists a weak solution uwe HY(Q) L~(2)
of the problem

Lu+Bu=0 in Q, —g%JFCu:o on I,
L

PrROOF. For any ve H¥(Q), let u be the weak solution in H'(Q) of the

problem

ou
on;

Lu-+Bv=0 in £, +Cv=0 on I,

which exists by Lax-Milgram lemma since a{u, u) is coercive. Also we have
lully,, < C(iBv|| L2cgy+ |CVliL2rs).  So the mapping v—u has a fixed point. As
in the proof of we can check easily that u e L=(Q).

LEMMA 26 (analogue of Lemma 17). Let ues H'($2)N\L=(Q) be a solution
of (18) with f and g essentially bounded. Then

of S| p-owfdrta | usixs | spdx+[ gpeoar.
PROOF. We simply put v=¢(u) in As in we have
[ a-taaptods = am fug—T@unhdl+ [ S2w @iz,
Therefore
af 2|k 0[dr+| Sanfupe—@aprar

+ j , ;gil V(du))dx+ j bz

< | rodxt| ggdr .
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Noting that r¢(r)—¥(¢(r)) = 0, the desired estimate follows.

PROOF OF THEOREM 20. The proof is very similar to that of
13. We truncate B(x, s) exactly as before. We truncate y(x, s) in the same
way. By we solve

Lu,+Bu,=0 in @, Ot

’ahL +Cnu11:0 on F

As before we have
[ Buung(u)dx = (=2 f |6(u,) 1 2dx—const .
2 2
and
§, Coundlu)dl = (e=2) | 100a,)|*d "~ const.

Therefore

«f 3| )2 o0

de%—a" jlgungé(un)dx

He=d) [ 1000 *dx(e=2) [ 100 *al”

=< const.
Since rd(r) = [60(r)|?, we deduce from the choice of 2, that {#(u,)} is bounded
in HY4), jQBnungﬁ(un)zlx and _f Cou, ¢(u,)dl” are bounded. Hence {B,u,} is

bounded in L¥¢) and {C.,u,} in L'I"). By [Lemma 23, {«,} is bounded in
WH Q) for ¢ < N/(N--1). The proof is completed as before. It should be
noted that {ru,} is bounded in W' V49" and hence may be assumed to
converge a.e. on I. By Fatou’s lemma, C(u) and C(u)$(u) are integrable
on I'. Since @(s)—-+o0 as s teo, Colu,)~—-C(u) in L'(J7). It follows that
1 is a weak solution of (22).

ProOF OF COROLLARY 21. As in [Corollary 14 we verify that Bu—/ and
Cu—g satisfy the conditions of Bu and Cu, respectively, in

PROOF OF THEOREM 22. We may assume that S(x, 0)=0 and y(x, 0)=0,
for otherwise, they may be absorbed in f(x) and g(x), respectively. Let f,, 2.
be sequences of square-integrable functions tending to f, g (respectively) in
LY (), L"I"). Let u, be a solution of

Lu,+Bu,=/f, in 2, fggl%»()un =g, on I,
ny

according to [Corollary 21, We subtract the equations for u, and u, and
multiply by ¢(u,—u,) where ¢(s) is a smooth, bounded, monotone approxi-

mation to sign[s]. Estimating as in we get

a’ j (un_um)‘;é(un'—um)dx
2
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+{ (B~ Bun)pun—um)dx+ [ (Ctn—Cuun)(uy—un)dl’
g r

<[ (fafudpltn—uddzt | (gu—gn)Plun—umdl .
2 1

Letting ¢ —sign, we see that u,, Bu, and Cu, all converge in L'. Using
Lemma 23 the existence part of follows.

To prove the uniqueness, let ¥ be any solution and let A, &, be L?
functions tending to f—Bu, g—Cu in L'(§), L(I"), respectively. Let w,=H'({2)
be the solution of the linear problem

Lw,=h, in £, fg&"«: k, on I.
np,
By we have
lwo—ull1,q = Colllhn—F+ Bull z1cgy+ | on—g+Cut] L1¢)

and therefore w,—u in W"(£). Now suppose # is another solution as in
and let A, %, @, be constructed as above. Multiplying the
equation L(w,—,)=h,~h, by ¢(w,—1iD,), we obtain

@ | (0, 0)pw,—0)dx < [ (hy—h)plw,—,)dx

+[ (ea— b pwa—w,)dl .
r

Letting n-— --co we have

a’ j (u—i)Pu—i)dx < j (— Bu+ Bi)p(u—)dx
Q Q2
+ (—Cu+Ciyp(u—t)dl .

(We can always assume that A, ﬁn, ko, i@n are bounded by a fixed integrable

function, and then apply Lebesgue convergence theorem.) As ¢—sign, we
get u=1a. ’

Appendix.
The conjugate convex function of @(s) is defined by
¥V (ry=-sup [rs—@(s)].

The supremum is attained if and only if »=¢(s) where ¢ =@’. See

Our assumption that ¢(s)— 4oc as s— +co implies that 6(s) is bounded away
from zero for large s.

LEMMA. Assume thal there is a constant ¢; so that s@p”(s)<c,¢'(s) for
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large s. Then

(i) @(ks)/D(s) is bounded for large s,

(1) T(@(sHLO(s)]® is bounded for large s.

PrOOF, By assumption, s “1¢’(s) is non-increasing for large s. Hence for
k>1, ¢'(ks) < k1¢'(s). Integrating this inequality twice and using the assump-
tion that ¢(s)— +oo as s— 400, we get (i).

By definition of @, we have (0')*=¢’. Hence 26'6” = ¢”. By assumption,

B/(c,0' —2507) = 50" (c, ' /5—20"0") = s6'($" —26'6") =0

for large s. Arguing separately over the intervals where ¢ is constant and
where ¢ is increasing, we see that (¢, +2)0--2s6’ is non-decreasing for large s.
Thus s#” <2¢,0 for large s. Multiplying by &/, we have s¢’ = 2¢,00’ for large
s, Integrating once more,

T(P(s)) = sP(s)—D(s) < ¢,0%(s) for large s.
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