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Abstract We consider the problem of minimizing the long-run average expected cost per unit time in a semi-

Markov decision process with arbitrary state and action space. Using the idea of successive approximations, sufficient 

conditions for the existence of an optimal stationary policy are given. These results are applied to solve the replace­

ment problem with a semi-Markov shock model. 

1. Introduction 

We consider the problem of minimizing the long-run average expected cost 

per unit time in a semi-Markov decision process(semi-MDP) with arbitrary 

state and action space. Lippman[9] has given the sufficient conditions under 

which, for each E: > 0, there is a stationary policy which is E:-optimal. We, 

using the idea of successive approximations(for example, see[16]), give 

another conditions for the existence of an E:-optimal policy that is station­

ary. These results are used to analyse the replacement model with a semi­

Markov shock process under the average cost criterion. The related replacement 

model is investigated by Kao[6], Taylor[13], Feldman[4] and Zuckerman[18]. 

Taylor[13] studied the case in which the damage process is a compound Poisson 

process. Zuckerman[18] derived an optimal replacement policy in an extended 

model by using the infinitesimal operator of the Markov process. We analyse 

Zuckerman's model by an approach from a semi-MDP and derive an optimal re­

placement policy which is contained in the class of state-age replacement 

rules of Kao[6]. 

2. Semi-MOP's with Arbitrary State 

18 
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Semi-Markm' Decision Processes 

In this section we formulate a seIni-MDP with arbitrary state and action 

space refering to Federgruen and Tijms!)] and Kolonkq[7]. By a Borel set we 

mean a Borel subset of some complete s,~parable metric space. For a Borel set 

X, FX denote the Borel subsets of X. If X is a non-empty Borel set, 

B (X) [B (X)] denotes the set of all bounded Baire[lower semianalytic] func-
m a 

19 

tions on X. The product space of the set D
I
,D

2
, '" will be denoted by D

I
D

2
·•·. 

For any non-empty Borel sets X and Y, 11 transition probability measure on 

Y given X is a function p(.J.) on F~ Buch that for each XCX p(.JX) is a 

probability measure on Fy and for each Borel set Bc Fy p(B!') is a Baire 

function on X. The set of all transition probability measures on Y given X 

is denoted by P(yJX). Also, we denote the set of all [analytically] measur­

able functions from X to Y by B (X-+Y) rB (X-+Y) ]. 
m - a 

We consider a semi-Markov decision model specified by six objects (S,A,Z,Q, 

c,'r), where S, A and Z are any Borel sets and denote the state space, the 

ac tion space and the space of additional observations respec ti vely, Q E 

P(ZSJSA) is the law of motion, c E B (SI1ZS) is one step cost function and 
m 

'rEB (SAZS -+(0,"'» is a weighting function for defining the average cost. 
m 

Let IT denote the set of all policies, i.e., for w = (wO,w
I
,,·· )E IT let 

1f
t 

E P (A I S(AZS/) . 

A policy 1f = (w
O

,1f
I
,···) is called [analytically measurable] Markov policy 

if for each t there is a ftEBm(S+A) [Ba(S-+A)] such that 1ft(~ft(Xt)}Jxo:ao' 

ZI,xI"",Zt'xt ) = I for all (xO,aO,zl,xI"",Zt,Xt)ES(AZS) . Such pol1cy 

will be denoted by (f O,f I' . .. ). A Markov policy (f O,f l' ... ) with f = f t 
for each t f;, 0 is called stationary and denoted by f"'. 

The sample space is the product space n = S(AZS)"'. Let X
t

' Zt and b.
t 

be random 

quantities defined on Q by Xt(w) = x t ' Zt(w) = Zt and b.t(w) at for all 

W = (xO,aO,zl,xl,al ,··· )E n. 
For each policy 1f (1f

O
,1f

I
,···) and XE S, we assume that 

Prob( b.tEDI JXO x, b.O'···' Zt' Xt ) = 1f t (DI JXO = x, b.O'··· ,Zt' Xt ) 

and 

Prob( Zt+IED2' Xt +I ED3 JXO = x,···. Zt' Xt ' fit 

for each t f;, 0, DIE FA' D2E FZ and D3E FS' 

Then, for each wE IT and starting state XE S we can define the probability 

measure pX on n in an obvious way. We shall consider the following average 
1f 

cost criterion: 
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20 Masami Kurano 

lim supT+oo -----------------------------­
,T-1 
Lt=O 

for 1fE IT and xE. S if this expression exists, where Ff is the expectation 
1f 

operator with respect to pX. 
1f 

For e: ~ 0, we say 1f*C IT is e:-optimal if g[ 1f*J (x) < g[ 1f] (x) + e: for all 

1f E IT and XE S. A O-optimal policy is simply called optimal. We shall discuss 

the existence of an e:-optima1 stationary policy by introducing the following 

condition. 

(2.1) 

where 

Condition(*). There are a VE B (S) and a constant g* satisfying that 
a 

V(x) = inf A { c(x,a) - g*T(x,a) + fv(x')QS(dx' Ix,a) } 
aE 

a(x,a) fa(x,a,z,x')Q(d(z,x')lx,a), 

T(x,a) fT(x,a,z,x')Q(d(z,x')lx,a) and ~E P(SISA) is the state tran­

sition probability defined by QS(Dlx,a) = fZDQ(d(z,x')lx,a) for each DE FS' 

An examination of the proof of Theorem 7.6 in [12] and the selection 

theorem of [14] give the following theorem. 

Theorem 2.1. Let Condition(*) be satisfied. Then 

(a) g[1f](x) ~ g* for any 1fEIT and xES, 

(b) for each e: > 0, there exists a fE B (S+A) such that 
a 

(2.2) v(x) + e: ~ a(x,f(x» - g*T(x,f(x» + fV(x')~(dx' Ix,f(x» 

for any xE S, 

and the stationary policy foo is e:-optima1. 

Remark 2.1. In Theorem 2.1, if there exists a fEB (S+A) satisfying the 
a 

equation (2.2) for e: = 0, foo is optimal. 

Condition 1. There are positive constants m,M and M' such that 

m < T(x,a) < M and jT 2(x,a,z,x')Q(d(z,x')lx,a) < M' for all xES and a(CA. 

I 
,N-l 

For each T ~ 0, let nT = max {N Lt=O T(Xt'~t,Zt+l,Xt+1) ~ T }. Then, we 

have the following. 

Corollary 2.1. Let Condition(*) and Condition 1 be satisfied. Then 

(a) for any 1fE IT 

1 nT 
(2.3) 1im infT+oo T Lt=O a(Xt'~t,Zt+l,Xt+l) > g* P~ -a.s. , 
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and 

{b) there is an analytically measurable Markov policy IT* 

which is optimal and 

(2.4) 
. 1 nT 

hmT __ T Lt=O c(Xt''''t,Zt+l,Xt+l) = g* ~* -a.s. 

Proof: For g* and V E B (8) as in Theorem 2.1., we define 
a 

</> (x,a,z,x') = V{x) + g*T(x,a,z,x') - c(x,a,z,x') - v(x') 

and 

</> (x,a) = f</> (x,a,z,x')Q(d(z,x') Ix,a). 

By the stability theorem of Loeve[lO], it holds that 

(2.5) pX -a.s. 

For {a), since ¥ L;:~ </>(Xt''''t) ~ 0, it follows from (2.5) that 

1 ~~l x 
(2.6) lim sUPT __ T Lt=O <f>(Xt ''''t,Zt+l"Xt +1 ~ 0 PlT -a.s •. 

We obse'I've that 

(2.7) 

~T-1 
- Lt=O c(Xt''''t,Zt+l'Xt +l ) + V(XO) - V(XT)· 

1 nT 
Since Condition 1 implies that T Lt=O T(Xt ''''t,Zt+1'Xt +1) ~ 1 

T ~ .. , we obtain (2.3) from (2.6) and (2.7). 

For (b), from Theorem 2.1. for each E :·0 there exists a 

that 

</> (x,r (x» ~ -£ for all xE. 8. 

IT 

If -a.s. as 
IT 

co ,1 ~T-1 
For a sequence {E (t)} t=O such that E (t) > 0 and T L~=9 E(t) ~ 0 as T ~ .. , 

define a Markov policy IT* = (fO,f
l
,··· ) by f

t 
= fE t for each t ~ O. 

1 ~~1 1 ~-1 
Since 0 ~T Lt=O </>(Xt,ft(Xt » ~T Lt=O {-E(t)} ~ 0 as t ~ co, it holds 

21 

1 T-l 
1i~ T Lt=O </>(Xt,ft(X

t
» = O. Therefore, by repeating the above discussion 

we obtain (2.4). Also, from (2.7) and the definition of 11"*, we have 

g* - ~*[atTr1L;:~ ~*[c(Xt''''t,Zt+1,Xt+1)] 

~ ~*[atTr1(V(XT) - V(XO) - ~*[atTr1L;:~ E(t), 

~ ~T-1 
where WT = Lt=O T(X

t
''''t,Zt+1'Xt +1) , HO that, as T ~ co, it holds from Condi-

tion 1 that g* ~ g[lT*] (x). So, by theoJcem 2.1 11"* is optimal. Q.E.D. 
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3. Sufficient Conditions for Condition(*) 

In this section, using the idea of the successive approximations we 

shall give the sufficient conditions for which Condition(*) holds. 

(a) 

Condition(**). There exist a measure y on Sand 0 < S < 1 such that 

S 
Q (D Ix ,a) ~ ·r(x ,a)y(D) for any DE F S 

and 

(b) y(S) > (1 - S)/T(x,a) for any (x,a)ESA. 

In non-discounted Markov Decision Processes ( T 21 ), Condition( **) insures 

the ergodicity of the process and corresponds to the conditions for the exist­

ence of an optimal stationary policy (see [11], [15] and [17J). In the next 

section we shall give the replacement problem which satisfies Condition(**). 

We define the map U on B (S) by 
a 

(3.1) 

where 

(3.2) 

UU(x) = inf A U(x,a,u), 
aE 

U(x,a,u) a(x,a) + fu(x')l(dx' Ix,a) - T(x,a)Ju(x')Y(dx') 

for each u E B (S), xE Sand aE A. 
a 

Lemma 3.1. Under Condition(**), we have 

(a) uE. B (S) implies UuE. B (S) 
a a 

(b) U is monotone, Le., if u ~ u', Uu ~ Uu' 

(c) u ~ -H/(l-S) implies that Uu ~ -H/(l-S), 

where H = sUPxES,aEA ia(x,a)i. 

Proof: From the results of [2], (a) follows. Since QS(Slx,a) - T(x,a)y(S) 

< S, (b) and (c) hold. 

Theorem 3.1. Condition(**) implies Condition(**). 

Proof: Let Uo = H/(l-S) and u
n
+

l 
= UU

n 
for n ~ O. Then, by Lemma 3.1, 

unEBa(S) for all n. We observe that u
l 

= Uu
O 
~H + SH/(l-S) = H/(l-S) = u

O
. 

Thus,by Lemma 3.1, u
n

+
l 
~ un and u > -H/(l-S) for all n. Let V = lim u. 

n = n+oo n 

Then, vEB (8). By nonincreasing convergence, V ~ UV. On the other hand, for 
a 

anye: > 0, we have v(x) ~ Uun(x) - e: ~ U(x,a*,u
n

) - 2e: ~ Uv(x) - 2e: for some 

nand a*E A. As e: ..... 0, V ~ Uv. Therefore, we have 

(3.3) v(x) = Uv(x) = inf A U(x,a,v). 
aE 

If we put g* = fV{x')y(dx') , (3.3) implies (2.1). Q.E.D. 
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4_ Generalized Age Replacement 

Consider a failure model for a system being subject to a sequence of 

randomly occurring shocks. Each shock causes a random amount of damage and 

these damages accumulate additively. The damage process is a semi-Markov 

process. Given that the process is in a state x, it remains there for a random 

length of time, called the sojourn time, which is denoted by a(x). And the 

magnitude of shock associated with a state x will be denoted by s(x). Let 

F
x

(') be the distribution function of a(x) and Gx('la) the conditional distri­

bution of B(x) given a(x) a. Assume that F (a) and G (yla) are measurable 
x x 

in x, y and z and F (.) has a continuous density with respect to a Lebesgue 
x 

measure. 

A failure of the system can only happen at the time of a shock. If at time t 

the accumulated damage is x and a shock magnitude y occurs, then the system 

fails with known probability 1 - r(x + b). The function r(·) is called the 

survival function. The informations available to a decision maker are the time 

when a shock has occurred, the shock magnitude and whether or not the system 

has failed at the time of a shock. Under a replacement policy the system is 

always replaced at failure or at the end of a planned time, whichever occurs 

first, with respectively costs K and C ( K > C > 0 ). 

Here, we note that if r(x) = 0 for all :r > 0 and G (Ola) = 0 for all x and a, 
x 

the replacement model given above is reduced to the age replacement problem 

(for example, see [lJ and [SJ). Thus, our model is called a generalized age 

replacement. Our objective is to find the replacement policy which minimizes 

the long-run average cost. 

If we define the state of the syste.m by the magnitude of the accumulated 

damage at the time of a shock, the generalized age replacement is equivalently 

transformed in a semi-MDP treated in Sections 2 and 3. 

Let R+ = (0,00), 1/ = [0,00) and A = R+ U {<X>}. Define S = 1?+, A = A U {(O,a) la EA} 
+ 

and Z = R . A stage is the period starting just after a shock and ending just 

after the next shock. The length of each stage is represented as the element 

of Z and aER+ and 00 correspond to the action of the planned replacement time 

a and non-planned replacement respectively, and (O,a) with a£A means that we 

replace the system instantly and take an action a. Further define QS(Dlx,a) 

= IO(D) {Px(a) + J~Fx(dz)f~(l-r(x+y»Gx(dYlz)} + f~Fx(dz)J{X+Y€D}r(x y). 

S I SI· -Gx(dYla) and Q (D x,(O,a» = Q (D O,a) for all X£S, aEA and DE FS ' where 

+ 
IO(D) = 1 (0) if OED (otherwise) and F;r:(z) = 1 - Fx(z) for all zER 
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24 Masami Kurano 

Finally define c(x,a,z,x') = K if z ~ a and x' 

= 0 otherwise, and ,(x,a,z,x') = z. 

0; C if z > a and x' 0; 

To analyse the generalized age replacement by applying the results of Sections 

2 and 3, we introduce the following assumptions AI-AS. 

Let h (z) be the hazard rate associated with the distribution function F (.) 
x x 

at the point z. 

AI. 

A2. 

A3. 

hx' (z) ~ hx(z) if x' ~ x and hx(z') ~ hx(z) if z' ~ z. 

F
x

(·) is stochastically decreasing, i.e., Fx(z) ~ Fx'(z) for x ~x'. 

+ 
For any non-negative real valued function u E B (R ) which is nonincreas­

a 

ing, 

Ju(y)r(x'+y)G
x

' (dylz) ~ Ju(y)r(x+y)Gx(dylz) if x' ~x and 

/u(y)r(x+y)Gx(dylz') ~ Ju(y)r(x+y)Gx(dylz) if z' ~ z. 

A4. r* = JFO(dz)Jr(y)GO(dylz) < 1, i.e., the probability that the system in 

state 0 does not fail at the next shock is less than 1. 

AS. There exist two positive numbers m and M such that m < JZF (dz) < M for 
x 

all xE: 1/. 

Notice that if r(x) is nonincreasing and G (·Iz) is stochastically increasing 
x 

-+ + I 1 in (x,z)E R R , Le., G
x

' (y z) ~ Gx(Y z) if x' ~ x and Gx(ylz') ~ Gx(ylz) for 

z' ~ z, A3 holds (see, Lehmann[a] p.73). Also, notice that Al implies A2. 

If we take an action aE A in a state x, the mean sojourn time is 

(4.1) J
a -,(x,a) = 0 zF (dz) + aF (a). 

x x 

By (4.1), we observe that ,(x,a) + 0 as aEA + 0, so that Condition(**) in 

Section 3 does not hold. For any fixed £ > 0 let A = A U {(O,a)laEA }, where 
- £ £ -+ £ 

A = [£,00) U {oo}. Putting 0 = (l-r*)/M, define a measure y on R by, for each 
£ 

DEFR+, y(D) = <5 (0) if Oe.:D (elsewhere). Then, since if({o}lx,a) ~ 1 - r* 

under A3 and 0 < inf
xES

, EA ,(x,a) < sup S A ,(x,a) < M under A2 and 
a £ x~ ,aE £ 

AS, it is easily verified that Condition(**) holds for the restricted action 

space A£. The function Ulx,a,u) defined by (3.2) is, for each Uc Ba(R+), 

and 

U(x,a,u) = KFx(a) + CFx(a) + J~ Fx(dz)J(u(x+y) - K - u(O»r(x+y)Gx(dylz) 

+ u(O)(l - 5,(x,a», 

U(X, (O,a) ,u) = C + U(O,a,u) for aE A. 

Lemma 4.1. Let A2 and A3 be satisfied. Then, for any non-negative valued 

-+ 
and nondeacreasing uf: B (R ) with u(x) ~ K + u(O) for all xE S, it holds that 

a 
U(x,a,u) ~ U(x' ,a,u) if x ~ x'. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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Proof: From A3, we observe that if x ~ x', f(u(x+y) - K - u(O»l'(x+y)­

Gx(dylz) ~ f(u(x'+y) - K - u(O»l'(x+y)G:~(dylz) ~ f(u(x'+y) - K - u(O»l'(x'+y)­

G
x

' (dylz) - Also, it holds from A2 that 'r(x,a) ~ T(X' ,a) if x ~ x'. Q_E.D. 

Proposition 4.1. Let A2-A5 be satisfied. Then there exist a nondecreas­

-+ 
ing function vE B (R ) and a constant got satisfying that 

a 

(4 _ 2) Vex) = infaER+
U 

{oo} { KFx(a) + CFx(a) 

+ f~Fx(dz)f(v(x+y) - K - V(O»l'(x+y)G
x

(dylz) 

+ V(O) - g*T(x,a) }, 

which is corresponding to (2_1). 

Proof: For the restricted action :;pace A e:' define the operator Ue: by 

(4.3) Ue:u(x) = min{ C + inf U(O,a,u), inf U(x,a,u) 

aEA 
e: 

aEA 

min{ C + Ue:u(O) , inf U(x,a,u) 

aEA 
e: 

e: 

Then, from Theorem 3.1 there exists a non-negative real valued function 

-+ 
V E. B (R ) such that 

e: a 

(4.4) V (x) = Ue:v (x) 
e: e: 

-+ 
for xE R • 

First we shall show that V e: (x) is nonde,:reasing in x. Let Uo = 0 and 

un = Ue:un_
l 

for n ~ 1. By induction on n it holds from Lemma 4.1 that un(x) 

is nondecreasing for each n. 

Since u -+- v as n -+- 00, Ve: is nondecreasing. Obviously, V (x) > V ,(x) if 
n e: e: = e: 

-+ 
e: > e:' _ Now, let vex) = lim OV (x) for each XER • Then, vex) is nondecreas-

= e:-+- e: 

ing in x. From the monotonicity of U(x,a.,-), we have 

(4.5) lime: -+-Oinf _ 
aE: A 

U(x,a,v ) > i:af U(x,a,v). 
e: = a6A 

e: 
On the other hand, for any n > 0, there exists a'E A with 

inf U(x,a,v) > U(x,a' ,v) - n. 
aEA 

Also, we have, by the monotone convergence theorem, lim~rP (x ,a' ,v ) 
e: -rv e: 

U(x,a' ,v), so that, since there exists e:' > 0 such that a' E. A for any 
e: 

e: < e: " we get 

Therefore, we have 

U(x,a,v ) ~ U(;:c,a' ,v). 
e: 
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26 Masami Kurano 

inf U(x,a,v) ~ lime:+Oinf U(x ,a ,Ve: ) - n· 
aEA aEA 

e: 
As n + 0, it holds that 

(4.6) inf U(x,a,v) ~ lime:+Oinf U(x,a,v ). 
aE A aEA 

e: 
e: 

From (4.5) and (4.6), we have 

(4.7) lime:+Oinf _ U(x,a,v) = inf U(x,a,v). 
at:=' A e: at:=' A 

e: 
As e: + ° in (4.4), we obtain from (4.3) and (4.7) that 

V(x) = min{ C + v(O), inf U(x,a,v)} = 
aE A 

(4.8) inf _+ U(x,a,v). 
aE.R U {oo} 

In (4.8), putting g* = v(O)o we obtain (4.2). Q.E.D. 

-+ 
For vEB (R ) and g* as in Proposition 4.1, consider the following equation. 

a 

(4.9) J(x,a) = g*, aE [0,00), 

where J(x,a) = { K - C + f(v(x+y) - K - V (O»r(x+y)Gx(dy la) }hx(a) 

Proposition 4.2. Suppose that Al and A3-A5 hold. Then 

(a) there is an extended real valued function a* = a*(x) such that for each 
-+ -+ 

xER , a*(x) is a solution of (4.9) and a*(x) is nonincreasing in XE:R , 

where if no solution exists on [0,00), let a*(x) = 00 

-+ 
(b) the optimal replacement level for each xE R is represented by a*(x) , 

that is, under the optimal replacement policy we replace the system if 

the sojourn time in state x is greater than a*(x). 

Proof: By taking the derivative of U(x,a,v) with respect to a, setting 

it equal to zero and simplifying, we obtain the equation (4.9). From Proposi­

tion 4.1, v(x) is nondecreasing in x and v(x) ~ v(O) + K for all XER+. Thus, 

from Al and A3, J(x' ,a) ~ J(x,a) if x' ~ x and J(x,a') ~ J(x,a) if a' ~ a, 

so that (a) follows. Also, by Theorem 2.1 and Remark 2.1, (b) holds clearly. 

Q.E.D. 

Remark 4.1. Putting I = {xt:='R+ 10 <a*(x) < oo}, let ai = inf I and 

ai = sup I. Then, from Proposition 4.2 we observe that under an optimal replace­

ment policy we don't replace if the accumulated damage x is smaller than ai and 

replace instantly if x is greater than ai. The optimal replacement policy given 

in Proposition 4.2 is contained in the class of state-age replacement rules of 

Kao[6]. 

To obtain the further results, we shall introduce the lexicographic order 

>- in R2. We say that (x
l
'Yl)ER

2 
is lexicographical positive, written (xl'Yl) 

~ 0 if (xl,Y
l

) i 0 and the first non-vanishing coordinate is positive. 
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AI' 

A3' 

h (z) is nondecreasing in 
x 

-+ + 
(x,z)E R R w.r.t. the lexicographic order >--. 

For any non-negative real valued fUIlction uE B (R+) which is nonincreas­
a 

I 
-+ + 

ing, Ju(y)r(x+y)G (dy z) is nonincreaing in (x,z)ER R w.r.t. the lexi­
x 

cographic order >-. 

Note that AI' and A3' imply Al and A3 respectively. So, we can obtain the 

following: 

Proposition 4.3. Suppose that AI', A3', A4 and AS hold. Then, there 

exists x*ER+ and a*EA for which the optimal replacement level, a*(x), is 

defined by 

{ 
00 if x < x* 

(4.10) a*(x) a* if x x* 

0 if x > x* 

-+ + Proof: From AI' and A3', J(x,a) is nondecreasing in (x,a)ER R w.r.t. 

the lexicographic order )-, so that ther(~ exists x*E R+ and a*E A such that 

( x ~ x* 
I 

if ~ x = x* 

l x > x* 

and a a* 

This means that a*(x) defined by (4.10) is the optimal replacement level at 

state x. Q.E.D. 

Remark 4.2. The optimal replacement level, a*(x), given in Proposition 

4.3 has the same properties as that in Theorem 2 in Zuckerman[18], who has 

investigated the structure of an optimal replacement policy using the infini­

tesimal operator of the Markov processes. Our conditions assumed in Proposi­

tion 4.3 are slightly stronger than those in Zuckerman[18], but our proofs 

are more constructive. 

Remark 4.3. In the case which the system always fails when a shock 

occurs, Le., r(x) = 0 and G (Olz) = 0 for all x,z > 0, the optimal equation 
x 

(4.5) is as follows: 

v(O) = inf + { KFO(a) + CFO(a) + v(O)(l - oT(O,a) }. 
aER U {oo} 

(4.11) 

By putting g* = ov(O), (4.11) becomes 

g* = inf + { C + (K - C)FO(a) }/T(O,a). 
aG.R U {oo} 

(4.12) 

Also, the equation (4.9) is (K-C)hO(a) = ~*, whose solution is represented 

by a*. Then, since T(O,a) = J~ FO(y)dy, from (4.12) a* satisfies that 
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(4.13) 

which agrees with the well-known results(see, e.g., Barlow and Proschan[l] , 

p.87). 
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