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1 Introduction

A significant body of work in economics has shown that search costs have far-reaching effects

in economic activity. Well-known facts are that search costs alone can lead to price dispersion

(Burdett and Judd, 1983; Stahl, 1989; Varian, 1980) as well as to wage and technology dispersion

(Burdett and Mortensen, 1998; Acemoglu and Shimer, 2000). Search costs can also generate

excessive product diversity in differentiated product markets (Wolinsky, 1984; Anderson and

Renault, 2000) as well as inefficient quality investments (Wolinsky, 2005).

As a result, the estimation of consumer search costs has become an important area of empir-

ical research. Hong and Shum (2006) were the first to develop a structural method to retrieve

information on consumer search costs using market data. They focus on markets for homoge-

neous goods and present various approaches to estimate non-sequential and sequential consumer

search models using only price data. Moraga-González and Wildenbeest (2008) present an al-

ternative estimator based on maximum likelihood for non-sequential consumer search models.

Hortaçsu and Syverson (2004) and Wildenbeest (2011) study search models where search fric-

tions coexist with vertical product differentiation. In all these models, consumer search costs

are found to be sizable and therefore an important source of market power.

The present paper studies the non-parametric identification and estimation of the costs

of non-sequential search in markets for homogeneous products. It adds to the literature in

three ways. First, we provide a proof that the critical search costs estimated in earlier work (cf.

Hong and Shum, 2006; Moraga-González and Wildenbeest, 2008) are indeed non-parametrically

identified. Second, we provide a new method based on semi-nonparametric (SNP) estimation

that allows us to pool price data from different consumer markets with the same underlying

search cost distribution but different valuations, selling costs, and numbers of competitors.

Pooling data from different markets increases the number of estimated critical search cost

cutoffs at all quantiles of the search cost distribution, which increases the precision of the

estimate of the search cost CDF. Third, we provide sufficient conditions under which this type

of data allows for the distribution of search costs to be identified on its full support.

The new method outperforms the spline approximation methods employed earlier in the

literature (Hortaçsu and Syverson, 2004; Hong and Shum, 2006; Moraga-González and Wilden-

2



beest, 2008) with this type of data. Instead of estimating the parameters of the price distri-

bution market by market, which ignores the link between the different data sets, our semi-

nonparametric approach takes the search cost density as a parameter of the likelihood function

and exploits all the data at once when estimating the model. SNP density estimators use a flex-

ible polynomial-type parametric function that can approximate arbitrarily closely a large class

of sufficiently smooth density functions (Gallant and Nychka, 1987), which means we obtain an

essentially nonparametric estimator of the search cost distribution common to all markets. A

Monte Carlo study illustrates that our estimator performs well in relatively small samples and

outperforms existing market-by-market estimation methods.

To illustrate how our method works with real-world data we apply the SNP estimation

procedure to a dataset of online prices for ten notebook memory chips. Our estimates indi-

cate that median search costs are close to $5. Search costs are quite dispersed; the majority

of consumers visits at most three online stores before buying, while only a small fraction of

consumers searches more than four times. Similar findings have been reported in several other

empirical studies (Moraga-González and Wildenbeest, 2008; De los Santos, 2008; De los San-

tos et al., 2011). Consumers with high search costs do not search much and therefore do not

compare many prices, which gives substantial market power to the firms; as a result, estimated

price-cost margins are significantly larger than what one would expect on the basis of the

observed large number of firms operating in each market.

The structure of the paper is as follows. The next section reviews the non-sequential con-

sumer search model. The identification result, the SNP estimation method, and the Monte

Carlo study are presented in Section 3. Section 4 is devoted to the empirical application.

Finally, Section 5 concludes. Our proofs are placed in the appendix to ease the reading.

2 The model

The model we study was proposed by Hong and Shum (2006) and generalizes the non-sequential

consumer search model of Burdett and Judd (1983) by adding consumer search cost hetero-
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geneity.1 There is a finite number of firms K producing a good at constant returns to scale.

Their identical unit cost is equal to r. There is a unit mass of buyers. Each consumer wishes

to purchase a single unit of the good at most. The maximum price any buyer is willing to pay

for the good is v. Consumers must engage in costly search to observe prices. We assume they

search non-sequentially. In addition we assume that the first price quotation is observed at no

cost.2 Once a consumer has observed the desired number of prices, she chooses to buy from

the store charging the lowest price. Consumers differ in their costs of search. A buyer’s search

cost is drawn independently from a common atomless distribution G with support (0,∞) and

positive density g everywhere. A consumer with search cost c who searches k firms incurs a

total search cost of (k − 1)c. The maximum number of prices a consumer can observe is K.

Firms and buyers play a simultaneous moves game. The solution concept is Nash equilib-

rium. An individual firm chooses its price strategy taking the price strategies of the rivals as

well as consumers’ search behavior as given. To allow for both pure and mixed pricing strate-

gies, a firm i’s strategy is denoted by a probability distribution of prices Fi. Let F−i denote

the vector of pricing strategies used by firms other than i. The (expected) profit to firm i from

charging a price pi given the rivals’ pricing strategies F−i is denoted as Πi(pi, F−i).

Likewise, an individual buyer takes as given the firms’ pricing strategies and decides on her

optimal search strategy to maximize her expected utility. The strategy of a consumer with

search cost c is then a number k of prices to search for. Let the fraction of consumers searching

k firms be denoted by µk.

We shall concentrate on symmetric Nash equilibria, i.e., equilibria where Fi = F for all i.

A symmetric equilibrium is a distribution of prices F and a collection {µk}Kk=1 such that:

(a) Πi(p;F ) ≤ Π for all p outside the support of F for all i;

(b) Πi(p;F ) is equal to a constant Π for all p in the support of F , for all i;

(c) a consumer searching for the prices of k firms obtains no lower utility than by searching

1Janssen and Moraga-González (2004) studied the same model with a search cost distribution with a two-
point support.

2In our setting with search cost heterogeneity this assumption is inconsequential and can easily be relaxed
at the cost of some additional notation. Earlier literature has assumed the first search to be costless in order to
avoid problems of existence of equilibrium (cf. Diamond’s (1971) paradox). To keep with the earlier literature
we also maintain it here.

4



for any other number of prices;

(d)
∑K

k=1 µk = 1.

Condition (a) is the standard Nash requirement that a firm must play a best-response to

the strategies of the other players; condition (b) says that if the firms use a mixed strategy in

equilibrium, then they must be indifferent among all the prices in the support of F ; finally,

conditions (c) and (d) require the consumers to search such that their (expected) utility is

maximized. Let us denote the equilibrium density of prices by f , with maximum price p and

minimum price p.

2.1 Nash equilibria

We start by observing that in our game there may be two types of equilibria. There may be

an equilibrium in pure strategies in which all firms charge a price equal to v and consumers

optimally respond by not searching at all and visiting just one firm. This equilibrium is rejected

right away in most empirical settings since we typically observe firms charging different prices

while consumers are actively searching the market. Moreover, this equilibrium is non-robust in

the sense that it heavily relies on the assumption that the first search is conducted at no cost;

in fact, when the first search is costly this pure-strategy equilibrium fails to exist.

There may also be an equilibrium in mixed pricing strategies. In this equilibrium firm prices

are dispersed and consumers respond by searching optimally to maximize their expected utility.

Since both are common to most empirical settings this will be the equilibrium we will focus on.

For this equilibrium to exist, there must be some consumers who search for one price only and

others who search for two prices or more, i.e., 1 > µ1 > 0 and µk > 0 for some k = 2, 3, . . . , K.

The intuition behind this observation is as follows. Suppose all consumers did search at least

for two prices. If this were so, all firms would then be subject to price comparisons with rival

firms. As a result, the firms would encounter themselves in a situation identical to the so-called

Bertrand paradox (see e.g Tirole, 1988). In such a situation, firms would have an incentive to

undercut one another and thus all prices would be equal to marginal cost. Suppose now that

no consumer did search at all. Then, since consumers would not be able to compare the prices
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of different firms, they would charge the monopoly price v and again there would not be price

dispersion in the market.

Our second observation is that, given that in equilibrium some consumers must search just

once and others more than once, it must be the case that in symmetric equilibrium firms play

mixed strategies with atomless price distributions.3 The intuition behind this remark is as

follows. Suppose firms used distributions with an atom at a price p ∈ (r, v]. Since a price-tie at

p would occur with strictly positive probability, an individual firm would gain by undercutting

the tied price p, thereby attracting a larger share of the consumers who search for various prices

and so obtaining greater profits. If there is an atom at p = r, then an individual firm would

obtain zero profits; because some consumers do not search at all and therefore accept any price

below or at v, the firm would have an incentive to deviate by increasing its price.

A third remark is that the upper bound of the symmetric equilibrium price distribution F

must be equal to v. The reason for this is as follows. Suppose the upper bound were p < v and

consider a firm charging p. Since this firm would not sell to any of the consumers who search

for various prices, its payoff would simply be equal to (p− r)µ1/K, which is strictly increasing

in p; as a result the firm would gain by deviating and charging v instead of p.

Now that we have presented the basic properties of the mixed pricing strategy of the firms,

let us consider the problem faced by the consumers. A consumer with search cost c must

choose a number of prices to maximize her expected utility, where expected utility is equal to

the difference between the consumer’s valuation and the price she expects to pay, minus the

cost of searching. If the consumer picks k prices to be searched, her expected utility is therefore

given by v − Ep1:k − (k − 1)c, where Ep1:k is short-hand notation for E[min{p1, p2, . . . , pk}]

and E indicates the expectation operator. Since every price is a random draw from F , the

distribution of the minimum of k prices is equal to (1−F (p))k. Therefore, the number of prices

that maximizes the utility of a consumer with search cost c is given by

k(c) = arg min
k

[
(k − 1)c+

∫ v

p

pk(1− F (p))k−1f(p)dp

]
. (1)

Since k(c) must be an integer, the problem in equation (1) induces a partition of the set of

3That is, discrete distributions or continuous distributions with “jumps” can be ruled out.
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consumers into groups µk of consumers searching for k prices, with the property that
∑K

k=1 µk =

1. We now describe such a partition. First we define the search cost cutoff ck as the search

cost of a consumer indifferent between searching for k prices, which gives her a utility equal to

v − Ep1:k − (k − 1)c, and searching for k + 1 prices, which allows her to obtain a utility level

equal to v − Ep1:k − (k − 1)c. Solving for ck gives

ck = Ep1:k − Ep1:k+1, k = 1, 2, . . . , K − 1, (2)

Since ck decreases in k,4 the fractions of consumers searching for k prices, denoted by µk, are

given by

µ1 = 1−G(c1); (3a)

µk = G(ck−1)−G(ck), k = 2, 3, . . . , K. (3b)

To complete the equilibrium characterization, we now look at how firms should choose the dis-

tribution of prices F to maximize their profits given consumers’ search behavior. The expected

profit to a firm i from charging price pi when rivals are setting prices according to the pricing

strategy F is given by

Πi(pi;F ) = (pi − r)

[
K∑
k=1

k

K
µk(1− F (pi))

k−1

]
,

To understand this equation, note that firm i obtains a per consumer profit of pi−r and sells to a

consumer who searches for k prices whenever the prices of the other k−1 firms observed by this

consumer are all higher than the price of firm i, which occurs with probability (1− F (pi))
k−1.

In a mixed strategy equilibrium, all the prices in the support of F must give the firm the

same level of profits. Thus, for any price p in the support of F it must be the case that

4The cutoffs ck = Ep1:k −Ep1:k+1 are in fact strictly monotonically decreasing in k because Ep1:k is strictly
convex in k. A proof of this is available from the authors upon request. See also Stigler (1961), who mentions
this property.
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Πi(p;F ) = Πi(v;F ). As a result, equilibrium requires

(p− r)

[
K∑
k=1

kµk(1− F (p))k−1

]
= µ1(v − r) (4)

to hold for all prices p in the support of F . Setting F = 0 in this equation and solving for p

gives the minimum price charged in the market:

p =
µ1(v − r)∑K

k=1 kµk
+ r. (5)

In Moraga-González et al. (2010) we show that an equilibrium always exists.

3 Econometric analysis

The econometric problem is to estimate the search cost distribution G using price data. Hong

and Shum (2006) and Moraga-González and Wildenbeest (2008) propose different methods that

exploit equations (2) to (5) to estimate the search cost CDF. In what follows, we briefly explain

the two methods proposed so far (for details we refer the reader to the original contributions

of these authors).

Hong and Shum (2006) formulate the estimation of the unknown search cost distribution as a

two-step procedure. They propose to estimate first the parameters {µk}Kk=1 of the equilibrium

price distribution obtained from equation (4) by maximum empirical likelihood (MEL), and

then to recover the collection of cutoffs in equation (2) using the empirical CDF of prices.

Suppose the researcher has a (large) data set with n prices and suppose K(≤ n − 1) is the

maximum number of prices a consumer may observe in the market. Let us assume each price pj

has probability πj. Using equilibrium condition (4), for each price pi we have the approximate

equality

(pi − r)

 K∑
k=1

kµk

(
1−

[
n∑
j=1

πj1(pj ≤ pi)

])k−1
 ' (v − r)µ1, (6)
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which can be transformed into a number Q ≥ K of population quantile restrictions:

n∑
j=1

πj

[
1

(
pj ≤ r +

(v − r)µ1∑K
k=1 kµk (1− s`)k−1

)
− s`

]
' 0 (7)

for s` ∈ [0, 1], ` = 1, 2, . . . , Q. Using the lower bound defined in equation (5) one can eliminate

marginal cost r from these constraints. Then, using MEL based on these constraints, one can

obtain estimates of the parameters {µk}Kk=1. Finally, by combining these estimates with the

cutoff points in equation(2) obtained directly from the empirical CDF of prices, one gets K

points {(ck, G(ck))}Kk=1 on the search cost distribution. These points serve to construct an

estimate of the search cost CDF by interpolation.

Moraga-González and Wildenbeest (2008) put forward an alternative maximum likelihood

(ML) method. There are two differences with respect to Hong and Shum’s method. First, they

compute the likelihood of a price as a function of the distribution of prices and exploit the

equilibrium constancy-of-profits condition (4) to numerically calculate the value of the price

CDF. In this way they obtain ML estimates of the parameters {µk}Kk=1. The second difference

is that they introduce a method to compute ML estimates of the cutoffs by rewriting equation

(2) as

ck =

1∫
0

p(z)[(k + 1)z − 1](1− z)k−1dz, k = 1, 2, . . . , K − 1. (8)

where p(z) is the inverse of the price distribution obtained from equation (4):

p(z) =
µ1(v − r)∑K

k=1 kµk(1− z)k−1
+ r. (9)

These two methods yield estimates of the points {(ck, G(ck))}Kk=1
of the search cost distribu-

tion. Under the standard regularity conditions, these points are estimated consistently. These

two papers base their asymptotics on the number of prices n going to infinity. Although one of

the regularity conditions is identification of the points {(ck, G(ck))}Kk=1
of the search cost CDF,

none of the earlier papers studied the identification issue. In the next subsection, we show that

the sequence of points {(ck, G(ck))}Kk=1
is identified.
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3.1 Identification of search costs

In this subsection we ask whether the search cost distribution can be non-parametrically identi-

fied when the price distribution is known by the researcher. This treatment of the identification

problem is common in nonparametric estimation and is in the spirit of Koopmans and Reiersøl

(1950).

The analysis in Section 2 shows how the model maps the search cost distribution into the

equilibrium distribution of prices. A feature of the model is that the entire set of consumers

is partitioned into K groups of them. As a result, using the price equilibrium mapping, one

can only hope to recover the (countable) sequence of points {(ck, G(ck))}Kk=1
of the search cost

CDF. The proposition below, proved in Appendix A, shows indeed that if we know the price

distribution F , then we can identify the values of the search cost CDF corresponding to the

cutoffs {ck}Kk=1.

Proposition 1 Suppose that the econometrician observes the equilibrium price distribution F

with support (p, v), which is continuous and is generated by the vector of variables (G, v, r,K)

through equations (2), (3a), (3b), and (4). Then the points of the search cost distribution G

corresponding to the sequence {ck}Kk=1 are identified.

Obviously, when K is small, the sequence of points {(ck, G(ck))}Kk=1
will be insufficient to

obtain a precise estimate of the search cost distribution. The question that arises is whether

such sequence allows us to recover the search cost CDF when K →∞. As illustrated in Figure

1, even if K is very large the search cost cutoffs do not give much information on the magnitude

of search costs at quantiles other than zero. In this figure we plot the critical cutoff points ck

for different K’s (in particular, K = 10, 15, 50, and 100). In these plots we set v = 500 and

r = 50, and assume consumer search costs follow a log-normal distribution with parameters

(a, b) = (0.5, 5).

[Figure 1 about here.]

We view this as a problem of identification of the search cost distribution in the relevant

support. The problem is that data from a single market does not provide the econometrician

with sufficient information to recover search costs at relatively high quantiles. The purpose
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of the remainder of this subsection is to deal with this problem. Our proposal consists of

bringing additional information to be able to estimate search costs more fully. Pooling data

from various markets with similar search technology but different valuations, selling costs or

numbers of competitors naturally lends itself as a feasible strategy to solve this identification

problem. Implementing this idea in practice is not straightforward and in Section 3.2 we propose

a new estimation method to do it.

The next proposition presents sufficient conditions under which the search cost distribution

is identified on its full support using price data from multiple markets.

Proposition 2 Suppose that there are infinitely (countably) many markets, indexed by m, all of

them with the same underlying search cost distribution G. In every market m, the econometri-

cian observes the price distribution function Fm with support (pm, vm), which is continuous and

is generated by the vector of variables (G, vm, rm, Km) through equations (2), (3a), (3b), and

(4). In addition, assume that the difference between valuations and marginal costs {vm−rm}m≥1

are random variables drawn independently from a distribution with support (0,∞). Then G is

identified on the interval [0, supm c
m
1 ], where supm c

m
1 = sup{cm1 : m = 1, 2, . . .} is the supremum

of the set of c1-cutoff points from all the markets.

This result says that one can solve the identification problem mentioned above by combining

price data from various markets for which the search technology is similar but there is variation

in valuations, selling costs, and numbers of competitors. Gathering the appropriate data is

then relatively easy for the researcher. One just needs to take markets for different products

in which consumers search for low prices in a similar fashion. To provide an example, if one

aims to estimate the costs of search in the market for carpentry, one could pool data from

the various professional services needed to refurbish a house: a carpenter, an electrician, a

painter, a plumber, a bricklayer, a tiler, etc. The search technology to find acceptable prices for

these professional services is basically the same; however, valuations, costs and the number of

available professionals can be quite different across these services. This sort of data will do. If

alternatively one considers the costs of search for prices on the Internet, one could take markets

for different books, CDs, or DVD movies; in our application in Section 4, we use data from

multiple markets for memory chips.
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Intuitively, pooling data from various markets solves the problem of identification because

every market generates a distinctive sequence of cutoff points, {cmk }K
m

k=1, and this forces the search

cost distribution function to be uniquely determined for a larger set of points, {{cmk }K
m

k=1}m≥1.

Under the (large support) condition of the proposition, this set of points can be shown to be

dense in the interval [0, supm c
m
1 ]. If supm c

m
1 =∞, then this proposition establishes identifica-

tion of the search cost distribution in the full support.

We note that the (large support) condition in Proposition 2 is a sufficient condition also

used in related nonparametric identification problems (see e.g. Matzkin, 1992; Matzkin, 1993;

Ichimura and Thompson, 1998; Berry and Haile, 2009). In our case, we have adopted it to

simplify the proof of identification. The assumption allows us to rely only on the cutoff points

cm1 to show identification.5

[Figure 2 about here.]

The ideas put forward in Proposition 2 are illustrated in Figure 2, where we plot the critical

cutoff points ck obtained from using data from M = 1, 5, 25, and 50 markets. For each of

these markets, we assume the number of firms is 10. In these plots we set r = 50 and again

assume consumer search costs follow a log-normal distribution with parameters (a, b) = (0.5, 5).

For the case of data from one market only we set vm = 500. For the situation with M

markets we take valuations in market m as follows: vm = 100 + (500 − 100)(m − 1)/M , so

the lowest consumer valuation is always 100 and if there are for example five markets we get

{vm}5
m=1 = {100, 200, 300, 400, 500}. The graphs make it clear that by using data from multiple

markets we obtain much more information on the magnitude of search costs at high quantiles.

3.2 Estimation of search costs

As mentioned above, the previous studies on estimation of search cost distributions proceed in

three steps: first, the parameters {µk}Kk=1 of the price distribution are estimated; second, the

5Since the large support condition is a sufficient condition, the identification result could be true under a
weaker assumption. The proof would however be much more difficult because one would need to use the addi-
tional variation obtained from the other cutoff points cmk ’s. The problem is that the mathematical relationship
among all the ck’s in a market, which is given by system of equations (8), in highly nonlinear and therefore using
the other cutoffs in the proof of Proposition 2 is quite difficult. We would also like to note that the variation in
Km across markets is another source of variation that is useful in applications.

12



search cost cutoff points {ck}Kk=1 are obtained using the parameters of the price distribution;

finally, a spline approximation of the search cost distribution is constructed by interpolating the

sequence of estimated points {(ck, G(ck))}Kk=1
. As shown in the previous section, identification

requires to pool data from many markets and in such a framework this earlier procedure presents

some problems. In fact, it has to be applied market by market, in which case the researcher

obtains multiple search cost estimates, one for each market. Interpolation is no longer feasible

and one would have to fit a curve through the M estimated search cost distributions. It is not

clear how one should proceed in such a case. For example, because the number of competitors

Km varies from market to market, whether all the markets should be allocated the same weight

when fitting the curve is unclear. These difficulties lead us to propose a new estimation method

that addresses these issues naturally.

We propose to employ semi-nonparametric (SNP) maximum likelihood estimation (Gallant

and Nychka, 1987). The advantage of this method is that it is not applied market by market

but designed to maximize the likelihood from all the markets jointly. In this way, the SNP

procedure exploits the link between the prices not only within a market but also across markets

because they all have the same underlying search cost distribution. We note that this method

is different in essence because it takes the search cost density directly as the parameter of the

likelihood. In this sense, it exploits the data more efficiently than the previous spline methods,

since those rely on estimating the parameters of the price distribution in every market separately

and, therefore, ignore the link between the different data sets.

The idea behind SNP estimation is to use a flexible functional approximation of the search

cost density. This functional approximation depends on a finite set of parameters to be esti-

mated and this set can be made arbitrarily large as the number of observations goes to infinity.

We construct our estimator of the search cost density by employing a flexible polynomial-

type approximation, following the SNP estimation technique developed by Gallant and Nychka

(1987).

The likelihood function can be constructed by deriving the density of prices in each market

m = 1, 2, . . . ,M as a function of the search cost density g. Let fm(pi|g) denote the density

of price pi observed in a market m given the search cost distribution g. Since the prices
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in a market m are independent draws from Fm, the log-likelihood function in market m is

Lm(g|pm) =
∑Km

i=1 log fm(pi|g) where pm is the Km-dimensional vector of prices in market m.

In order to compute this, first we apply the implicit function theorem to equation (4), which

yields:

fm(pi|g) =

∑Km

k=1 kµ
m
k (1− Fm(pi|g))k−1

(pi − rm)
∑Km

k=1 k(k − 1)µmk (1− Fm(pi|g))k−2
. (10)

The quantities µmk and rm in this expression need to be computed in terms of g. By solving

equation (5) for rm we obtain an expression for the marginal cost in market m

rm =
pm
∑Km

k=1 kµ
m
k − µm1 vm∑Km

k=2 kµ
m
k

. (11)

We can (superconsistently) estimate the lower and upper bounds pm and vm of the price distri-

bution in a market m by taking the minimum and maximum prices, respectively, observed in

the data.6 Then, for every market m, we compute {cmk }K
m

k=1 from equations (8) in terms of g,7

and then use equations (3a), (3b), (4), and (10) to find the values of Fm (pi|g) and fm (pi|g).

In this way we obtain the joint log-likelihood of all markets as a function of g:

LM(g|p1,p2, . . . ,pM) =
1

M

M∑
m=1

(
1

Km

Km∑
i=1

log f (pmi |g)

)

For the polynomial-type parametric function that estimates the search cost density we

employ the SNP density estimator of Gallant and Nychka (1987). This SNP estimator is

based upon a Hermite polynomial expansion. The idea behind their SNP procedure is that

any reasonable density can be mimicked by such a Hermite polynomial series. SNP density

estimators are essentially nonparametric because the set of all Hermite polynomial expansions

is dense in the set of density functions that are relevant (Gallant and Nychka, 1987).8

6In a similar fashion, order statistics are also used to estimate the lower and upper bound of distributions of
bids (see e.g. Donald and Paarsch, 1993).

7In markets with many cutoff points solving this nonlinear system of equations may be time consuming. One
alternative (used in the application) is to estimate the cutoffs directly by the empirical price CDF. The trade-off
is precision of the estimates against computational time.

8SNP has recently been applied to the estimation of labor search frictions (Koning et al., 2000), labor supply
(Van Soest et al., 2002), travel demand (Van der Klauw and Koning, 2003), and auctions (Brendstrup and
Paarsch, 2006).
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To apply the SNP estimation to our problem, we specify the search cost density as follows:

g(c; γ, σ, θ) =

[
N∑
i=0

θiui(c)

]2

N∑
i=0

θ2
i

, θ ∈ ΘN (12)

where ΘN = {θ : θ = (θ0, θ1, . . . , θN), θ0 = 1}, N is the number of polynomial terms and

u0(c) = (cσ
√

2π)−1/2 e−((log c−γ)/σ)2/4,

u1(c) = (cσ
√

2π)−1/2((log c− γ)/σ) e−((log c−γ)/σ)2/4,

ui(c) =
[
((log c− γ)/σ)ui−1(c)−

√
i− 1ui−2(c)

]
/
√
i, for i ≥ 2.

This parametric form corresponds to the univariate SNP estimator studied extensively by Fen-

ton and Gallant (1996). Our expressions are obtained by transforming their random variable

x with the density defined in their Section 4.3 into c = exp (γ + σx). This transformation is

useful in our case since search costs are positive. The vector of parameters to be estimated by

maximum likelihood is {γ, σ, θ1, . . . , θN} and N can be made arbitrarily large as the number of

observations increases to infinity.

Gallant and Nychka (1987) provide conditions on the unknown density (e.g. differentiability

and restricted tail behavior) under which their estimator is consistent using i.i.d. observations.

In Appendix B we give details on how those conditions can be adapted to our search cost

density.

In practice the number of polynomial terms N has to be chosen in an optimal way. For

this, we can build on the cross-validation method of Coppejans and Gallant (2002). The

essence of their cross-validation is to determine N for the data at hand by minimizing some

loss function. Let f denote the true price density function and f̂N the price density function

estimate computed as

f̂N (p) = f (p|ĝN) ,

where ĝN is the estimated search cost density with N polynomial terms. A standard way of
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choosing N is by minimizing the integrated squared error (ISE), which in our case is

∫ p

p

(
f̂N (p)− f (p)

)2

dp.

Since the true distribution f (p) is not known, the ISE needs to be approximated.

There are various problem-specific ways to approximate the ISE; we proceed as follows.

First write

∫ p

p

(
f̂N (p)− f (p)

)2

dp =

∫ p

p

f̂ 2
N (p) dp− 2

∫ p

p

f̂N (p) f (p) dp+

∫ p

p

f 2 (p) dp

and note that on the RHS only the first two terms depend on N . The first term
∫ p
p
f̂ 2
N (p) dp can

be estimated (for example) by Monte Carlo simulations by drawing a sample from the uniform

distribution on
[
p, p
]
. The integral from the second term can be written as

∫ p

p

f̂N (p) f (p) dp = EP

[
f̂N (p)

]
,

which can be estimated by using the price observations in one market, i.e.,

∫ p

p

f̂N (p) f (p) dp ≈ 1

K

K∑
k=1

f̂N (pk) .

In the empirical example the prices from different markets have different distributions, so we

take the approximation of the average ISE across markets

1

M

M∑
m=1

∫ p

p

(
f̂mN (p)− fm (p)

)2

dp.

To assess the performance of this method, we investigate it within the context of our Monte

Carlo simulations in the next section.

3.3 Monte Carlo study

The purpose of the Monte Carlo study is threefold: (i) we study the small sample properties of

the estimator; (ii) we study how using cross-validation to pick the number of polynomial terms

16



in the SNP density function performs in our setting; and (iii) we compare the performance of

our estimator to an estimator that does not directly link different markets but instead estimates

search costs market-by-market (based on Moraga-González and Wildenbeest, 2008). We focus

on the estimation of the following search cost density:

g0(c) = 0.5 · lognormal(c, 2, 10) + 0.5 · lognormal(c, 3, 0.5), (13)

where lognormal(c, a, b) refers to the densities of the lognormal distribution with parameters a

and b, respectively. To make sure we are working in an environment that is not very different

from the one used in our application in Section 4 we take M = 10 markets. Each market has

the same search cost distribution but a different valuation net of marginal cost, vm−rm. The 10

values we use for vm − rm are {40, 80, . . . , 400}. For each market m, we set Km, the maximum

number of prices a consumer can observe, equal to 35.9 With the parameters of a market m

at hand, we compute the market equilibrium by numerically solving the system of equations

(8). Given the cutoff values for a market m, we construct the equilibrium price distribution in

that market m using equation (9). Next, we randomly draw 35 prices from each equilibrium

price distribution Fm and use all 350 prices as an input for the SNP estimation procedure. The

estimation is replicated 100 times.10

Table 1 shows the outcome of the Monte Carlo simulations for various values of N . The

approximated (feasible) estimate of ISE selects N = 8, while the true (unfeasible) criterion

selects N = 6 as the optimal number of polynomial terms. Search costs, however, are closest

to the true search cost distribution when using N = 8, as shown in the last column of Table 1.

This suggests our method works reasonably well.

[Table 1 about here.]

[Figure 3 about here.]

9Typically, the number of firms operating in a market will vary from market to market. Though this
constitutes an additional source of variation, we do not need to use it here since we are assuming that the
valuation net of marginal cost is different across markets.

10To gain computing time we use the empirical distribution of prices in each market to estimate the ck’s.
Although consistency of the estimator is preserved, this is likely to lead to less precise estimates, so our results
should be seen as a lower bound on the performance of the estimator when using equation (8) instead.
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[Figure 4 about here.]

Figures 3(a) and 3(b) show the estimated search cost distribution for N = 8. We report the

mean and the 90 percent confidence interval of the 100 replications. Figure 3(a) corresponds

to the search cost CDF, while Figure 3(b) corresponds to the search cost PDF. In both graphs,

the solid curve represents the true search cost distribution, while the thick dashed curve shows

the mean of the 100 estimations. The 90 percent confidence interval is given by the shaded

area between the thin dashed curves. In spite of the relatively small number of markets and

observations per market, the figures illustrate that our estimation procedure performs fairly

well. The estimates mimic the true shape of the search cost CDF as well as PDF relatively well

at most quantiles. Note that if we were to add more markets with relatively high valuation

to our data set the number of search cost cutoffs would increase, which would improve the

outcome of the estimation.

Existing approaches to estimate search costs (e.g., Hong and Shum, 2006; Moraga-González

and Wildenbeest, 2008) are designed to estimate search costs market-by-market, while our SNP

estimation procedure is specifically set up to maximize the joint likelihood from all markets.

Figure 4(a) shows the estimated search cost PDF when we take the existing approach and use

data for only one market.11 Not only are the differences between the true search cost distribution

(solid curves) and the mean of the 100 fitted distributions (thick dashed curves) larger than

when using our multi-market SNP estimation procedure, also the 90 percent confidence interval

(shaded area) is much wider. The search costs ISE confirms our visual findings: when taking

data from just one market, the ISE takes on value 0.294 × 10−4, which is almost four times

as large as the corresponding ISE value for our SNP estimation procedure. If, alternatively,

we use the data from all the markets and after estimating search costs market-by-market we

take the average search cost density as an estimate of the overall search cost distribution, our

SNP estimation procedure still outperforms the market-by-market approach, as illustrated in

Figure 4(b). Although the search cost ISE in this case is slightly lowered to 0.229× 10−4, the

90 percent confidence interval widens. In sum, Figures 4(a) and 4(b) provide evidence that

11We use prices for the market with v = 400 to make sure the maximum identifiable search cost value is the
same as in our main specification. To obtain a parametric estimate of the search cost density we fit a SNP
density function with N = 8 polynomial terms through the identified points on the search cost distribution,
which are obtained using the approach in Moraga-González and Wildenbeest (2008).
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the market-by-market approach underperforms vis-à-vis our multi-market SNP approach. It is

less efficient because search costs are only constrained to be similar across markets after search

costs have already been estimated for each market separately. However, we note that since

the market-by-market approach is designed to maximize the likelihood function in each market

separately it does an equally good job in terms of fitting the model to observed prices.

4 Application

In this section we use the SNP estimation method described above to quantify search costs

in real-world markets for memory chips. We focus on computer memory chips for notebooks

(so called SO-DIMM, or Small Outline Dual In-line Memory Module). Since we need products

from different markets, we select memory chips produced for different brands and types of

notebooks. Table 2 gives the details of the ten products we include in our data set. There

are several reasons for choosing these memory chip data for the analysis. First, since all the

chips are sold online, we expect search costs to be similar across markets. Second, even though

all memory chips are manufactured by Kingston—the largest producer in the sector—each

memory chip in our sample is meant to be used in a particular notebook brand only—including

Toshiba, Dell, Acer, IBM and HP Compaq. Given that substitutability across products is

somewhat limited due to technical reasons, we shall assume that different microchips belong

in separate markets so the use of a search model with homogeneous products is reasonable.12

All the memory chips we consider were somewhat at the top of the product line at the time

of data collection. In particular, they exhibit relatively large storage capacity (1 gigabyte) and

fast speed of operation (most of them above 400 MHz). Given the large storage capacity of the

memory chips in the data set, most consumers would only consider to buy one memory chip,

so the single-unit inelastic demand assumption of the theoretical model seems also reasonable.

[Table 2 about here.]

12Note that even though (within a market) the memory chips are exactly the same, the stores selling the
chips might differ in terms of offered service, speed and quality of shipment, payment methods, etc. We come
back to this issue at the end of this section.
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For all the memory chips in the data set we collected online prices charged in the United

States, in February 2006. To obtain a sufficiently representative sample, we gathered product

and price information from several sources at the same time. We proceeded as follows. We first

visited the price comparison sites shopper.com and pricegrabber.com and collected the names of

all the shops that were seen active in markets for memory chips; in total we found 49 stores. If for

a particular product we saw a shop quoting its price on shopper.com and/or pricegrabber.com,

we took the price directly from the price comparison site; otherwise we visited the web-address

of the vendor to check if the product was available and at what price it was offered.

Table 3 gives some summary statistics of the data set. The number of firms quoting prices in

each market is relatively large, ranging from 24 to 41. In our study we estimate the maximum

number of prices consumers can search for in each market Km by the number of firms that

were observed to be quoting prices in that market. Almost all memory chips are priced above

$100. For all products we observe significant price dispersion as measured by the price range

(difference between the maximum and the minimum prices) and by the coefficient of variation.

We note that the (gross) benefits to a consumer from searching are significant; in particular, the

(gross) gains from searching all the firms thereby becoming fully informed relative to searching

for one price only in these markets range from $16.32 to $33.05. As mentioned above, we

estimate the valuation of a memory chip by the maximum price observed in the market.

[Table 3 about here.]

Our model assumes consumers search non-sequentially. Consumers obviously visit stores

sequentially in the real world, so what truly distinguishes non-sequential search from sequential

search is how consumers select the stores they visit—if they search non-sequentially, the number

of stores searched is determined before searching, while if they search sequentially, the number of

searches depends on what has been observed. Although non-sequential search is often thought

of as a constrained version of sequential search, Morgan and Manning (1985) have shown that

the optimal search rule is hybrid in nature: it includes decisions on the sample size as well as

whether to continue searching or not. This means both non-sequential and sequential search are

special cases—non-sequential search is typically optimal when the search outcome is observed

with delay, for instance when applying for a job or college, or when obtaining estimates from
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contractors. Even though a typical online shopper does not face such a delay when searching

online, according to Manning and Morgan (1982) sufficiently large economies of scale when

searching can make it optimal to search multiple firms at once without using the option to

continue searching. This is typically the case when searching online: once having found the

correct memory chip and price at one web store, simply copying and pasting the chip’s model

number to another online store is all it takes to obtain an additional price quote. This might

also explain why, using individual specific observations on browsing history, De los Santos et

al. (2011) find that observed search patterns for online books are more consistent with non-

sequential search than sequential search.

Because we only observe the stores’ prices at one moment in time, we cannot check whether

stores indeed use mixed pricing strategies, as predicted by our search model. However, using

a different data set Moraga-González and Wildenbeest (2008) show that firms indeed seem to

mix prices in the online market for memory chips; at the same time, other studies find evidence

for mixed strategies in other markets (e.g., Lach (2002) for chicken, refrigerators, coffee, and

flour in Israel; Lewis (2008) for gasoline; and Wildenbeest (2011) for grocery products in the

United Kingdom).

[Table 4 about here.]

We follow the procedure explained in Section 3.2 and use cross-validation for choosing the

number of polynomial terms N . Table 4 gives the SNP estimation results for different values

of N . These results are obtained using the empirical price CDF in each market to calculate

the ck’s.
13 As can be seen in the table, up to N = 20 there is a steady improvement in ISE,

while for larger N the improvement is very small. We therefore use the estimated parameters

for N = 20 to derive our estimate of the search cost distribution. The solid curve in Figure

5(a) denotes the estimated search cost CDF, while the shaded area indicates the 95 percent

confidence interval.14 The graph also shows how the estimated search cost cutoffs (gray dots)

13In cases when there are sufficiently many observations, as is the case in our data set, we can use the empirical
distribution of prices in each market directly to estimate the ck’s. The gain in computing time is huge and the
results for our data are very similar. See also Figure 7(a).

14Since standard errors of the parameter estimates are only meaningful in the case where the presented model
is the true parametric model, we have obtained the confidence interval using bootstrapping. For each replication
we draw 10 markets with replacement; the 95 percent confidence interval is obtained using the 2.5th and 97.5th
percentile of 100 replications.
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cover the support of the search cost distribution.

[Figure 5 about here.]

Using the estimates of the parameters of the SNP specification we can compute the mean,

the median, and the standard deviation of the search cost distribution. The median consumer

has a search cost equal to $5.05. On average a consumer has a search cost value equal to $8.70

and the standard deviation is $7.35. It is also interesting to investigate the distribution of

search intensities in these markets. Since each market has specific parameters, even though

search costs are assumed to be similar, it is unlikely that consumer search behavior will be

the same across markets. Table 5 shows that it is indeed the case that search intensities are

different across markets. For example, in the market for the KTT3311A memory chip, 26

percent of consumers searches for one price only while in the market for the KTH-ZD8000A

memory chip the share of consumers who searches once is 34 percent. Similarly, in the market

for the KTT3311A chip, 24 percent of consumers searches for two prices, while in the market

for the KTD-INSP8200 memory chip the share of consumers who searches for two prices is 62

percent. However, the share of consumers searching at most three times is more or less similar

across markets; approximately 91 percent of the consumers have search cost above $3.70 and

search for at most three prices. Table 5 also illustrates that the group of consumers searching

for the prices of between 4 and 15 firms is with percentages between 0 and 4 relatively small.

About 8 percent of consumers search for prices thoroughly; they search for the prices of more

than 15 stores, which means they have search costs less than 43 dollar cents. Figures 5(a) and

5(b) show that the consumers can roughly be divided into three groups: buyers who do not

search, buyers who search for at most three prices and buyers who search for many prices in

the market.

Our findings are in line with several other empirical studies; Moraga-González and Wilden-

beest (2008) report similar results using a different estimation method and data set, while

Wildenbeest (2011) finds that very few consumers visit an intermediate number of stores when

searching for grocery products, even if quality differentiation is taken into account. Moreover,

our result that consumers search very little is supported by the consumer-specific web browsing

data for online bookstores used in De los Santos (2008) and De los Santos et al. (2011).
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[Table 5 about here.]

The fact that a significant proportion of consumers does not search for many prices confers

substantial market power to the firms. Using the estimates of the SNP specification, we can

retrieve the marginal cost r in each market, which is also reported in Table 5. Marginal costs

range between 56 and 64 percent of the value of the product, while average price-cost margins

range between 19 and 24 percent across markets.

[Figure 6 about here.]

To test whether the estimated model explains observed prices well, we calculate the Kolmogorov-

Smirnov statistic (KS-test) in each individual market. The KS-test statistic is based on the

maximum difference between the empirical price CDF and the estimated price CDF, which is

the computed price equilibrium given the estimate of the search cost distribution. The null hy-

pothesis for this test is that the distributions are similar, the alternative hypothesis is that the

empirical and the estimated price CDF are different. Table 5 gives the KS-test results—for eight

out of ten memory chips the KS value is below the 95 percent critical value of the KS-statistic

of 1.36, which means that for these chips we cannot reject the null-hypothesis that the prices

are drawn from the estimated price CDF.15 The goodness-of-fit is also shown in Figure 6, where

we have plotted both the empirical and the estimated price CDF for two of the ten markets.

Figure 6(a) shows the fit for the memory chip that gives the best fit; the empirical price CDF,

as indicated by the dashed line, is close to the estimated price CDF, which is represented by

the solid curve. Also plotted is the band that gives the maximum allowed difference between

the estimated and empirical price CDF. Figure 6(b) shows that the empirical price CDF is just

outside this band for the memory chip that gives the worst fit.

We have estimated the model using the empirical price CDF in each market to calculate

the search cost cutoffs. The main reason for doing so is the gain in computing time: this avoids

having to solve the system of equations in equation (8) in each function evaluation. Figure 7(a)

shows that the search cost CDF when the ck’s are estimated (dashed curve) is not very different

from the one obtained when using the empirical CDF to get the cutoffs (solid curve).

15We have calculated KS in Table 5 as
√
Km · τKm , where Km is the number of price observations for the

specific memory chip and τKm is the maximum absolute difference over all prices between the estimated price
CDF and the empirical price CDF.
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The prices used for our estimations include neither shipping costs nor sales taxes. The main

reason for leaving these out is that shipping costs and sales taxes depend on the state in which

the consumer resides, which makes it difficult to compare total prices. However, for robustness

purposes, we also estimate the model neglecting sales taxes but including shipping costs for

residents of New York. Figure 7(b) shows that the estimated search cost CDF (dashed) is very

similar to the search cost CDF obtained when ignoring shipping costs (solid).

[Figure 7 about here.]

Although the memory chips themselves are completely homogeneous, the price differences

across vendors for a given chip may be due to store differentiation. Consumers might prefer one

shop over another on the basis of observable store characteristics like quality ratings, return

policies, stock availability, order fulfillment, payment methods, etc. To see the impact of ob-

servable shop characteristics on prices, we regress prices on indicators that are readily available

from the price comparison sites. More precisely, we estimate the following model:

PRICEj = β0 + β1 ·RATINGj + β2 ·DISCLOSEj + β3 · STOCKj + β4 ·LOGOj + εj, (14)

where, for each product, PRICEj is the list price of store j, RATINGj is an average of the

ranking of store j on shopper.com and pricegrabber.com, DISCLOSEj is a dummy for whether

shop j disclosed shipping cost on either shopper.com or pricegrabber.com, STOCKj is a dummy

for whether shop j had the item in stock, and LOGOj is a dummy for whether shop j had

its logo on either shopper.com or pricegrabber.com. We estimate this equation by OLS. The

resulting R-squared values indicate that only between 3 and 27 percent of the total variation

in prices can be attributed to observable differences in store characteristics.16 Although this

does not rule out that there are unobservable differences between stores (e.g., cost differences or

branding), this does suggest that the observable characteristics cannot explain the vast majority

of variation in prices and that something else must cause such variability. In spite of this, for

robustness purposes, we also estimate the model using the residuals of the regression above.

This is standard practice in many structural auction models (e.g. Haile et al., 2003; Bajari et

16For all memory chips, all the OLS coefficient estimates were not significant except the coefficient for LOGOj ,
which was positive and significant at a 5 percent level for the KTM-TP3840 and KTH-ZD8000A chips.
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al., 2006; An et al., 2010); Wildenbeest (2011) shows that if stores obtain quality input factors

in perfectly competitive markets, the quality production function exhibits constant returns to

scale, and consumers have the same preferences towards quality, this procedure is theoretically

correct (moreover, all our results on identification and consistency of the estimator hold for

such specification as well). As shown in Figure 7(c), estimated search costs are uniformly

lower. This result is intuitive: when taking store heterogeneity into account, the (gross) gains

from searching will be lower, which means that in order to explain observed prices consumers

should have lower search costs and search more than in the model without store heterogeneity.

Finally, Figure 7(d) shows the estimated search cost CDF when estimating search costs

market-by-market using the approach put forward by Moraga-González and Wildenbeest (2008).

This estimate is obtained by fitting an SNP density function to the estimated search costs in

each market and taking the average. As can be seen from the graph, there are some differences

with our main specification: while our SNP procedure predicts only 9 percent of consumers

have search costs less than $3.70, this would be 34 percent according to the market-by-market

approach.

5 Conclusions

Since the seminal contribution of Stigler (1961), economists have dedicated a significant amount

of effort to understand the nature of competition in markets where price information is not

readily available to consumers. One of the lessons learnt is that consumer search models may

lead to price dispersion, a prediction quite different from the ‘law of one price’ obtained from

conventional economic theory. Another is that the particular direction of the effects of public

policy measures such as the introduction of taxes or the dismantling of barriers to entry depends

on the shape of the search cost distribution. These observations motivate the development of

methods to estimate search costs to be used in the simulation of counterfactual scenarios. The

estimation of consumer search costs is nowadays an important area of empirical research.

This paper has studied the non-parametric identification and estimation of the costs of

simultaneous search in markets for homogeneous products. We have argued that in order to

increase the precision of the estimate of the search cost distribution one needs to increase the
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number of estimated critical search cost cutoffs in all quantiles of the search cost CDF. We

have shown this can be done by pooling price data from various markets with similar search

technology but different valuations, firms’ costs and numbers of competitors. To take advantage

of the relationship between the distinct markets we have proposed a new method to estimate

the search cost density function by a semi-nonparametric density estimator whose parameters

maximize the joint likelihood corresponding to all the markets. The paper has also illustrated

the potential of our method by applying it to a data set of online prices for ten notebook memory

chips. The estimates obtained suggest that the search cost density is essentially bimodal such

that a large fraction of consumers searches for very few prices and a small fraction of consumers

searches for a relatively large number of prices.

Along the way we have made several simplifying assumptions. One of the assumptions has

been that, within a market, consumers have the same valuation. In future work, we would like

to relax this assumption and study a framework where there is heterogeneity both in consumer

valuations and search costs. One of the advantages of developing such a framework is that it

would enable the econometrician to estimate the correlation between consumer valuations and

search costs. Another simplifying assumption has been that firms have complete information

about the costs of one another. Our model could be extended to a setting with private infor-

mation about the marginal costs of production. Estimation of such a model would enable us

to distinguish price dispersion due to marginal cost heterogeneity from price dispersion due to

search costs. Finally, an important restriction of our model has been that we treat the different

markets as completely separated. In more general settings, one would like to develop a model of

product differentiation with search costs. We strongly believe the ideas developed in this paper

can be applied to such markets. The first step is to develop a tractable model that incorporates

strategic price dispersion together with product heterogeneity. This is work we will pursue in

the future.
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A APPENDIX A

Proof of Proposition 1. Consider the triplets of variables (F, {µk}Kk=1, {ck}Kk=1) and

(F, {µ′k}Kk=1, {c′k}Kk=1) that are generated by the quadruplets of variables (G, v, r,K) and (G′, v′, r′, K ′),

respectively, where G′ is another distribution function with support (0,∞) and positive density

on this support. Then we prove the result by showing that µ′k = µk, c
′
k = ck and G′(ck) = G(ck)

for any k ∈ {1, 2, . . . , K}.

First we note that neither µ1 nor µ′1 can be equal to zero. Indeed, if µ1 = 0 then by

equation (4)
∑K

k=2 kµk (1− F (p))k−1 = 0 for any p ∈
[
p, v
]
, which, due to the fact that F is

increasing and continuous, can only happen if µk = 0 for any k ≥ 2. This is in contradiction

with
∑K

k=1 µk = 1, so µ1 > 0. Since exactly the same arguments apply to µ′1, we have shown

that µ1 and µ′1 are strictly positive.

Next we prove that r′ = r. Since µ1 > 0, equation (4) implies that F is strictly increasing

on its support and hence invertible. By putting p = F−1 (1− z) in (4) for {µk}Kk=1, r and

{µ′k}Kk=1, r
′, we obtain that

µ1(v − r)∑K
k=1 kµkz

k−1
+ r =

µ′1(v − r′)∑K
k=1 kµ

′
kz

k−1
+ r′ for any z ∈ [0, 1] .

This implies that

µ1(v−r)

(
K∑
k=1

kµ′kz
k−1

)
−µ′1(v−r′)

(
K∑
k=1

kµkz
k−1

)
−(r′ − r)

(
K∑
k=1

kµkz
k−1

)(
K∑
k=1

kµ′kz
k−1

)
= 0

for any z ∈ [0, 1]. Since the LHS is a polynomial in z, all its coefficients must be equal to 0.

Suppose by contradiction that r′ 6= r. This implies that

either µK = µK−1 = ... = µ2 = 0 (so µ1 = 1) or µ′K = µ′K−1 = ... = µ′2 = 0 (so µ′1 = 1). (A15)

Indeed, by contradiction assume that (A15) does not hold; then let M,M ′ ≥ 2 denote the max-

ima of k, ` such that µk > 0 and µ′` > 0. The coefficient of zM+M ′−2 is − (r′ − r)MµMM
′µ′M ′ ,

which must be equal to 0, a contradiction with our assumptions. Therefore, (A15) must hold.

In either case we have a contradiction because (5) implies that p = v, which means that the
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price distribution F is degenerated. This establishes that r′ = r.

Next we show that µ′k = µk for any k. From equation (4) we obtain

K∑
k=1

k
µk
µ1

(1− F (p))k−1 =
v − r
p− r

=
K∑
k=1

k
µ′k
µ′1

(1− F (p))k−1 for any p ∈
[
p, v
]
.

This is equivalent to

K∑
k=2

k

(
µk
µ1

− µ′k
µ′1

)
zk−1 = 0 for any z ∈ [0, 1] . (A16)

Since the LHS is a polynomial in z, all its coefficients must be equal to 0. Therefore, µk
µ1

=
µ′k
µ′1

for k = 2, ..., K. On the other hand, µ1 +
∑

k≥2 µk = µ′1 +
∑

k≥2 µ
′
k = 1. These equalities

together imply 1
µ1

= 1
µ′1

and therefore µ′k = µk for any k ≥ 1.

The equalities c′k = ck follow from equation (2). It remains to show that G′ (ck) = G (ck)

for any k ≥ 1. We do so by showing that {G (ck)}k≥1 is uniquely determined by the series

{µk}k≥1. By equations (3a) and (3b), G (ck−1) − G (ck) = µk for any k ≥ 1. This implies that

G (ck) = 1−
∑k

h=1 µh for any k ≥ 1. The result then follows from the equality µ′k = µk for any

k ≥ 1 established above.

Proof of Proposition 2. In the proof we write c1 (θ) to make explicit the dependence

of c1 on θ ≡ v − r. Note that due to the continuity of c1 (θ), supθ∈(0,∞) c1 (θ) = supm c
m
1 .

Take an arbitrary interval (a, b) ⊂
(
0, supθ∈(0,∞) c1 (θ)

)
. Then the pre-image set defined as

c−1
1 (a, b) = {θ : c1 (θ) ∈ (a, b)} is a nonempty set, open in (0,∞) because limθ→0+ c1 (θ) = 0

(by equation (4), if θ = 0 then µk = 0 for k ≥ 2, so µ1 = 1 and thus G (c1) = 0) and c1 is,

by assumption, a continuous function of θ. Therefore, with probability 1 there exists an m

such that θm = vm − rm ∈ c−1
1 (a, b), which means that c1 (θm) ∈ (a, b).17 Because the interval

(a, b) has been chosen arbitrarily, we have proven that for any interval, we can find an m such

that the corresponding cutoff point c1 (θm) is included in the interval with probability 1. Since

G (θm) = G (c1 (vm − rm)), m ≥ 1, are identified, this establishes that in an arbitrary interval

17The argument for this statement is the following. Suppose that we have iid random variables x1, x2, . . . xn
drawn from a distribution with support (0,∞) and let (c, d) ⊂ (0,∞). Then the probability that at least
one of these random variables is in (c, d) is equal to 1 − P (xi /∈ (c, d))

n
= 1 − [1− P (xi ∈ (c, d))]

n
. Since

P (xi ∈ (c, d)) > 0, the above probability goes to 1 when n → ∞. So when we have a countably infinite
sequence of random variables, the probability that at least one of these random variables is in (c, d) is 1.
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(a, b) ⊂
(
0, supθ∈(0,∞) c1 (θ)

)
we can find a point at which the search cost distribution is identified

with probability 1. Therefore, since it is continuous, G is identified on
[
0, supθ∈(0,∞) c1 (θ)

]
.

B APPENDIX B

In this section of the Appendix we adapt the general conditions in Gallant and Nychka (1987,

henceforth GN) for the consistency of the search cost density estimator and discuss some prim-

itive conditions specific to our model. Since the price observations in our model come from

multiple markets that may be heterogeneous in valuations, firms’ costs and number of firms,

the price observations may not be i.i.d. In order to be able to treat the prices as i.i.d., we will

regard these conditioning variables as random. This is not restrictive since it is just a matter

of interpretation; in fact it is analogous to treating the covariates in a regression as random, in

order to have i.i.d. dependent variables.

For this purpose, let us first modify the notation of the price density to f (p|g; vm, rm, Km)

in order to make explicit the dependence on valuations, firms’ costs and number of firms. Then

LM (g) =
1

M

M∑
m=1

(
1

Km

Km∑
i=1

log f (pmi |g; vm, rm, Km)

)
,

is the log-likelihood presented above, where for simpler notation we ignore the price vectors

on the LHS. We regard the triplets (vm, rm, Km)Mm=1 as an i.i.d. sample of random variables.

Then by Kolmogorov’s strong law of large numbers, LM (g)
a.s.−→

M→∞
L (g) ≡ E [log f (p|g; v, r,K)],

provided that E [log f (p|g; v, r,K)] <∞ (this condition will follow from Lemma A.1 below).18

In order to state sufficient conditions for the consistency of our search cost density estimator,

18Note that

L (g) = E

[
1

M

M∑
m=1

(
1

Km

Km∑
i=1

log f (pi|g; vm, rm,Km)

)]
.

Indeed, since
(

1
Km

∑Km

i=1 log f (pi|g; vm, rm,Km)
)M
m=1

is an i.i.d. sample, by the law of iterative expectation,

E

[
1

M

M∑
m=1

(
1

Km

Km∑
i=1

log f (pi|g; vm, rm,Km)

)]
= E

[
1

Km

Km∑
i=1

E [ log f (pi|g; vm, rm,Km)|Km]

]
= E [E [ log f (pi|g; vm, rm,Km)|Km]] ,

where the last equality holds because in each market m the prices (pi)
Km

i=1 are i.i.d.. Then by the law of iterative
expectation the statement follows.
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we introduce some further notation. Recall that the search costs c we consider are exponential

transformations of the random variables x from GN, that is, c = exp (γ + σx). The density of

c is g (c) = 1
σc
h
(

log c−γ
σ

)
, where h denotes the density of x. Let

G =

{
g : g (c) =

1

σc
h

(
log c− γ

σ

)
, γ ∈ R, σ > 0, h ∈ H

}

denote the set of admissible search cost densities, where H is the set of admissible densities

defined by GN (p.369). For each γ ∈ R, σ > 0 define the operator ‖·‖ : G → R such that

‖g‖ = ‖h‖GN , where ‖·‖GN is the consistency norm from GN (p.371), and define the operator

T : H → G with T (h) (c) = 1
σc
h
(

log c−γ
σ

)
. Then ‖·‖ is a norm on G and T is a homeomorphism

between the normed spaces (H, ‖·‖GN) and (G, ‖·‖).

Let g0 ∈ G be the true search cost density and GN = {gN (·; γ, σ, θ) : γ ∈ R, σ > 0, θ ∈ ΘN}

the space of SNP estimators, where gN (·; γ, σ, θ) is defined in (12). Denote the SNP estimator

of g0 by ĝ, let the number of observations be n.

Proposition A.1 Under the following conditions:

(a) Compactness: The closure of G is compact,

(b) Denseness: ∪N≥1GN is dense in G and GN ⊂ GN+1,

(c) Continuity: E [log f (p|g; v, r,K)] is continuous in g,

(d) Dominance: There is a function B (p; v, r,K) > 0 with E [B (p; v, r,K)] <∞ such that

log f (p|g; v, r,K) ≤ B (p; v, r,K) for any g and any (p; v, r,K),

(e) Identification: For any density g with support (0,∞) such that

E [log f (p|g; v, r,K)] ≥ E [log f (p|g0; v, r,K)]

g = g0 must hold,

limn→∞ ‖ĝ − g0‖ = 0 almost surely, provided that N ≡ Nn →∞.

This result is a modified version of Theorem 0 in GN. The modification consists of replacing

uniform convergence of the objective function by a one-sided uniform convergence implied

by Condition (d) and partially by Condition (c), which is possible for maximum likelihood
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estimators, as shown by Wald (1949).

In the sequel we discuss briefly how Conditions (a)-(e) can be verified for our problem.

Condition (a) follows from Theorem 1 in GN that states that the closure of H is compact,

which is homeomorphic to G for given γ, σ and by assuming that the location and scale

parameters γ, σ are in a compact subset of R× (0,∞). Condition (b) follows from Theorem 2

in GN by using the homeomorphism between H and G. Whether Condition (c) is satisfied or

not depends on whether the price density f (p|g; v, r,K) is continuous in g. This mild condition

appears to be very difficult to verify due to the implicit nature of the price distribution and

the nonlinearity of the system of equations that determines the price distribution. Condition

(d) is a one-sided dominance condition for which we provide primitive conditions in Lemma

A.1 below. These primitive conditions are sufficient for the case when firms’ marginal cost

r is estimated from an additional data source, so we can regard the valuations and marginal

costs in every market as known by the econometrician.19 Condition (e) can be verified under

the conditions of our identification result in Proposition 2 by using the (Shannon-Kolmogorov)

Information Inequality.

Lemma A.1 (1) For any density g with support (0,∞) and any (p; v, r,K)

log f (p|g; v, r,K) ≤ |log (v − r)|+ |log (p− r)|+ |log (v − p)| ≡ B (p; v, r,K) .

(2) Assume that g0 and the joint distribution of (v, r,K) satisfy the following conditions: (i)

f (v, r,K) is bounded; (ii) either (A) g0 has at least polynomial upper tail, i.e., there is α >

0, L > 0, c > 1/2 such that g0 (c) ≥ Lc−1−α for any c > c and
∫
vα+1 |log v| f (v) dv < ∞,

or (B) g0 has at least exponential upper tail, i.e., there is α > 0, L > 0, c > 1/2 such that

g0 (c) ≥ Le−αc for any c > c and the distribution of valuations has at most exponential upper

tail, i.e., there is α′ > 0, L′ > 0, c′ > 1/2 such that g0 (c) < L′e−α
′c for any c > c′ with α′ > α.

We note that conditions (i), (ii) are somewhat restrictive, but they still allow the one-

sided dominance condition to hold for a large class of search cost and valuation distributions.

Condition (ii) suggests that there is a trade-off between the restrictions on the tails of the search

19In this respect our results are incomplete, but we believe they are still interesting because they serve as an
illustration of how one can verify the dominance condition (d) in a structural model so highly nonlinear as ours.
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cost and valuation distributions.

Proof of Lemma A.1. For notational simplicity let us drop the conditioning variables

v, r,K from f (p|g; v, r,K). From (10)

f (p|g) =
µ1 (v − r)

(p− r)2∑K
k=2 k (k − 1)µk (1− F (p|g))k−2

, (A17)

and since
K∑
k=2

k (k − 1)µk (1− F (p|g))k−2 ≥
K∑
k=2

kµk (1− F (p|g))k−1 ,

we obtain

f (p|g) ≤ µ1 (v − r)
(p− r)2∑K

k=2 kµk (1− F (p|g))k−1

=
µ1 (v − r)

(p− r)2∑K
k=1 kµk (1− F (p|g))k−1 − µ1 (p− r)2

=
µ1 (v − r)

µ1 (p− r) (v − r)− µ1 (p− r)2 =
(v − r)

(p− r) (v − p)
,

where the last-but-one equality follows from (4). That is,

log f (p|g) ≤ log

[
(v − r)

(p− r) (v − p)

]
≤ |log (v − r)|+ |log (p− r)|+ |log (v − p)| = B (p; v, r,K) .

This establishes (1).

In what follows we prove (2). We have

E [B (p; v, r,K)] =

∫
(|log (v − r)|+ |log (p− r)|+ |log (v − p)|) f (p|g0) f (v, r,K) dpd (v, r,K)

=

∫ [∫ v

p
0

(|log (v − r)|+ |log (p− r)|+ |log (v − p)|) f (p|g0) dp

]
f (v, r,K) d (v, r,K)

≡ I1 + I2 + I3, (A18)

where f (v, r,K) is the joint density of (v, r,K). Below we prove that the three integrals

I1, I2, I3 are finite.
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Bounding I1. We have

I1 =

∫
|log (v − r)|

[∫ v

p
0

f (p|g0) dp

]
f (v, r,K) d (v, r,K) =

∫
|log (v − r)| f (v, r,K) d (v, r,K) .

This can be split such that

∫
|log (v − r)| f (v, r,K) d (v, r,K) =

∫
v−r≤1

|log (v − r)| f (v, r,K) d (v, r,K)

+

∫
v−r>1

log (v − r) f (v, r,K) d (v, r,K) .

The first term is finite by Condition (i) and the fact that
∫ 1

0
|log x| dx = 1. The second term is

also finite because

∫
v−r>1

log (v − r) f (v, r,K) d (v, r,K) <

∫
v>1

log (v) f (v, r,K) d (v, r,K) =

∫
v>1

log (v) f (v) dv

<

∫
vf (v) dv,

which is finite by Condition (ii,A). Here and throughout this proof f (v) denotes the marginal

density of v.

Bounding I2. We have

I2 =

∫ [∫ v

p
0

|log (p− r)| f (p|g0) dp

]
f (v, r,K) d (v, r,K) ;

First focus on the integral in the brackets. Since

K∑
k=2

k (k − 1)µk (1− F (p|g))k−2 ≥ 2µ2

from (A17) we obtain,

f (p|g) ≤ µ1 (v − r)
2 (p− r)2 µ2

=

(
v − r
p− r

)2

f (p|g) |p=v. (A19)
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Then

∫ v

p
0

|log (p− r)| f (p|g0) dp ≤
∫ v

p
0

|log (p− r)|
(
v − r
p− r

)2

f (p|g0) |p=vdp

= (v − r) f (p|g0) |p=v
∫ v

p
0

|log (p− r)| v − r
(p− r)2dp,

where

∫ v

p
0

|log (p− r)| v − r
(p− r)2dp =

∫ v−r
p
0
−r

1

∣∣∣∣log

(
v − r
x

)∣∣∣∣ dx
≤
∫ v−r

p
0
−r

1

|log (v − r)| dx+

∫ v−r
p
0
−r

1

log xdx

= |log (v − r)|

(
v − r
p

0
− r
− 1

)
+
v − r
p

0
− r

(
log

v − r
p

0
− r
− 1

)
+ 1

≤ |log (v − r)| v − r
p

0
− r

+
v − r
p

0
− r

log
v − r
p

0
− r

+ 1. (A20)

So

∫ v

p
0

|log (p− r)| f (p|g0) dp ≤ (v − r) f (p|g0) |p=v

[
|log (v − r)| v − r

p
0
− r

+
v − r
p

0
− r

log
v − r
p

0
− r

+ 1

]
.

Based on this, we need to show that

J1 =

∫
(v − r) f (p|g0) |p=v |log (v − r)| v − r

p
0
− r

f (v, r,K) d (v, r,K) <∞, (A21)

J2 =

∫
(v − r) f (p|g0) |p=v

v − r
p

0
− r

log
v − r
p

0
− r

f (v, r,K) d (v, r,K) <∞, (A22)

J3 =

∫
(v − r) f (p|g0) |p=vf (v, r,K) d (v, r,K) <∞. (A23)

We expect that f (p|g0) |p=v < M for some appropriateM for any (v, r,K) because f (p|g0) |p=v →

0 when v → ∞, since f (p|g0) |p=v is the density at the upper bound of its support, although

we find it difficult to prove this formally. Further, by (5)

v − r
p

0
− r

=

∑K
k=1 kµk0

µ10

> 1,
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where (µk0)Kk=1 correspond to the true g0. The numerator is bounded, in fact
∑K

k=1 kµk0 ∈ [1, K]

for any g0. By (3a),

1

µ10

=
1

1−G0 (c10)
≤ 1

1−G0

(
v−r

2

)
because G0 is increasing and from (8)

c10 =

1∫
0

(
µ1(v − r)∑K

k=1 kµk(1− z)k−1
+ r

)
(2z − 1) dz ≤ µ1(v − r)

1∫
0

|2z − 1|∑K
k=1 kµk(1− z)k−1

dz

≤ (v − r)
1∫

0

|2z − 1| dz =
v − r

2
,

where the latter inequality follows by taking z = 1 in the denominator. Therefore,

v − r
p

0
− r
≤ K

1−G0

(
v−r

2

) . (A24)

Now we proceed by proving (A21)-(A23). Applying (A24), we have

J1 ≤MK

∫
(v − r) |log (v − r)|

1−G0

(
v−r

2

) f (v, r,K) d (v, r,K)

= MK

∫
v−r≤2c

(v − r) |log (v − r)|
1−G0

(
v−r

2

) f (v, r,K) d (v, r,K)

+MK

∫
v−r>2c

(v − r) log (v − r)
1−G0

(
v−r

2

) f (v, r,K) d (v, r,K) .

The first term is finite because the function x log x is bounded on any bounded interval and

1/
[
1−G0

(
v−r

2

)]
≤ 1/ [1−G0 (c)]. For the second term we note that x log x/

[
1−G0

(
x
2

)]
is

an increasing function in x, so

∫
v−r>2c

(v − r) log (v − r)
1−G0

(
v−r

2

) f (v, r,K) d (v, r,K) <

∫
v>2c

v log v

1−G0

(
v
2

)f (v, r,K) d (v, r,K)

=

∫
v>2c

v log v

1−G0

(
v
2

)f (v) dv.

Under Condition (ii,A), for c > c

1−G0 (c) =

∫ ∞
c

g0 (x) dx ≥
∫ ∞
c

Lx−1−αdx = L
c−α

α
,
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so for v > 2c

1−G0

(v
2

)
≥ 2αL

v−α

α
. (A25)

Therefore the second term of J2 is less than

α2−αL−1MK

∫
v>2c

vα+1 log (v) f (v) dv < α2−αL−1MK

∫
vα+1 |log v| f (v) dv <∞,

the latter inequality by the second part of Condition (ii,A). This proves J1 <∞.

Under Condition (ii,B), for c > c

1−G0 (c) =

∫ ∞
c

g0 (x) dx ≥
∫ ∞
c

Le−αxdx = L
e−αc

α
,

so for v > 2c

1−G0

(v
2

)
≥ L

α
e−

αv
2 . (A26)

Therefore the second term of J2 is less than

αL−1MK

∫
v>2c

v log (v) e
αv
2 f (v) dv < αL−1L′MK

∫
v>2c

v log (v) e−(α′−α2 )vdv <∞,

where the former inequality follows from the second part of Condition (ii,B). This proves J1 <

∞.

Now, applying again (A24), we have

J2 ≤MK

∫
(v − r)

1−G0

(
v−r

2

) log

(
K

1−G0

(
v−r

2

)) f (v, r,K) d (v, r,K) . (A27)

This can be split into the sum of two integrals:

MK

∫
v−r≤2c

(v − r)
1−G0

(
v−r

2

) log

(
K

1−G0

(
v−r

2

)) f (v, r,K) d (v, r,K)

+MK

∫
v−r>2c

(v − r)
1−G0

(
v−r

2

) log

(
K

1−G0

(
v−r

2

)) f (v, r,K) d (v, r,K) .
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The first integral is less than

MK
2c

1−G0 (c)
log

(
K

1−G0 (c)

)
<∞.

The second integral can be bounded in a way similar to the second integral term of J1. We

obtain

∫
v−r>2c

(v − r)
1−G0

(
v−r

2

) log

(
K

1−G0

(
v−r

2

)) f (v, r,K) d (v, r,K)

<

∫
v>2c

v

1−G0

(
v
2

) log

(
K

1−G0

(
v
2

)) f (v, r,K) d (v, r,K)

=

∫
v>2c

v

1−G0

(
v
2

) log

(
K

1−G0

(
v
2

)) f (v) dv. (A28)

Under Condition (ii,A), from (A25) this is less than

α2−αL−1

∫
v>2c

vα+1 log

(
αK

2αL
vα
)
f (v) dv

= α2−αL−1

∫
v>2c

vα+1 (log a+ α log v) f (v) dv

= α2−αL−1 log a

∫
v>2c

vα+1f (v) dv + α22−αL−1

∫
v>2c

vα+1 |log v| f (v) dv

<
(
α2−αL−1 log a+ α22−αL−1

) ∫
v>2c

vα+1 |log v| f (v) dv,

where a = α2−αKL−1. Consequently, Condition (ii,A) implies that this is finite, and therefore

J2 <∞.

Under Condition (ii,B), from (A26) the expression in (A28) is less than

αL−1

∫
v>2c

ve
αv
2 log

(
αK

L
e
αv
2

)
f (v) dv

= αL−1

∫
v>2c

ve
αv
2

(
log a+

αv

2

)
f (v) dv

= αL−1 log a

∫
v>2c

ve
αv
2 f (v) dv +

α2L−1

2

∫
v>2c

v2e
αv
2 f (v) dv

< αL−1L′ log a

∫
v>2c

ve−(α′−α2 )vdv +
α2L−1L′

2

∫
v>2c

v2e−(α′−α2 )vdv <∞,
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where a = αKL−1. Consequently, J2 <∞.

The statement in (A23) follows easily from the second part of Condition (ii,A). This com-

pletes the proof of I2 <∞.

Bounding I3. We have

I3 =

∫ [∫ v

p
0

|log (v − p)| f (p|g0) dp

]
f (v, r,K) d (v, r,K) .

The integral in the brackets is

∫ v

p
0
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∫ v

p
0

|log (v − p)|
(
v − r
p− r

)2
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p
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−
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(A29)

−

(
v − r
p

0
− r
− 1

)
log

(
v − r
p

0
− r
− 1

)
.

So we need to show that

H1 =

∫
(v − r) f (p|g0) |p=v |log (v − r)| v − r

p
0
− r

f (v, r,K) d (v, r,K) <∞, (A30)

H2 =

∫
(v − r) f (p|g0) |p=v

[
v − r
p

0
− r

log
v − r
p

0
− r
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−

(
v − r
p

0
− r
− 1

)
log

(
v − r
p

0
− r
− 1

)]
f (v, r,K) d (v, r,K) <∞. (A31)

The first statement is proved in (A21). For the second statement we note that the function

x log x− (x− 1) log (x− 1) is increasing in x. Therefore, by (A24)

H2 < M

∫
(v − r)

[
K

1−G0

(
v−r

2

) log
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−
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< MK
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(v − r)

1−G0

(
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2

) log
K

1−G0

(
v−r

2

)f (v, r,K) d (v, r,K) .

The latter expression is the same as the RHS expression in (A27), which we have already proved

to be finite. Consequently, I3 <∞. This completes the proof that E [B (p; v, r,K)] <∞.
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Figures

(a) K = 10 (b) K = 15

(c) K = 50 (d) K = 100

Figure 1: Search cost cutoffs with data from only one market

(a) M = 1, K = 10 (b) M = 5, K = 10

(c) M = 25, K = 10 (d) M = 50, K = 10

Figure 2: Search cost cutoffs with data from M different markets
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(a) Search cost CDF (b) Search cost PDF

Figure 3: Monte Carlo results: estimated search costs for N = 8)

(a) One market (v = 400) (b) All markets (N = 8)

Figure 4: Monte Carlo results: estimated search costs (market-by-market)
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(a) Search cost CDF (b) Search cost PDF

Figure 5: Estimated search cost distribution

(a) KTT533D2 (b) KTD-INSP8200

Figure 6: Estimated and empirical price CDF
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(a) Search cost cutoffs estimated (b) Including shipping costs

(c) Residuals (d) Market-by-market approach

Figure 7: Estimated search cost CDF alternative specifications
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Tables

Table 1: Monte Carlo results

Prices Search costs
ISE ISE ISE

(approx.) (true) (true)
×10−2 ×10−4

N = 1 -0.097 1.031 1.625
N = 2 -0.235 0.838 0.181
N = 3 -0.236 0.841 0.147
N = 4 -0.244 0.844 0.143
N = 5 -0.241 0.829 0.121
N = 6 -0.242 0.822 0.097
N = 7 -0.243 0.824 0.092
N = 8 -0.245 0.823 0.077
N = 9 -0.244 0.839 0.078

Notes: ISE values are calculated for the mean
price and search cost densities of the 100 repli-
cations.

Table 2: List of products

Part number Manufacturer Compatibility Size Speed Form factor
KTT3311A Kingston Toshiba 1GB 333MHz DDR333/PC2700 200-pin SoDIMM
KTT533D2 Kingston Toshiba 1GB 533MHz DDR2-533/PC2-4200 200-pin SoDIMM
KTD-INSP8200 Kingston Dell 1GB 266MHz DDR266/PC2100 200-pin SoDIMM
KTD-INSP5150 Kingston Dell 1GB 333MHz DDR333/PC2700 200-pin SoDIMM
KTD-INSP6000 Kingston Dell 1GB 533MHz DDR2-533/PC2-4200 240-pin SoDIMM
KTD-INSP6000A Kingston Dell 1GB 533MHz DDR2-533/PC2-4200 200-pin SoDIMM
KAC-MEME Kingston Acer 1GB 533MHz DDR2-533/PC2-4200 200-pin SoDIMM
KTD-INSP9100 Kingston Dell 1GB 400MHz DDR400/PC3200 200-pin SoDIMM
KTM-TP3840 Kingston IBM 1GB 533MHz DDR2-533/PC2-4200 200-pin SoDIMM
KTH-ZD8000A Kingston HP Compaq 1GB 533MHz DDR2-533/PC2-4200 200-pin SoDIMM

Table 3: Summary statistics

Part number No. of Stores Mean Price (Std) Min. Price Max. Price Coeff. of Var. (as %)
KTT3311A 32 181.67 (24.62) 148.62 235.00 13.55
KTT533D2 33 123.33 (15.62) 100.45 161.40 12.66
KTD-INSP8200 39 173.59 (21.31) 148.62 249.54 12.28
KTD-INSP5150 39 179.09 (19.84) 148.62 222.35 11.08
KTD-INSP6000 35 120.29 (13.48) 100.45 151.05 11.21
KTD-INSP6000A 38 116.33 (13.43) 94.99 154.50 11.54
KAC-MEME 24 123.58 (17.47) 101.92 161.64 14.14
KTD-INSP9100 33 175.84 (24.38) 148.62 249.54 13.87
KTM-TP3840 37 122.83 (14.32) 104.55 161.94 11.65
KTH-ZD8000A 41 116.77 (12.25) 100.45 154.50 10.49

Notes: Prices are in US dollars.
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Table 4: Fit SNP estimates for different values of N

N LL ISE KS (avg)
1 40.047 -0.0416 1.289
2 40.011 -0.0414 1.286
3 39.532 -0.0449 1.085
4 39.527 -0.0451 1.089
5 39.525 -0.0451 1.091
10 39.258 -0.0484 1.073
15 39.207 -0.0487 1.038
20 39.180 -0.0492 1.044
25 39.158 -0.0491 1.038
30 39.146 -0.0492 1.035
35 39.141 -0.0493 1.046
40 39.132 -0.0492 1.029
45 39.131 -0.0493 1.041
50 39.127 -0.0493 1.029

Notes: ck’s are obtained from empirical
price CDF.

Table 5: Parameter estimates products and fit

Part number K p v r µ1 µ2 µ3 µ4 µ5...15 µ16...K KS

KTT3311A 32 148.62 235.00 142.73 0.26 0.24 0.42 0.00 0.00 0.08 0.66
KTT533D2 33 100.45 161.40 93.93 0.32 0.59 0.00 0.00 0.00 0.08 0.61
KTD-INSP8200 39 148.62 249.54 138.75 0.29 0.62 0.00 0.00 0.00 0.08 1.69
KTD-INSP5150G 39 148.62 222.35 142.52 0.28 0.61 0.02 0.00 0.00 0.08 1.63
KTD-INSP6000 35 100.45 151.05 94.74 0.33 0.58 0.00 0.00 0.00 0.08 0.95
KTD-INSP6000A 38 94.99 154.50 87.40 0.33 0.58 0.00 0.00 0.01 0.08 1.16
KAC-MEME 24 101.92 161.64 96.28 0.26 0.61 0.00 0.00 0.01 0.07 0.73
KTD-INSP9100 33 148.62 249.54 139.11 0.26 0.51 0.14 0.00 0.04 0.04 1.03
KTM-TP3840 37 104.55 161.94 97.09 0.33 0.59 0.00 0.00 0.02 0.06 0.84
KTH-ZD8000A 41 100.45 154.50 93.30 0.34 0.58 0.00 0.00 0.02 0.07 1.15
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