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Semi-MarkovJumpLinear SystemswithBi-boundary

SojournTime:Anti-modal-asynchronyControl
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Abstract

This paper investigates the problem of control synthesis for a class of discrete-time semi-Markov jump linear systems, in which
the sojourn time of each mode is bi-boundary (with upper and lower bound). The system is subject to modal asynchrony,
which means that the switchings of the mode-dependent controller to be designed lag behind the ones of the controlled plant,
and the lag is mode-dependent. In contrast with the traditional mode-independent lag commonly assumed in the existing
studies, not only is the modal lag more practical and general, but also it yields less conservatism of the controller design. By
virtue of the semi-Markov kernel approach, the conditions on the existence of the anticipated stabilizing controller capable of
overcoming the modal asynchrony are derived. Illustrative examples including a class of VTOL helicopter models are presented
to demonstrate the necessity and the validity of the designed anti-modal-asynchrony controllers.

Key words: anti-modal-asynchrony control, bi-boundary sojourn time, mean-square stability, semi-Markov jump linear systems

1 Introduction

The past decade has seen increasing usages of semi-
Markov jump linear systems (S-MJLSs) in modeling
stochastic switching systems instead of MJLSs. Recent
examples can be found in communication networks un-
der environment changes [12], robot arm systems with
varying payloads [13], and so on. The powerful capa-
bility of system modeling of S-MJLSs mainly benefits
from the fact that the sojourn time in S-MJLSs is not
necessarily subject to exponential distribution unlike
MJLSs. Earlier works on S-MJLSs consider that the
sojourn time is of special distributions, such as phase-
type distribution in [6], Weibull distribution in [7], etc.,
in order to simplify the derivations of the controller
design. In [21], the semi-Markov kernel approach is pro-
posed, which greatly impulses the studies on stability
analysis and control synthesis for S-MJLSs allowing for
any types distribution of sojourn time.

On control synthesis problems of stochastic switching
systems, the mode-dependent controller is generally ex-
pected as it brings less conservatism than the mode-
independent controller, cf., [11, 18, 19]. However, a draw-
back in the scheme of the mode-dependency approaches
is the asynchrony which generally means that the switch-
ings of the controller lag behind the ones of the controlled

Email addresses: jnyang@hit.edu.cn (Jianan Yang),
ningzepeng@hit.edu.cn (Zepeng Ning),
lixianzhang@hit.edu.cn (Lixian Zhang),
hak-keung.lam@kcl.ac.uk (Hak-Keung Lam).

plant 1 . It is actually a common and non-ignorable issue
in the area of switching systems, and the lag is mainly
caused by the time needed for identifying the activated
mode of the plant in the cases of no switching informa-
tion available a priori. Referring to the previous studies
[5, 8, 9, 17] in solving the issue of asynchrony, efforts
have been devoted to the asynchronously switched con-
trol of S-MJLSs, see, e.g., [22]. Unfortunately, the pro-
posed criteria in [22] are not applicable to the case that
the sojourn time is with lower bounds. In practice, it is
seldom encountered that the mode changes to another
one immediately after the last switching. Then, if ignor-
ing the lower bounds of the sojourn time, the resulting
conditions on the existence of controller may be rather
conservative. It is quite necessary to fill such a void by
solving the control synthesis problem for S-MJLSs with
bi-boundary sojourn time against asynchronous mode
jumps.

Moreover, note that almost all the existing results with
respect to asynchronously switched control systems
presume that the lags corresponding to different modes
of the plant are all identical. Surprisingly, the issue of
mode-dependent lag, i.e., the modal asynchrony has
never been considered in the field, let alone the com-
plex S-MJLSs involving with non-specific distribution
of sojourn time. In fact, it is quite common that the
time for identifying different modes of the controlled

1 In this paper, we will slightly abuse the notion of con-
trolled plant to mean the real physical plant itself and its
surrounding environment.
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plant is mode-dependent. Meanwhile, it is worth men-
tioning that although the considerations of lag mode-
independency in [4, 14], etc., facilitate the derivations
of the controller design, the simplification leads to great
conservatism. Therefore, it is necessary and significant
to probe the control synthesis problems for switch-
ing systems while taking the modal asynchrony into
account. Note that in S-MJLSs, the consideration of
bi-boundary sojourn time will inevitably increase the
difficulty of derivation for the case of modal asynchrony.

Motivated by the above observations, this study is con-
cerned with the control synthesis for a class of discrete-
time S-MJLSs with bi-boundary sojourn time and modal
asynchrony. Compared with the previous studies assum-
ing the common lag, the obtained results are more prac-
tical and general yielding the less conservatism of the
controller design. The remainder of this paper is orga-
nized as follows. Section II presents the preliminaries
and problem formulation. The detailed derivations of
the proposed approach are given in Section III. Two nu-
merical examples are provided to verify the validity and
applicability of theoretical findings in Section IV, and
Section V concludes this paper.

Notations: The superscripts “T” and “-1” indicate
transposition and inverse of a vector or a matrix, re-
spectively; Rn denotes the n-dimensional Euclidean
space and ‖ · ‖ the Euclidean vector norm in Rn; R
and N stand for the set of real numbers and the set
of non-negative integers, respectively; R>0 signifies the
sets {i ∈ R|i > 0}; N≥N and N[N1,N2] denote the sets
{i ∈ N|i ≥ N} and {i ∈ N|N1 ≤ i ≤ N2}, respectively.
Besides, E{x}|y stands for the expectation of x condi-
tional on y; the notation P � 0 (P ≺ 0) means that
P is a positive (negative) definite matrix; ⊗ represents
the Kronecker product of matrices, diag{· · ·} a block-
diagonal matrix, and sign(x) the signum function which

is defined as sign(x) , 1 for x > 0, sign(x) , −1 for

x < 0, and sign(x) , 0 for x = 0. In addition, sym(A)
is a shorthand of A+AT . To reduce clutter, the symbol
“∗” is employed as an ellipsis for the terms introduced

by symmetry. The symbol Θb
a(Ai) is defined as

∏b
i=aAi

for a ≤ b, and I for a > b. In and 0 are identity matrix
of order n and zero matrix with appropriate dimensions,
respectively.

2 Preliminaries and Problem Formulation

Fix the complete probability space (Ψ, F , Pr) and con-
sider the following discrete-time S-MJLS:

x(k + 1) = Ar(k)x(k) +Br(k)u(k) (1)

where Ψ is the sample space, F the σ-algebra of the sub-
sets of Ψ, and Pr the probability measure on F ; the vec-
tors x(k) ∈ Rnx and u(k) ∈ Rnu denote the system state
and control input, respectively; {r(k)}k∈N stands for a
semi-Markov chain that governs the switching among
different plant modes and takes the values in the finite
set M , {1, 2, . . . , M}.

Throughout the paper, {Rn}n∈N denotes the index of
plant mode at the nth jump, {kn}n∈N the time at the
nth jump with k0 = 0, and {Sn}n∈N the sojourn time
between the (n − 1)th jump and nth jump denoted as
Sn = kn − kn−1.

Definition 1 [1] The stochastic process {(r(k))}k∈N is
considered as a semi-Markov chain associated with a
homogeneous Markov renewal chain {(Rn, kn)}n∈N, if
∀a, b ∈ M, a 6= b, ∀τ ∈ N≥1, ∀n, k ∈ N, Pr(Rn+1 =
b, Sn+1 = τ |R0, k0, R1, k1, . . . , Rn = a, kn) = Pr(Rn+1 =
b, Sn+1 = τ |Rn = a) = Pr(R1 = b, S1 = τ |R0 = a), and

r(k) = RN(k), where N(k) , max{n ∈ N|kn ≤ k}.

Given a semi-Markov chain {r(k)}k∈N corresponding
to a Markov renewal chain {Rn, kn}n∈N, the tran-
sition probability, the probability mass function of
sojourn time, and the semi-Markov kernel are, re-
spectively, defined as πab , Pr(Rn+1 = b|Rn =

a), fab(τ) , Pr(Sn+1 = τ |Rn+1 = b, Rn = a),

θab(τ) , Pr(Rn+1 = b, Sn+1 = τ |Rn = a), with

πaa = faa(τ) = θaa(τ) , 0, ∀b 6= a ∈ M, ∀τ ∈ N≥1.
According to the definitions of fab(τ), θab(τ) and πab,
it can be derived that θab(τ) = πabfab(τ), ∀a, b ∈ M,
∀τ ∈ N≥1. Now, to precisely present the purposes of
this paper, the following stability definition is needed to
recall.

Definition 2 [16] Consider a discrete-time switching
system xk+1 = f(xk, rk), where rk is a certain stochas-
tic process. The system is mean-square stable if for any
initial conditions x(0) ∈ Rnx , r(0) ∈ M, the following
holds:

lim
k→∞

E{‖x(k)‖2}|x(0),r(0) = 0.

Note that throughout the paper, the sojourn time of the
ath mode in the stochastic switching system (1) is con-
sidered to have both the upper bound τ̄a and the lower
bound

¯
τa with 1 ≤

¯
τa ≤ τ̄a − 1. It is straightforward

that the demerit of Definition 2 is that it considers the
sojourn time to be any length (even infinity) instead
of the bi-boundary one. Then, a stability definition in
mean-square sense for the underlying S-MJLSs with bi-
boundary sojourn time is required.

Definition 3 Consider an S-MJLS (1) with the upper
bound τ̄a and lower bound

¯
τa of sojourn time for the

ath mode, a ∈ M. The system is mean-square stable
if for u(k) ≡ 0 and any initial conditions x(0) ∈ Rnx ,
r(0) ∈M, the following formula holds:

lim
k→∞

E{‖x(k)‖2}|x(0),r(0),Sn∈N[
¯
τa,τ̄a]|Rn=a

= 0.

In this paper, we consider the general and practical phe-
nomenon of modal asynchrony (illustrated in Fig. 1(a)),
where the modal lags are defined as da, a ∈M. Note that
although the consideration of lag mode-independency in
the previous literature facilitates the derivations, it is in-
competent to describe the modal asynchronous switch-
ing of controllers accurately, which is shown in Fig. 1(b).
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Fig. 1. The illustration of modal asynchrony and its simpli-
cations by mode-independent lag dξ and dξ̄, where d1, d2,
d3 denote the lags corresponding to mode 1, 2 and 3 of the
plant, respectively.

In view of this, a state-feedback controller is employed
and formed as

u(k) = Kcx(k) (2)

where c ∈M is the current controller mode, and Kc the
corresponding controller gain. It can be seen that r(k−
dc) = c due to the existence of the modal asynchrony.
Also, it is generally supposed that r(k − dr(0)) = r(0),
∀k ∈ N[0,dr(0)−1].

The modal lag is considered as
¯
τa ≤ da ≤ τ̄a−1, ∀a ∈M

in this work, where τ̄a and
¯
τa denote the upper and lower

bound of sojourn time of the ath mode, respectively.
The main reasons for the consideration are twofold. (i)
The case of da ≥ τ̄a is rather extreme in asynchronous
switching systems. (ii) For the case of da <

¯
τa, the

criteria of stability analysis and control synthesis can be
readily obtained from the results to be derived in the
sequel.

Then, combining (1) and (2), the closed-loop S-MJLS
can be expressed as

x(k + 1) = Ār(k),r(k−dc)x(k) (3)

where Ār(k),r(k−dc) = Ar(k) +Br(k)Kr(k−dc).

The purpose of this paper is to design anti-modal-
asynchrony (AMA) controllers in the form of (2) to
guarantee the mean-square stability (MSS) for the
closed-loop S-MJLSs (3).

Remark 1 It is worth emphasizing that the studies
on the modal asynchrony are significant not only for S-
MJLSs considering in this paper but also for any other
types of nondeterministic switching systems (e.g., [2, 3]),
as the modal asynchronous phenomenon is not seldom
encountered in engineering practice of switching sys-
tems. Then, if setting da ≡ dξ, ∀a ∈ M, where dξ is a
constant, the modal lags will be simplified to the mode-
independent one, which means that the modal asyn-
chrony covers the asynchronous switching with mode-
independent lag commonly assumed in the existing stud-
ies as a special case.

3 Main Results

In this section, the numerically testable stability crite-
ria and the conditions on the existence of AMA con-
troller for the closed-loop S-MJLS (3) with bi-boundary
sojourn time will be developed in the presence of modal
asynchrony.

Lemma 1 [22] Consider a discrete-time stochastic
switching system xk+1 = f(xk, rk), where xk and rk
stand for the system state and the mode index, respec-
tively. The system is mean-square stable, if ∀n ∈ N,
∀k ∈ N[kn,kn+1−1], ∀r(k) ∈ M, there exist a set of func-
tions V (x(k), r(k), k− kn) and three class K∞ functions
κ1(·), κ2(·) and κ3(·), such that for any initial conditions
x(0) ∈ Rnx , r(0) ∈M and given finite positive constants
φr(kn) > 0, the following inequalities hold:

κ1(||x(k)||) ≤ V (x(k), r(k), k − kn) ≤ κ2(||x(k)||) (4)

V (x(k), r(k), k − kn) ≤ φr(kn)V (x(kn), r(kn), 0)

∀k ∈ N[kn+1,kn+1−1], if kn+1 − kn ∈ N≥2
(5)

E{V (x(kn+1), r(kn+1), 0)}|x(kn),r(kn)

− V (x(kn), r(kn), 0) ≤ −κ3(||x(kn)||). (6)

To reduce the conservatism of the derived results, we
invoke an elapsed-time-dependent Lyapunov function
V (x(k), r(k), t) , xT (k)Pr(k)(t)x(k) as presented in

[15], where t , k − kn is the sojourn time that the sys-
tem has been spent in the current mode r(kn). Based on
Lemma 1, the MSS criteria of S-MJLSs are established
in the following theorem.

Theorem 1 Given finite constants
¯
τa ∈ N≥1, τ̄a ∈

N≥
¯
τa+1, da ∈ N[

¯
τa,τ̄a−1], φa ∈ R>0, a ∈ M, the closed-

loop S-MJLS (3) is mean-square stable, if there exist a

set of matrices P
(t)
a � 0, where a ∈M and t ∈ N[1,τ̄a−1],

such that ∀a0, a1, . . . , ada0
∈M, a1 6= a0, ∀t1 ∈ N[1,da0

],
∀t2 ∈ N[da0+1,τ̄a0−1]

[Θd̄
α1

(Ãi)]
TP (t1)

a0
Θd̄
α1

(Ãi)− φa0
P (0)
a0
≺ 0 (7)

[Ãα2
0 Θd̄

1(Ãi)]
TP (t2)

a0
Ãα2

0 Θd̄
1(Ãi)− φa0

P (0)
a0
≺ 0 (8)

τ̄a0∑
τ=d̄+1

[Ãτ−d̄0 Θd̄
1(Ãi)]

TP(τ)
a0
Ãτ−d̄0 Θd̄

1(Ãi)

+

d̄∑
τ=

¯
τa0

[Θd̄
α1

(Ãi)]
TP(τ)

a0
Θd̄
α1

(Ãi)− P (0)
a0
≺ 0

(9)

where Ãi , Āa0,ai , d̄ , da0
, α1 , d̄ − t1 + 1,

α2 , t2 − d̄, P(τ)
a0 ,

∑
b∈M θa0b(τ)P

(0)
b /εa0

, with

εa0
=

∑τ̄a0
τ=

¯
τa0

∑
b∈M θa0b(τ).
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Proof. By considering the Lyapunov function as
V (x(k), r(k), t) with r(kn) = a and ∀k ∈ N[kn,kn+1−1],
it holds that{
V (x(k), a, t) ≥ infa∈M,t∈N[

¯
τa−1,τ̄a−1]

{λmin(P
(t)
a )}||x(k)||2

V (x(k), a, t) ≤ supa∈M,t∈N[
¯
τa−1,τ̄a−1]

{λmax(P
(t)
a )}||x(k)||2

where λmin(P
(t)
a ) (respectively, λmax(P

(t)
a )) denotes the

minimum (respectively, maximum) eigenvalue of P
(t)
a . It

is from the construction of the Lyapunov function that
(4) in Lemma 1 is satisfied.

For r(kn) = a0, it can be obtained from (7) and (8) that

x(kn)T [(Θd̄
α1

(Ãi))
TP (t1)

a0
Θd̄
α1

(Ãi)− φa0
P (0)
a0

]x(kn)

=(Θd̄
α1

(Ãi)x(kn))TP (t1)
a0

Θd̄
α1

(Ãi)x(kn)

− φa0
x(kn)TP (0)

a0
x(kn)

=V (x(k), a0, t1)− φa0
V (x(kn), a0, 0) ≺ 0

x(kn)T [(Ãα2
0 Θd̄

1(Ãi))
TP (t2)

a0
Ãα2

0 Θd̄
1(Ãi)− φa0

P (0)
a0

]x(kn)

=(Ãα2
0 Θd̄

1(Ãi)x(kn))TP (t2)
a0

Ãα2
0 Θd̄

1(Ãi)x(kn)

− φa0
x(kn)TP (0)

a0
x(kn)

=V (x(k), a0, t2)− φa0
V (x(kn), a0, 0) ≺ 0

which ensure (5) in Lemma 1. In addition, let Ω ,
Ãτ−d̄0 Θd̄

1(Ãi), r(kn) = a0, r(kn+1) = b, and one knows
from (9) that

x(kn)T

 d̄∑
τ=

¯
τa0

(Θd̄
α1

(Ãi))
TP(τ)

a0
Θd̄
α1

(Ãi)

+

τ̄a0∑
τ=d̄+1

ΩTP(τ)
a0

Ω− P (0)
a0

x(kn)

=E{V (x(kn+1), b, 0)}|x(kn),a0
− V (x(kn), a0, 0).

Thus, one has

E{V (x(kn+1), b, 0)}|x(kn),a0

− V (x(kn), a0, 0) ≤ −λ3||x(kn)||2

where

λ3 , infa0,a1,...,ad̄∈M

λmin
− d̄∑

τ=
¯
τa0

(Θd̄
α1

(Ãi))
T

×P(τ)
a0

Θd̄
α1

(Ãi)−
τ̄a0∑

τ=d̄+1

ΩTP(τ)
a0

Ω + P (0)
a0


and

¯
τa0

, τ̄a0
denote the upper and lower bound of so-

journ time at mode a0, respectively. In conclusion, MSS
of the underlying S-MJLS (3) is ensured by Lemma 1. �

Then, to derive the existence conditions of AMA con-
troller, certain techniques eliminating the existence of
the power of Ai are further employed in Theorem 2.

Theorem 2 Given finite constants
¯
τa ∈ N≥1, τ̄a ∈

N≥
¯
τa+1, da ∈ N[

¯
τa,τ̄a−1], φa ∈ R>0, a ∈M with τ̄a >

¯
τa,

the closed-loop S-MJLS (3) is mean-square stable, if there

exist sets of matrices Q
(t,κ)
a � 0 and Q(τ,β)

a � 0 with
a ∈M, t ∈ N[0,τ̄a−1], κ ∈ N[0,t], τ ∈ N[

¯
τa,τ̄a], β ∈ N[0,τ̄a],

such that ∀a0, a1, . . . , ada0
∈M, a1 6= a0, ∀t1 ∈ N[1,da0

],
∀t2 ∈ N[da0+1,τ̄a0−1], ∀κ1 ∈ N[0,t1−1], ∀κ2 ∈ N[0,da0−1],
∀κ3 ∈ N[da0

,t2−1], ∀β1 ∈ N[
¯
τa0
−1,da0

−1], ∀β2 ∈
N[da0

,τ̄a0
−1], ∀β3 ∈ N[0,

¯
τa0
−2], ∀l ∈ N[1,2], the following

hold:

[
−Q(tl,κl+1)

a0 Q
(tl,κl+1)
a0 Ãd̄−κl

∗ −Q(tl,κl)
a0

]
≺ 0 (10)

Q(tl,0)
a0

− φa0
Q(0,0)
a0
≺ 0 (11)[

−Q(t2,κ3+1)
a0 Q

(t2,κ3+1)
a0 Ã0

∗ −Q(t2,κ3)
a0

]
≺ 0 (12)


−Q̄(β1)

a0 ∗ ∗
Q̄(IM ⊗ Ãd̄−β1

)Ξa0
(β1 + 1) −Q̄ ∗

Q̄(β1+1)
a0 Ãd̄−β1

0 −Q̄(β1+1)
a0

 ≺ 0

(13)
−Q̄(β2)

a0 ∗ ∗
Q̄(IM ⊗ Ã0)Ξa0

(β2 + 1) −Q̄ ∗
Q̄(β2+1)
a0 Ã0Ia0

(β2 + 1) 0 −Q̄(β2+1)
a0

 ≺ 0 (14)

Q̃(0)
a0
−Q(0,0)

a0
≺ 0 (15)[

−Q̃(β3+1)
a0 Q̃(β3+1)

a0 Ãd̄−β3

∗ −Q̃(β3)

]
≺ 0 (16)

where

Q̄ , diag
{
Q

(0,0)
1 , Q

(0,0)
2 , Q

(0,0)
3 , . . . , Q

(0,0)
M

}
Ξa0

(β) , [ηa01(β), ηa02(β), . . . , ηa0M (β)]T

Ia0(β) , sign(τ̄a0 − β)Inx , ∀β ∈ N[d̄+1,τ̄a0 ]

and Ãi , Āa0,ai , d̄ , da0
, Q̃(β)

a0 ,
∑τ̄a0
τ=

¯
τa0
Q(τ,β)
a0 ,

Q̄(β)
a0 ,

∑τ̄a0

τ=β+1Q
(τ,β)
a0 , ηa0b(β) ,

√
θa0b(β)/εa0

Inx ,

εa0
,

∑τ̄a0
τ=

¯
τa0

∑
b∈M θa0b(τ).

Proof. Performing the congruence transformation to

(10) via diag{(Q(tl,κl+1)
a0 )−1, Inx} and by the Schur com-

plement, it yields that

ÃTd̄−κlQ
(tl,κl+1)
a0

Ãd̄−κl −Q
(tl,κl)
a0

≺ 0.
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By considering the case of l = 1, one has

t1−1∑
κ1=0

(Θd̄
d̄−κ1+1(Ãi))

T

× (ÃTd̄−κ1
Q(t1,κ1+1)
a0

Ãd̄−κ1
−Q(t1,κ1)

a0
)Θd̄

d̄−κ1+1(Ãi) ≺ 0

which is equivalent to

(Θd̄
d̄−t1+1(Ãi))

TQ(t1,t1)
a0

Θd̄
d̄−t1+1(Ãi)−Q(t1,0)

a0
≺ 0.

Combining (11) and the above inequality, we have

(Θd̄
d̄−t1+1(Ãi))

TQ(t1,t1)
a0

Θd̄
d̄−t1+1(Ãi)−φa0

Q(0,0)
a0
≺ 0.

By setting P
(t)
a0 , Q

(t,t)
a0 , the inequality (7) in Theorem 1

is satisfied. Besides, by considering l = 2 with the same
techniques as the case of l = 1, it holds that

(Θd̄
1(Ãi))

TQ(t2,d̄)
a0

Θd̄
1(Ãi)−Q(t2,0)

a0
≺ 0. (17)

Then, performing a congruence transformation to (12)

via diag{(Q(t2,κ3+1)
a0 )−1, Inx}, and by the Schur comple-

ment, the following inequality holds

ÃT0 Q
(t2,κ3+1)
a0

Ã0 −Q(t2,κ3)
a0

≺ 0.

Summarizing from κ3 = d̄ to κ3 = t2− 1, it implies that

t2−1∑
κ3=d̄

(Ãκ3−d̄
0 )T (ÃT0 Q

(t2,κ3+1)
a0

Ã0−Q(t2,κ3)
a0

)Ãκ3−d̄
0 ≺ 0

which is equivalent to

(Ãα2
0 )TQ(t2,t2)

a0
Ãα2

0 −Q(t2,d̄)
a0

≺ 0.

With the aid of (11), (17) and the above inequality, it

can be verified that (Ãα2
0 Θd̄

1(Ãi))
TQ

(t2,t2)
a0 Ãα2

0 Θd̄
1(Ãi) −

φa0
Q

(0,0)
a0 ≺ 0. Further, (8) can be arrived at by setting

the matrices P
(t)
a0 , Q

(t,t)
a0 .

In addition, by bearing in mind Q(β,β)
a0 ,

∑
b∈M θa0b(β)

×Q(0,0)
b /εa0

, performing congruence transformations

to (13) via diag{Inx , Q̄−1, (Q̄(β1+1)
a0 )−1} and (14) via

diag{Inx , Q̄−1, (Q̄(β2+1)
a0 )−1}, as well as applying the

Schur complement, the following inequalities hold

ÃTd̄−β1
(Q̄(β1+1)

a0
+Q(β1+1,β1+1)

a0
)Ãd̄−β1

− Q̄(β1)
a0
≺ 0

ÃT0 (Ia0
(β2 + 1)Q̄(β2+1)

a0
+Q(β2+1,β2+1)

a0
)Ã0− Q̄(β2)

a0
≺ 0.

Then, taking the summations from
¯
τa0 − 1 to d̄− 1 with

respect to β1, and from d̄ to τ̄a0 − 1 with respect to β2,

respectively, it follows that

d̄−1∑
β1=

¯
τa0
−1

(Θd̄
d̄−β1

(Ãi))
TQ(β1+1,β1+1)

a0
Θd̄
d̄−β1

(Ãi)

−
τ̄a0∑

τ=
¯
τa0

(Θd̄
d̄−

¯
τa0

+2(Ãi))
TQ(τ,

¯
τa0
−1)

a0 Θd̄
d̄−

¯
τa0

+2(Ãi)

+

τ̄a0∑
τ=d̄+1

(Θd̄
1(Ãi))

TQ(τ,d̄)
a0

Θd̄
1(Ãi) ≺ 0

τ̄a0−1∑
β2=d̄

(Ã
β2−d̄+1
0 )TQ(β2+1,β2+1)

a0
Ã
β2−d̄+1
0

−
τ̄a0∑

τ=d̄+1

Q(τ,d̄)
a0

≺ 0.

Combining the above two inequalities, we have

d̄−1∑
β1=

¯
τa0
−1

(Θd̄
d̄−β1

(Ãi))
TQ(β1+1,β1+1)

a0
Θd̄
d̄−β1

(Ãi)

−
τ̄a0∑

τ=
¯
τa0

(Θd̄
d̄−

¯
τa0

+2(Ãi))
TQ(τ,

¯
τa0−1)

a0 Θd̄
d̄−

¯
τa0

+2(Ãi)

+

τ̄a0
−1∑

β2=d̄

(Ã
β2−d̄+1
0 Θd̄

1(Ãi))
TQ(β2+1,β2+1)

a0

× Ãβ2−d̄+1
0 Θd̄

1(Ãi) ≺ 0.
(18)

By performing the congruence transformation to (16)

via diag{(Q̃(β3+1)
a0 )−1, Inx} and applying the Schur com-

plement, it yields that ÃT
d̄−β3
Q̃(β3+1)
a0 Ãd̄−β3

−Q̃(β3)
a0 ≺ 0.

Then, summarizing from β3 = 0 to β3 =
¯
τa0
− 2, it can

be obtained that

¯
τa0
−2∑

β3=0

(Θd̄
d̄−β3+1(Ãi))

T

× (ÃTd̄−β3
Q̃(β3+1)
a0

Ãd̄−β3
− Q̃(β3)

a0
)Θd̄

d̄−β3+1(Ãi) ≺ 0

which is equivalent to (Θd̄
d̄−

¯
τa0

+2
(Ãi))

T Q̃(
¯
τa0−1)
a0

×Θd̄
d̄−

¯
τa0+2

(Ãi) − Q̃(0)
a0 ≺ 0. Combining (15), (18) and

above inequality, it yields that

d̄−1∑
β1=

¯
τa0
−1

(Θd̄
d̄−β1

(Ãi))
TQ(β1+1,β1+1)

a0
Θd̄
d̄−β1

(Ãi)

+

τ̄a0−1∑
β2=d̄

(Ã
β2−d̄+1
0 Θd̄

1(Ãi))
TQ(β2+1,β2+1)

a0

× Ãβ2−d̄+1
0 Θd̄

1(Ãi)−Q(0,0)
a0
≺ 0.

By setting P(t)
a0 , Q

(t,t)
a0 , (9) holds, then the MSS for

S-MJLSs (3) can be concluded by Theorem 1. �
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Now, based on Theorem 2, we are in a position to give
the existence conditions of AMA controller for the un-
derlying S-MJLS (3).

Theorem 3 Given finite constants
¯
τa ∈ N≥1, τ̄a ∈

N≥
¯
τa+1, da ∈ N[

¯
τa,τ̄a−1], φa ∈ R>0, a ∈ M, the closed-

loop S-MJLS (3) is mean-square stable, if there exist a

set of matrices U
(t,κ)
a � 0, U (τ,β)

a � 0, Xa and Ya with
a ∈M, t ∈ N[0,τ̄a−1], κ ∈ N[0,t], τ ∈ N[

¯
τa,τ̄a], β ∈ N[0,τ̄a],

such that ∀a0, a1, . . . , ada0
∈M, a1 6= a0, ∀t1 ∈ N[1,da0 ],

∀t2 ∈ N[da0
+1,τ̄a0

−1], ∀κ1 ∈ N[0,t1−1], ∀κ2 ∈ N[0,da0
−1],

∀κ3 ∈ N[da0
,t2−1], ∀β1 ∈ N[

¯
τa0
−1,da0

−1], ∀β2 ∈
N[da0

,τ̄a0
−1], ∀β3 ∈ N[0,

¯
τa0
−2], ∀l ∈ N[1,2], the following

hold:[
U

(tl,κl+1)
a0 − sym(Xad̄−κl−1

) Ãd̄−κl
∗ −U (tl,κl)

a0

]
≺ 0 (19)

U (tl,0)
a0

− φa0
U (0,0)
a0

≺ 0 (20)[
U

(t2,κ3+1)
a0 − sym(Xa0

) Ã0

∗ −U (t2,κ3)
a0

]
≺ 0 (21)


−Ū (β1)

a0 ∗ ∗
(IM ⊗ Ãd̄−β1

)Ξa0(β1 + 1) V̄ ∗
Ãd̄−β1

0 V̄(β1+1)
a0

 ≺ 0 (22)


−Ū (β2)

a0 ∗ ∗
(IM ⊗ Ã0)Ξa0

(β2 + 1) V̄ ∗
Ã0Ia0

(β2 + 1) 0 V̄(β2+1)
a0

 ≺ 0 (23)

Ũ (0)
a0
− U (0,0)

a0
≺ 0 (24)[

Ũ (β3+1)
a0 − sym(Xad̄−β3−1

) Ãd̄−β3

∗ −Ũ (β3)
a0

]
≺ 0 (25)

where

V̄(β)
a0
,

{
Ū (β)
a0 − sym(Xad̄−β ) β ∈ N[0,d̄−1]

Ū (β)
a0 − sym(Xa0) β ∈ N[d̄,τ̄a0

]

Ū (β)
a0
,

τ̄a0∑
τ=β+1

U (τ,β)
a0

, Ũ (β)
a0
,

τ̄a0∑
τ=

¯
τa0

U (τ,β)
a0

X , diag {X1, X2, X3, . . . , XM}

Ū , diag
{
U

(0,0)
1 , U

(0,0)
2 , U

(0,0)
3 , . . . , U

(0,0)
M

}
Ãi , Aa0

Xai +Ba0
Yai , V̄ , Ū − sym(X ), and Ξa0

(β),
Ia0

(β) are defined in Theorem 2. Further, the admissible

gains of controllers are given by Ka , YaX−1
a , a ∈M.

Proof. Note that ∀a, b ∈ M, ∀t ∈ N[
¯
τa0
−1,τ̄a0

−1], ∀κ ∈
N[0,t], ∀β ∈ N[0,τ̄a0 ], the following inequalities

[U (t,κ)
a −Xb](U

(t,κ)
a )−1[U (t,κ)

a −Xb]
T � 0

[Ū −X ]Ū−1[Ū −X ]T � 0

[Ū (β)
a −Xb](Ū (β)

a )−1[Ū (β)
a −Xb]

T � 0

[Ũ (β)
a −Xb](Ũ (β)

a )−1[Ũ (β)
a −Xb]

T � 0

ensure

U (t,κ)
a −Xb −XT

b +Xb(U
(t,κ)
a )−1XT

b � 0

Ū −X − X T + X Ū−1X T � 0

Ū (β)
a −Xb −XT

b +Xb(Ū (β)
a )−1XT

b � 0

Ũ (β)
a −Xb −XT

b +Xb(Ũ (β)
a )−1XT

b � 0.

Also, by setting

U (t,κ)
a0

,

{
XT
ad̄−κ

Q
(t,κ)
a0 Xad̄−κ κ ∈ N[0,d̄−1]

XT
a0
Q

(t,κ)
a0 Xa0 κ ∈ N[d̄,τ̄a0

]

(26)

U (τ,β)
a0

,

{
XT
ad̄−β
Q(τ,β)
a0 Xad̄−β β ∈ N[0,d̄−1]

XT
a0
Q(τ,β)
a0 Xa0 β ∈ N[d̄,τ̄a0

]

(27)

and it follows from (19) that (Q
(tl,κl+1)
a0 )−1 Ãd̄−κlXad̄−κl

∗ −XT
ad̄−κl

Q
(tl,κl)
a0 Xad̄−κl

 ≺ 0.

Employing the congruence transformation to the above

inequality via diag{Q(tl,κl+1)
a0 , (Xad̄−κl

)−1}, it gives rise

to (10). Furthermore, replacing U
(t,κ)
a0 , U (τ,β)

a0 in (20)

by (26)-(27), one has XT
ad̄

(Q
(tl,0)
a0 − φa0

Q
(0,0)
a0 )Xad̄ ≺ 0,

which ensures (11). Similarly, we can rewrite (21) as[
−(Q

(t2,κ3+1)
a0 )−1 Ã0Xa0

∗ −XT
a0
Q

(t2,κ3)
a0 Xa0

]
≺ 0.

Then, taking the congruence transformation to the

above inequality via diag{Q(t2,κ3+1)
a0 , X−1

a0
}, we can

obtain (12). Also, it follows from (22) that
−XT

ad̄−β1
Q̄(β1)
a0 Xad̄−β1

∗ ∗

(IM ⊗ Ãd̄−β1
)Ξa0(β1 + 1) −Q̄−1 ∗

Ãd̄−β1
0 −(Q̄(β1+1)

a0 )−1

 ≺ 0.

By performing a congruence transformation to the above
inequality via diag{X−1

ad̄−β1
, Q̄, Inx}, one can get (13).

Then, replacing U
(t,κ)
a0 , U (τ,β)

a0 by (26)-(27), it can be
obtained from (23) that

−XT
a0
Ū (β2)
a0 Xa0 ∗ ∗

(IM ⊗ Ã0)Ξa0
(β2 + 1) −Q̄−1 ∗

Ã0Ia0
(β2 + 1) 0 −(Q̄(β2+1)

a0 )−1

 ≺ 0.

Also, employing the congruence transformation with
diag{X−1

a0
, Q̄, Inx}, it yields that the above inequality

is equivalent to (14). Using similar techniques, (24) is
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equivalent to (XT
ad̄

)−1Ũ (0)
a0 X

−1
ad̄
−(XT

ad̄
)−1U

(0,0)
a0 X−1

ad̄
≺ 0

which guarantees (15).

Similarly, replacing U
(t,κ)
a0 , U (τ,β)

a0 in (25) by (26)-(27),
as well as performing a congruence transformation via

diag{Q̃(β3+1)
a0 , X−1

ad̄−β3
}, (16) can be derived. This com-

pletes the proof. �

Remark 2 Note that the modal lag is considered as
da ≥

¯
τa, a ∈ M in the above results, where two cases

are considered according to whether the sojourn time is
shorter than the lag. Then, if the modal lag is considered
as da <

¯
τa, the system will reduce to only one case, and

the corresponding results can be readily obtained from
Theorem 3 by taking no account of inequality (22) and
replacing β2 ∈ N[da0

,τ̄a0
−1] with β2 ∈ N[

¯
τa0
−1,τ̄a0

−1].
The proof can be obtained in a similar vein to the one
for Theorem 3 and omitted here.

In the absence of the lower bounds of sojourn time, i.e.,
τa ≡ 1, ∀a ∈M, Theorem 3 will reduce to Corollary 1.

Corollary 1 Given finite constants τ̄a ∈ N≥1, φa ∈
R>0, da ∈ N[1,τ̄a−1], a ∈ M, the closed-loop S-MJLS
(3) is mean-square stable, if there exist a set of matrices

U
(t,κ)
a � 0, U (τ,β)

a � 0, Xa and Ya with a ∈ M, t ∈
N[0,τ̄a−1], κ ∈ N[0,t], τ ∈ N[1,τ̄a], β ∈ N[0,τ̄a], such that
∀a0, a1, . . . , ada0

∈ M, a1 6= a0, ∀t1 ∈ N[1,da0 ], ∀t2 ∈
N[da0

+1,τ̄a0
−1], ∀κ1 ∈ N[0,t1−1], ∀κ2 ∈ N[0,da0

−1], ∀κ3 ∈
N[da0

,t2−1], ∀β1 ∈ N[0,da0
−1], ∀β2 ∈ N[da0

,τ̄a0
−1], ∀l ∈

N[1,2], the following hold:[
U

(tl,κl+1)
a0 − sym(Xad̄−κl−1

) Ãd̄−κ1

∗ −U (tl,κl)
a0

]
≺ 0

U (tl,0)
a0

− φa0
U (0,0)
a0

≺ 0[
U

(t2,κ3+1)
a0 − sym(Xa0

) Ã0

∗ −U (t2,κ3)
a0

]
≺ 0


−Ū (β1)

a0 ∗ ∗
(IM ⊗ Ãd̄−β1

)Ξa0
(β1 + 1) V̄ ∗

Ãd̄−β1
0 V̄(β1+1)

a0

 ≺ 0


−Ū (β2)

a0 ∗ ∗
(IM ⊗ Ã0)Ξa0

(β2 + 1) V̄ ∗
Ã0Ia0(β2 + 1) 0 V̄(β2+1)

a0

 ≺ 0

Ũ (0)
a0
− U (0,0)

a0
≺ 0

where Ãi, Ū (β)
a0 , V̄ , V̄(β)

a0 , Ũ (β)
a0 are defined in Theorem 3,

and Ξa0(β), Ia0(β) are defined in Theorem 2. Then, the

admissible gains of controllers are given byKa , YaX−1
a ,

a ∈M.

In addition, note that the criteria obtained by Theorem 3
cover the case of mode-independent lag. Then, if da ≡ dξ,
∀a ∈M, where dξ is a constant, i.e., replaying the modal

lag by the mode-independent lag, one has the following
corollary.

Corollary 2 Given finite constants
¯
τa ∈ N≥1, τ̄a ∈

N≥
¯
τa+1, φa ∈ R>0, a ∈ M, the closed-loop S-MJLS

(3) is mean-square stable, if there exist a set of matri-

ces U
(t,κ)
a � 0, U (τ,β)

a � 0, Xa and Ya with a ∈ M,
t ∈ N[0,τ̄a−1], κ ∈ N[0,t], τ ∈ N[

¯
τa,τ̄a], β ∈ N[0,τ̄a]

such that ∀a0, a1, . . . , adξ ∈ M, a1 6= a0, ∀t1 ∈ N[1,dξ],
∀t2 ∈ N[dξ+1,τ̄a0−1], ∀κ1 ∈ N[0,t1−1], ∀κ2 ∈ N[0,dξ−1],
∀κ3 ∈ N[dξ,t2−1], ∀β1 ∈ N[

¯
τa0
−1,dξ−1], ∀β2 ∈ N[dξ,τ̄a0

−1],
∀β3 ∈ N[0,

¯
τa0
−2], ∀l ∈ N[1,2], the following hold:

U (tl,κl+1)
a0 − sym(Xadξ−κl−1

) Ãdξ−κ1

∗ −U (tl,κl)
a0

 ≺ 0

[
U

(t2,κ3+1)
a0 − sym(Xa0

) Ã0

∗ −U (t2,κ3)
a0

]
≺ 0

U (tl,0)
a0

− φa0
U (0,0)
a0

≺ 0


−Ū (β1)

a0 ∗ ∗
(IM ⊗ Ãdξ−β1

)Ξa0
(β1 + 1) V̄ ∗

Ãdξ−β1
0 V̄(β1+1)

a0

 ≺ 0


−Ū (β2)

a0 ∗ ∗
(IM ⊗ Ã0)Ξa0

(β2 + 1) V̄ ∗
Ã0Ia0(β2 + 1) 0 V̄(β2+1)

a0

 ≺ 0

Ũ (0)
a0
− U (0,0)

a0
≺ 0

 Ũ (β3+1)
a0 − sym(Xadξ−β3−1

) Ãdξ−β3

∗ −Ũ (β3)
a0

 ≺ 0

where V̄(β)
a0 , Ū (β)

a0 − sym(Xadξ−β
) if β ∈ N[0,dξ] and

V̄(β)
a0 , Ū (β)

a0 − sym(Xa0
) if β ∈ N[dξ+1,τ̄a0

]. Besides,

Ãi, Ū (β)
a0 , V̄ , Ũ (β)

a0 are defined in Theorem 3, and Ξa0
(β),

Ia0
(β) are defined in Theorem 2. Then, the admissible

gains of controllers are given by Ka , YaX−1
a , a ∈M.

Remark 3 In the above obtained results, the mode-
dependent controllers are employed to stabilize the
closed-loop system. Note that the asynchronous situa-
tion will vanish if replacing mode-dependent controllers
by mode-independent ones. By settingXa = X, Ya = Y ,
the gains of mode-independent controllers can be given
by K , Y X−1, and one can refer to [22] for the corre-
sponding conditions on the existence of the controllers.
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(a) (b)

(c) (d)

Fig. 2. State responses of the system by two classes of controllers designed based on Theorem 3 and Corollary 2, respectively.
The diverging state responses by Corollary 2 are shown as gray-blue curves in (c).

4 Illustrative Examples

Example 1 (Numerical Example) Consider an unforced
S-MJLS in the form of (3) with three modes:



A1 =α

[
1.14 −0.52

0.52 −0.94

]
, B1 =

[
0.1

−5.0

]

A2 =α

[
0.66 0.83

1.04 0.42

]
, B2 =

[
1.4

0.5

]

A3 =α

[
−0.33 0.51

0.11 0.92

]
, B3 =

[
−1.5

0.1

]

where α > 0 is a given constant, and the switching
among the three modes is governed by a semi-Markov
chain, where the semi-Markov kernel is given as

θ12(τ) = 0.7 · 0.7τ−1 · 0.311−τ · 10!

(11− τ)!(τ − 1)!

Fig. 3. The regions corresponding to the case whether feasible
solutions of the controller exist by Theorem 3 and Corollary
2, respectively, for different φ1, φ2 and φ3.

θ13(τ) = 0.3 · 0.2τ−1 · 0.811−τ · 10!

(11− τ)!(τ − 1)!

θ21(τ) = 0.8 · (0.7(τ−1)1.6

− 0.7τ
1.6

)

θ23(τ) = 0.2 · 0.510 · 10!

(12− τ)!(τ − 2)!

θ31(τ) = 0.6 · 0.4τ , θ32(τ) = 0.4 · (0.8(τ−1)2

− 0.8τ
2

)

θ11(τ) = θ22(τ) = θ33(τ) = 0.
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The purpose of the example is to show the necessity
of considering the modal lag and designing AMA con-
trollers. Here, the modal lags are set as d1 = 4, d2 = 4,
d3 = 1.

First, applying two classes of controllers obtained by
Theorem 3 and Corollary 2 with d

¯
ξ , min{d1, d2, d3},

respectively, the state responses of the closed-loop sys-
tem for different α, τ̄1, τ̄2, τ3 are shown in Fig. 2. It can
be seen that the controllers designed by Theorem 3 are
effective despite modal asynchronous switching. How-
ever, the state responses of the closed-loop systems by
the controllers designed using Corollary 2 are either di-
verging or with large overshoots, which means that con-
sidering d

¯
ξ instead of modal lags is not qualified to find

a stabilizing controller for S-MJLS in the case of modal
asynchrony.

Then, turning to the case of taking the maximum of
modal lags into consideration, we would check whether
it is suitable for stabilizing controller design. Given dif-
ferent φ1, φ2 and φ3, the controller can be obtained

by employing Theorem 3 and Corollary 2 with dξ̄ ,
max{d1, d2, d3}, respectively, and Fig. 3 shows the re-
gions corresponding to the case whether a feasible solu-
tion of the controller exists. It can be clearly seen that
the region determined by Theorem 3 (considering the
modal lag) completely covers that by Corollary 2 (con-
sidering the common lag) as a subset, i.e., the latter is
more conservative.

In sum, one can conclude that the traditional method-
ology established on the simplification with mode-
independent lag is either incompetent or conservative in
handling the underlying systems with modal lag, show-
ing the necessity of considering the modal asynchrony
and significance of the AMA controller.

Example 2 (Illustrative Example of a Class of VTOL
Helicopter Models) In this example, our aim is to apply
the AMA controller to a VTOL helicopter model as il-
lustrated in Fig. 4, and demonstrate the validity of the
developed theoretical results against the modal asyn-
chrony for S-MJLS with the bi-boundary sojourn time.
As shown in [10] and [20], the discrete-time linearized
model of the VTOL helicopter can be described as

x(k + 1) = Ar(k)x(k) +Br(k)u(k)

where r(k) stands for a semi-Markov chain with three
subsystems corresponding to the airspeeds of 135(nom-
inal value), 60 and 170 knots, respectively.

The state variables x(k) = [x1(k), x2(k), x3(k), x4(k)]T

are taken as the horizontal velocity x1(k), the verti-
cal velocity x2(k), the pitch rate x3(k), the pitch angle
x4(k), and the controller inputs u(k) = [u1(k), u2(k)]T

are taken as the collective pitch control u1(k) and the
longitudinal cyclic pitch control u2(k). Given the sam-

Table 1
Parameters in different modes.

Mode I (135 knots) II (60 knots) III (170 knots)

a32(r(k)) 0.3681 0.0664 0.5407

a34(r(k)) 1.4200 0.1198 2.5460

b21(r(k)) 3.5446 0.9775 5.1120

pling time T, the system matrices are expressed as

Ar(k) =


1− 0.037T 0.0271T 0.0188T −0.4555T

0.0482T 1− 1.01T 0.0024T −4.0208T
0.1002T a32(r(k))T 1− 0.7T a34(r(k))T

0 0 T 1



Br(k) =


0.4422T 0.1761T
b21(r(k))T −7.5922T
−5.52T 4.49T

0 0


where the values of parameters a32(r(k)), a34(r(k)) and
b21(r(k)) are shown in Table 1. The semi-Markov kernel
is designed as

θ12(τ) = 0.74 · 0.6τ · 0.48−τ · 8!

(8− τ)!τ !

θ13(τ) = 0.26 · 0.4τ · 0.68−τ · 8!

(8− τ)!τ !

θ21(τ) = 0.9(τ−1)2

− 0.9τ
2

θ31(τ) = 0.4(τ−1)1.3

− 0.4τ
1.3

θ11(τ) = θ22(τ) = θ23(τ) = θ32(τ) = θ33(τ) = 0.

Fig. 4. VTOL helicopter model.

Here, we set T = 0.1, τ̄1 = 6, τ̄2 = 5, τ̄3 = 7, d1 = 4,
d2 = 4, d3 = 2. By Theorem 1, it can be checked that the
open-loop system is not mean-square stable. We consider
the modal asynchrony and design the AMA controller
based on Theorem 3 (for brevity, the controller gains are
omitted). For different lower bounds of sojourn time, 50
realizations of the state responses of the closed-loop sys-
tems are shown in Fig. 5. As seen from Fig. 5, the de-
signed AMA controller is effective against the stochastic
variations of the airspeeds, despite the existence of the

9



(a) (b)

Fig. 5. State responses of the closed-loop system for different lower bounds of sojourn time. (a) τ1 = 1, τ2 = 1, τ3 = 1. (b)
τ1 = 3, τ2 = 2, τ3 = 3.

modal asynchronous phenomena and the bi-boundary
sojourn time.

5 Conclusions

In this paper, the issues of control synthesis for a class
of discrete-time S-MJLSs are investigated, in which the
sojourn time is with upper and lower bounds. Besides,
a practical and general phenomenon of the modal asyn-
chrony is considered. By employing the semi-Markov
kernel approach, numerically testable stability criteria
are obtained, based on which the conditions on the
existence of AMA controllers capable of overcoming
the modal asynchrony are derived. Compared with the
traditional studies based on the assumption of mode-
independent lag, the derived results are of less con-
servatism. Two illustrative examples are provided to
demonstrate the necessity of considering the modal lag
and the validity of the AMA controllers.
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