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Abstract. We show that, for all odd natural numbers N , the N-
torsion points on an elliptic curve may be placed in an N × N grid
such that the sum of each column and each row is the point at infinity.

1. Introduction

Let N be a positive integer, and consider the integers 1, 2, . . . , N 2. An
N ×N grid containing these consecutive integers such that the sum of each
column and each row is the same is called a magic square. (This is usually
called a semi-magic square in the literature because we do not assume that
the sum of both diagonals is also equal to the sum of the columns and rows
[6].) For example, when N = 3, we have the grids

3 5 7
8 1 6
4 9 2

8 1 6
3 5 7
4 9 2

where the sum of each column and each row is 15. (The one on the right
is a magic square in the classical sense; the one on the left does not have
diagonals which sum to 15.)

We need not limit ourselves to a grid with integer entries. The author
of [1], inspired by the discussion in [2, Section 1.4], considered the problem
of arranging the 9 points of inflection on an elliptic curve in a 3 × 3 magic
square. That is, it is possible to arrange the points of order 3 in a 3 × 3
grid so that the sum of each row and each column is the same, namely the
point at infinity. We generalize this result.

Theorem 1. Let N ≥ 1 be an odd integer, let E be an elliptic curve defined

over an algebraically closed field with characteristic not dividing N . Then

the N2 points of order N on E can be placed in an N × N magic square

such that the sum of each column and each row is the point at infinity O.

We construct such a grid using Lehmer’s Uniform Step Method, as mo-
tivated by the discussion in [4]. In particular, the theorem holds for any
group G such that the N -torsion G[N ] ≃ (Z/NZ) × (Z/NZ).
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2. Semi-Magic Squares over Abelian Groups

As stated above, we define a magic square to be anN×N grid containing
the consecutive integers 1 through N 2 such that the sum of each column
and each row is the same. Strictly speaking, this is a semi-magic square,
but we abuse notation slightly for the sake of brevity. We do not limit
ourselves to constructing magic squares with integer entries. Indeed, we
will construct an N ×N magic square for a certain class of abelian groups.

Let G be an abelian group under ⊕. Given P ∈ G, denote [−1]P as its
inverse and [0]P = O as the identity. For each nonzero integer m, denote
[m]P as [±1]P added to itself |m| times, where “±” is chosen as the sign
of m. Denote G[m] ⊆ G as that subgroup consisting of points P ∈ G such
that [m]P = O. We will always assume that G is chosen such that for some
positive integer N there is a group isomorphism

ψ : (Z/NZ) × (Z/NZ)
∼

−−−−→ G[N ]. (2.1)

We have a bijection {1, 2, . . . , N 2
}

→ (Z/NZ) × (Z/NZ) given by

φ : k 7→

(

k − 1 (mod N),

⌊

k − 1

N

⌋

(mod N)

)

(2.2)

where ⌊·⌋ is the greatest integer function. That is, if 1 ≤ k ≤ N 2 then we
can write k − 1 = m+N n for some unique 0 ≤ m, n < N , and so we map
k 7→ (m,n). This means we have a bijection of sets

ψ ◦ φ : {1, 2, . . . , N2
}

∼

−−−−→ G[N ].

We will use this identification to place the elements in G[N ] in an N ×N
magic square.

There are two examples in particular which will be of interest to us. Upon
fixing N , the group G = (Z/NZ)×(Z/NZ) satisfies the criterion above. As
another example, fix an algebraically closed field F and let E be an elliptic
curve defined over F . We may choose G = E(F ) as the F -rational points on
E, where we have a non-canonical isomorphism G[N ] ≃ (Z/NZ)× (Z/NZ)
only when the characteristic of F does not divide N . (For more properties
of elliptic curves, see [3].)

3. Uniform Step Method

Fix a positive integerN . Let G be an abelian group under ⊕, and assume

G[N ] =
{

R1, R2, . . . , Rk, . . . , RN2

}

≃ (Z/NZ) × (Z/NZ) .

We wish to place these N 2 elements in an N ×N grid such that the sum
of each row and the sum of each column, as an element in G, is the same.
We use an idea of D. H. Lehmer from 1929, known as the Uniform Step
Method. To this end, we are motivated by the discussion in [4, Chapter 4].
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Given anN×N grid, we consider its entries in Cartesian coordinates. For
the moment, fix integers a, b, c, and d, and consider placing the element
Rk ∈ G[N ] in the (xk, yk) position. After arbitrarily placing R1 in the
(x1, y1)-position, we will define xk and yk by the recursive sequence

xk ≡ x1 + a (k − 1) + b

⌊

k − 1

N

⌋

(mod N)

yk ≡ y1 + c (k − 1) + d

⌊

k − 1

N

⌋

(mod N)

for 1 ≤ k ≤ N2.

We will exhibit conditions on these integers a, b, c, and d such that the
sequences above indeed generate a magic square.

Proposition 2. If N is odd and relatively prime to ad − bc, then the

sequence (xk, yk) places exactly one Rk in each of the N2 cells of the N×N
grid.

Proof. It suffices to show that (xk1
, yk1

) = (xk2
, yk2

) only when k1 = k2;
for then we would have N 2 different points so they must fill in the entire
grid. Using the bijection φ as in (2.2) note that we may write

xk ≡ x1 + am+ b n (mod N)

yk ≡ y1 + cm+ dn (mod N)
where (m,n) = φ(k).

Write (m1, n1) = φ(k1) and (m2, n2) = φ(k2), so that

(xk1
, yk1

) = (xk1
, yk2

) ⇐⇒
a (m1 −m2) + b (n1 − n2) ≡ 0 (mod N)

c (m1 −m2) + d (n1 − n2) ≡ 0 (mod N).

Since ad− bc (mod N) is invertible, we see that this happens if and only if

φ(k1) = (m1, n1) = (m2, n2) = φ(k2)

and so k1 = k2. �

Proposition 3. If N is relatively prime to a and b, then the sum of the

entries in the ith column is O. If N is relatively prime to c and d, then the

sum of the entries in the jth row is O.

Proof. The entries in the ith column consist of those Rk corresponding to
k such that xk = i. Similarly, the entries in the jth row consist of those Rk

corresponding to k such that yk = j. Hence, the sum of the entries in the
ith column and jth row are

∑

xk=i

Rk and
∑

yk=j

Rk, respectively.

First we determine the values of k which occur in the ith column. SinceN
is relatively prime to a and b, there are exactly N pairs (m,n) ∈ (Z/NZ)×
(Z/NZ) satisfying am + bn ≡ i − x1 (mod N); indeed, given any m we
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can solve for n, and vice-versa. Hence, there are exactly N integers k ≡
1 + m + N n (mod N2) such that xk = i, which we denote by kα. If we
denote (mα, nα) = φ(kα) using the bijection in (2.2), then it is clear we
have {. . . , mα, . . . } = {. . . , nα, . . . } = Z/NZ.

Now we compute the sum of the values in the ith column. Using the
group isomorphism in (2.1), denote P = ψ ((1, 0)) and Q = ψ ((0, 1)) so
that we have Rk = [m]P ⊕ [n]Q when (m,n) = φ(k). This gives the sum

∑

xk=i

Rk =
∑

α

Rkα
=

∑

α

(

[mα]P ⊕ [nα]Q
)

= [m′]P ⊕ [n′]Q,

where we have set

m′ ≡ n′ ≡
∑

α

mα ≡
∑

α

nα ≡
∑

m∈Z/NZ

m ≡
N (N − 1)

2
(mod N).

Since N is assumed odd, this sum is a multiple of N so that [m′]P =
[n′]Q = O. Hence, the sum of the entries in the ith column is indeed O.

A similar argument works for the jth row. �

We summarize this as follows.

Theorem 4. Let G be an abelian group under ⊕, and assume that there is

a positive odd integer N such that

G[N ] =
{

R1, R2, . . . , Rk, . . . , RN2

}

≃ (Z/NZ) × (Z/NZ) .

Fix integers a, b, c, and d relatively prime to N such that ad − bc is also

relatively prime to N , and consider the sequence (xk, yk) defined by

xk ≡ x1 + a (k − 1) + b

⌊

k − 1

N

⌋

(mod N)

yk ≡ y1 + c (k − 1) + d

⌊

k − 1

N

⌋

(mod N)

for 1 ≤ k ≤ N2.

The N ×N grid formed by placing Rk in the (xk, yk) position is a magic

square, where the sum of each column and each row is the identity O.

We remark that this method does not exhaust all ways in which a magic
square can be generated. For example, this method does not seem to work
for N even. Indeed, the sum of each column and each row involves the
expression N(N−1)/2, which in general is not a multiple of N . Also, when
N = 4, we have the magic square

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
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It is easy to check that such a square cannot be generated by a sequence
(xk, yk) for any a, b, c, or d. This first appeared in 1514 in an engraving by
Albrecht Dürer entitled “Melencolia.”

4. Applications

We can specialize a, b, c, and d to generate examples of magic squares.

Corollary 5. Let G be an abelian group under ⊕, and assume that there

is an odd positive integer N such that

G[N ] =
{

R1, R2, . . . , Rk, . . . , RN2

}

≃ (Z/NZ) × (Z/NZ) .

Then these elements can be placed in an N ×N magic square such that the

sum of each column and each row is the identity O.

Proof. We follow the construction using a method first outlined by De la
Loubère in 1693. (An example of how this method works follows at the end
of the paper.) Using Theorem 4, set a = 1, b = c = −1, and d = 2. As
N is odd, it is relatively prime to these integers as well as the determinant
ad− bc = 1. �

Remark. Theorem 1 follows from this corollary, since the group E[N ] of
N -torsion points on an elliptic curve E is isomorphic to (Z/NZ)× (Z/NZ).

The following was pointed out to the author by J.-K. Yu. Upon choosing
the basis {P, Q} for G[N ] given by P = ψ

(

(1, 0)
)

and Q = ψ
(

(0, 1)
)

, we
may write Rk = [m]P ⊕ [n]Q when (m,n) = φ(k). (Here, we use the maps
defined in (2.1) and (2.2).) In this way, we may identify Rk with (m,n).
If we choose a = d = 1 and b = c = 0, then we have a magic square upon
placing (m,n) = φ(k) in the (xk, yk)-position. In general, if for odd N we
have an N × N Latin Square with the (m,n)-position having entry amn

then we may place (m, amn) in the (xk, yk)-position. (For more on Latin
squares, see [5].)

We discuss a specific example by considering the 3-torsion on elliptic
curves; to this end, set N = 3. We explain how this construction generalizes
that in [1]. Consider an elliptic curve defined over the complex numbers C,
and let G = E(C) be the group of complex points on the curve. Then it is
well-known that we can express the 3-torsion as

E[3] =
{

A, B, C, D, [−1]A, [−1]B, [−1]C, [−1]D, O
}

≃ (Z/3Z)×(Z/3Z)

where B = A⊕D and [−1]B = C ⊕D. If we label these points as

R1 = O,

R2 = [−1]B,

R3 = B,

R4 = D,

R5 = [−1]A,

R6 = [−1]C,

R7 = [−1]D,

R8 = C,

R9 = A;

106 VOLUME 22, NUMBER 2



SEMI-MAGIC SQUARES AND ELLIPTIC CURVES

then we can use the magic square from the introduction to place the 3-
torsion in a magic square:

3 5 7
8 1 6
4 9 2

=⇒

B [−1]A [−1]D
C O [−1]C
D A [−1]B

We can also compute this magic square using the method in the proof of
the corollary. Choosing the basis P = [−1]B and Q = D; it can be easily
checked that Rk = [m]P ⊕ [n]Q when (m,n) = φ(k). If we also choose
(x1, y1) = (2, 2) as the center of the 3 × 3 grid, then Rk may be placed in
the (xk, yk)-position, where

xk ≡ x1 + (k − 1) −

⌊

k − 1

N

⌋

(mod N)

yk ≡ y1 − (k − 1) + 2

⌊

k − 1

N

⌋

(mod N)

for 1 ≤ k ≤ N2.

As mentioned before, this is known as De la Loubère’s method or the
Siamese method. Following a comment of the referee, if we choose (x1, y1) =
(1, 2) as the center of the 3 × 3 grid, then we find the (classically) magic
square

8 1 6
3 5 7
4 9 2
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