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We theoretically and numerically investigate the effect of temperature dependent

density and viscosity on turbulence in channel flows. First, a mathematical framework

is developed to support the validity of the semi-local scaling as proposed based on

heuristic arguments by Huang, Coleman, and Bradshaw [“Compressible turbulent

channel flows: DNS results and modelling,” J. Fluid Mech. 305, 185–218 (1995)].

Second, direct numerical simulations (DNS) of turbulent channel flows with different

constitutive relations for density and viscosity are performed to assess and validate

the semi-local scaling for turbulent statistics. The DNS database is obtained by

solving the low-Mach number approximation of the Navier-Stokes equation. Finally,

we quantify the modulation of turbulence due to changes in fluid properties. In the

simulations, the fluid is internally heated and the temperature at both channel walls is

fixed, such that the friction Reynolds number based on wall quantities is Reτ = 395

for all cases investigated. We show that for a case with variable density ρ and

viscosity µ, but constant semi-local Reynolds number Re∗τ ≡


(ρ/ρw)/(µ/µw)Reτ
(where bar and subscript w, denote Reynolds averaging and averaged wall quan-

tity, respectively), across the whole channel height, the turbulent statistics exhibit

quasi-similarity with constant property turbulent flows. For cases where Re∗τ , Reτ
across the channel, we found that quasi-similarity is maintained for cases with

similar Re∗τ distributions, even if their individual mean density and viscosity profiles

substantially differ. With a decrease of Re∗τ towards the channel center (Re∗τ < Reτ),

we show that the anisotropy increases and the pre-multiplied stream-wise spectra

reveal that this increase is associated with strengthening of the large scale streaks

in the buffer layer. The opposite effect is observed when Re∗τ increases towards the

channel center. The present results provide an effective framework for categorizing

turbulence modulation in wall-bounded flows with variable property effects, and can

be applied to any Newtonian fluid that is heated or cooled. C 2015 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4929813]

I. INTRODUCTION

Heat transfer plays an important role in many engineering applications and affects many sectors of

modern economy. In some of the applications, the effects of temperature dependent thermo-physical

properties are strong and the traditional approach of treating temperature as a passive scalar no longer

holds. The strong coupling between energy and momentum alters the conventional behaviour of turbu-

lence and conventional scaling laws for constant property flows fail and cannot be applied. Classical

scaling laws for flows with constant thermo-physical properties have been investigated in great detail

by Moser, Kim, and Mansour,2 Hoyas and Jiménez,3 Bernardini, Pirozzoli, and Orlandi,4 and refer-

ences therein. While the classical scaling is able to provide an approximate collapse of Reynolds
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stresses in the inner-layer, there is no universal scaling with respect to Reynolds number.3,5 The

peak amplitude of stream-wise and span-wise fluctuations increases logarithmically with Reτ, while

wall-normal fluctuations increase sub-logarithmically.4 The influence of large-scale outer-layer mo-

tions on the near-wall cycle increases with Reynolds number.5–7 There has been considerable progress

in understanding how turbulence intensities depend on the Reynolds number and predictive models

for estimating them have been proposed by Marusic, Mathis, and Hutchins.7,8

Studies on variable property wall turbulence have been performed mostly for high Mach num-

ber flows. Smits9 investigated supersonic turbulent boundary layer flows and commented that a

single Reynolds number cannot be used to characterize the state of the boundary layer due to

variations in properties. Coleman, Kim, and Moser10 investigated a supersonic channel flow using

DNS with cold isothermal walls and concluded that only mean property variations, but not thermo-

dynamic fluctuations, are important at supersonic Mach numbers. They observed that the property

variations lead to an enhanced streak coherence (longer streaks) when compared to incompressible

cases. A streak-elongation was also reported for supersonic turbulent boundary layers with cooled

walls by Duan, Beekman, and Martin11 and Lagha et al.,12 while shorter streaks were observed

for heated walls by Duan, Beekman, and Martin.11 These streak modifications were quantified in

terms of wall based viscous units. Huang, Coleman, and Bradshaw1 proposed a semi-local scaling

based on wall shear stress and local properties to collapse the turbulent statistics in the near-wall

region. The semi-local scaling was used by Coleman, Kim, and Moser10 to compare their compress-

ible results with incompressible data and a good qualitative agreement was obtained. Morinishi,

Tamano, and Nakabayashi13 performed DNS of compressible turbulent channel flows between

adiabatic and isothermal walls at a relatively low-Reynolds number of Reτ = 150. They showed

that the near-wall velocity streaks for compressible turbulent flows do not become more coherent

and are independent of thermal wall boundary conditions if semi-local units are used to compare

with incompressible flows. Nicoud and Poinsot14 performed a DNS (using the low Mach number

approximation of the Navier–Stokes equations) of a variable property channel flow with both walls

at different but constant temperatures. The semi-local scaling was used to highlight differences

in span-wise and wall-normal peak turbulent intensities when compared with the isothermal flow.

Foysi, Sarkar, and Friedrich15 further analysed the applicability of the semi-local scaling for a

turbulent supersonic channel flow with isothermal walls. They observed that in the inner-layer the

stream-wise Reynolds stress component increased, while the span-wise and the wall-normal compo-

nents decreased when compared with the constant property case. This increase in anisotropy was

attributed to the non-local dependence of the pressure strain on density, where a decrease of density

causes the pressure-strain correlation to decrease. They concluded that the semi-local scaling gives

a better performance as compared to the classical wall scaling, but the improvement is only partial,

because of the non-local dependence of pressure on density.

In the present work, we attempt to clarify and quantify in detail the effect of variable density

and viscosity on near-wall turbulence modification and scaling of turbulent statistics. We provide

a mathematical basis for the use of semi-local scaling, which was proposed by Huang, Coleman,

and Bradshaw.1 A fully developed channel flow, driven by a constant stream-wise pressure gradient,

is studied under the low Mach number approximation of the Navier-Stokes equations without the

effect of buoyancy. The fluid is heated by a volumetric heat source, as in the passive scalar simu-

lations of Kim and Moin.16 Furthermore, the computational setup can be considered qualitatively

similar to that of Huang, Coleman, and Bradshaw,1 Coleman, Kim, and Moser,10 Foysi, Sarkar, and

Friedrich,15 because density and viscosity are coupled to the temperature and the volumetric heat

source mimics the viscous heating for supersonic flows. However, the volumetric heating is set con-

stant (in contrast to viscous heating) and the acoustic effects are not taken into account in the present

simulations. Based on previous experimental and numerical studies,10,12,17–21 it is known that for

supersonic flows with moderate Mach numbers (Ma < 5), the direct effects of compressibility on

wall turbulence are small and any differences from incompressible turbulence can be accounted

for by mean variations of fluid properties. In the near-wall region of a supersonic flow, most of

the near-wall density and temperature fluctuations are the result of solenoidal “passive mixing” by

turbulence, and density fluctuations show little correlation with pressure fluctuations.10,17 In that

respect, studying the influence of property gradients without intrinsic compressibility effects is in
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line with previous studies on supersonic wall-bounded flows. Therefore, even though the database

in present work is obtained using a low-Mach number approximation of the Navier-Stokes equation,

the results are of relevance to flows in the supersonic regime. Seven DNS cases with different

combinations of density and viscosity as a function of temperature are simulated, and selected cases

are compared to each other.

II. METHODOLOGY

A. Governing equations and computational approach

The low Mach number approximation of the Navier-Stokes equations in Cartesian co-ordinates

is solved to simulate the turbulent flow in a channel. In the low Mach number limit, acoustic wave

propagation is ignored and the pressure field is decomposed into a thermodynamic P0(t) and a hydro-

dynamic component p(xi, t).
22,23 Furthermore, for a calorifically perfect fluid in a closed system with

zero net heat flux, it can be shown that P0 is independent of time.24 The density and transport properties

can then be evaluated independently of the hydrodynamic pressure variations (p ≪ P0) as a function

of temperature alone. Under these assumptions, the governing equations for mass, momentum, and

energy can be expressed in non-dimensional form, without effects of buoyancy, as

∂t ρ + ∂x j(ρu j) = 0, (1)

∂t(ρui) + ∂x j(ρuiu j) = −∂xip +
1

Reτ
∂x j

�
2µSi j

�
, (2)

∂t(ρH) + ∂x j(ρu jH) =
1

ReτPrw
∂x j(λ∂x jT) +

φ

ReτPrw
, (3)

with the strain rate tensor Si j =
1
2

(

∂x jui + ∂xiu j

)

− 1
3
∂xkukδi j and δi j the Kronecker delta. The

equations are written in non-dimensional form by using the following non-dimensional variables:

xi =
x0
i

h0
, t =

t0

h0/u0
τ

, ui =
u0
i

u0
τ

, p =
p0

ρ0
wu0

τ
2
, T =

T0

T0
w

,

H =
H0

c0
pwT0

w

, ρ =
ρ0

ρ0
w

, λ =
λ0

λ0
w

, cp =
c0
p

c0
pw

, µ =
µ0

µ0
w

, (4)

where xi, t,ui,p,T,H, ρ, λ,cp, and µ are the spatial co-ordinates, time, velocity, pressure, tempera-

ture, enthalpy, density, thermal conductivity, isobaric heat capacity, and dynamic viscosity, respec-

tively, with the superscript 0 indicating the dimensional quantities and subscript w the averaged wall

values. u0
τ =



τ0
w/ρ

0
w is the friction velocity based on wall values and h0 is the half channel height.

The Reynolds number and Prandtl number are Reτ = ρ0
wu0

τh0/µ0
w and Prw = µ0

wc0
pw/λ

0
w, respec-

tively. In order to achieve variations in temperature T , and consequently in density ρ and viscosity

µ, the flow is uniformly heated with a volumetric heat source φ, while the temperature at both

channel walls is kept constant. In this manner, the symmetry of the mean flow is maintained and

the Reynolds number Reτ is constant with respect to property variations. This forms the basis for

an ideal setup to study turbulence modification due to variable properties, and to compare scaling

laws with isothermal flows, as compared to a case where the bottom and top walls are at different

temperatures and therefore at different Reynolds numbers.14,25

The co-ordinates x, y, z represent the stream-wise, the wall-normal, and the span-wise direc-

tions, respectively; the corresponding velocity vectors are represented as u, v,w. The mean statistics

are obtained by averaging with respect to time and in homogeneous directions (x and z) using

Reynolds and Favre averaging. For a generic variable γ, the Reynolds averaged mean γ and its

fluctuation γ′ are defined as γ = γ + γ′, with γ′ = 0. The Favre averaged mean γ̃ and its fluctuation

γ′′ are defined as γ = γ̃ + γ′′, with γ̃ = ργ/ρ.

A sixth order staggered compact finite difference scheme26,27 is used to discretize the spatial

derivatives in wall-normal direction. In homogeneous directions, the Fourier expansion with peri-

odic boundary conditions is used and the advection term is discretized with a skew-symmetric
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formulation of Morinishi.28 The equations are integrated in time using the second order Adams-

Bashforth method. The pressure correction scheme is based on the projection method.29 The valida-

tion of the numerical approach is discussed in Appendix A.

B. Semi-local scaling

Wall scaling for constant property flows utilizes uτ =


τw/ρw as the velocity scale, and

δv = µw/ρwuτ as the viscous length scale to characterize the inner-layer. The corresponding dimen-

sionless wall co-ordinate is then y+ = y/δv. Semi-local scaling as proposed by Huang, Coleman,

and Bradshaw1 for variable property flows utilizes local properties for the velocity and viscous

length scale, such that u∗τ =


τw/ρ and δ∗v = µ/ρu∗τ, respectively. This leads to the semi-locally

scaled wall distance y∗ = y/δv∗ and the corresponding semi-local Reynolds number Re∗τ = h/δ∗v.
For constant property wall-bounded turbulent flows in a given geometry, turbulent statistics

are a unique function of wall-normal distance y/h and friction Reynolds number Reτ, such that

u′
i
u′
j
/u2

τ = f (y/h,Reτ), where f is a generalized function and not known a priori. By applying the

classical wall scaling in the inner-layer, the expression for the Reynolds stresses can be reduced to

u′
i
u′
j
/u2

τ ≈ f (y+). However, it is known that no universal scaling with respect to Reynolds number

exists.3,5 The peak amplitude of stream-wise and span-wise fluctuations increases logarithmically

with Reτ, while wall-normal fluctuations increase sub-logarithmically,4 such that it is more appro-

priate to write the Reynolds stresses as

u′
i
u′
j
/u2

τ = f (y+,Reτ). (5)

For variable property wall-bounded turbulent flows, turbulent statistics for a given flow geom-

etry not only depend on y/h and Reτ, but also on the profile of density and viscosity. For moderate

density and viscosity gradients, the property fluctuations are small and Morkovin’s hypothesis

holds, i.e., only mean property variations, but not thermodynamic fluctuations are important in

turbulence dynamics.10 The expression for the Reynolds stresses can then be written as

ρu′′
i
u′′
j
/τw ≈ f (y/h,Reτ, ρp, µp). (6)

Note, in the above equation ρp and µp are the normalized mean profiles of density and viscosity

over the complete channel cross-section. The semi-local scaling proposed by Huang, Coleman, and

Bradshaw1 has been used in the past to account for mean property variations in the near-wall scaling

of turbulent statistics for compressible flows when compared with isothermal cases. In the present

work, we investigate if the semi-local scaling can be used as an universal near-wall co-ordinate for

flows with variable property effects. In other words, we assess if

ρu′′
i
u′′
j
/τw ≈ f (y/h,Re∗τ) ≈ f (y∗,Re∗τ) (7)

holds. Equation (7) implies that Re∗τ is sufficient to characterize near-wall turbulence dynamics. The

validation of the above hypothesis will provide a strong support for the semi-local scaling as turbu-

lent statistics at a given wall-normal position will depend only on the Re∗τ profile, thus providing a

framework similar to constant property turbulence, wherein the dependence is only on Reτ.

C. Mathematical support for the semi-local scaling

In this section, we develop a mathematical foundation for the semi-local scaling that was sug-

gested by Huang, Coleman, and Bradshaw1 using heuristic arguments. First, we propose to re-scale

the Navier-Stokes equations using local quantities defined as

x̂i =

(

xi

h

)

, t̂ =
t

h/u∗τ
=

(

t

h/uτ

) 

ρw

ρ
, ûi =

ui

u∗τ
=

(

ui

uτ

)



ρ

ρw
, p̂ =

p

ρu∗2τ
=

(

p

ρwu2
τ

)

,

(8)

ρ̂ =
ρ

ρ
=

(

ρ

ρw

)

ρw

ρ
= 1 +

ρ′

ρ
, µ̂ =

µ

µ
=

(

µ

µw

)

µw

µ
= 1 +

µ′

µ
, (9)
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where ρ, µ, and u∗τ are time—and homogeneous direction averaged local values of density, viscos-

ity, and semi-local friction velocity, respectively. The terms within brackets indicate the standard

normalization used in Equation (4). Using Equations (8) and (9), the re-scaled mass and momentum

equations can be written as

∂t̂ ρ̂ + ∂x̂ j( ρ̂û j) +
ρ̂v̂

2

(

ρw

ρ

)

∂ŷ

(

ρ

ρw

)

= 0, (10)

∂t̂( ρ̂ûi) + ∂x̂ j( ρ̂ûiû j) = −∂x̂i p̂ + ∂x̂ j


µ̂

Re∗τ



ρ

ρw

(

∂x̂ j

(

ûi



ρw

ρ

)

+ ∂x̂i

(

û j



ρw

ρ

)

−
2δi j

3
∂x̂k

(

ûk



ρw

ρ

))
. (11)

Next, Equations (10) and (11) are used to derive the conservation equations for the mean and the

fluctuating component of ûi. But before doing so, we first discuss the influence of density fluctua-

tions on turbulent statistics by highlighting the relation between Reynolds and Favre decomposition

for a generic quantity γ as

γ = γ̃ − ρ′γ′

ρ
, (12)

γ′ = γ′′ +
ρ′γ′

ρ
. (13)

From Morkovin’s hypothesis, it is known that the direct effects of density fluctuations on turbulence

are small if the root-mean-square density fluctuation is small compared with the absolute density,30

i.e.,



ρ′2/ρ ≪ 1. Note that Morkovin’s hypothesis does not include the effect of viscosity fluctua-

tions and the effects of spatial gradients of mean density.30 Coleman, Kim, and Moser10 investigated

a supersonic channel flow using DNS with spatial gradients of properties and concluded that only

mean property variations, but not thermodynamic fluctuations, govern the turbulence structure.

They argued that this fact reinforces Morkovin’s hypothesis, as thermodynamic fluctuations have

a minor role on the turbulence structure. Therefore, under the validity of Morkovin’s hypothesis

(



ρ′2/ρ ≪ 1), any turbulent statistics resulting from density fluctuations should be insignificant

in comparison to those obtained using mean density. This implies that the second term on the

right hand side of Equations (12) and (13) is insignificant, we assess this using the DNS data in

Section IV A. The semi-locally scaled velocity components can then be related to the classically

scaled velocity components as

u

uτ
= û



ρw

ρ
≈ ũ

uτ
,

v

uτ
= v̂



ρw

ρ
≈ ṽ

uτ
= 0,

w

uτ
= ŵ



ρw

ρ
≈ w̃

uτ
= 0,

u′

uτ
= û′



ρw

ρ
≈ u′′

uτ
,

v ′

uτ
= v̂ ′



ρw

ρ
≈ v ′′

uτ
,

w ′

uτ
= ŵ ′



ρw

ρ
≈ w ′′

uτ
. (14)

Note that for a fully developed turbulent channel flow, ṽ = w̃ = 0. Next, the Reynolds decomposi-

tion of density and viscosity can be written using Equation (9) as

ρ̂ = 1, ρ̂′ =
ρ′

ρ
, µ̂ = 1, µ̂′ =

µ′

µ
. (15)

Assuming relatively small density and viscosity fluctuations ( ρ̂′ = ρ′/ρ ≪ 1 and µ̂′ = µ′/µ ≪ 1),

the Reynolds-averaged continuity and momentum equations for a fully developed flow with v̂ =

ŵ ≈ 0 are simplified to

∂x̂ j(û j) ≈ 0, (16)

∂ŷ(û
′
i
v̂ ′) ≈ −∂x̂i p̂ + ∂ŷ


1

Re∗τ



ρ

ρw
∂ŷ

(

ûi



ρw

ρ

) . (17)
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Substituting Equation (14) back into Equation (17), we can write the mean stream-wise momentum

equation as

∂y

(

ρu′′v ′′

τw

)

≈ −∂x
(

p

τw

)

+ ∂y


1

Re∗τ



ρ

ρw
∂y

(

u

uτ

)
 , (18)

where û′v̂ ′ = ρu′v ′/τw ≈ ρu′′v ′′/τw based on Morkovin’s hypothesis. Note that the above equation

could have been obtained also using Reynolds/Favre averaging of the stream-wise momentum

equation given by Equation (2), without making any assumption on density fluctuations and only

neglecting the viscosity fluctuations. However, this rescaling approach becomes more convenient

when analysing the fluctuation equations as done later.

The term


ρ/ρw ∂(u/uτ) in Equation (18) can be expressed as the van Driest transformed

velocity with

∂u
vd
=



ρ

ρw
∂

(

u

uτ

)

. (19)

Thus, the turbulent shear stress and the mean velocity profile are related through

∂y

(

ρu′′v ′′

τw

)

≈ −∂x
(

p

τw

)

+ ∂y

(

1

Re∗τ
∂yu

vd

)

. (20)

The only governing parameter in this relation is the semi-local scaling parameter Re∗τ. In other

words, flows with similar Re∗τ profiles will result in similar van Driest transformed velocity and

turbulent shear stress profiles. Similarly, the mean wall-normal momentum equation gives the

relation between pressure and wall-normal Reynolds stress as ρv ′′v ′′ ≈ −p + constant.

The conservation equations for the fluctuating velocity components are derived next to relate

second order turbulent statistics with the van Driest velocity and Re∗τ profiles. Again using similar

hypotheses as those for deriving (16) and (17), we obtain the continuity and momentum equations

for û′
i
as

∂x̂ j(û
′
j) +

v̂ ′

2

(

ρw

ρ

)

∂ŷ

(

ρ

ρw

)

≈ 0, (21)

∂t̂(û
′
i) + ∂x̂ j(û

′
iû
′
j) + v̂

′∂ŷ(u
vd)δi1 +û j∂x̂ j(û

′
i) ≈

− ∂x̂i p̂′ + ∂x̂ j(û
′
i
û′
j
) + ∂x̂ j


1

Re∗τ

(

2Ŝ′i j − D̂i j

)


, (22)

with Ŝ′
i j
= 1

2

(

∂x̂ jû
′
i
+ ∂x̂iû

′
j

)

− 1
3
∂x̂kû′

k
δi j and D̂i j =

û′
i

2

(

ρw
ρ

)

∂x̂ j

(

ρ

ρw

)

+
û′
j

2

(

ρw
ρ

)

∂x̂i

(

ρ

ρw

)

− δi j
v̂′
3

(

ρw
ρ

)

∂ŷ
(

ρ

ρw

)

. For a detailed derivation see Appendix B.

This relation can further be used to derive the transport equations for the second order turbu-

lent statistics. Thus, analysing Equation (22) can shed light on the scaling properties of Reynolds

stresses, which are not evident from the averaged momentum equations. If Equation (22) is com-

pared with the analogous equation for constant property turbulent flows, three differences can be

seen: (1) the third term (production term in the transport equations for the second order turbulent

statistics) is governed by the gradient of the van Driest velocity u
vd instead of u/uτ as in constant

property flows, (2) instead of Reτ the semi-local Reynolds number Re∗τ governs the scaling of the

viscous term (turbulent dissipation) within the first spatial derivative, and (3) an additional term

D̂i j appears that is related to the wall-normal gradient of mean density. Scaling arguments can be

used to estimate the ratio of Ŝ′
i j

and D̂i j. Following Tennekes and Lumley31 with Λ as the Taylor

length scale, these terms can be estimated as Ŝ′
i j
≈ O (u/Λ) and D̂i j ≈ O (u/h). The ratio is then

Ŝ′
i j
/Di j ≈ O (h/Λ), which is far larger than unity for highly turbulent flows, and thus D̂i j plays a

minor role on the evolution of turbulent fluctuations. Now, it can be seen that also for Equation (22)

the governing parameter is Re∗τ (in Equation (20) we showed that u
vd is governed by Re∗τ) and there-

fore it can be hypothesized that the second order turbulent statistics also depend on the Re∗τ profile
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only. This allows several conclusions. For example, given a turbulent flow with variable mean

density and viscosity, such that Re∗τ is constant, the van Driest velocity profile u
vd and the second

order turbulent statistics û′
i
û′
j
≈ ρu′′

i
u′′
j
/τw will overlap with the mean velocity u/uτ and turbulent

statistics u′
i
u′
j
/u2

τ from a constant property turbulent flow. Furthermore, similar turbulent statistics

and van Driest velocity profiles will be obtained for cases with similar Re∗τ profiles, even if their

density and viscosity profiles substantially differ. Or more general, turbulent flows with similar Re∗τ
profiles will give similar turbulent statistics, provided Morkovin’s hypotheses and µ̂′≪ 1 are not

invalidated. This hypothesis will be tested by means of numerical experiments outlined in Sec. III.

III. NUMERICAL EXPERIMENTS

Seven cases have been simulated and are summarised in Tables I and II. The DNS database is

obtained by solving the governing equations given in Section II A and therefore is not compromised

with the assumptions made in Sections II B and II C with respect to density and viscosity fluctua-

tions. The first case corresponds to an isothermal flow, while the remaining six cases are flows with

variable density ρ and viscosity µ. The relations for ρ and µ as a function of temperature T are

outlined in Table I. Note, that since ρ and µ only depend on T in the present work, the relations for

ρ/ρw and µ/µw on T are the same as for ρ and µ. The h∗ values at the channel center are given in

the last column. Table II provides details on the computational mesh and the corresponding resolu-

tions in terms of conventional wall scaling (∆x+, ∆y+w, ∆z+) and semi-local scaling at the channel

center (∆x∗c, ∆y
∗
c, ∆z∗c). It can be seen that an adequate mesh resolution is achieved for all cases.

Next, the abbreviations and the choice of ρ and µ variations for the simulated cases are moti-

vated. The constant properties with Reτ(h
+) = 395 are abbreviated as CP395. CRe∗τ refers to a case

where Re∗τ = Reτ across the whole channel height. This is achieved with ρ and µ being proportional

to 1/T and
√

1/T , respectively. Such a behaviour can qualitatively occur in fluids at supercritical

pressures close to the pseudo-critical point; both ρ and µ decrease with increase of temperature.23

GL corresponds to a gas-like property variation, whereby ρ decreases and µ increases with increase

of T . LL corresponds to a liquid-like behaviour as µ deceases with increase of T . Cν refers to a

constant kinematic viscosity ν case with ρ(T) = µ(T). Finally, SRe∗τCν and SRe∗τGL are hypothetical

cases that resemble similar Re∗τ profiles as cases Cν and GL, respectively, but with different func-

tional relations for ρ and µ. Both cases are studied to show that flows with similar Re∗τ profiles,

irrespective of density and viscosity variations, show similar turbulent characteristics.

Figure 1 shows the variation of properties and Re∗τ for all cases. Considerable variations in both

ρ and µ are obtained. Also, it can be seen that Re∗τ changes by almost a factor of 2 across the channel

for case GL, SRe∗τGL (395 at wall to ≈ 150 at center), and LL (395 at wall to ≈ 700 at center). Re∗τ
for case CRe∗τ is by definition constant across the complete channel height. The quasi-similar Re∗τ

TABLE I. Flow parameters for all cases. CP395—Constant Property case

with Reτ(h
+)= 395; CRe∗τ—variable property case with Constant Re∗τ

(=Reτ) across the channel; GL—case with Gas-Like property variations;

LL—case with Liquid-Like property variations; Cν—variable property case

with Constant kinematic viscosity ν; SRe∗
τCν

—variable property case with

Re∗τ Similar to case Cν; SRe∗
τGL

— variable property case with Re∗τ Similar

to case GL.

Case ρ µ h∗

CP395 1 1 395

CRe∗τ 1/T 1/
√
T 395

GL 1/T T 0.7 142

LL 1 1/T 703

Cν 1/T 1/T 538

SRe∗
τCν

1 1/
√
T 532

SRe∗
τGL

1 T 1.2 152
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TABLE II. Mesh resolution for all cases.

Case Nx Ny Nz ∆x+ ∆y+w ∆z+ ∆x∗c ∆y∗c ∆z∗c

CP395 240 264 240 10.34 1.03 5.17 10.34 4.01 5.17

CRe∗τ 240 264 240 10.34 1.03 5.17 10.34 4.01 5.17

GL 360 264 360 17.23 1.03 6.89 6.20 1.44 2.48

LL 360 360 360 6.89 0.69 3.45 12.27 5.28 6.13

Cν 240 312 240 10.34 0.80 5.17 14.08 4.66 7.04

SRe∗
τCν

240 312 240 10.34 0.80 5.17 13.92 4.61 6.96

SRe∗
τGL

360 264 360 17.23 1.03 6.89 6.63 1.54 2.65

profiles for cases—GL, SRe∗τGL and Cν, SRe∗τCν can also be seen in Figure 1(c). The quasi-similar

Re∗τ profiles are obtained for both pairs using different combinations of ρ and µ (also shown in

Figures 1(a) and 1(b)).

For all simulations λ and cp are considered to be constant, the reference Reynolds number

Reτ(h
+) and Prandtl number Prw in Equations (2) and (3) are set to 395 and unity, respectively,

and the flow is driven by a constant stream-wise pressure gradient. The volumetric heat flux φ in

Equation (3) is 18.55 for case SRe∗τGL, 16 for case Cν, and 17.55 for the other cases. The value

of φ is chosen such that strong variations in properties occur, but without considerably invalidating

Morkovin’s hypothesis—both



ρ′2/ρ and



µ′2/µ are less than 0.15 for all cases, as can be seen

from Figure 2. The reason for different φ values for cases SRe∗τGL and Cν is to obtain quasi-similar

FIG. 1. (a) Density ρ/ρw, (b) viscosity µ/µw, and (c) local Reynolds number Re∗τ = h/δ
∗
v. (—) CRe∗τ, (- - - -) GL, (— ·—)

LL, (· · · · · ·) Cν, (— · ·—) SRe∗
τCν

, (— —) SRe∗
τGL

.
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FIG. 2. Root mean square of (a) density fluctuations



ρ′2/ρ, (b) viscosity fluctuations



µ′2/µ. Lines are the same as in

Figure 1.

Re∗τ profiles with respect to cases GL and SRe∗τCν, respectively. The domain size Lx × Ly × Lz of

the channel for cases GL and SRe∗τGL is 5πh × 2h × 2πh, while for the other cases the domain

size is 2πh × 2h × πh. It should be noted that Prw = 1 was chosen to isolate the effects of density

and viscosity only. Moreover, Prw = 1 ensures sufficiently large temperature gradients, but small

enough to not invalidate Morkovin’s hypothesis.

IV. RESULTS

In Section IV A, the semi-local scaling of turbulent statistics in wall bounded flows with

variable properties is investigated. Three simulation pairs are compared to assess this scaling: case

CRe∗τ with case CP395, case SRe∗τGL with case GL, and case SRe∗τCν with case Cν. The reasons

for using the above three pairs are motivated and implications of using the semi-local scaling are

discussed. In Section IV B, the results of cases GL and LL are compared with the constant property

cases at different Reynolds number to highlight variable property effects.

A. Semi-local scaling of turbulent statistics under variable property conditions

In this section we assess the arguments made in Sections II B and II C using the DNS results

for three pairs of simulations. The validity of Morkovin’s hypothesis which was used in Section II C

to develop the theoretical framework is also assessed. The first pair is CRe∗τ and CP395. Because

of the functional relation of ρ and µ for case CRe∗τ, Re∗τ is a constant and equal to 395 across the

whole channel height. Consequently, the semi-local inner co-ordinate y∗ equals the classical inner

co-ordinate y+ and Equation (7) is equivalent to Equation (5), with Re∗τ approaching Reτ. The other

two pairs involve comparison among variable property cases with similar Re∗τ, but different density

and viscosity profiles. The case SRe∗τGL represents a case wherein density is constant, and the

viscosity varies such that the Re∗τ remains approximately similar to that of case GL (see Figure 1). A

similar comparison for case SRe∗τCν and Cν, with approximately similar Re∗τ profiles obtained using

different combinations of ρ and µ is performed.

Based on Equation (20), three quasi-similar Re∗τ pairs are assessed for quasi-similarity of

van Driest transformed stream-wise velocity profile u
vd and the Reynolds shear stress ρu′′v ′′/τw.

The comparison of u
vd is shown in Figure 3. The solid line indicates the stream-wise velocity

profile for variable density cases (CRe∗τ, GL, and Cν), while the dashed line represents their corre-

sponding van Driest transformed stream-wise velocity profile. u
vd overlaps with the velocity from

the corresponding quasi-similar Re∗τ cases (symbols) with constant density (CP395, SRe∗τGL, and

SRe∗τCν). The comparison of the Reynolds shear stress is shown in Figures 4(a)-4(c) also show-

ing a good collapse. Comparison of other second order statistics, namely, normal Reynolds stress

components ρu′′
i
u′′
i
/τw, their corresponding anisotropies bii, and the root mean square of pressure

fluctuations p′rms/τw is shown in Figures 4(d)-4(l). The normalised anisotropy tensor is defined
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FIG. 3. Averaged velocity profiles for cases (a) CP395 and CRe∗τ, (b) SRe∗
τGL

and GL, (c) SRe∗
τCν

and Cν. Symbols

are constant density cases: CP395, SRe∗
τGL

, and SRe∗
τCν

, lines are variable density cases: CRe∗τ, GL, and Cν. (—) mean

stream-wise velocity u/uτ and (- - - -) van Driest transformed stream-wise velocity profile uvd.

FIG. 4. Comparison of ((a)-(c)) Reynolds shear stress, ((d)-(f)) normal Reynolds stresses, ((g)-(i)) normal Reynolds stress

anisotropies, and ((j)-(l)) root mean square of pressure fluctuations for cases (left column) CP395 and CRe∗τ, (middle column)

SRe∗
τGL

and GL, (right column) SRe∗
τCν

and Cν. Symbols are constant density cases: CP395, SRe∗
τGL

, and SRe∗
τCν

, lines

are variable density cases: CRe∗τ, GL, and Cν.
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FIG. 5. Comparison of pre-multiplied 1D ((a)-(c)) stream-wise spectra and ((d)-(f)) span-wise spectra of ρu′′u′′/τw at

y∗≈ 15 for cases (left column) CP395 and CRe∗τ, (middle column) SRe∗
τGL

and GL, (right column) SRe∗
τCν

and Cν. Symbols

are constant density cases: CP395, SRe∗
τGL

, and SRe∗
τCν

, lines are variable density cases: CRe∗τ, GL, and Cν. In ((a)-(c)), the

inset shows the 1D stream-wise energy spectra in log-log plot.

as bi j = ρui
′′u j
′′/ρuk

′′uk
′′ − 1/3δi j. All comparisons support the universality of the second order

turbulent statistics for quasi-similar Re∗τ cases. We further investigate the quasi-similarity of the

1D energy spectra in Figures 5(a)-5(f). Figures 5(a)-5(c) show the pre-multiplied stream-wise 1D

spectra of ρu′′u′′/τw at y∗ ≈ 15 as a function of semi-locally scaled (k∗x = kx/Re∗τ) wave-number

for quasi-similar Re∗τ cases. The inset shows the energy spectra in log-log plot, showing adequacy

of grid-resolution as energy falls off over several decades. Because of moderate Reynolds number,

the inertial range is not very prominent (shown by k
−5/3
x slope). Span-wise 1D spectra are compared

in Figures 5(d)-5(f). Both stream-wise and span-wise spectra show good collapse for quasi-similar

Re∗τ cases. Figures 3–5 provide evidence that the semi-local scaling is an effective tool to categorize

variable property turbulence.

We now proceed to assess the influence of density fluctuations on turbulent statistics

(Morkovin’s hypothesis) by investigating second, third, and fourth order moments of velocity fluc-

tuation. Using Equation (14), an exact definition for re-scaled second order turbulent statistics is

û′
i
û′
j
= ρu′

i
u′
j
/τw. However, in Figures 4(a)-4(i) we use ρu′′

i
u′′
j
/τw to test the quasi-similarity of

second-order statistics assuming that under the limit of small density fluctuations û′
i
û′
j
= ρu′

i
u′
j
/τw ≈

ρu′′
i
u′′
j
/τw ≈ ρu′′

i
u′′
j
/τw should hold. The different statistics are related as

ρu′′
i
u′′
i
= ρu′′

i
u′′
i
+ ρ′u′′

i
u′′
i
, (23)

and using Equation (13) the relation between Reynolds and Favre averaged second order statistics is

given as

ρu′
i
u′
i
= ρu′′

i
u′′
i
− ρ*,

ρ′u′
i

ρ
+-

2

. (24)

These different relations are plotted in Figures 6(a)-6(c), where it can be seen that the differences

are negligible. The maximum error of ≈3.5% occurs in case GL for which the density fluctuations

are the highest (see Figure 2(a)). The second terms on the right hand side of Equation (23) and

(24) are negligible compared with the first terms and therefore the difference between the profiles is

insignificant. The above result reinforces the use of Morkovin’s hypothesis in Section II C.
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FIG. 6. Influence of density fluctuation on ((a)-(c)) second, ((d)-(f)) third, and ((g)-(i)) fourth order moments of velocity fluc-

tuations for cases (left column) CP395 and CRe∗τ, (middle column) SRe∗
τGL

and GL, (right column) SRe∗
τCν

and Cν. Symbols

are constant density cases: CP395, SRe∗
τGL

, and SRe∗
τCν

, lines are variable density cases: CRe∗τ, GL, and Cν. In ((a)-(c)) (—)

ρu′′
i
u′′
i
/τw, (- - - -) ρu′′

i
u′′
i
/τw, (· · · · · ·) ρu′

i
u′
i
/τw. In ((d)-(f)) (—) ρ3/2u′′

i
u′′
i
u′′
i
/τ

3/2
w , (- - - -) ρ3/2u′′

i
u′′
i
u′′
i
/τ

3/2
w , (· · · · · ·)

ρ3/2u′
i
u′
i
u′
i
/τ

3/2
w . In ((g)-(i)) (—)



ρ2u′′
i
u′′
i
u′′
i
u′′
i
/τw, (- - - -) ρ



u′′
i
u′′
i
u′′
i
u′′
i
/τw, (· · · · · ·) ρ



u′
i
u′
i
u′
i
u′
i
/τw.

We further assess the quasi-similarity and applicability of Morkovin’s hypothesis on third

and fourth order moments of velocity fluctuations. Using Equation (14), the third and fourth

order moments can be expressed as û′
i
û′
i
û′
i
= ρ

3/2
u′
i
u′
i
u′
i
/τ

3/2
w and û′

i
û′
i
û′
i
û′
i
= ρ

2
u′
i
u′
i
u′
i
u′
i
/τ2

w, respec-

tively. Under the validity of Morkovin’s hypothesis, these statistics should satisfy the follow-

ing relation for the third order û′
i
û′
i
û′
i
= ρ

3/2
u′
i
u′
i
u′
i
/τ

3/2
w ≈ ρ

3/2
u′′
i
u′′
i
u′′
i
/τ

3/2
w ≈ ρ3/2u′′

i
u′′
i
u′′
i
/τ

3/2
w and

û′
i
u′
i
û′
i
û′
i
= ρ

2
u′
i
u′
i
u′
i
u′
i
/τ2

w ≈ ρ
2
u′′
i
u′′
i
u′′
i
u′′
i
/τ2

w ≈ ρ2u′′
i
u′′
i
u′′
i
u′′
i
/τ2

w for the fourth order moments. For

third order moments, the relation between ρ
3
2 u′′

i
u′′
i
u′′
i

and ρ
3
2 u′′

i
u′′
i
u′′
i

can be expressed by using a

binomial series for ρ3/2 = ρ
3/2(1 + ρ′/ρ)3/2, leading to

ρ
3
2 u′′

i
u′′
i
u′′
i
≈ ρ

3
2 u′′

i
u′′
i
u′′
i
+

3

2
ρ′u′′

i
u′′
i
u′′
i
. (25)

Using Equation (13), the relation between Reynolds and Favre averaged third order statistics is then

ρ
3
2 u′

i
u′
i
u′
i
= ρ

3
2 u′′

i
u′′
i
u′′
i
+ 3ρ

3
2 *,

ρ′u′
i

ρ
+- u′′

i
u′′
i
− 2ρ

3
2*,

ρ′u′
i

ρ
+-

3

. (26)

Similarly, for fourth order moments, the relation between ρ2u′′
i
u′′
i
u′′
i
u′′
i

and ρ
2
u′′
i
u′′
i
u′′
i
u′′
i

is

ρ2u′′
i
u′′
i
u′′
i
u′′
i
= ρ

2
u′′
i
u′′
i
u′′
i
u′′
i
+ 2ρρ′u′′

i
u′′
i
u′′
i
u′′
i
+ ρ′ρ′u′′

i
u′′
i
u′′
i
u′′
i
, (27)
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and using Equation (13) the relation between Reynolds and Favre averaged fourth order statistics is

given as

ρ
2
u′
i
u′
i
u′
i
u′
i
= ρ

2
u′′
i
u′′
i
u′′
i
u′′
i
+ 4ρ2 *,

ρ′u′
i

ρ
+- u′′

i
u′′
i
u′′
i
+ 6ρ2*,

ρ′u′
i

ρ
+-

2

u′′
i
u′′
i
− 3ρ2*,

ρ′u′
i

ρ
+-

4

. (28)

Figures 6(d)-6(f) show the comparison for the third order moments of velocity fluctuations

between quasi-similar Re∗τ cases. The inset shows an enlarged view for wall-normal (i = 2) and

span-wise direction (i = 3). Unlike the lower-order statistics, the adequacy of the sample size used

to compute the higher-order statistics is marginal as can be seen by small oscillations in the profiles

of span-wise third order moments, which should be zero. For the variable density cases (CRe∗τ, GL

and Cν), the third order statistics using different forms of averaging do not collapse, which indeed

is a breakdown of Morkovin’s hypothesis. This breakdown will most likely also be present in fully

compressible simulations, but to the best of the authors knowledge, there is no literature that studies

the Morkovin’s hypothesis for third order statistics in compressible flows. Interestingly, a good

agreement between quasi-similar Re∗τ cases is obtained using ρ3/2u′′
i
u′′
i
u′′
i
/τ

3/2
w . The comparison is

only qualitatively similar when ρ
3/2

u′
i
u′
i
u′
i
/τ

3/2
w is used but different when ρ

3/2
u′′
i
u′′
i
u′′
i
/τ

3/2
w is used.

These results indicate that
√
ρu′′

i
/
√
τw is the appropriate scale for comparing quasi-similarity of

third moments. The reason for the breakdown of Morkovin’s hypothesis is discussed next. For

the stream-wise component (i = 1), the third order moments are a measure of low and high speed

streaks. In our present simulations with a cooled wall, the turbulent heat transfer at the lower

wall requires T ′v ′ < 0. Based on quadrant analysis, it is known that the high speed streaks have a

tendency to move towards the wall (sweep) while low speed streaks tend to lift away from the wall

(ejection), which for the lower wall corresponds to u′v ′ < 0. This implies that T ′u′ > 0, and since

the density is inversely proportional to temperature ρ′u′ < 0. The terms ρ′u′′u′′u′′ and ρ′u′ are a

measure of preferential concentration of high density fluid in low speed streaks and low density

fluid in high speed streaks. In Equation (25), this measure of preferential concentration is dominant

as both the first and second terms on the right hand side are of comparable magnitudes, thereby

causing a significant difference between ρ
3
2 u′′u′′u′′ and ρ

3
2 u′′u′′u′′. Similarly, the second term on

the right hand side of Equation (26) is of the same order as the first one, therefore, resulting in the

difference between ρ
3/2

u′u′u′ and ρ
3/2

u′′u′′u′′.
Figures 6(g)-6(i) show the comparison for the square root of the fourth order moment of ve-

locity fluctuations. A good collapse is obtained for all cases except case GL for which a maximum

difference of ≈9% occurs due to the high magnitudes of density fluctuations (see Figure 2(a)). In

both Equations (27) and (28), the first term on the right side is dominant, therefore making the

statistic weakly dependent on density fluctuations.

B. Turbulence modulation with respect to constant property flows

1. Turbulent statistics

Cases GL and LL are compared to data from constant property turbulent flows to investigate

the effect of variable properties on turbulent statistics. In order to distinguish Reynolds number

effects, the constant property cases are chosen such that the Re∗τ distribution of cases GL and LL

is approximately bounded between two corresponding constant property cases. Figure 7(a) shows

the comparison of normal Reynolds stresses as a function of y+ for case GL with constant property

cases CP395 (Reτ = 395) and a case of Iwamoto, Suzuki, and Kasagi32 with Reτ = 150. A similar

comparison is shown for case LL in Figure 7(b), whereby the reference data are taken from CP395

and from Iwamoto, Suzuki, and Kasagi32 with Reτ = 650. As observed in previous studies,10,14,15

the use of the traditional y+ wall scaling fails to provide a collapse of the data. Figure 8 shows

the same plot using the semi-local scaling y∗, which gives a better collapse of the data as the

peak locations occur at similar y∗ values for all cases. Interestingly, the stream-wise component

increases for case GL in comparison to both CP395 and Reτ = 150. Similarly for case LL, the

stream-wise component decreases with respect to CP395 and Reτ = 650. It can also be seen that
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FIG. 7. Profiles of normal Reynolds stresses as a function of y+ for (a) case GL and (b) case LL, compared to CP395 and

Iwamoto, Suzuki, and Kasagi.32 In (a) and (b): (△) ρu′′u′′/τw, (⋄) ρv′′v′′/τw, (�) ρw′′w′′/τw. In (a), (—) case GL

and (- - - -) h+= 150 from Iwamoto, Suzuki, and Kasagi.32 In (b), (—) case LL and (- - - -) h+= 650 from Iwamoto,

Suzuki, and Kasagi.32 (· · · · · ·) case CP395.

for case GL the span-wise and wall-normal Reynolds stresses decrease with respect to CP395. The

opposite is true for case LL. This increase (decrease) in the stream-wise anisotropy for case GL

(LL) is shown in Figure 9 as a function of y∗. It shows that the increase (decrease) of stream-wise

anisotropy for case GL (LL) is accompanied with the increase (decrease) of span-wise anisotropy.

The wall-normal anisotropy seems to be unaffected for all cases, irrespective of Reynolds number

or property variations. Thus, the principal axes for the Reynolds stress tensor become more aligned

with the mean flow direction for case GL, while the opposite occurs for case LL. Foysi, Sarkar, and

Friedrich15 attributed the increase of anisotropy in their compressible air flow simulations to the fact

that density has a non-local effect on the pressure-strain correlation. However, as can be seen from

Figure 4(h), a similar increase in anisotropy also occurs for a turbulent flow with constant density,

but increasing viscosity towards the channel center. Figures 10 and 11 show the Reynolds shear

stress in outer and inner scales, respectively. To highlight the differences in terms of Reynolds shear

stress ρu′′v ′′/τw, their profiles are plotted as a function of y/h in Figure 10. It can be seen that

ρu′′v ′′/τw remains bounded between the two constant property cases near the wall, while towards

the channel core the expected linear profile is obtained. Taking into account the low-Reynolds num-

ber effect for case GL, a good approximate collapse is obtained for the inner scaled Reynolds stress

in Figure 11. Another point worth noting is the cross-over of the Reynolds shear stress from the

variable property with the constant property turbulent flows with Re∗τ = 150 and 650, respectively,

because of changes in anisotropy for cases GL and LL.

FIG. 8. Profiles of normal Reynolds stresses as a function of y∗ for (a) case GL and (b) case LL, compared to CP395 and

Iwamoto, Suzuki, and Kasagi.32 Lines and symbols are the same as in Figure 7.
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FIG. 9. Profiles of normal Reynolds stress anisotropies as a function of y∗ for (a) case GL and (b) case LL, compared to

CP395 and Iwamoto, Suzuki, and Kasagi.32 In (a) and (b): (△) b11, (⋄) b22, (�) b33. Lines are the same as in Figure 7.

2. Near-wall turbulent structures

The modulation of variable property turbulent statistics is further substantiated by means of

near-wall turbulent structures. Coleman, Kim, and Moser,10 Duan, Beekman, and Martin,11 Lagha

et al.,12 observed increased stream-wise coherence (longer streaks) for supersonic turbulent boundary

layers with cooled walls, while shorter streaks were observed for heated walls by Duan, Beekman, and

Martin.11 These streak modifications were quantified in terms of wall based viscous units. Morinishi,

Tamano, and Nakabayashi13 used two-point correlations to conclude that near-wall streaks do not

become more coherent and are independent of heated or cooled walls, when semi-local scaling is

taken into account. Coleman, Kim, and Moser10 explained the occurrence of elongated streaks by the

change of turbulence-to-mean time scale ratio. However, Morinishi, Tamano, and Nakabayashi13 and

Duan, Beekman, and Martin11 found that there was no connection between near-wall streak structures

and time scale ratio, as no significant changes in the time scale ratio occurred.

In order to clarify these inconsistent observations, we revisit some of these conclusions and

in addition provide further insights into turbulence modulation, by examining 1D stream-wise

and span-wise energy spectra, turbulence-to-mean time scale ratio, pressure-strain to production

ratio, contour plots of
√
ρu′′/
√
τw and joint-probability density functions (pdfs) for

√
ρu′′/
√
τw

and
√
ρv ′′/
√
τw. Figure 12 shows the pre-multiplied stream-wise 1D spectra of ρu′′u′′/τw at the

location of their peak at y∗ ≈ 15 as a function of both semi-locally (k∗x = kx/Re∗τ) and classi-

cally scaled (k+x = kx/Reτ) wave-numbers. Using the classically scaled co-ordinates, it can be seen

that the spectra for case GL are shifted to lower wave-numbers, while they are shifted to higher

wave-numbers for case LL (see solid lines with and without symbols). Thus, the structures appear

FIG. 10. Reynolds shear stress ρu′′v′′/τw for (a) case GL and (b) case LL, against y/h. Lines are the same as in Figure 7.
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FIG. 11. Reynolds shear stress ρu′′v′′/τw for (a) case GL and (b) case LL, against y∗. Lines are the same as in Figure 7.

elongated for case GL and shortened for case LL, as also concluded by Coleman, Kim, and Moser,10

Duan, Beekman, and Martin,11 Lagha et al.12 However, using semi-local co-ordinates, an approxi-

mate collapse over a wide wave-number range can be obtained, and the peaks of E
ρu′′u′′/τw occur at

approximately the same k∗x location for both cases (note, the peak of E
ρu′′u′′/τw for CP395 (dotted

line) in Figure 12(a) is at a slightly higher wave-number due to low-Reynolds number effects for

cases GL and Iwamoto, Suzuki, and Kasagi32 with Reτ = 150). Additionally, Figure 13 shows the

pre-multiplied span-wise 1D spectra for ρu′′u′′/τw at the same y∗ location as a function of k∗z and

k+z , to emphasize that also the mean spacing of stream-wise streaks remains unaltered as a function

of k∗z. In other words, the modulation of turbulence (longer or shorter streaks) observed at y∗ ≈ 15

using classical wall scaling is misleading and exclusively quantified by semi-local scales only.

The pre-multiplied spectra provide additional insights with respect to previous findings. It can

be seen that for case GL the energy containing low wave-number scales strengthen (see peak magni-

tude of E
ρu′′u′′/τw), while they weaken for case LL. The pre-multiplied stream-wise 1D spectra

of ρu′′u′′/τw at y∗ ≈ 15 for case SRe∗τGL (see Figure 5(b)) exhibited similar strengthening at large

wavelengths as case GL. The strengthening and weakening of these large scale anisotropic struc-

tures seems to be independent of individual density or viscosity profiles, and thus depend on the Re∗τ
profile only. The previously mentioned increased (decreased) stream-wise Reynolds stress for case

GL (LL) is associated with strengthening (weakening) of these large-scale stream-wise structures.

The turbulence-to-mean time scale ratio S∗ = ρu′′
k
u′′
k

S/(2ϵ), with S = ∂yū the mean strain rate,

ϵ = −τ′
i j
∂x ju

′′
i

the turbulent kinetic energy dissipation, and τ′
i j
= τi j − τi j the fluctuating viscous

stress tensor, is plotted as a function of y∗ in Figure 14(a) for cases GL and LL, and compared with

FIG. 12. Comparison of pre-multiplied 1D stream-wise spectra of ρu′′u′′/τw at y∗≈ 15 for (a) case GL and (b) case LL.

Lines with symbols are plotted as function of k+x, while lines without symbols are plotted as function of k∗x. Lines are the

same as in Figure 7.
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FIG. 13. Comparison of pre-multiplied 1D span-wise spectra of ρu′′u′′/τw at y∗≈ 15 for (a) case GL and (b) case LL. Lines

with symbols are plotted as function of k+z , while lines without symbols are plotted as function of k∗z. Lines are the same as

in Figure 7.

constant property cases CP395 and data from Iwamoto, Suzuki, and Kasagi32 with Reτ = 150 and

Reτ = 650. It can be seen that at y∗ ≈ 8 the turbulence-to-mean time scale ratio S∗ has increased

for case GL, while it has decreased for case LL when compared to the constant property cases that

have similar peak values. Thus, the changes of S∗ are an indication for the modification of near-wall

structure. This modified time scale results in a more anisotropic turbulence for case GL with higher

S∗, and less anisotropic turbulence for case LL with smaller S∗.
The increased (decreased) anisotropy for case GL (LL) is related to strengthening (weak-

ening) of large-scale streaks and can be associated with changes in energy transfer from stream-

wise to other directions. The pressure-strain term 2p′dxu′′, which is responsible for this

exchange is modified. The negative ratio of pressure-strain to stream-wise production rate

π∗ = 2p′dxu′′/ − 2ρu′′v ′′dyũ is shown in Figure 14(b) and compared with constant property cases. A

clear decrease (increase) in pressure-strain for case GL (LL) can be observed in the near-wall region.

In fact, this modulation in time scale and energy transfer ratios have their origin in the viscous term

of Equation (22) as Re∗τ varies across the wall normal direction.

A visual impression of these large scale structures can be obtained by means of contour plots

of instantaneous flow fields as given in Figures 15 and 16. Figure 15 shows stream-wise veloc-

ity fluctuations
√
ρu′′/
√
τw in a plane parallel to the wall at y∗ ≈ 15 for case CP395, LL, and

SRe∗τGL. Even though all three cases are constant density flows (see Table I), we suggest to use

ρ, instead of ρ, for the normalization (
√
ρu′′/
√
τw) in these plots. The reason for this is that the

magnitude of the streaks is modulated by the preferential concentration of high density fluid in a

FIG. 14. (a) The turbulence-to-mean time scale ratio S∗ and (b) pressure strain to production ratio π∗ of ρu′′u′′/τw for case

GL and case LL, compared with CP395 and Iwamoto, Suzuki, and Kasagi.32 (△) case GL, (�) case LL, (—) case CP395,

(- - - -) h+= 150 from Iwamoto, Suzuki, and Kasagi32 and (· · · · · ·) h+= 650 from Iwamoto, Suzuki, and Kasagi.32
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FIG. 15. Instantaneous stream-wise velocity fluctuations
√
ρu′′/

√
τw in an x− z plane at y∗≈ 15. (a) Case CP395, (b) case

LL using x∗− z∗ co-ordinates, (c) case LL using x+− z+ co-ordinates, (d) case SRe∗
τGL

using x∗− z∗ co-ordinates, and (e) case

SRe∗
τGL

using x+− z+ co-ordinates. The white box in (c) corresponds to (b) and box in (d) corresponds to (e).

low-speed streak, and vice versa (see discussion for Figures 6(d)-6(f)). For cases LL and SRe∗τGL,

both semi-local (x∗ = xRe∗τ and z∗ = zRe∗τ) and classical (x+ = xReτ and z+ = zReτ) wall units are

shown. The box size in all visualisations is 2400 × 1100, based on corresponding non-dimensional

co-ordinates x∗ × z∗/x+ × z+. Scale separation becomes more prominent for case LL (Figures 15(b)

and 15(c)) and less prominent for case SRe∗τGL (Figures 15(d) and 15(e)) when compared with

the constant property case (Figure 15(a)). The comparison of semi-locally scaled variable property

contours (Figures 15(b) and 15(d)) with constant property contours (Figure 15(a)) shows a similar

mean span-wise spacing between the streaks for all cases. A similar comparison using classical

wall co-ordinates (Figures 15(c) and 15(e)) shows decreased spacing for case LL, and an increased

spacing for case SRe∗τGL. The white box in Figures 15(c) and 15(d) indicates the domain size of

FIG. 16. Instantaneous stream-wise velocity fluctuations
√
ρu′′/

√
τw in x∗− z∗ plane at y∗≈ 15. Contour for

√
ρu′′/

√
τw <

−5.5 are cut-off (seen as white). (a) Case CP395, (b) case LL, (c) case SRe∗
τGL

.
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Figures 15(b) and 15(e), respectively, in order to outline the scaling of the structures. The strength-

ening (Re∗τ < Reτ in channel core) and weakening (Re∗τ > Reτ in channel core) of near-wall struc-

tures with respect to the constant property case can be visualised in Figure 16. The
√
ρu′′/
√
τw

contours are taken at the same plane and time as Figure 15. The low-speed streaks are cut-off

below a threshold value of
√
ρu′′/
√
τw = −5.5, thus highlighting the more energetic structures. It

can be seen that for case LL (Figure 16(b)) the energetic spots reduce in comparison to case CP395

(Figure 16(a)). On the other hand, the energetic spots in case of SRe∗τGL (Figure 16(c)) become more

prominent. The large-scale stream-wise structures are low-speed streaks which become strength-

ened (weakened) for case SRe∗τGL (LL). Since these structures scale with semi-local wall units, their

modulation is not related with outer layer motions.

Another way to quantify the turbulent structure is by means of pdfs. Figure 17 shows joint-pdfs

of
√
ρu′′/
√
τw and

√
ρv ′′/
√
τw as contour plots for the probability-weighted Reynolds shear stress

FIG. 17. Joint pdf of
√
ρu′′/

√
τw and

√
ρv′′/

√
τw with contours of probability weighted Reynolds shear stress

ρu′′v′′/τwP(
√
ρu′′/

√
τw,
√
ρv′′/

√
τw), for (a) and (b) case GL, (c) and (d) case SRe∗

τGL
, and (e) and (f) case LL, compared

with CP395. Left column y∗≈ 8.5; right column y∗≈ 15. (—) Case CP395, (- - - -) case GL, SRe∗
τGL

, LL.
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ρu′′v ′′/τwP(
√
ρu′′/
√
τw,
√
ρv ′′/
√
τw) at y∗ ≈ 8.5 and y∗ ≈ 15. Since these plots are also affected by

the preferential concentration of high density fluid in a low-speed streak, and vice versa, we use ρ

instead of ρ for normalization. Each contour plot divides the probability-weighted Reynolds shear

stress into four quadrants, according to the sign of u′′ and v ′′. The most energetic events, which are

responsible for generating the Reynolds shear stress, occur in quadrants Q2 and Q4 and are referred

to as ejection (u′′ < 0 and v ′′ > 0) and sweep (u′′ > 0 and v ′′ < 0) events, respectively. The first

observation that can be made from Figures 17(a), 17(c), and 17(e) is that in comparison to CP395,

case LL (case GL and case SRe∗τGL) shows a larger (smaller) Reynolds shear stress as can be clearly

seen from the spread of iso-contour lines. This is consistent with observations from Figure 11. An

additional observation is related to the Reynolds shear stress generation mechanism. For case GL

and SRe∗τGL, the pdfs in Q2 are clearly broader in stream-wise- and flatter in wall-normal direc-

tion. Thus, stronger negative stream-wise fluctuations and weaker positive wall-normal fluctuations

appear. In other words, low-speed streaks are stabilised and do not lift as intensely for case GL

and SRe∗τGL (Re∗τ ≡


(ρ/ρw)/(µ/µw)Reτ decreases towards the channel center) when compared to

CP395. The reverse happens for case LL (Re∗τ increases) where low-speed streaks weaken and lift

more intensely away from the wall.

V. CONCLUSION

Direct numerical simulations of a fully developed internally heated channel flow were per-

formed under the low Mach number approximation. Six variable property cases with different

relations for density and viscosity as a function of temperature were studied to analyse scaling of

turbulent statistics and modulation of near-wall turbulence with respect to a constant property case.

For all cases, the friction Reynolds number at wall was maintained constant with Reτ = 395.

Similar to constant property turbulent channel flows, where turbulent statistics can be expressed

as a function of wall-normal distance y/h and friction Reynolds number Reτ (based on wall quan-

tities), we investigated if turbulent statistics for variable property turbulent flows can also be ex-

pressed as a function of y/h and semi-local Reynolds number Re∗τ (based on semi-local quantities).

First, a mathematical framework has been developed to support the use of the semi-local scaling

hypothesis that has been initially proposed by Huang, Coleman, and Bradshaw1 based on heuristic

arguments. Then, the numerical simulations were used to test the semi-local scaling hypothesis

by comparing turbulent statistics from different variable property turbulent flows. The validity of

Morkovin’s hypothesis that was used in the mathematical framework was assessed in the DNS

database. The first comparison was done for a constant property case (CP395) with a case for

which µ =
√
ρ (CRe∗τ), such that the semi-local scaling reduces to the classical wall scaling with

y∗ = y+ and Re∗τ = Reτ across the whole channel height. The comparison provided quasi-similar

van Driest transformed stream-wise velocity profile u
vd and second order turbulent statistics, thus

providing strong support for the validity of semi-local scaling. Two other comparisons (GL-SRe∗τGL,

Cν-SRe∗τCν) involved variable property cases which exhibit quasi-similar Re∗τ profiles, but different

ρ and µ distributions across the channel. Both comparisons showed a good collapse of u
vd and sec-

ond order turbulent statistics. All the above comparisons lead us to conclude that u
vd and second or-

der turbulent statistics are a strong function of semi-local wall co-ordinates and their dependence on

individual density or viscosity profile is minor. We further assessed the quasi-similarity of higher or-

der statistics and found that the fourth order moments collapse reasonably well for all quasi-similar

Re∗τ cases, except GL-SRe∗τGL where small differences were seen due to high magnitudes of den-

sity fluctuation. The comparison of the third order moments, however, exhibited a breakdown of

Morkovin’s hypothesis, as they show a strong dependence on density fluctuations. A good collapse

of third order moments among quasi-similar Re∗τ cases was observed when
√
ρu′′

i
/
√
τw was used as

the fluctuating velocity scale.

Furthermore, the change in anisotropy of variable property turbulence has been quantified.

For cases where Re∗τ < Reτ in the channel core (GL and SRe∗τGL) the stream-wise Reynolds stress

increased, while the wall-normal and span-wise Reynolds stresses decreased, causing an increase

in near-wall stream-wise and span-wise anisotropy. The opposite is true for cases where Re∗τ > Reτ
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in the channel core (LL, Cν, and SRe∗τCν). When compared with case CP395, the stream-wise

anisotropy at y∗ = 0.5 increased by 35% for case GL and SRe∗τGL, while decreasing 20% for case

LL and 13% for case Cν and SRe∗τCν. This increased (decreased) anisotropy is not a Reynolds

number effect, as highlighted by comparison with constant property turbulent flows at different

Reynolds numbers form Iwamoto, Suzuki, and Kasagi.32 The wall-normal anisotropy was indepen-

dent of Reynolds number and property variations for all cases. A pre-multiplied 1D spectra was

used to study the scaling of stream-wise Reynolds stress in the buffer layer for cases GL and LL at

y∗ ≈ 15. The use of classical scaling (k+x , k
+
z ) showed elongated (shortened) large-scale stream-wise

structures with increased (decreased) mean span-wise spacing for case GL (LL). However, the

stream-wise and span-wise non-dimensional length of the structures was found to be universal with

respect to constant property cases when semi-local co-ordinates (k∗x, k
∗
z) were used. It was shown

that an increase (decrease) in anisotropy for case GL (LL) is associated with strengthening (weaken-

ing) of large scale low-speed streaks in the buffer layer. Additionally, joint pdfs of stream-wise and

wall-normal fluctuations revealed that the Reynolds shear stress generation was modified for cases

where Re∗τ , Reτ within the channel height. We showed that low-speed streaks are stabilised and do

not lift as intensely for cases where Re∗τ decreases towards the channel center. The reverse happens

for cases where Re∗τ increases towards the channel center, with low-speed streaks weakening and

lifting more intensely away from the wall. The conclusions reported in the present work are general

in nature and hence are applicable to any Newtonian fluid with heated or cooled wall as long as the

basic assumptions made in the work hold.
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APPENDIX A: VALIDATION

The DNS code is validated with data from Moser, Kim, and Mansour,2 Kim and Moin,16 and

Nicoud.24 Figure 18 compares our result with data from Moser, Kim, and Mansour2 for mean

velocity and normal Reynolds stresses. Figure 19 shows similar comparison for budgets of turbulent

kinetic energy and stream-wise Reynolds stress. As can be seen, all statistics show excellent agree-

ment with Moser, Kim, and Mansour.2 The scalar transport equation for the temperature has been

validated with data extracted from Kim and Moin16 for passive scalar simulations with Reτ = 180

and Prw = 0.7. The comparison of mean temperature and root mean square temperature fluctuation

between present code and Kim and Moin16 is given in Figure 20, again showing excellent agree-

ment. The variable property influences are validated with data extracted from Nicoud,24 who used

FIG. 18. (a) Mean velocity profile and (b) normal Reynolds stresses. Lines, case CP395; symbols, data from Moser, Kim,

and Mansour.2 In (b), (—, △) u′u′; (· · · · · ·, ⋄) v′v′; (- - - -, �) w′w′.
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FIG. 19. (a) Turbulent kinetic energy k = uk
′uk
′/(2u2

τ) budget and (b) stream-wise Reynolds stress u′u′/u2
τ budget. Lines,

case CP395; symbols, data from Moser, Kim, and Mansour.2 (—, △) Production; (- - - -, �) dissipation; (· · · · · ·, ⋄) turbulent

diffusion; (— · ·—,◦) viscous diffusion; (— ·—,▽) turbulent pressure diffusion in (a) and pressure strain in (b).

FIG. 20. (a) Mean temperature profile (T −Tw)/Tτ and (b) root mean square of temperature fluctuations T ′rms/Tτ, Tτ is

friction temperature defined as Tτ = qw/(ρcpuτ). Lines, present code; symbols, data obtained from Kim and Moin.16

FIG. 21. Mean velocity profile for case with (a) T2/T1= 2 and (b) T2/T1= 4. Lines, present code; symbols, data obtained

from Nicoud.24 (—, ◦) Hot side; (- - - -, �) cold side.
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a low-Mach number solver to perform DNS of a turbulent channel flow between two isothermal

walls with temperatures T1 and T2. The density, viscosity, and thermal conductivity are a function

of temperature. Two cases corresponding to T2/T1 = 2 and T2/T1 = 4 are used for validation. The

comparison of velocity profile on both hot and cold walls for two cases is shown in Figure 21. A

reasonable collapse is obtained between present code and data from Nicoud.24

APPENDIX B: DERIVATION OF RE-SCALED MOMENTUM EQUATION FOR FLUCTUATING
VELOCITY COMPONENTS

The momentum equations for the fluctuating components can be written as

∂t̂(û
′
i) + ∂x̂ j(û

′
iû
′
j) + ∂x̂ j(ûiû

′
j) + ∂x̂ j(û

′
iû j) ≈

− ∂x̂i p̂′ + ∂x̂ j(û
′
i
û′
j
) + ∂x̂ j


1

Re∗τ

(

2Ŝ′i j − D̂i j

)


, (B1)

where Ŝ′
i j
= 1

2

(

∂x̂ jû
′
i
+ ∂x̂iû

′
j

)

− 1
3
∂x̂kû′

k
δi j and D̂i j =

û′
i

2

(

ρw
ρ

)

∂x̂ j

(

ρ

ρw

)

+
û′
j

2

(

ρw
ρ

)

∂x̂i

(

ρ

ρw

)

− δi j
v̂′
3

(

ρw
ρ

)

∂ŷ
(

ρ

ρw

)

. This equation can be further simplified by applying the product rule in the third and

the fourth term,

∂t̂(û
′
i) + ∂x̂ j(û

′
iû
′
j) + ûi∂x̂ j(û

′
j) + û′j∂x̂ j(ûi) + û′i∂x̂ j(û j) + û j∂x̂ j(û

′
i) ≈

− ∂x̂i p̂′ + ∂x̂ j(û
′
i
û′
j
) + ∂x̂ j


1

Re∗τ

(

2Ŝ′i j − D̂i j

)


, (B2)

and using continuity equations (16) and (21) the equation can be written for a fully periodic channel

flow as

∂t̂(û
′
i) + ∂x̂ j(û

′
iû
′
j) − ûi

v̂ ′

2

(

ρw

ρ

)

∂ŷ

(

ρ

ρw

)

+ v̂ ′∂ŷ(û)δi1 + û j∂x̂ j(û
′
i) ≈

− ∂x̂i p̂′ + ∂x̂ j(û
′
i
û′
j
) + ∂x̂ j


1

Re∗τ

(

2Ŝ′i j − D̂i j

)


.

(B3)

Replacing û with



ρ

ρw

u
uτ

using Equation (14), and applying the product rule we obtain

∂t̂(û
′
i) + ∂x̂ j(û

′
iû
′
j) − ûi

v̂ ′

2

(

ρw

ρ

)

∂ŷ

(

ρ

ρw

)

+ v̂ ′δi1
*.,


ρ

ρw
∂ŷ

(

u

uτ

)

+
u

uτ
∂ŷ

*.,


ρ

ρw

+/-
+/-

+ û j∂x̂ j(û
′
i) ≈ −∂x̂i p̂′ + ∂x̂ j(û

′
i
û′
j
) + ∂x̂ j


1

Re∗τ

(

2Ŝ′i j − D̂i j

)


.

(B4)

∂ŷ

(

ρ

ρw

)

can be expressed as 1
2



ρw
ρ
∂ŷ

(

ρ

ρw

)

, and using Equation (19) and (14) in the fourth and

the fifth term, we get after algebraic manipulation the final form of the momentum equations
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′
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′
iû
′
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vd)δi1 + û j∂x̂ j(û

′
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− ∂x̂i p̂′ + ∂x̂ j(û
′
i
û′
j
) + ∂x̂ j


1
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2Ŝ′i j − D̂i j

)
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