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Abstract

This paper proposes a sieve extremum estimator for semi-nonparametric models that relies

on auxiliary statistics through the principle of indirect inference. The parameter space is allowed

to be unbounded and infinite dimensional. The estimator is shown to be
√

T consistent and

asymptotically Gaussian under general regularity conditions. The data is allowed to exhibit

heterogeneous and dependent behavior. Furthermore, in the tradition of indirect inference, these

results apply to a large class of complex dynamic models with unobserved variables, including those

yielding an estimator with no closed form algebraic representation or featuring a criterion function

which is intractable or infeasible, even on appropriately chosen compact finite-dimensional sieves.

1 Introduction

Interest in conducting statistical inference on unknown parameters that are allowed to lie on infinite

dimensional spaces has gained popularity often as means of avoiding the restrictiveness of paramet-

ric models and the undesirable consequences of incorrect specification. Unfortunately, conducting

inference on infinite dimensional parameters has proven difficult on several occasions. Extremum es-

timators obtained by optimizing a criterion function defined on an infinite dimensional space may be

afflicted by ill-posedness issues, inconsistency problems, or exhibit very slow convergence rates; see

Chen (2007) and references therein. Such undesirable properties are generally caused by the excessive

size and/or complexity (as typically measured by the covering number or entropy value) of the possibly

non-compact parameter space. One possible solution to this problem involves defining an extremum
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estimator that optimizes the criterion function over a sequence of sets (called sieves), of increasing

size and complexity, that is dense in the entire infinite dimensional parameter space of interest.

Such estimators, called sieve extremum estimators, have been studied (to some extent separately)

in both the statistics and econometrics literature. The theoretical properties of these estimators are

often difficult to derive as they depend on both (i) the approximation error introduced by constraining

the optimization to the sieves, and (ii) the convergence properties of the random estimator sequence

within each sieve. Regardless of these difficulties, considerable progress has been made since the

appearance in the statistics literature of the method of sieves, credited to Grenander (1981), and the

introduction in econometrics of semi-nonparametric models, by the hand of Gallant (1981). See Chen

(2007) for a comprehensive review of the relevant literature.

Consistency proofs have been obtained for the general sieve extremum estimator under mild reg-

ularity conditions that allow for great generality in the choice of sieves and for a variety of forms of

dependence and heterogeneity to be present in the data; see e.g. Gallant (1987), White and Wooldrige

(1991) and Chen (2007). A multitude of results have also been obtained for special forms of the

sieve extremum estimator such as for sieve M-estimators, sieve minimum-distance estimators, and

series-estimators; see Chen (2007).

General results on convergence rates and asymptotic normality have been harder to establish and

are seemingly not available for the general sieve extremum estimator. Some results exist however for

specific formulations of the sieve estimator that take advantage of the particular properties of the

sieves and/or criterion functions being used.

Theoretical results on convergence rates are available with some generality for the special case of

sieve M-estimators and series estimators. These typically rely on empirical process theory. In general,

the convergence rate of sieve M-estimators will be slow if the size and/or complexity of the sieves

increases slowly with T (in which case approximation errors decrease slowly and dominate) but also,

when the entropy of the sieves grows too fast (in which case the estimator’s convergence within sieves

is typically slow and dominates). Obtaining an appropriate rate of convergence of sieve estimators

thus requires an exact “rate of expansion” of the sieves that precisely balances the relation between

the approximation error and the rate of convergence of the estimator within each sieve. Relevant

literature on the convergence rates of the sieve M-estimator includes Van de Geer (1995), Shen and

Wong (1994) and Birge and Massart (1998) and Chen and Shen (1998). Results on the sieve maximum

likelihood estimator are also available in Van de Geer (1993) and Wong and Shen (1995). Finally,

other results exists also for specific sieves and criterion functions; see references in Chen (2007).

Asymptotic normality results for sieve estimators are still scarce and in general apply only to

either series least squares estimators or to the finite dimensional parametric part of semi-parametric

models; see e.g. Andrews (1991), Gallant and Souza (1991), Newey (1994, 1997), Zhou et al. (1998)

and Huang (2003) for results on series least-squares estimators, and Chen et al. (2003), Wong and

Severini (1991), Gallant and Souza (1991), Shen (1997) and Chen and Shen (1998) for both two-step
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and simultaneous M-estimators.

This paper establishes the consistency,
√
T -convergence rate, and asymptotic normality of a sieve

extremum estimator that relies on auxiliary statistics through the unifying principle of indirect in-

ference introduced in Gourieroux et al. (1993) and Smith (1993). We call the resulting estimator a

Semi-NonParametric Indirect Inference (SNPII) estimator. The properties of the SNPII estimator

are shown to be preserved under mild conditions on “the rate of expansion” of the sieves and to be

retained under general dependence and heterogeneity conditions on the data. These conditions seem

to be weaker than those typically found in the literature. Furthermore, in the tradition of indirect

inference, these results apply to a large class of models, including those yielding an extremum esti-

mator of interest with no closed form algebraic representation or having a criterion function which is

intractable or infeasible, even on appropriately chosen compact finite-dimensional sieves; see Gourier-

oux and Monfort (1997), e.g. Dhaene et al. (1998), Genton and de Luna (2000), Genton and Ronchetti

(2003) and Dridi et al. (2007). This also seems to constitute a generalization of existing results that

is likely to be of practical interest.

This paper studies also the possibility of conducting inference on continuous and/or smooth func-

tionals defined on the parameter space. Functionals such as projection maps are likely to be of interest

in applications. In particular, while the appropriately standardized SNPII estimator is shown to con-

verge weakly to a Gaussian process, smooth functionals are shown to converge to appropriate Gaussian

limits, be these finite random variables or random processes as well.

Finally, a word on notation. Throughout, we let N, Z and R denote the sets of natural, integer and

real numbers respectively. Given a set A, we let TA denote a topology on A. Given a topological space

(A, TA), we let B(A) denote the Borel σ-algebra generated by TA, and denote the closure of A by cl(A).

A divergence on A is denoted dA. A metric on A is denoted δA. When A is a vector space, then ‖ · ‖A
and 〈·, ·〉A denote a norm and an inner-product on A respectively. Given a metric space (A, δA) we let

Sa0
(ǫ) denote an open ball of radius ǫ > 0 centered at a0 ∈ A, i.e. Sa0

(ǫ) := {a ∈ A : δA(a0, a) < ǫ},
and also, Sc

a0
(ǫ) be its complement in A, i.e. Sc

a0
(ǫ) = A\Sa0

(ǫ). For any index set I and a collection

of sets Ai, i ∈ I, we let ×i∈IAi denote the Cartesian product of the sets Ai. If Ai is a σ-algebra for

every i ∈ I, then ⊗i∈IAi denotes the product σ-algebra. Also, given the product space A = ×i∈IAi,

projections operators are denoted πi : A → Ai. Given two topological spaces (A, TA) and (B, TB) we

let C(A,B) denote the space of continuous functions mapping from A into B. If (A, TA) and (B, TB)
are topological vector spaces then L(A,B) denotes the space of bounded (hence continuous) linear

operators from A into B. Similarly, L2(A × A,B) denotes the space of bounded bilinear operators

from A into B. Furthermore, given a map f : A → B we let ∇A0
f(a0, a) denote either the Frechet or

Hadamard derivative of f at θ0, tangentially to A0 ⊆ A, evaluated at a ∈ A0. Finally,
d→,

p→ and
a.s.→

are used to denote convergence in distribution, probability and almost surely, respectively.
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2 Preliminary Considerations

Observed data consists of a T -sequence xT(ω) := {xt(ω)}Tt=1 of points in Rnx , (T, nx) ∈ N × N,

a subset of the realized path of a nx-variate stochastic sequence x(ω) = {xt(ω), t ∈ Z} for some

element ω of the event space Ω of a complete probability space (Ω,F ,P) where F denotes a σ-algebra

defined on Ω and P a probability measure on F .1 The random sequence x is thus an F/B(Rnx
∞ )-

measurable mapping x : Ω → Rnx
∞ taking values in the Cartesian product of infinite copies of Rnx ,

denoted Rnx
∞ := ×t=∞

t=−∞Rnx . The stochastic sequence x(ω) lives on the space (Rnx
∞ ,Bnx

∞ ,D0) were the

induced probability measure (p.m.) D0 is naturally defined over the elements of the Borel σ-algebra

Bnx
∞ := B(Rnx

∞ ) generated by the finite dimensional product cylinders of Rnx
∞ .

The model of interest consists of a family DΘ of p.m.s D(θ) defined on Bnx
∞ . We let the elements of

this family be indexed by a possibly infinite-dimensional parameter θ ∈ Θ, so that DΘ = {D(θ), θ ∈
Θ}. The metric space (Θ, δΘ), called parameter space, is assumed to possess the following properties.

Assumption 1. The parameter space (Θ, δΘ) is a complete, separable and measurable metric space

with Borel σ-algebra B(Θ) generated by the topology TΘ induced by the metric δΘ : Θ×Θ → R on Θ.2

Subsets of Θ, called sieves, will be indexed by T ∈ N and denoted ΘT ⊆ Θ ∀T ∈ N. Let D denote

the set of all probability measures on Bnx
∞ , then, by definition, the subset DΘ ⊆ D is the image of

Θ under D : Θ → D with D(θ) : Bnx
∞ → [0, 1] for every θ ∈ Θ. The sieves are typically designed to

possess desirable features (e.g. compactness) that are especially convenient for working with extremum

estimators. A mild form of correct specification shall be eventually assumed. Namely, that ∃ θ0 ∈ Θ

such that D(θ0) = D0. However, we allow for the possibility that θ0 /∈ ΘT ∀T ∈ N, requiring only

that the sequence of sieves be increasing and dense on Θ. This is a distinct characteristic of the

method of sieves.

Assumption 2. The sieves {ΘT }T∈N are non-empty compact subsets of Θ satisfying ΘT ⊆ ΘT+1 ⊆
Θ ∀T ∈ N and cl

(⋃
T∈N

ΘT

)
⊇ Θ. Furthermore, ∃θ0 ∈ Θ : D(θ0) = D0, i.e. D0 ∈ DΘ.

Indirect inference on θ0 is to be conducted under the assumption that it is possible to “draw”

from the distribution D(θ) for every θ lying on well chosen (possibly finite dimensional) subsets ΘT ⊆
Θ, ∀T ∈ N. In other words, it must be possible to obtain T -period subsets x̃T(θ, ω) := {x̃t(θ, ω)}TT=1

of the realized path of the stochastic sequence x̃(θ) : Ω → Rnx
∞ , living in (Rnx

∞ ,Bnx
∞ ,D(θ)), for

every θ ∈ ΘT , ∀T ∈ N. This seems hardly restrictive in practice, see e.g. Gourieroux and Monfort

(1995). Note in particular,that we do not require the ability to “draw” from D0 since it is possible

that D0 /∈ DΘT
∀T ∈ N, where DΘT

:= {D(θ), θ ∈ ΘT }, even though D0 ∈ DΘ. In this sense,

statistical inference is conducted using a sequence of possibly misspecified models DΘT
⊆ D ∀T ∈ N.

1Given a measurable space (A,B(A)), a measurable map f : Ω → A and some A ∈ B(A), we shall often write P(A)

instead of P(ω ∈ Ω : a(ω) ∈ A) when there is no risk of ambiguity.
2Θ is thus succinctly described as a Polish metric space with Borel σ-algebra B(Θ) (see Definition 1).
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When considering several draws of T -period sequences x̃T(θ) from D(θ), these shall be indexed by

s ∈ {1, ..., S}, S ∈ N and denoted x̃
s
T
(θ).

Finally, we define also a topological vector space (B, TB) called the auxiliary parameter space.

Indirect inference on elements of Θ shall be conducted “through” inference on elements of B. The

auxiliary space B is obtained as the Cartesian product of a collection of auxiliary factor spaces BL,

L ∈ L, where L is a countable index set. We require that an appropriate topology be defined on the

product space B = ×L∈LBL, namely, Tychonoff’s product topology. This ensures continuity of the

projection maps πL : B → BL ∀L ∈ L (Lemma 6). An immediate consequence is that convergence

of a sequence {bT }T∈N on B implies (and is implied by) the convergence of the projection sequences

{πL(bT )}T∈N on BL for every L ∈ L (Corollary 11). This in turn implies that continuity of operators f

mapping from any topological space A into B holds if and only if πL◦f : A → BL is continuous ∀L ∈ L
(Lemma 7). Moreover, compactness of subsets of B∗ = ×L∈LB∗

L ⊆ B follows from compactness of

every B∗
L (Lemma 8). We shall often require B to be equipped with a metric δB. As such (B, TB) is

assumed to be metrizable, and hence also Hausdorff (Lemma 2).3 This can be obtained by having

BL be regular and second countable for every L ∈ L (Lemmas 1, 9 and 10). Clearly, it is imposed

from the outset that the metric δB on B be a product metric inducing the product topology TB on B.

When L is finite, this is not restrictive. When L is (countably) infinite however, then the restriction

is more obvious. Product metrics inducing the desired topology on countable product spaces are,4

δB(β,β
′) =

∞∑

i=1

1

2i
δBLi

(βLi
,β′

Li
)

1 + δBLi
(βLi

,β′
Li
)

and δB(β,β
′) = sup

i∈N

1

i

δBLi
(βLi

,β′
Li
)

1 + δBLi
(βLi

,β′
Li
)
, (1)

for every (β,β′) ∈ B × B (Lemma 11) and the factor vector spaces. Finally, note that measurability

statements involving (B, TB) are made w.r.t. the Borel σ-algebra B(B) generated by TB.

Assumption 3. The auxiliary parameter space (B, δB) is a measurable metric space, a countable

Cartesian product B := ×L∈LBL of complete separable normed topological vector spaces (BL, TBL
)

equipped with norms δBL
(βL,β

′
L) := ‖βL − β′

L‖BL
∀ (βL,β

′
L) ∈ BL × BL for every L ∈ L. The

product space (B, δB) is equipped with a metric δB : B × B → R inducing Tychonoff’s topology TB on

B and a Borel σ-algebra B(B) generated by TB.

Note that Assumption 3 implies that B is separable (Lemma 10). Second countability of B is

also implied by Assumption 3 (Lemma 13). Furthermore, this implies by Lemma 12 that B(B) =

⊗L∈LB(BL). These algebras are thus used interchangeably. Most importantly, the projection map-

pings πL : B → BL are B(B)/B(BL)-measurable ∀L ∈ L (Corollary 12) and B(B)/B(A)-measurability

of maps f from any measurable space (A,B(A)) into (B,B(B)) is implied by the B(BL)/B(A)-

measurability of the projection maps πL ◦ f : A → BL for every L ∈ L (see Corollary 13).

3We do not require the metric on the linear space to be a norm. The latter requires homogeneity and translation

invariance which is sometimes unnecessary.
4When L is countably infinite, its elements are naturally indexed by the natural numbers i ∈ N. In (1) the factor

spaces (BL, TBL
) are equipped with metrics δBL

: BL × BL → R ∀L ∈ L.
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3 The SNPII Estimator

For some fixed S ∈ N (whose role is described below), define the map θ̂T,S : Ω → ΘT as being such

that, for every ω ∈ Ω, the image θ̂T,S(ω) is an element of the argmin set of a criterion function

QT,S(ω) : Θ → R over the sieve ΘT ⊆ Θ ∀T ∈ N,

θ̂T,S ∈ arg min
θ∈ΘT

QT,S(θ). (2)

The sequence {θ̂T,S(ω)}T∈N of points in Θ thus corresponds to a sequence of minimizers of a sequence

of real-valued maps {QT,S(ω)}T∈N on a sequence of sieves {ΘT}T∈N. In what follows, conditions shall

be imposed on the criterion functions QT,S : Θ×Ω → R and the sieves ΘT so as to guarantee that the

argmin set exists and that QT,S converges in some appropriate sense to a limit deterministic criterion

function Q∞ : Θ → R.5 When such conditions are too restrictive, then the above definition can easily

be relaxed to that of an approximate extremum estimator θ̂T,S satisfying, for fixed S ∈ N,

QT,S(θ̂T,S) ≤ inf
θ∈ΘT

QT,S(θ) +Op(ηT ), (3)

With ηT → 0 as T → ∞. Clearly, setting Op(ηT ) = 0 ∀T ∈ N yields an exact sieve extremum

estimator. When furthermore the argmin set exists, then the extremum estimator is given by (2)

above. Now, the fundamental feature that turns the extremum estimator in either (2) or (3) into an

SNPII estimator is its appropriate definition as a minimizer of a divergence defined on the auxiliary

parameter space B.

In particular, let us define the maps β̂T : Ω → B and β̃T,S(θ) : Ω → B, ∀θ ∈ Θ. Each of

these consists of a vector of random variables (here called auxiliary estimators or auxiliary statistics)

indexed by L ∈ L and taking values on the factor-spaces BL. The first set,

β̂T := {β̂L

T , L ∈ L}

collects those estimators β̂
L

T : Ω → BL that are functions of observed data xT. Immediate examples are

(i) statistics of the type β̂
L

T =
∑T

t=1 L(xt) where L : X → BL, and (ii) typical extremum estimators of

the form β̂
L

T = argminβL∈BL
L(xT,βL) where L is some criterion function L : XT×BL → R. Auxiliary

estimators of interest should be simple to work with in applications and designed so as to possess

desirable convergence properties. In particular, they should take values on well chosen (possibly finite

dimensional compact) factor spaces BL so that they do not suffer from the complications of estimation

on large complex spaces. This is not restrictive, since in the spirit of indirect inference, auxiliary

statistics and factor spaces BL can be almost arbitrary. The second set of auxiliary estimators,

β̃T,S(θ) :=
{
1/S

S∑

s=1

β̃
L

T,s(θ), L ∈ L
}

5There is seemingly nothing to be gained by letting QT,S be defined only on the sieves ΘT , i.e. by letting QT,S :

ΘT × Ω → R+
0 , since an agreeing measurable extension is guaranteed to exist on Θ (see e.g. Stinchcombe and White

(1992, Lemma 2.14)
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collects (for any given θ ∈ Θ) averages of those estimators β̃
L

T (θ) : Ω → BL that are functions

of the “artificial” sequence of data x̃
s
T
(θ) drawn from D(θ). Again, immediate examples are (i)

statistics of the type β̃
L

T,s(θ) =
∑T

t=1 L ◦ x̃s
T
(θ), and (ii) extremum estimators of the form β̃

L

T,s(θ) =

argminβL∈BL
L(x̃s

T
(θ),βL). These estimators should have desirable properties ∀θ ∈ ΘT , T ∈ N.

In particular, to be useful for indirect inference, β̂T should convergence in suitable manner to a

limit point β∗
0 in B, and most importantly, the random map β̃T,S : Ω × Θ → B, called empirical

binding function, should also converge in an appropriate fashion to a limit deterministic map β∗ :

Θ → B, called the binding function. Under Tychonoff’s topology on B this shall be obtained by

the appropriate convergence of the projections in BL. The indirect inference methodology will then

rely on (i) having an injective binding function β∗ and (ii) the fact that β∗
0 = β∗(θ0), which is

obtained since D0 = D(θ0). Making use of the two sets of auxiliary estimators β̂T and β̃T,S(θ), the

SNPII estimator’s criterion function, and its deterministic limit, are finally appropriately defined as

the real-valued maps,

QT,S(θ) := µ ◦
(
β̂T , β̃T,S(θ)

)
and Q∞(θ) = µ

(
β∗
0 , β∗(θ)

)
, ∀ θ ∈ Θ, (4)

where µ : B×B → R is a divergence that we shall refer to as criterion divergence.6 The SNPII estimator

obtained from minimizing this simple prototypical criterion function is useful in that it provides the

clearest results and allows for the shortest and most comprehensible proofs. Theoretically, this is not

problematic regardless of wether L is finite or infinite. In applications however, it is not possible to

make use of an infinite number of auxiliary estimators. As such, we shall also derive results for an

SNPII estimator whose criterion function is given by,

QT,S(θ) := µT ◦
(
β̂T , β̃T,S(θ)

)
and Q∞(θ) = µ∞

(
β∗
0 , β∗(θ)

)
, ∀ θ ∈ Θ, (5)

where µT : B × B → R is a divergence for every T ∈ N, and the sequence {µT }T∈N converges in a

suitable manner to a limit divergence µ∞ : B × B → R.7 In applications, when L is infinite, µT can

then be appropriately chosen to be a divergence that “concentrates” on a finite subset of the auxiliary

maps β̂T and β̃T,S(θ) for every T ∈ N, yet converges to a divergence µ∞ that “takes into account”

the entire set of auxiliary estimators. This construction shall be made precise in Section 8.

Finally, important notational simplification is obtained by defining the centered empirical binding

function ∆T,S(θ) := β̂T − β̃T,S(θ), the natural estimator of the centered binding function ∆∞(θ) :=

b(θ0) − b(θ). Since ∃θ0 ∈ Θ : D(θ0) = D0, i.e. D0 ∈ DΘ, the B-valued centered binding function

∆∞ : Θ → B crosses the origin of B at θ0, i.e. ∆∞(θ0) = 0. Its estimator ∆T,S : Ω×Θ → B does not

necessarily cross the origin.

6A special case that might be of interest in application is QT,S(θ) = µp ◦
{

µ
p

L

(

β̂
L

T , β̃
L

T,S(θ)
)}

L∈L
and Q∞(θ) :=

µp ◦
{

µ
p

L

(

β
∗,L
0 , β̃

∗,L
0 (θ)

)}

L∈L
where µ

p

L
: BL × BL → R and µp : R|L| → R are divergences.

7In applications, one might have as a special case, QT,S(θ) = µ
p

T
◦
{

µ
p

L

(

β̂
L

T , β̃
L

T,S(θ)
)}

L∈L
and Q∞(θ) :=

µ
p
∞ ◦

{

µ
p
L

(

β
∗,L
0 , β̃

∗,L
0 (θ)

)}

L∈L
where µ

p
L

: BL × BL → R and µ
p
T

: R|L| → R and µ
p
∞ : R|L| → R+

0 are divergences.

7



4 Existence and Measurability

As we shall now see, measurability of the SNPII estimator θ̂T,S : Ω → ΘT follows almost immediately

from a measurability result for sieve extremum estimators established by Theorem 2.2 in White and

Wooldrige (1991), the measurability of the auxiliary maps β̂T : Ω → B and β̃T,S : Ω×Θ → B, which

in turn, is directly obtained from the measurability of the individual auxiliary estimators under the

Borel σ-algebra B(B) generated by the product topology TB.

Assumption 4. (i) β̂
L

T : Ω → BL is F/B(BL)-measurable ∀ (T, L) ∈ N× L
(ii) β̃

L

T,s(·, θ) : Ω → BL is F/B(BL)-measurable ∀ (θ, T, s, L) ∈ Θ× N× {1, ..., S} × L.

We also impose the following continuity assumptions.

Assumption 5. β̃
L

T,s(ω, ·) : Θ → BL is continuous on Θ ∀ (ω, T, s, L) ∈ Ω× N× {1, ..., S} × L.

Assumption 6. µ : B × B → R is continuous on B × B.

The following establishes the desired existence result for the approximate SNPII estimator θ̂T,S

defined in (3) with fixed criterion divergence as defined in (4).

Theorem 1. (Existence of SNPII Estimator) Let Assumptions 1-6 hold, then there exists a map

θ̂T,S : Ω → ΘT satisfying (3) and (4) for every T ∈ N and S ∈ N that is F/B(ΘT )-measurable.

The same measurability result applies immediately to the exact estimator θ̂T,S defined in (2).

Corollary 1. (Existence of SNPII Estimator) Let Assumptions 1-6 hold, then there exists a map

θ̂T,S : Ω → ΘT satisfying (2) and (4) for every T ∈ N and S ∈ N that is F/B(ΘT )-measurable.

Theorem 1 and Corollary 1 can be naturally extended to the SNPII estimator θ̂T,S with crite-

rion divergence indexed by T , defined in (7), by extending the continuity Assumption in 6 to every

divergence in the sequence {µT }T∈N.

Assumption 7. µT : B × B → R+
0 is continuous on B × B ∀T ∈ N.

Theorem 2. (Existence of SNPII Estimator) Let Assumptions 1-5 and 7 hold, then there exists

θ̂T,S : Ω → ΘT satisfying (3) and (7) for every T ∈ N and S ∈ N that is F/B(ΘT )-measurable.

As before, the same measurability result applies immediately to the exact estimator defined in (2).

Corollary 2. (Existence of SNPII Estimator) Let Assumptions 1-5 and 7 hold, then there exists a

map θ̂T,S : Ω → ΘT satisfying (2) and (5) for every T ∈ N and S ∈ N that is F/B(ΘT )-measurable.

We thus proceed under the established result that θ̂T,S is a random element taking values in

subsets of Θ for every T ∈ N. Statements involving convergence in law, in probability or almost surely

of θ̂T,S are from now on considered sound under the set of Assumptions 1-7.
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5 Consistency

This section establishes the consistency of the SNPII estimator. In particular, the convergence in

probability (and almost surely) of θ̂T,S , as defined in either (2) or (3), to the parameter θ0 ∈ Θ. Note

that in Section 2 we have not been precise as to which metric δB is defined on B, requiring only that

it induces Tychonoff’s topology on the set. This requirement should be enough to obtain meaningful

convergence results since, given a set of metrics {δBL
}L∈L on the auxiliary factor spaces {BL}L∈L, any

pair of product metrics inducing Tychonoff’s topology on B is, by definition, topologically equivalent,

and convergence in one implies convergence in the other (see Definition 9 and Remark 2)). Nonetheless,

to obtain simpler proofs for the theorems that follow, we shall further restrict the class of metrics that

are allowed to equip B. The following assumption provides an explicit restriction on this class. In

particular, it imposes the seemingly mild regularity condition (satisfied e.g. by both metrics in (1);

see Proposition 1) that the product metric δB be Lipschitz weaker than the uniform product metric

(Definitions 10 and 11).

Assumption 8. ∃k ∈ R+ such that δB(β,β
′) ≤ k · supL∈L δBL

(βL,β
′
L) ∀ (β,β′) ∈ B × B.

As we shall now see, under Assumption 8 and appropriate regularity conditions, consistency of the

SNPII estimator follows from ensuring (i) the uniform convergence in probability [a.s.] of the criterion

function QT,S across the sieves ΘT ∀T ∈ N, and (ii) the identifiable uniqueness of θ0 ∈ Θ, i.e. that

θ0 is a well separated minimizer of the limiting criterion function Q∞.

Appropriate uniform convergence of QT,S shall be obtained from the convergence in probability

[a.s.] of auxiliary estimators uniformly over L and across the sieves ΘT ∀T ∈ N. Such convergence is

easily satisfied in applications since, in general, auxiliary estimators can be chosen so as to retain a√
T convergence rate for every L ∈ L and θ ∈ Θ (see Section 8 for simple primitive conditions).8

Assumption 9. (i) supL∈L δBL

(
β̂
L

T , β∗
L(θ0)

)
p→ 0 [a.s.] as T → ∞;

(ii) supθ∈ΘT
supL∈L δBL

(
β̃
L

T,s(θ) , β
∗
L(θ)

)
p→ 0 [a.s.] as T → ∞ ∀ s ∈ {1, ..., S}.

In the context of indirect inference, identification of θ0 requires the fundamental condition that

the product binding function β∗ be injective. This is ensured by having, for every pair (θ, θ′) ∈ Θ×Θ,

at least one L ∈ L such that the limit β∗
L of the auxiliary estimator β̃

L

T,s satisfies β∗
L(θ) 6= β∗

L(θ
′).

Furthermore, to ensure the “transfer” of some topological structure from Θ to the factor spaces BL

(and ultimately to B), we shall assume that the factor binding function β∗
L is an open map ∀L ∈ L.

Finally, to guarantee the continuity of the limit criterion function Q∞ we also impose that β∗ be

continuous on Θ ∀L ∈ L. Together, these conditions can also be shown to imply that the product

binding function β∗ is a homeomorphism on its range (see proof of Theorem 3). The parameter space

Θ is thus homeomorphic (topologically equivalent) to a subset of B. This conveys a natural sense in

which inference on Θ can be conducted through inference on B.

8In Assumption 9 the following definition is used β∗
L(θ) := πL ◦ β∗(θ) ∈ BL ∀ (θ, L) ∈ Θ× L.
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Assumption 10. β∗
L : Θ → BL is (i) an open map ∀L ∈ L; (ii) continuous on Θ ∀L ∈ L; and (iii)

for every (θ, θ′) ∈ Θ×Θ, ∃ L ∈ L : β
∗
L(θ) = β

∗
L(θ

′).

Finally, as we shall see, given Assumption 10, a sufficient condition for θ0 to be an identifiably

unique minimizer (Definition 14) of the limit criterion function Q∞, is that β0 be itself a well-

separated minimizer of the criterion divergence µ. In applications, most divergences of interest satisfy

this condition (see Section 8 for examples).

Assumption 11. infβ∈Sc
β0

(ǫ)⊂B

∣∣µ(β)− µ(β0)
∣∣ > 0 ∀ ǫ > 0.

We are now ready to provide the first consistency result. The following theorem establishes the

convergence in probability [a.s.] of the SNPII estimator.

Theorem 3. (Consistency of SNPII Estimator) Let Assumptions 1-6 and 8-11 hold. Then, the

approximate SNPII estimator θ̂T,S defined in (3) and (4) satisfies δΘ(θ̂T,S , θ0)
p→ 0 [a.s.] as T → ∞.

Since the SNPII estimator θ̂T,S in (2) is a special case of the one in (3), the following result is

obtained immediately as a corollary.

Corollary 3. (Consistency of SNPII Estimator) Let Assumptions 1-6 and 8-11 hold. Then, the exact

SNPII estimator θ̂T,S defined in (2) and (4) satisfies δΘ(θ̂T,S , θ0)
p→ 0 [a.s.] as T → ∞.

In general, it is easy to verify that the convergence of auxiliary estimators, uniformly in L ∈ L
and across the sequence of sieves {ΘT}T∈N (Assumption 9), holds true by noting that every auxiliary

estimator retains a
√
T -convergence in BL for every θ ∈ ΘT ∀T ∈ N, i.e. for every D(θ) ∈ DΘT

∀T ∈ N

(see Section 8). Still, the consistency result established in Theorem 3 above applies also naturally

to auxiliary estimators β̃
L

T,s(θ) exhibiting varying convergence rates across elements of DΘT
∀T ∈ N.

In applications where auxiliary estimators exhibit varying convergence rates across Θ and L (except

possibly at θ0), it is desirable to dispose of alternative ways of verifying that Assumption 9 is satisfied.

To obtain an analogue of Theorem 3 while substituting the uniform convergence postulated in

Assumption 12 by pointwise convergence (over L and Θ), we do however require the added influence

of conditions that might be more or less restrictive depending on the application. In particular,

we make use of (i) a uniform generalized stochastic Lipschitz condition on β̃
L

T,s, (ii) a generalized

Lipschitz condition on the criterion divergence µ, and (iii) the total boundedness of the parameter

space Θ.

Assumption 12. (i) δB

(
β̂
L

T , β∗
L(θ0)

)
p→ 0 [a.s.] as T → ∞ ∀L ∈ L;

(ii) δBL

(
β̃
L

T,s(θ) , β
∗
L(θ)

)
p→ 0 [a.s.] as T → ∞ ∀ (θ, s, L) ∈ Θ× {1, ..., S} × L.

Assumption 13. ∃ T ∗ ∈ N such that δBL

(
β̃
L

T,s(θ)− β̃
L

T,s(θ
′)
)
≤ ζT ξ

(
δΘ(θ, θ

′)
)

holds a.s. ∀ (θ, θ′) ∈
ΘT ×ΘT and every T > T ∗, where ξ is a nonstochastic function satisfying limx→0 ξ(x) = 0 and ζT is

a stochastic sequence satisfying either (i) ζT = Op(1) or (ii) lim supT∈N ζT < ∞ a.s..
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Assumption 14. µ(β,β′) = µ∗(β − β′) ∀ (β,β′) ∈ B × B and
∣∣∣µ∗(β) − µ∗(β′)

∣∣∣ ≤ ξµ

(
δB(β,β

′)
)

∀ (β,β′) ∈ B×B where ξ : R → R is ζµ-homogeneous (see Definition 15) and satisfies limx→0 ξ(x) = 0.

Assumption 15. (Θ, δΘ) is a totally bounded metric space.

The generalized Lipschitz continuity postulated in Assumption 14 allows e.g. for the criterion

divergence µ to be Lipschitz or Holder continuous. The total boundedness of the parameter space

imposed in Assumption 15 might be too restrictive from a sieve estimation perspective when interest

lies in having a sequence of sieves {ΘT } that is “increasing in size” and not necessarily one that is only

“increasing in dimension”. Note however that the restrictiveness of total boundedness on separable

metric spaces such as Θ might be only apparent (Lemma 27). In any case, total boundedness of Θ

is not a necessary condition and can be relaxed as long as some mild structure is imposed on the

rate of increase in the entropy of the sieves. We shall provide such a consistency result, but only

in Section 6, as we must then make use of conditions (introduced only in that section) that allow

us to effectively translate convergence rate properties from auxiliary estimators in the factor spaces

BL to the empirical binding function in the product space B, and ultimately, to the SNPII criterion

function QT,S . For now, we impose the total boundedness of Θ (and hence a finite ǫ-entropy on Θ

∀ ǫ > 0) which effectively reduces the consistency proof to that commonly found in standard extremum

estimation problems. Finally, it is important to note that Assumption 15 does not make the use of

sieves pointless since various desirable properties for the SNPII estimator can be obtained by choosing

appropriate subsets of a possibly infinite dimensional (yet totally bounded) parameter space Θ. Also,

from a practical perspective, there is a clear impossibility of conducting indirect inference directly on

the infinite dimensional Θ, again even if it is totally bounded.

Theorem 4. (Consistency of SNPII Estimator) Let Assumptions 1-6, 8 and 10-15 hold. Then, the

approximate SNPII estimator θ̂T,S defined in (3) and (4) satisfies δΘ(θ̂T,S , θ0)
p→ 0 [a.s.] as T → ∞.

Again, consistency of the SNPII estimator θ̂T,S in (2) follows immediately as a corollary.

Corollary 4. (Consistency of SNPII Estimator) Let Assumptions 1-6, 8 and 10-15 hold. Then, the

exact SNPII estimator θ̂T,S defined in (2) and (4) satisfies δΘ(θ̂T,S , θ0)
p→ 0 [a.s.] as T → ∞.

Finally, we provide analogues of both Theorems 3 and 4 for the SNPII estimator described in (5)

whose criterion divergence µT is indexed by T . The only changes in the set of assumptions pertain

exactly to the new criterion divergence. In particular, we now require the uniform convergence of

the deterministic sequence of criterion divergences {µT }T∈N to a limit criterion divergence µ∞ that

satisfies an identifiable uniqueness w.r.t. β0 ∈ B.

Assumption 16. {µT }T∈N satisfies supβ∈B |µT (β)− µ∞(β)|→0 for some continuous µ∞ : B → R.

Assumption 17. infβ∈Sc
β0

(ǫ)⊂B

∣∣µ∞(β)− µ∞(β0)
∣∣ > 0 ∀ ǫ > 0.
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Section 8 provides examples and discusses the verification of Assumptions 16 and 17 in applications.

Theorem 5. (Consistency of SNPII Estimator) Let Assumptions 1-5, 7-10, 16 and 17 hold. Then,

the approximate SNPII estimator θ̂T,S defined in (3) and (5) satisfies δΘ(θ̂T,S , θ0)
p→ 0 [a.s.] as

T → ∞.

The usual Corollary establishing the consistency of the SNPII estimator θ̂T,S defined in (2) and

(5) follows immediately.

Corollary 5. (Consistency of SNPII Estimator) Let Assumptions 1-5, 7-10, 16 and 17 hold. Then,

the exact SNPII estimator θ̂T,S defined in (2) and (5) satisfies δΘ(θ̂T,S , θ0)
p→ 0 [a.s.] as T → ∞.

An analogue of Theorem 4 that follows from pointwise convergence of auxiliary estimators (over

L and Θ) can also be derived by appropriately substituting Assumption 14 for the following equicon-

tinuity condition for the sequence {µT }T∈N.

Assumption 18. µT (β,β
′) = µ∗

T (β − β′) ∀ (β,β′) ∈ B × B and
∣∣∣µ∗

T (β) − µ∗
T (β

′)
∣∣∣ ≤ ξµ

(
δB(β,β

′)
)

∀ (β,β′) ∈ B × B and every T ∈ N where ξ : R → R is ζµ-homogeneous (see Definition 15) and

satisfies limx→0 ξ(x) = 0.

By Arzela-Ascolli’s Theorem (Lemma 31), under the additional assumption that B is compact

(which is implied by compactness of BL ∀L ∈ L in the product topology Tychonoff’s Theorem,

Lemma 8), the a.s. continuity of the limit criterion µ∞ postulated in Assumption 16 implies (and is

implied by) the equicontinuity in Assumption 18 and the uniform convergence in Assumption 16.

Theorem 6. (Consistency of SNPII Estimator) Let Assumptions 1-5, 7-8, 10, 12, 13, 15-17 and 18

hold. Then, the approximate SNPII estimator θ̂T,S defined in (3) and (5) satisfies δΘ(θ̂T,S , θ0)
p→ 0

[a.s.] as T → ∞.

Finally, a corollary of Theorem 6.

Corollary 6. (Consistency of SNPII Estimator) Let Assumptions 1-5, 7-8, 10, 12, 13, 15-17 and 18

hold. Then, the exact SNPII estimator θ̂T,S defined in (2) and (5) satisfies δΘ(θ̂T,S , θ0)
p→ 0 [a.s.] as

T → ∞.

Before moving on to the next section, a note is due also on the convergence of continuous func-

tionals of θ̂T,S . In applications, researchers might be interested in the study of such quantities as(
φ1(θ0), ..., φnφ

(θ0)
)

where φi : Θ → Φ is some continuous functional defined on Θ, i = 1, ..., nφ,

nφ ∈ N, be this a map to finite or infinite dimensional spaces. Examples of interest are likely to

include finite dimensional objects such as a set of derivatives (when elements θ are functions) or pro-

jections to finite dimensional subsets of Θ (see Andrews (1991) for more examples). Wether elements

θ are infinite vectors, functions, or collections of functions, interest in conducting inference on projec-

tions is almost certain to occur in applications. In any case it is the continuity of the projection maps
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w.r.t. Tychonoff’s topology that enables the immediate deduction of convergence of the possible finite

dimensional subsets of θ̂T,S to the corresponding finite dimensional subsets of θ0.

Corollary 7. Let the conditions of any of the above Theorems 3-6 be satisfied. Let θ̂T,S denote the

corresponding SNPII estimator. Let φ : Θ → Φ denote a continuous functional (possibly a projection).

Then, we have that δΘ(θ̂T,S , θ0)
p→ 0 [a.s.] as T → ∞ and by the Continuous Mapping Theorem it

follows that δΦ(φ(θ̂T,S), φ(θ0))
p→ 0 [a.s.] as T → ∞.

6 Convergence Rate

This section establishes a
√
T -convergence rate for the SNPII estimator θ̂T,S , as defined by alternative

combinations of (2), (3), (4) and (5). In essence, the rate of convergence is derived, under appropriate

regularity conditions, from the
√
T -convergence rate of the individual auxiliary estimators β̂

L

T and

β̃
L

T,S(θ0) ∀L ∈ L. The set of regularity conditions is however more restrictive than that employed in

Section 5 to obtain consistency. First of all, Θ is now required to be a normed vector space. Together

with Assumption 1 this implies that Θ is now a separable Banach space. The linear space structure is

required for us to make use of differentiability and linearity concepts. The vector space assumptions

thus turns out to be unavoidable as linear operators and differentiable maps are an integral part of

the theory that follows, and it is on linear spaces that such maps are naturally defined. Second, the

auxiliary factor spaces BL are assumed to be compact normed vector spaces ∀L ∈ L. Compactness of

auxiliary factor spaces BL, and ultimately of the product auxiliary space B, not only simplifies proofs,

it enables the use of several well-established results of weak convergence on compact sets. It should be

stressed however that, while the first assumption constitutes a visible restriction on the generality of

the SNPII methodology, the second assumption does not really carry any serious practical implication.

Assumption 19. (Θ, ‖ · ‖Θ) is a normed vector space.9

Assumption 20. (BL, ‖ · ‖BL
) is a compact normed vector space ∀L ∈ L.

Besides controlling for the convergence rate of auxiliary estimators and establishing a primitive

characterization of the relevant parameter spaces, a number of regularity conditions must also be

imposed on (i) the rate at which the “error” ηT of approximate estimation in (3) declines to zero,

(ii) the smoothness and invertibility of auxiliary estimators and their limits, (iii) the smoothness

and invertibility of the criterion divergence maps µ on B, and finally, (iv) the rate of “expansion” of

the sieves {ΘT}T∈N. Some conditions might not always help in keeping with clarity and intuition.

Nonetheless, some light can be shed on the structure of the convergence rate of the SNPII estimator by

decomposing, for every (ω, T, S) ∈ Ω×N×N, the distance ‖θ̂T,S(ω)− θ0‖Θ into parts that explicitly

9The metric δΘ in Assumption 1 is thus assumed to be the one induced by the norm ‖ · ‖Θ according to δΘ(θ,θ′) :=

‖θ − θ′‖Θ ∀ (θ,θ′) ∈ Θ×Θ. The denseness of the sieves postulated in Assumption 2 thus hold also w.r.t. ‖ · ‖Θ.
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identify the minimizers of the criterion function QT,S(ω) and its limit Q∞ on ΘT . In particular, let

θ
∗
T,S(ω) and θ

0
T denote elements of the argmin set of QT,S(ω) and Q∞ respectively over the sieve ΘT ,

θ∗
T,S(ω) ∈ arg min

θ∈ΘT

QT,S(ω, θ) ∀ (ω, T, S) ∈ Ω× N× N and θ0
T ∈ arg min

θ∈ΘT

Q∞(θ) ∀T ∈ N.

Then, for every (ω, T, S) ∈ Ω× N× N it holds true that,

‖θ̂T,S(ω)− θ0‖Θ ≤ ‖θ̂T,S(ω)− θ∗
T,S(ω)‖Θ + ‖θ∗

T,S(ω)− θ0
T ‖Θ + ‖θ0

T − θ0‖Θ. (6)

This decomposition allows us to separate the study of the convergence rate of ‖θ̂T,S(ω)−θ0‖Θ into (i)

the convergence rate of the “error” ‖θ̂T,S(ω)−θ
∗
T,S(ω)‖Θ introduced by having θ̂T,S be an approximate

extremum estimator; (ii) the convergence rate of the exact SNPII estimator “within sieves” ‖θ∗
T,S(ω)−

θ0
T ‖Θ; and (iii) the “sieve approximation error” ‖θ0

T −θ0‖Θ introduced by restricting the optimization

to the sequence of sieves {ΘT }T∈N. In what follows, a
√
T -convergence rate for the SNPII estimator

θ̂T,S is thus obtained essentially by showing that each of these terms is Op(T
−1/2) [a.s.].

Clearly, if θ̂T,S is an exact extremum estimator (as defined in (2)) then it holds true that

θ̂T,S(ω) = θ∗
T,S(ω) ∀ (ω, T, S) ∈ Ω× N× N

and the term ‖θ̂T,S(ω) − θ∗
T,S(ω)‖Θ vanishes. If θ̂T,S is an approximate extremum estimator (as

defined in (3)) then an appropriate rate of convergence for ‖θ̂T,S − θ∗
T,S(ω)‖Θ can be obtained under

the suitable behavior (postulated in Assumption 21) of the error term ηT in (3) and the smoothness

conditions maintained by Assumption 22 below (see proof of Theorem 7). The
√
T rate of convergence

of the “within sieves” term ‖θ∗
T,S(ω)−θ0

T ‖Θ is essentially derived from the
√
T -convergence rate of the

individual auxiliary estimators (Assumption 24), the smoothness conditions of Assumption 22 and the

invertibility conditions of Assumption 23 (see proof of Theorem 7). Finally, the rate of convergence of

the “sieve approximation error” term ‖θ0
T − θ0‖Θ is likewise deduced from the smoothness conditions

in Assumption 22 and by establishing an appropriate rate of “expansion” for the sequence of sieves

{ΘT}T∈N (Assumption 21) as characterized by the convergence of the sequence of δΘ-metric projections

πΘT
(θ0) of θ0 onto ΘT ∀T ∈ N (also in proof of Theorem 7).10

Note here that, by definition, each θ0
T ∈ {θ0

T }T∈N ⊂ Θ corresponds to an element of the projection

set (w.r.t. the divergence Q∞) of θ0 onto ΘT .11 It is important to note however that, in applications,

while the convergence rate of ‖πΘT
(θ0) − θ0‖Θ is typically known from the outset, the convergence

10The fundamental denseness property of the method of sieves (postulated in Assumption 2) implies by construction

that there exists a sequence {πΘT
(θ0)}T∈N with πΘT

(θ0) ∈ ΘT ∀T ∈ N such that ‖πΘT
(θ0)− θ0‖Θ → 0 as T → ∞.

11That Q∞ is a divergence on Θ w.r.t. θ0 follows from its definition in terms of the divergence µ (or µ∞) and the

injective nature of the product binding function β∗ derived in Proposition 21 from Assumption 10. Existence of the

argmin set follows immediately, by Weierstrass’s Extreme Value Theorem (Lemma 32), from the compactness of each

ΘT (Assumption 2) and continuity of Q∞ (derived in Theorems 3 and 4 under Assumptions 1, 1, 10 and either 6 or 7).

Uniqueness of θ0
T (i.e. reduction of the argmin set to a singleton) follows for norm-divergences µ (or µ∞) by the strict

convexity of µ (or µ∞ respectively); see Theorem 5 in Blasques (2010)
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rate of ‖θ0
T − θ0‖Θ is most likely not known unless further regularity conditions are satisfied. In

particular, in applications, the choice of norm ‖ · ‖Θ is likely to be dictated by the availability of

results establishing (i) the denseness of the sequence of sieves {ΘT}T∈N on Θ w.r.t. ‖ · ‖Θ and (ii) the

properties of the sequence {ΘT}T∈N in terms of convergence rates of ‖πΘT
(θ0) − θ0‖Θ. No similar

results are necessarily available for the sequence {θ0
T }T∈N of projections w.r.t. the (probably very

complex) divergence Q∞. Control over the convergence rate of the “sieve approximation error” term

‖θ0
T −θ0‖Θ should thus be exerted indirectly by imposing a primitive “rate of expansion” of the sieves

(as described by the convergence rate of ‖πΘT
(θ0)− θ0‖Θ). Assumption 21 provides the appropriate

convergence rate for ‖πΘT
(θ0) − θ0‖Θ which, given the regularity conditions imposed below, turns

out also to be
√
T .

Assumption 21. ‖πΘT
(θ0)− θ0‖Θ = O(T−1/2)

Typical sieve estimation problems require also an upper bound on the “rate of expansion” of the

sieves. Strictly speaking, there is no such requirement in SNPII estimation. The SNPII estimator is,

to the author’s knowledge, unique among nontrivial sieve extremum estimators in not requiring such

an upper bound. This somewhat surprising property occurs because the rate of convergence of θ̂T,S is

derived from the rate of convergence of a set of well behaved auxiliary estimators whose convergence

rate is to a large extent independent of the size and/or complexity of the sequence of sieves {ΘT}T∈N

defined on Θ.12

The smoothness requirements mentioned above will involve Frechet or Hadamard differentiability

concepts (see Definition 22). These forms of differentiability shall be imposed on (i) the divergence

criterion µ and its derivative ∇µ, (ii) the auxiliary estimators β̃
L

T,S , (iii) their limits β∗
L and respective

derivatives ∇β∗
L for every L ∈ L. Since auxiliary estimators of interest in applications are likely to

be finite dimensional (i.e. likely to take values on some finite dimensional BL) the concepts of Frechet

and Hadamard differentiability are equivalent and correspond to the usual notion of differentiability.

Infinite dimensionality of auxiliary estimators is nonetheless allowed for and it thus becomes relevant

to distinguish between such concepts. Careful distinction is also important in what concerns the

definition of derivative function and consequently of second-order differentiability; see Ren and Sen

(2001, Remark 1) and references therein. Alternative definitions exist in the literature. This makes it

hard to interpret what is meant by any of these concepts outside a specific context. To avoid ambiguity,

the following notational convention applies throughout. Unless explicitly stated otherwise, following

Definition 22, given a pair of topological vector spaces (A, TA) and (B, TB) and a map f : Af ⊆ A → B,

the map ∇A0
f : A∇ → L(A0,B) denotes the derivative function of f tangentially to A0, a map

12In practice however, an upper bound could be required. As explained in Section 8 the need for an upper bound is

related to the fact that, in applications, the preservation of the injective nature of the binding function (Assumption 10)

is likely to require the divergence µT to take into account a number of auxiliary estimators that grows faster (in some

specific sense) than the complexity of the sieves ΘT . This however might imply an explosive behavior for the sequence

µT (∆T,S(θ)) depending on the weighting scheme that µT is chosen to establish over the elements of ∆T,S .
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from the set A∇ ⊆ Af of points at which f is differentiable into the conjugate space or dual space

of A0 over the field B, the space of bounded linear functionals L(A0,B). It is easy to verify that

the dual space L(A0,B) becomes a vector space once the operations of addition and multiplication

by scalars are defined in the usual way.13 Clearly, ∇A0
f(a∇) ∈ L(A0,B) denotes a bounded linear

operator, an element of L(A0,B), for any a∇ ∈ A∇. For conciseness, ∇A0
f(a∇) might also be denoted

∇A0
fa∇

, so that ∇A0
fa∇

(a0) is thus a point in B for every a0 ∈ A0, because the differentiation

point a∇ has been fixed. When convenient, the more extensive form ∇A0
f(a∇, a0) will be used.

If the tangent set A0 coincides with the entire set A, then it is omitted from the notation. Thus

∇f(a∇) ∈ L(A0,B) denotes the derivative of f at a∇ tangentially to the entire Af . Now, the usual

notion of second-order differentiability of f is one requiring the differentiability of both f : Af → B

and ∇A0
f : A∇ → L(A0,B).14 Yet, in some occasions ∇A0

f shall be defined in alternative ways such as

∇A0
f : A×A0 → B depending on our specific needs, in which case second-order differentiability takes a

different meaning. Indeed, note that alternative definitions of ∇A0
f carry important implications since

differentiability in one does not necessarily imply differentiability in the other.15 Such deviations from

standard notation shall however be made explicit. Most importantly, in applications, the distinction is

irrelevant as long as the alternatives are equally verifiable. Finally, regardless of these considerations,

second-order derivative functions ∇2
A0
f : A∇ → L2(A0 × A0,B) are always understood as a map for

the from the set A∇ of points at which f is differentiable to the space of bounded bilinear operators

L2(A0 × A0,B).16 One should thus note that while ∇2
A0
f(a∇) ∈ L2(A0 × A0,B) denotes a bilinear

operator for every a∇ ∈ A∇, we have that ∇2
A0
f(a∇, a0) ∈ L(A0,B) denotes a linear operator, an

element of L(A0,B), for every (a∇, a0) ∈ A∇ × A0.

Assumption 22. (i) β̃
L

T,S : Ω × Θ → BL is a.s. Frechet [Hadamard] continuously differentiable in

θ ∈ Θ tangentially to ΘT∀(T, L) ∈ N × L; (ii) β∗
L : Θ → BL and ∇Θβ

∗
L : Θ → L(Θ,BL) are

both continuously Frechet [Hadamard] differentiable in θ ∈ Θ ∀ (T, L) ∈ N × L; (iii) µ : B → R

is continuously Frechet [Hadamard] differentiable in β ∈ B and ∇µ : B × L(ΘT ,B) → L(Θ,R) is

continuously Frechet [Hadamard] differentiable at every point of its domain B × L(Θ,B).

From the conditions stated above, we shall obtain the differentiability of QT,S and consequently

allow for a (approximate) Z-estimator formulation of the SNPII estimator θ̂T,S (see e.g. the proof of

Theorem 7). In particular, as noted in Van der Vaart (1995) and Van der Vaart and Wellner (1996,

ch. 3.3), the derivative function ∇ΘT
QT,S : Θ → L(ΘT ,R) can be seen in this context as an infinite

13Also, if (A0, ‖ · ‖A) is a normed vector space over R, then L(A0,B) with operator norm (Definition 24) is a Banach

space L(A0,B) (Lemma 36)
14Various other definitions of second-order differentiability have however been proposed that do not follow this rea-

soning; see e.g. Ren and Sen (2001, Remark 1) and references therein.
15Any equivalence relation between these concepts would depend first of all on the norm (or at least the topology)

defined on L(A,B).
16The more immediate definition is ∇2

A0
f : A∇ → L(A0,L(A0,B)). However, following Denkowski et al. (2003,

Proposition 5.1.17, p.525) we note that L(A0,L(A0,B)) can be identified with L2(A0 × A0,B).
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set of estimating equations of the form ∇ΘT
QT,S(·, θ) ∈ C(ΘT ,R) [a.s.] indexed by θ ∈ ΘT that are

(approximately) set to zero by the SNPII estimator θ̂T,S . Here, continuity of ∇ΘT
QT,S(·, θ) follows by

the a.s. continuous differentiability of QT,S on Θ tangentially to ΘT . Clearly, from a statistical point of

view, there are however too many equations present in this set ∇QT,S(·,Θ) ⊂ C(Θ,R). Indeed, it is not

only unpractical to have uncountably many equations for estimation, no statistical information is in

effect being added by a large number these equations. Note for instance that statistical inference based

on a subset of ∇QT,S(·,Θ) containing the pair of estimating equations ∇QT,S(·, θ) and ∇QT,S(·, θ′)

will be informationally equivalent to that which includes a third equation ∇QT,S(·, θ′′) that is a linear

combination of the former. A statistically more sensible set of equations is thus one that excludes such

elements. An example of such set (if is exists) is the Schauder basis (see Definition 23 and Corollary

16) of the vector space ∇QT,S(·,Θ).17 From an optimization point of view, there is a similar natural

“reduction” of the system of estimating equations ∇QT,S(·,Θ) since setting to zero the derivatives

of QT,S in the direction of elements of the Schauder basis ΘSB of Θ provides us with the first-order

optimality condition (Proposition 5). This implies “reduction” to the subset ∇QT,S(·,ΘSB).18 In

practice, it is enough that QT,S be differentiable tangentially to the sieve ΘT for every T ∈ N and to

appropriately set to zero a smaller but increasing selection of estimating equations that are obtained

as derivatives in the direction of elements of the sieves. Differentiating QT,S only in the direction of

elements of the Schauder basis of ΘT provides further reduction of the set of equations to a set that is

manageable in applications. In particular, if the sieves ΘT are finite dimensional, the finite Schauder

basis (and correspondingly the set of estimating equations) is finite.19 From a theoretical perspective,

details on the construction of such reduced systems are however immaterial as long as the present set

of assumptions are satisfied by ∇QT,S : Θ → L(Θ,R) or some of the above mentioned reductions of

the system. We thus proceed without further comments on this matter.

We also make use of appropriate primitive invertibility assumptions designed to ensure that

∇2
ΘT

Q0
∞(θ0

T , ·) : lin(ΘT ) → R is continuously invertible for every T ∈ N : θ0
T ∈ Sθ0

(ǫ) for some

ǫ > 0, and also, that ∇2
ΘQ

0
∞(θ0, ·) : lin(Θ) → R is continuously invertible.20

Assumption 23. (i) ∇lin(ΘT )β∆(θ, ·) : lin(ΘT ) → B∆ is continuously invertible for every θ ∈ Sθ0
(ǫ)

for some ǫ > 0. (ii) ∇2
B∆

µ(β∆(θ0), ·) : B∆ → R is continuously invertible. (iii) ∇lin(Θ)β∆(θ0, ·) :

lin(Θ) → B∆ is continuously invertible.

17Existence of a Schauder basis for ∇QT,S(·,Θ) is not guaranteed if Θ is non-compact.
18Also here the assumption that Θ admits a Schauder basis would be lacking. Indeed, Assumptions 1 and 19 by

themselves, although guaranteeing that Θ is a complete separable Banach space, do not ensure that a Schauder basis

exists for Θ as shown by Enflo’s negative answer in Enflo (1973) to Banach’s question on this matter.
19On a finite dimensional space, the Schauder basis coincides with the usual basis for a vector space, the Hamel basis.
20Given the linearity of ∇lin(ΘT )β∆(θ, ·) in Assumption 23, sufficient conditions for Assumption 23 could be

stated in terms of the map’s Kernel and range. Namely, for (i) Ker
(

∇lin(ΘT )β∆(θ, ·)
)

= {0} ∀ θ ∈ Sθ0
(ǫ) and

∇lin(ΘT )β∆(θ, lin(ΘT )) = B∆ ∀ θ ∈ Sθ0
(ǫ), for (ii) Ker

(

∇2
B∆

µ(β∆(θ0), ·)
)

= {0} and ∇2
B∆

µ(β∆(θ0),B∆) = R, and

for (iii) Ker
(

∇lin(Θ)β∆(θ0, ·)
)

= {0} and ∇lin(Θ)β∆(θ0, lin(Θ)) = B.
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Finally, to ensure that the derivative of the criterion function have a convergence rate no slower

that
√
T when evaluated at the sequence {θ0

T }T∈N,

√
T
[
∇ΘT

Q0
T,S(θ

0
T )−∇ΘT

Q0
∞(θ0

T )
]
= Op(1) [a.s.]

we also impose the fundamental condition of
√
T -convergence of the auxiliary estimators β̂

L

T and

β̃
L

T,S(θ0), and also, the partial Frechet/Hadamard differentiability uniformly on a parameter. The

latter concept is introduced in Definition 27 and its generality discussed in Remark 8.

Assumption 24. (i)
√
TδBL

(
β̂
L

T ,β
∗
L(θ0)

)
= Op(1) [a.s.] ∀L ∈ L;

(ii)
√
TδBL

(
β̃
L

T,S(θ
0
T ),β

∗
L(θ0)

)
= Op(1) [a.s.] ∀ (S,L) ∈ N× L.

Assumption 25. ∇Bµ(·,β′) : B → R is Frechet [Hadamard] differentiable at the origin tangentially

to B uniformly in β′ ∈ B.

The following theorem establishes a
√
T -convergence rate for the approximate SNPII estimator

θ̂T,S with fixed divergence criterion defined in (3) and (4). The equivalent result for the exact SNPII

estimator defined in (2) and (4) follows immediately after.

Theorem 7. Let Assumptions 1-6, 8-11 and 19-25 hold. Then, the approximate SNPII estimator

θ̂T,S defined in (3) and (4) satisfies
√
T‖θ̂T,S − θ0‖Θ = Op(1) [a.s.].

Corollary 8. Let Assumptions 1-6, 8-11 and 19-25 hold. Then, the approximate SNPII estimator

θ̂T,S defined in (2) and (4) satisfies
√
T‖θ̂T,S − θ0‖Θ = Op(1) [a.s.].

Counterparts of Theorem 7 and Corollary 8 for SNPII estimators obtained by minimizing a se-

quence of criterion divergences {µT }T∈N can be easily obtained by imposing appropriate smoothness

and convergence properties on the deterministic sequence {µT }T∈N.

[to be completed]

7 Asymptotic Normality

Given the established results of existence, consistency and
√
T -convergence rate of the SNPII es-

timator θ̂T,S , asymptotic normality can now be derived with little effort. In particular, the weak

convergence of
√
T (θ̂T,S − θ0) to a well-defined limit Gaussian process shall be derived from the con-

vergence in distribution of the appropriately standardized sequence of individual auxiliary estimators

β̂
L

T and β̃
L

T,S(θ
0
T ), and the convergence in probability [a.s.] of their derivatives ∇ΘT

β̃
L

T,S(θ
0
T , 0) to

∇Θβ
∗
L(θ0, 0) ∈ BL for every L ∈ L.
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Assumption 26. (i)
√
T (β̂

L

T − β∗
L(θ0))

d→ N (0,ΣL
0 ) ∀L ∈ L; (ii)

√
T (β̃

L

T,S(θ
0
T ) − β∗

L(θ
0
T ))

d→
N (0,Σ(θ0)

L) ∀L ∈ L; and (iii) ∇ΘT
β̃
L

T,S(θ
0
T , 0)

p→ ∇Θβ
∗
L(θ0, 0) ∀ (S,L) ∈ N× L.

Under certain regularity conditions already incorporated in the set of assumptions postulated in the

preceding sections, Assumption 26 is shown to be sufficient to obtain the convergence in distribution

of the derivatives of the criterion function evaluated at the sequence {θ0
T }T∈N of points in Θ,

√
T
[
∇ΘT

Q0
T,S(θ

0
T )−∇ΘT

Q0
∞(θ0

T )
]

d→ G0 := N
(
0, σ2

0

)
as T → ∞.

The following theorem draws from Van der Vaart (1995) and Van der Vaart and Wellner (1996) and

establishes the asymptotic Gaussianity of the appropriately standardized sequence of SNPII estimators

θ̂T,S with fixed divergence criterion defined in (3) and (4). The equivalent result for the exact SNPII

estimator defined in (2) and (4) follows immediately after.

Theorem 8. Let Assumptions 1-6, 8-11 and 19-26 hold. Then, the approximate SNPII estimator

θ̂T,S defined in (3) and (4) satisfies
√
T
(
θ̂T,S − θ0

) d→ −
(
∇2

ΘQ
0
∞(θ0, ·)

)−1(
G0

)
as T → ∞.

Corollary 9. Let Assumptions 1-6, 8-11 and 19-26 hold. Then, the approximate SNPII estimator

θ̂T,S defined in (2) and (4) satisfies
√
T
(
θ̂T,S − θ0

) d→ −
(
∇2

ΘQ
0
∞(θ0, ·)

)−1(
G0

)
as T → ∞.

The following remark describes the covariance structure of the Gaussian process
(
∇2

ΘQ
0
∞(θ0, ·)

)−1(
G0

)

determined by both the variance σ2
0 of the real-valued random variable G0 and the properties of the

inverse of ∇2
ΘQ

0
∞(θ0, ·) : Θ → R.

[to be completed]

Counterparts of Theorem 8 and Corollary 9 for SNPII estimators obtained by minimizing a se-

quence of criterion divergences {µT}T∈N are obtained by imposing further smoothness and convergence

properties on the deterministic sequence {µT }T∈N.

[to be completed]

8 Some Applications of SNPII

[to be completed]

9 Final Remarks

[to be completed]
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A Propositions, Lemmas and Definitions

Definition 1. (Polish Space) A topological space is said to be a Polish space if it separable and there

exists a metric that generates the topology for which the space is complete. Any separable complete

metric space is thus a Polish space.

Lemma 1. [Klambauer 1973, Proposition 31, p.257] (Urysohn-Tychonoff Theorem) Every regular

second-countable topological space (A, TA) is metrizable.

Definition 2. (Metrizable Space) A topological space (A, TA) is said to be metrizable if and only if

there exists a metric δA that induces TA on A, i.e. such that sets of TA are open w.r.t. δA.

Definition 3. (Regular Space) A topological space (A, TA) is called regular if for every point a /∈ A0 ⊂
A there are disjoint open sets A1 and A2 with a ∈ A1 and A0 ⊂ A2.

Definition 4. (Second Countable Space) A topological space (A, TA) is said to be second countable if

TA has a countable base.

Definition 5. (Base for a Topology) A base for a topology T is any collection T0 ⊂ T such that for

every T1 ⊂ T , we have T1 =
⋃{T ′

0 ∈ T0 : T ′
0 ⊂ T1

}
.

Lemma 2. [Sutherland 2009, Proposition 11.4, p.110] (Metrizable-Hausdorff Space) Every metrizable

space (A, TA) is Hausdorff.

Definition 6. (Hausdorff Space) A topological space (A, TA) is Hausdorff if and only if ∀ (a1, a2) ∈
A× A there exists open sets A1 ⊂ A and A2 ⊂ A such that a1 ∈ A1, a2 ∈ A2 and A1 ∩ A2 = ∅.

Definition 7. (Measurable Map) Let (A,A) and (B,B) be measurable spaces. A map f : A → B is

B/A-measurable if f−1(B) ∈ A for every B ∈ B.

Lemma 3. [Billingsley (1995, Theorem 13.1, p.182)] (Measurable Map) Let (A,A) and (B,B) be

measurable spaces. Let f : A → B be such that f−1(B) ∈ A for every B ∈ B0 and let B be generated

by B0, then f is B/A-measurable.

Lemma 4. [Klambauer 1973, Proposition 4, p.234] (Inverse of Continuous Operator) Let (A,A) and

(B,B) be topological spaces. A map f : A → B is continuous map if and only if its inverse is an open

map.

The following is an immediate Corollary of Lemmas 3 and 4.

Corollary 10. (Continuous Borel Map) Let (A, TA) and (B, TB) be topological spaces with Borel σ-

algebra B(A) and B(B) generated by TA and TB respectively. Then a continuous map f : A → B is

B(B)/B(A)-measurable.
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Lemma 5. [Billingsley 1995, Theorem 13.1, p.182] (Measurable Composition) Let (A,A), (B,B) and

(C,C) be measurable spaces. Let f : A → B be B/A-measurable and g : B → C be C/B-measurable.

Then g ◦ f : A → C is C/A-measurable.

Lemma 6. [Gamelin and Greene 1999, Theorem 12.1, p.101] (Continuous Projections) Let (Ai, TAi
)

be topological spaces for all i in some set I and let A = ×i∈IAi. The product topology is the smallest

topology making the coordinate projections πi : A → Ai continuous ∀ i ∈ I.

The following result thus follows as a Corollary of Lemma 6.

Corollary 11. [James 1987, Corollary 2.12, p.33](Product Topology Convergent Sequences) Let

(Ai, TAi
) be topological spaces for all i in some set I and let A = ×i∈IAi. Let (A, TA) be the prod-

uct space with product topology TA. A sequence {an}n∈N ⊂ A satisfies an → a ∈ A if and only if

πi(an) → πi(a) ∈ Ai ∀ i ∈ I.

Also, a Corollary of Lemmas 10 and 6 is as follows.

Corollary 12. (Measurable Projections) Let (Ai, TAi
) be topological spaces with Borel σ-algebra B(Ai)

generated by TAi
for all i in some set I. Let (A, TA) be the product space A = ×i∈IAi with product

topology TA and Borel σ-algebra B(A) generated by TA. Then the projection maps πi : A → Ai are

B(Ai)/B(A)-measurable ∀ i ∈ I.

Lemma 7. [Gamelin and Greene 1999, Theorem 12.2, p.101] (Continuous Map into Product Spaces)

Let (Ai, TAi
) be topological spaces for all i in some set I and let A = ×i∈IAi. Let (A, TA) be the

product space with product topology TA and (B, TB) be some topological space. An operator f : B → A

is continuous at b ∈ B if and only if πi ◦ f : B → Ai is continuous at b for every i ∈ I.

Lemma 8. [Dudley 2002, Theorem 2.2.8, p.39] (Tychonoff’s Theorem) Let (Ai, Ti) be compact topo-

logical spaces for each i in a set I. Then the Cartesian product ×i∈IAi with product topology is

compact.

Lemma 9. [Munkres 2000, Theorem 31.2, p.196] (Subsets and Countable Products of Regular Spaces)

Any subspace of a regular space is regular. Any product of regular spaces is regular.

Lemma 10. [Davidson 1994, Theorem 6.16, p.103] (Countable Products of Separable Spaces) Let

(Ai, TAi
) be topological spaces for all i in some countable set I and let A = ×i∈IAi. Let (A, TA) be the

product space with product topology TA. Then A is separable if and only if Ai is separable for every

i ∈ I.

Lemma 11. [Dudley 2002, Proposition 2.4.4, p.50] (Metrization of Product Topology) For every se-

quence of metric spaces
{
(Ai, δAi

)
}
i∈N

, the topological product space (×i∈NAi, TA) with product topology

TA is metrizable by the product-metric,

δA(a, a
′) :=

∑

i∈N

1

2i
δAi

(ai, a
′
i)

1 + δAi
(ai, a′i)

∀ (a, a′) =
(
{ai}i∈N , {a′i}i∈N

)
∈ A× A.
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Remark 1. Uncountable product spaces with product topology are not metrizable.

Lemma 12. [Dudley 2002, Proposition 4.1.7, p.119] (Algebra on Product Spaces) Let (A, TA) and

(B, TB) be any two topological spaces. Let (A×B, TA×B) be the product space with product Tychonoff’s

topology TA×B and let B(A×B) denote the Borel σ-algebra generated by the product topology TA×B on

A× B. Then B(A × B) includes the product σ-algebra B(A)⊗B(B). If both (A, TA) and (B, TB) are

second-countable then the two σ-algebras on A× B are equal.

Lemma 13. (Separability and Second-Countability) A metric space (A, δA) is separable if and only

if it is second-countable.

Lemma 14. [Foland 2009, p.24] (Measurable Maps and Product σ-Algebra) Let (A,A) and (Bi,Bi)

be measurable spaces for all i in some set I. Let (B,B) be the product space B = ×i∈IBi with product

σ-algebra B = ⊗i∈I. Then the map f : A → B is B/A-measurable if and only if the projection maps

πi ◦ f : A → Bi are Bi/A-measurable ∀ i ∈ I.

The following is obtained as a Corollary of Lemmas 12 and 14.

Corollary 13. (Measurable Maps into Product Spaces) Let (A, TA) and (Bi, TBi
) be topological spaces

with Borel σ-algebra B(A) and B(Bi) generated by TA and TBi
respectively for all i in some set I. Let

(B, TB) be the product space B = ×i∈IBi with product topology TB and Borel σ-algebra B(B) generated

by TB. Then the map f : A → B is B(TB)/B(TA)-measurable if the projection maps πi ◦ f : A → Bi

are B(Bi)/B(A)-measurable ∀ i ∈ I.

Definition 8. (Topological Vector Space) A topological vector space (A, TA) is a vector space A en-

dowed with a topology TA such that vector addition and scalar multiplication are continuous functions.

Lemma 15. [Sutherland 2009, Proposition 8.4, p.84] (Continuous Composition) Let (A, δA), (B, δB)

and (C, δC) be topological spaces and f : A → B and g : B → C be continuous at a ∈ A and b ∈ B

respectively. Then g ◦ f : A → C is continuous at a ∈ A.

Lemma 16. [Klein and Thompson 1984, Lemma 13.2.3,p.154] (Measurable Maps) Let (Ω,F) be a

measurable space and (Θ, δΘ) be a separable metric space. If Q(ω, ·) : Θ → R+
0 is continuous in Θ

for every ω ∈ Ω and Q(·, θ) : Ω → R+
0 is measurable for every θ ∈ Θ, then Q : Ω × Θ → R+

0 is

F ×B(Θ)-measurable.

Lemma 17. [Debreu 1967, Theorem 4.5] (Measurability) Let (Ω,F ,P) be a probability space and

(A, δA) be a complete separable metric space with Borel σ-algebra B(A). Let the random sieve-

correspondence AT : Ω → A have a measurable graph gr(AT ) ∈ F ⊗B(A) and the sieves AT (ω) ⊂ A

are non-empty and compact for every ω ∈ Ω. Finally, let the criterion mapping fT : gr(AT ) → R+
0 be

F ⊗B(A)-measurable and fT (ω) : A → R+
0 be continuous on A. Then f inf

T : Ω → R+
0 is FP /B(R+

0 )-

measurable and the minimizer set ÂΩ ∈ A× Ω defined as Â : Ω → Θ satisfying Â(ω) :=
{
a ∈ AT (ω) :

fT (ω, a) = infθ∈AT (ω) fT (ω, a)
}

for every ω ∈ Ω belongs to FP ⊗B(Θ).
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Lemma 18. [ Hildenbrand 1974, p.55] (Measurable Selection) Let (Ω,F) be a measurable space and

A a complete separable metric space with its Borel σ-field B(A) and f sup
T : Ω → 2A a closed valued

correspondence s.t. {ω ∈ Ω : f sup
T (ω) ∩ A∗} ∈ F for every closed subset A∗ ⊂ A. Then f sup

T : Ω → 2A

admits a measurable selector, i.e. there exists a map âT : Ω → 2A that is measurable and for every

ω ∈ Ω it satisfies âT (ω) ∈ f sup
T (ω).

Corollary 14. [White and Wooldrige 1991, Theorem 2.2, p.646] (Measurable Extrema) Let (Ω,F ,P)

be a complete probability space and (A, δA) be a complete separable metric space. Let {An}n∈N be a

sequence of compact subsets of A. Let fn : Ω × An → R be F ⊗ B(An)/B(R)-measurable for every

n ∈ N and fn(ω, ·) : A → R be continuous on An for every (ω, n) ∈ Ω × N. Then there exists an

F/B(An)-measurable map ân : Ω → An satisfying fn(ω, ân(ω)) = infa∈An
fn(ω, a) for every ω ∈ Ω

and every n ∈ N.

Definition 9. (Metric Equivalence) Let A be a set. Two metrics, δ1
A
: A×A → R and δ2

A
: A×A → R

are said to be topologically equivalent if they define the same open sets, i.e. if they induce the same

topology TA on A.

Remark 2. Let δ1
A

and δ2
A

be any two topologically equivalent metrics on the set A. If a sequence in

A is δ1
A
-convergent then it is also δ2

A
-convergent.

Definition 10. (Lipschitz Stronger/Weaker Metric) Given a pair of metrics δA and δ′
A

defined on the

product A×A of some set A, the metric δA is said to be Lispchitz weaker than δ′
A

if ∃k ∈ R+ such that

δA(a, a
′) ≤ k · δ′

A
(a, a′) ∀ (a, a′) ∈ A× A. The metric δ′

A
is also said to be Lispchitz stronger than δA.

Furthermore, if ∃ (k, k′) ∈ R+ × R+ such that k · δ′
A
(a, a′) ≤ δA(a, a

′) ≤ k′ · δ′
A
(a, a′) ∀ (a, a′) ∈ A× A

then δA and δ′
A

are said to be Lipschitz equivalent.

Lemma 19. [Sutherland 2009, Proposition 6.34, p.70] (Lispchitz Topological Equivalence) A pair of

Lipschitz equivalent metrics δA and δ′
A

defined on the product A×A of some set A is also topologically

equivalent.

Definition 11. (Uniform Product Metric) Given metric spaces (Ai, δAi
), i ∈ I where I is a countable

index set and a product space A := ×i∈IAi. The product metric δA(a, a
′) := supi∈I δAi

(ai, a
′
i) ∀ (a, a′) ∈

A× A is called the uniform product metric on A.

Proposition 1. (Lipschitz Weaker Metrics) Both product metrics in (1) are Lipschitz weaker than

the uniform product metric.

Proof. Immediate from the definitions in (1) since,

δB(β,β
′) =

∞∑

i=1

1

2i
δBLi

(βLi
,β′

Li
)

1 + δBLi
(βLi

,β′
Li
)
≤

∞∑

i=1

1

2i
δBLi

(βLi
,β′

Li
)

≤
∞∑

i=1

1

2i
sup
L∈L

δBL
(βL,β

′
L) = sup

L∈L
δBL

(βL,β
′
L).
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and also,

δB(β,β
′) = sup

i∈N

1

i

δBLi
(βLi

,β′
Li
)

1 + δBLi
(βLi

,β′
Li
)
≤ sup

i∈N

1

i
δBLi

(βLi
,β′

Li
) ≤ sup

L∈L
δBL

(βL,β
′
L), (7)

Lemma 20. [Sutherland 2009, Proposition 3.18, p.13] (Inverse Bijection) Let A and B be two sets

and f : A → B. The map f is invertible if and only if it is bijective.

Definition 12. (Homeomorphism) Let (A, TA) and (B, TB) be topological spaces. A map f : A → B

is said to be a Homeomorphism iff it is continuous, bijective, and has continuous inverse f−1.

Lemma 21. [Lee 2000, Proposition 3.13, p.51, James 1987, p.31] (Product Homeomorphisms) Let

(A, TA) and {(Bi, TB)}i∈I be topological spaces and I be an arbitrary set. Let (B, TB) denote the product

space B := ×i∈IBi with Tychonoff’s topology TB. A map f : A → B is a homeomorphism if every

projection map πif : A → Bi is a homeomorphism for every i ∈ I.

Lemma 22. [Basener 1973, p.13](Open Sets in Product Topology) Let (Ai, TAi
) be topological spaces

for every i in some set I and (A, TA) be the product space A = ×i∈IAi with product topology TA. Then

a subset O ⊆ A is open if and only if πi(O) ⊆ Ai is open for every i ∈ I.

Proposition 2. (Homeomorphisms on Product Spaces) Let (A, TA) and {(Bi, TB)}i∈I be topological

spaces and I be a countable set. Let (B, TB) denote the product space B := ×i∈IBi with Tychonoff’s

topology TB. Let {fi}i∈I denote a collection of maps fi : A → Bi such that (i) fi is continuous on

A ∀ i ∈ I; (ii) fi is open ∀ i ∈ I; and (iii) for every pair (a, a′) ∈ A×A, ∃ i ∈ I : fi(a) 6= fi(a
′). Then

the product map f : A → B satisfying f(a) = (fi1(a), fi2(a), ...) is a homeomorphism on its range.

Proof. Continuity of the product map f follows by continuity of each projection map fi by Lemma

7. Openess of f follows by noting that the image f(AT ) of an open set AT ∈ TA must be an open

subset f(AT ) ⊆ B by Lemma 22 since fi(AT ) ⊆ Bi is an open set (i.e. fi(AT ) ∈ TBi
) for every i ∈ I.

The injective nature follows easily since, by contradiction, if ∃ (a, a′) ∈ A×A such that f(a) = f(a′),

then by construction is must be that fi(a) = fi(a
′) ∀ i ∈ I, but this contradicts the assumption that

for every pair (a, a′) ∈ A× A, ∃ i ∈ I : fi(a) 6= fi(a
′).

Definition 13. (Divergence) Let A be a non-empty set and f : A×A → R. The real-valued map f is

said to be a divergence on A if and only if it satisfies (i) non-negativity f(a, a′) ≥ 0 ∀ (a, a′) ∈ A×A,

and (ii) identity of indiscernibles f(a) = f(a′) iff a = a′, ∀ (a, a′) ∈ A× A.

Definition 14. (Identifiably Unique Minimizer) Let (A, δA) be a metric space and f : A → R be

some real-valued map. Then a0 ∈ A is called an identifiably unique minimizer of f if and only if

infa∈Sc
a0

(ǫ) |f(a)− f(a0)| > 0 for every ǫ > 0.
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Definition 15. (g-Homogeneous Function) Let A be a vector space. A function f : A → R is called

g-homogeneous if and only if there exists a function g : A → R satisfying g(an) = Op(1) for every

sequence {an}n∈N satisfying an = Op(1) and lim supn∈N g(an) < ∞ a.s. for every sequence {an}n∈N

satisfying lim supn∈N an < ∞ a.s. , such that f(a · a′) = g(a) · f(a′).
Lemma 23. [Van der Vaart and Wellner 1996, Theorem 1.11.1, p.67] (Extended Continuous Mapping

Theorem) Let (Ω,F ,P) be a complete probability space and (A,B(A)) and (B,B(B)) be measurable

spaces with Borel σ-algebras B(A) and B(B) respectively. Let fT : AT → B be measurable maps defined

on subsets AT ⊂ A ∀T ∈ N satisfying fT (aT ) → f(a) for every aT → a with aT ∈ AT ∀T ∈ N, a ∈ A0

and some measurable f : A0 → B with A0 ⊂ A. Let XT : Ω → AT be F/B(AT )-measurable maps

taking values in AT and X be F/B(A)-measurable and separable and take values in A0. Then, (i)

XT
d→ X implies fT (XT )

d→ f(X), (ii) XT
p→ X implies fT (XT )

p→ f(X), and (iii) XT
a.s.→ X implies

fT (XT )
a.s.→ f(X).

Corollary 15. (Continuous Mapping Theorem) Let (Ω,F ,P) be a complete probability space and

(A,B(A)) and (B,B(B)) be measurable spaces with Borel σ-algebras B(A) and B(B) respectively. Let

g : A → B be continuous. Let X : Ω → A be F/B(A)-measurable and separable and take values in A.

Then, (i) XT
d→ X implies f(XT )

d→ f(X), (ii) XT
p→ X implies f(XT )

p→ f(X), and (iii) XT
a.s.→ X

implies f(XT )
a.s.→ f(X).

Lemma 24. [ Davidson and Donsig 2009, Theorem 2.4.6, p.17 ] (Squeeze Theorem) Let {an}n∈N,

{bn}n∈N and {cn}n∈N be sequences satisfying an ≤ bn ≤ cn ∀n ∈ N and limn→∞ an = b and

limn→∞ cn = b. Then limn→∞ bn = b.

Proposition 3. (Uniform Continuity Preserves Uniform Convergence) Let (Ω,F ,P) be a probability

space and (A, δA), (B, δB) and (C, δC) be measurable metric spaces with Borel σ-algebras B(A), B(B)

and B(C) respectively. Let g : B → C be a uniformly continuous map on B. If {fT}T∈N are measurable

maps fT : Ω× A → B satisfying supa∈A δB(fT (a), f∞(a))
p→ 0 for some measurable f∞ : A → B, then

supa∈A δC(g ◦ fT (a), g ◦ f∞(a))
p→ 0, and if supa∈A δB(fT (a), f∞(a))

a.s.→ 0 then supa∈A δC(g ◦ fT (a), g ◦
f∞(a))

a.s.→ 0.

Proof. By uniform continuity of g on Y we have that for every (ω, T ) ∈ Ω×N and every ǫ > 0, ∃ ǫ′ > 0

such that having

δY (fT (ω, a), f∞(a)) < ǫ′ implies δZ(g ◦ fT (ω, a), g ◦ f∞(ω, a)) < ǫ. (8)

Now, convergence in probability follows since for every T ∈ N it holds true that

P(sup
a∈A

δC(g ◦ fT (a), g ◦ f∞(a)) < ǫ) ≥ P(sup
a∈A

δY (fT (a), f∞(a)) < ǫ′)

because the second implies the first ∀ω ∈ Ω. Hence, since pointwise convergence in probability

limT→∞ P(supa∈A δY (fT (a), f∞(a)) < ǫ′) = 1 ∀ ǫ′ > 0 holds by assumption, it follows that

lim
T→∞

P(sup
a∈A

δZ(g ◦ fT (a), g ◦ f∞(a)) < ǫ) = 1 ∀ ǫ > 0.
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Convergence a.s. follows since ∀T ∈ N it holds true, by (8) and Lemma 24 that for every ω ∈ Ω,

limT→∞ δY (fT (ω, a), f∞(a)) < ǫ′ implies limT→∞ δZ(g ◦ fT (ω, a), g ◦ f∞(ω, a)) < ǫ, and hence that,

P( lim
T→∞

sup
a∈A

δC(g ◦ fT (a), g ◦ f∞(a)) < ǫ) ≥ P( lim
T→∞

sup
a∈A

δY (fT (a), f∞(a)) < ǫ′)

because the second implies the first ∀ω ∈ Ω. Hence, since pointwise a.s. convergence holds by

assumption, i.e. P(limT→∞ supa∈A δY (fT (a), f∞(a)) < ǫ′) = 1 ∀ ǫ′ > 0, it follows that

P( lim
T→∞

sup
a∈A

δZ(g ◦ fT (a), g ◦ f∞(a)) < ǫ) = 1.

Lemma 25. [Davidson 1994, Theorem 2.19, p.28] (Heine-Cantor Theorem) Let (A, δA) and (B, δB)

be metric spaces and f : A → B be a continuous map at every a ∈ A. Then, if A is compact, f is

uniformly continuous on A.

Lemma 26. [Chen 2007, Theorem 3.1 and Remark 3.2 and White and Wooldrige 1991, Proposition

2.4 and Corollary 2.6 ] (Convergence of Sieve Estimators) Let (Ω,F ,P) be a complete probability space,

(A, δA) be a metric space with Borel σ-algebra B(A) and {AT }T∈N be a sequence of compact subsets

of A such that cl
(⋃

T∈N
AT

)
⊇ A. Suppose that the sequence {fT }T∈N of functions f : Ω × A → R,

continuous of A ∀T ∈ N and such that, limT→∞ P
(
supa∈A |fT (a)− f(a)| > ǫ

)
= 0 ∀ ǫ > 0, for some

continuous deterministic function f : A → R satisfying, f(a0) = 0 and infa∈Sc
a0

(ǫ) |f(a0) − f(a)| >
0 ∀ ǫ > 0. Let âT : Ω → A be an F/B(A)-measurable map such that, fT (âT ) ≤ infa∈AT

fT (a) +

Op(ηT ) with ηT → 0 as T → ∞. Then, limT→∞

(
δA(âT , a0) > ǫ

)
= 0 ∀ ǫ > 0.

Lemma 27. [Dudley 2002, Theorem 2.8.2, p.72] (Compactification) Any separable metric space

(A, δA) has a totally bounded metrization, i.e. there exists a metric δ′
A

on A inducing the same topology

as δA on A such that (A, δ′
A
) is totally bounded, so that the completion for δ′

A
is a compact metric

space and a compactification of A.

Lemma 28. [Van der Vaart and Wellner 1996, Theorem 1.4.8, p. 32] (Weak Convergence on Product

Spaces) Let (Ω,F ,P) be a complete probability space, (Ai, TAi
) be a topological space for every i on a

countable set I and (A, TA) be the product space A = ×i∈IAi with product topology TAi
. Let {XT (ω)}T∈N

with XT : Ω → A be a sequence in A for every ω ∈ Ω and X : Ω → A be a separable random element.

Then XT converges weakly to X if and only if (XT,i1 , ..., XT,in) converges weakly to (Xi1 , ..., Xin) for

every n ∈ N.

Definition 16. (Separable Process) Let (Ω,F ,P) be a complete probability space, A be a separable

set, (B,B) be a measurable space, and X : Ω × A → B be an F/B-measurable element, a stochastic

process. X is said to be separable with respect to A′ if A′ is a countable dense subset of A, and

there is a measure-zero set Ω∗ ⊂ Ω, P(Ω∗) = 0, such that for every ω /∈ Ω∗, X(ω, ·) is almost surely

A′-separable.
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Definition 17. (Separable Map) Let (A, δA) and (B, δB) be metric spaces, and A be separable. Let A′

be a countable, dense subset of A. A function f : A → B is A′-separable, or separable with respect to

A′, if ∀a ∈ A, there exists a sequence ai ∈ A′ such that ai → A and f(ai) → f(a).

Remark 3. We cannot easily guarantee that a process is separable. We can however “turn” a non-

separable process, into a separable process with the same finite-dimensional distributions (Lemma 29).

Lemma 29. [Gusak et al. 2010, Theorem 3.2, p.22] (Separable Modification) Let (Ω,F ,P) be a

complete probability space, (A, δA) be a separable metric space, (B, δB) a compact metric space, and

X : Ω×A → B a stochastic process. Then there exists a separable version X̃ : Ω×A → B of X. This

is called a separable modification of X.

Definition 18. (Stochastic Process Versioning) Let (Ω,F ,P) be a complete probability space, A be a

set and (B,B) be a measurable space. Two stochastic processes X : Ω × A → B and Y : Ω × A → B

are said to be versions of one another if ∀a ∈ A, P(ω : X(ω, a) = Y (ω, a)) = 1.

Remark 4. If stochastic processes X and Y are versions of one another, they have the same finite-

dimensional distributions.

Remark 5. In Lemma 29, if B is not compact, there still exists a separable version of X in some

compactification B̃ of B.

Definition 19. (Compact Topological Space) A set A′ in a topological space (A, TA) is compact if

every covering of A′ by open sets contains a finite sub-cover. A is a compact space if it is itself a

compact set.

Definition 20. (Covering Number) Let (A, δA) be a metric space. The ǫ-covering number of A′ ⊆ A

is the smallest number of open balls of radius ǫ required to cover A′.

Definition 21. (Totally Bounded Metric Space) A metric space (A, δA) is called totally bounded if

and only if for every ǫ > 0 there is a finite set AF ⊆ A such that for every a ∈ A there exists some

aF ∈ AF such that δA(a, aF ) < ǫ.

Lemma 30. [Van der Vaart and Wellner 1996, Lemma 1.3.2, p.17] (Tightness and Separability)

Let (A, δA) be a metric space. A Borel probability measure on (A, δA) is pre-tight if and only if it

is separable. Let (A, δA) be a complete metric space. For a Borel probability measure on (A, δA),

separability, pre-tightness and tightness are equivalent. Any Polish Borel probability measure is tight.

Proposition 4. (Degenerate Weak Convergence Implies Convergence in Probability) Let (Ω,F,P) be

a complete probability space, (A, δA) be a measurable metric space, {XT }T∈N be a sequence of A-valued

random variables XT : Ω → A, and X : Ω → A be some A-valued random variable. Then XT
p→ X if

XT
d→ X and X is degenerate.
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Proof. Immediate extension of the common result for real-valued random variables that can be found

e.g. in Davidson (1994, Theorem 22.5, p.349) and Potscher and Prucha (2001, Theorem 10, p.209).

Lemma 31. [Dudley 2002, Theorem 2.4.7, p.52] (Arzelà-Ascoli Theorem) Let (A, δA) be a compact

metric space, (C(A), δsup
C

) be the space of rel-valued continuous functions defined on A with sup-norm.

A subset C′ ⊂ C(A) is totally bounded if and only if it is uniformly equicontinuous.

Lemma 32. Munkres 2000, Theorem 27.4, p.174(Weierstrass’s Extreme Value Theorem) Let (A, TA)
and (B, TB) be topological spaces with Y an ordered set in the order topology and f : A → B be a

continuous map. If X is compact, then there exists points (a′, a′′)inA × A such that f(a′) ≤ f(a) ≤
f(a′′) for every a ∈ A.

Definition 22. (Frechet and Hadamard Derivatives) Let (A, TA) and (B, TB) be topological vector

spaces. Let map f : Af ⊆ A → B and consider for some (a∇, a0) ∈ Af × A the limit of the sequence

in B,

∇f(a∇, a0) := lim
t→0

f(a∇ + ta0) + f(a∇)

t
.

If this limit exists, then it is called the first variation of f at a∇ ∈ Af in the direction of a0 ∈ A. If

∇f(a0, a) exists for every direction a ∈ A and ∇f(a∇) : A → B is a linear operator, then ∇f(a∇) ∈
L(A,B) is called the Gateaux derivative of f : Af → B at a∇ ∈ Af and f is said to be Gateaux

differentiable at a∇. In this case, ∇f(a∇, a0) is called the Gateaux derivative of f : Af → B at

a∇ ∈ Af in the direction of a0 ∈ A. If the limit,

∇f(a∇, a0) := lim
tn→0

f(a∇ + tnan) + f(a∇)

tn

exists and ∇f(a0) ∈ L(A0,B) for every sequence tn → 0 and an → a0 with a∇ + tan ∈ Af , then

∇f(a0) is called the Hadamard derivative of f at A∇ and f is said to be Hadamard differentiable at

a∇. For a normed vector space (B, ‖ · ‖B), Hadamard differentiability can be shown to be equivalent to

compact differentiability. In particular, a map f : Af ⊆ A → B is said to be Compactly differentiable

at a∇ ∈ Af if the limit,

∇f(a∇, a0) := lim
tn→0

sup
a0∈A0,a∇+tna0∈Af

f(a∇ + tna0) + f(a∇)

tn

exists uniformly over all compact subsets A0 of A and ∇f(a0) : A → B is a unique (Lemma 33)

bounded linear operator. If the same holds over all bounded subsets A0 of A, then the map said to be

Frechet differentiable at a∇ and ∇f(a0) is called the Frechet derivative of f at a∇.

Remark 6. The following notational convention applies throughout. Unless explicitly stated other-

wise, ∇A0
f denotes always the “derivative function of f tangentially to A0”, a map ∇A0

f : A∇ →
L(A0,B) from the set A∇ of points at which f is differentiable into the space of bounded linear func-

tionals L(A0,B). So ∇A0
f(a∇) ∈ L(A0,B) denotes a bounded linear operator, an element of L(A0,B),
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for any a∇ ∈ A∇. For conciseness ∇A0
f(a∇) shall often be denoted ∇A0

fa∇
, so that ∇A0

fa∇
(a0)

is thus a point in B for every a0 ∈ A0, because the differentiation point a∇ has been fixed. When

appropriate, this map is also alternatively denoted in a more extensive form as ∇A0
f(a∇, a0). If the

tangent set A0 coincides with the entire set A, then it is omitted from the notation. Thus the derivative

∇f(a∇), an element of L(A,B), corresponds to the derivative of f at a∇ tangentially to the entire A.

Second-order derivative functions ∇2
A0
f : A∇ → L2(A0 × A0,B) are always understood as a map

for the from the set A∇ of points at which f is differentiable to the space of bounded bilinear operators

L2(A0 × A0,B). One should thus note that while ∇2
A0
f(a∇) ∈ L2(A0 × A0,B) denotes a bilinear

operator for every a∇ ∈ A∇, we have that ∇2
A0
f(a∇, a0) ∈ L(A0,B) denotes a linear operator, an

element of L(A0,B), for every (a∇, a0) ∈ A∇ × A0.

Lemma 33. [ Luenberger 1997, Proposition 2, p. 173 ] (Derivative Uniqueness) Let (A, ‖ · ‖A) and

(B, ‖·‖B) be normed vector spaces and f : Af ⊆ A → B be Frechet (Hadamard) differentiable at a∇ ∈ Af

tangentially to A0 ⊆ A. Then there exists a unique continuous linear map ∇A0
f(a∇) : A0 → B

satisfying the definition of Frechet (Hadamard) derivative above.

Lemma 34. [Denkowski et al. 2003, Proposition 5.1.17, p.525](Identification of L) Let (A, TA) and

(B, TB) be topological vector spaces and let the spaces L(A,B) of bounded linear operators from A into

B be equipped with the uniform norm. Then, the space L(A,L(A,B)) is isometrically isomorphic to

the space L(A× A,B) of bounded bilinear operators from A× A into B with uniform norm.

Lemma 35. (Continuity and Differentiability) [ Cheney 2001, Theorem 3, P.117] If f is differentiable

at x then it is continuous at x. (Cheney, Theorem 3, Analysis for applied mathematics, p 117.)

Definition 23. (Schauder Basis) Let (A, ‖ · ‖A) be a Banach space. A sequence {an}n∈N ⊂ A is a

Schauder basis of A if for every a ∈ A there is a unique sequence of scalars {rn}n∈N ⊂ R such that

a = limN→∞

∑N
n rnan.

The following is thus an immediate corollary of Definition 23

Corollary 16. (Linear Independence of Schauder Basis) Any finite collection of elements of the

Schauder basis of a vector space consists of a set of linearly independent vectors.

Remark 7. Examples of spaces with Schauder basis are: The standard bases of C0 and Lp for

1 ≤ p < ∞ are Schauder bases. Every orthonormal basis in a separable Hilbert space is a Schauder

basis. The Haar system is an example of a basis for Lp(0, 1) with 1 ≤ p < ∞. The Banach space

C([0, 1]) of continuous functions on the interval [0, 1], with the supremum norm, admits a Schauder

basis. A Banach space with a Schauder basis is necessarily separable, but the converse is false, as

described below. Every Banach space with a Schauder basis has the approximation property.

A question of Banach asked whether every separable Banach space has a Schauder basis; this was

negatively answered by Per Enflo who constructed a separable Banach space without a Schauder basis.
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However, a theorem of Mazur asserts that every infinite-dimensional Banach space has an infinite-

dimensional subspace that has a Schauder basis.

Definition 24. (Operator Norm) Let (A, ‖ · ‖A) and (B, ‖ · ‖B) be normed vector spaces and L(A,B)

denote the space of bounded linear operators form A into B. The operator norm ‖ · ‖LB

A

on L(A,B) is

defined alternatively as

‖f‖LB

A

:= sup
a∈A

‖f(a)‖B
‖a‖A

or ‖f‖LB

A

:= sup
a∈A:‖a‖A≤1

‖f(a)‖B for every f ∈ L(A,B).

Lemma 36. [Dudley 2002, Theorem 6.1.3, p.191] (Complete Dual Normed Vector Space) For any

normed vector space (A, ‖ · ‖) over R the dual space with operator norm (L(A,B), ‖ · ‖LB

A

) is a Banach

space.

Proposition 5. (Generalized Fermat’s Stationary Points Theorem) Let (A, ‖ · ‖A) and (B, ‖ · ‖B)
be normed vector spaces and let f : A → B be Hadamard differentiable at a0 ∈ int(A) tangentially

to A0 ⊆ A, with continuous linear Hadamard derivative denoted ∇A0
fa0

: A0 → B. Furthermore,

suppose that B is a totally order set and let a0 be a local minimizer of f on A, i.e. there exists an open

ball of radius ǫ > 0 centered in a0, denoted Sa0
(ǫ) ⊂ A such that f(a0) ≤ f(a) ∀a ∈ Sa0

(ǫ). Then

∇A0
fa0

(a) = 0 ∀a ∈ A0.

Proof. Note first that, by definition f(a)− f(a0) ≥ 0 holds for every a ∈ Sa0
(ǫ). As a result, it is also

true that,
f(a0 + ta)− f(a0)

t
≥ 0 , ∀ t : (a0 + ta) ∈ Sa0

(ǫ).

Now, by the definition of compact set and the Heine-Borel Theorem we have that an = O(1) holds

for every sequence {an}n∈N on compact subsets of A0. Hence, any sequence tn → 0 satisfies tnan =

o(1) · O(1) = o(1). As a result, by continuity of norms and the continuous mapping theorem, we

have that, for every ǫ > 0, ∃ n ∈ N such that ‖tnan‖A < ǫ. Thus, for any ǫ > 0, ∃ n ∈ N such that

(a0 + tnan) ∈ Sa0
(ǫ). This implies immediately that,

∇A0
fa0

(a) = lim
tn→0

f(a0 + tnan)− f(a0)

t
≥ 0

holds for every sequence an → a ∈ A0 on compact subsets of A0. Finally, linearity of ∇A0
fa0

: A0 → B

implies that ∇A0
fa0

(a) ≥ 0 and that ∇A0
fa0

(−a) = −∇A0
fa0

(a) ≥ 0 ∀a ∈ A0. This is only possible

if ∇A0
fa0

(a) = 0 ∀a ∈ A0.

Proposition 6. (Linear Coordinate Projections) Let Bi be a vector space for every i in some countable

set I and B := ×i∈IBi be the associated product space. Then the coordinate projections πi : B → Bi

are linear for every i ∈ I.
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Proof. Immediate since given a scalar c ∈ R and a vectors b = (b1, b2, ...) ∈ B, the ith projection πi

satisfies πi(c · b) = πi((c · b1, c · b2, ...)) = c · bi and c ·πi(b) = cḃi and thus πi(c · b) = c ·πi(b) ∀ (c, b, i) ∈
R×B×I. Furthermore, given a pair of vectors (b, b′) ∈ B×B, πi(b+b′) = πi((b1+b′1, b2+b′2, ...)) = bi+b′i
and πi(b) + πi(b

′) = bi + b′i and thus πi(b+ b′) = πi(b) + πi(b
′) ∀ (b, b′, i) ∈ B× B× I.

Lemma 37. [Winitzki (2010, Statement 2, p.28)](Linear Composition) Let A, B and C be vector

spaces and f : A → B and g : B → C be linear maps. Then the composition map h := g ◦ f : A → C

is linear.

Proposition 7. (Differentiability with Product Topology) Let (A, TA) and (Bi, TBi
) be topological

vector spaces for every i in some countable index set I and (B, TB) be the product space B = ×i∈IBi

with product topology TB. Then, a map f : Af ⊆ A → B is Frechet (Hadamard) differentiable at a

point a∇ ∈ Af tangentially to A0 ⊆ A if and only if the coordinate projection πif : Af → Bi is also

Frechet (Hadamard) differentiable at a∇ ∈ Af tangentially to A0 ∈ A for every i ∈ I.

Proof. By definition, f is Frechet (Hadamard) differentiable at a∇ ∈ Af tangentially to A0 ⊆ A if

and only if there exists a continuous linear functional ∇A0
f(a∇) : A0 → B such that, every sequence{

bn(tn, an)
}
T∈N

⊂ B defined as,

bn(tn, an) :=
f(a∇ + tnan)− f(a∇)− tn∇A0

f(a∇, a0)

tn

converges to zero, for every tn → 0 and an → a0 ∈ A0 with a∇+tnan ∈ Af ∀n ∈ N. Now, by Corollary

11 given the product topology TB on B, convergence of the sequence bn(tn, an) → 0 on the product

space B occurs if and only if its coordinate projections πibn(tn, an) also converge πibn(tn, an) → 0

in Bi for every i ∈ I. By linearity of the coordinate projection (Proposition 6) we then have that

bn(tn, an) → 0 if and only if,

πibn(tn, an) : = πi

(
f(a∇ + tnan)− f(a∇)− tn∇A0

f(a∇, a0)

tn

)

=
πif(a∇ + tnan)− πif(a∇)− tnπi∇A0

f(a∇, a0)

tn
→ 0 for every i ∈ I.

(9)

Finally, since by Lemma 37 a composition of linear maps is linear, and by lemma 15 a composition

of continuous maps is continuous, πi ◦ ∇A0
f(a∇) is a continuous linear map on A0. This implies, by

definition, that the convergence in (9) above holds if and only if πif is Frechet (Hadamard) differen-

tiable for every i ∈ I. Hence, the complete argument goes as follows: (i) f is Frechet (Hadamard) at

a∇ if and only if every sequence bn(tn, an) → 0; (ii) every sequence bn(tn, an) → 0 if and only if every

sequence πibn(tn, an) → 0 ∀ i ∈ I, and; (iii) every πibn(tn, an) → 0 ∀ i ∈ I if and only if every πif is

Frechet (Hadamard) at a∇. We thus conclude that f is Frechet (Hadamard) at a∇ if and only if πif

is Frechet (Hadamard) at a∇.
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The following corollary follows immediately by continuity of continuous compositions (Lemma 15),

Proposition 7 above, and the fact that πi∇A0
f(a∇, a0) = ∇A0

πif(a∇, a0).

Corollary 17. (Continuous Differentiability with Product Topology) Let (A, TA) and (Bi, TBi
) be

topological vector spaces for every i in some countable index set I and (B, TB) be the product space

B = ×i∈IBi with product topology TB. Then, a map f : Af ⊆ A → B is continuously Frechet

(Hadamard) at every point of A∇ ⊆ Af ⊆ A tangentially to A0 ⊆ A if and only if the coordinate

projection πif : Af → Bi is also continuously Frechet (Hadamard) differentiable at every point of A∇

tangentially to A0 for every i ∈ I.

Lemma 38. (Chain Rule) Let (A, TA), (B, TB) and (C, TC) be topological vector spaces. Let f :

Af ⊆ A → B be Frechet (Hadamard) differentiable at every point of A∇ ⊆ Af tangentially to A0

and let g : Bg ⊆ B → C be Frechet (Hadamard) differentiable at B∇ := f(A∇) ⊆ Bg tangentially to

B0 := ∇A0
f(A∇,A0). Then, g ◦ f : Af → C is differentiable at every point of A∇ tangentially to A0

with derivative ∇B0
g
(
f(a∇),∇A0

f(a∇)
)
.

Proposition 8. (Twice Differentiable Compositions) Let (A, TA), (B, TB), (C, TC),
(
L(A0,B), TLB

A0

)

and
(
L(B0,C), TLC

B0

)
be topological vector spaces where L(A0,B) and L(B0,C) denote the spaces of

bounded linear operators from A0 ⊆ A into B and B0 ⊆ B into C respectively. Let f : Af ⊆ A → B

be Frechet (Hadamard) differentiable at every point of A∇ ⊆ Af tangentially to A0, with derivative

at a∇ ∈ A∇ in the direction of a ∈ A0 denoted ∇A0
f(a∇, a), and g : Bg ⊆ B → C be Frechet

(Hadamard) differentiable at every point of B∇ := f(A∇) tangentially to B0 := ∇A0
f(A∇,A0). Then,

the composition map h := g ◦ f : Af → C is Frechet (Hadamard) differentiable at every point of

A∇ tangentially to A0. If furthermore, the derivative function ∇A0
f : A∇ → L(A0,B) is Frechet

(Hadamard) differentiable at every point of its domain A∇ tangentially to A0, and the map ∇B0
g :

B∇ × L∇(A0,B) → L(A0,C) is Frechet (Hadamard) differentiable at every point of its domain B∇ ×
L∇(A0,B) := f(A∇)×∇A0

f(A∇) ⊆ B × L(A0,B) tangentially to B0 × L0(A0,B) := ∇A0
f(A∇,A0)×

∇2
A0
f(A∇,A0) ⊆ B × L(A0,B), then the derivative function ∇A0

h := ∇B0
g(f,∇A0

f) : Af → L(A0,C)

is also Frechet (Hadamard) differentiable at every point of A∇ tangentially to A0.

Proof. Differentiability of h : A → C on A∇ tangentially to A0 follows immediately from the chain-

rule Lemma 38. For completeness, the proof goes as follows. For every a∇ ∈ A∇ and every sequence

tn → 0 and an → a0 ∈ A0 as n → ∞ with (a0 + antn) ∈ Af ∀n ∈ N it holds true that,

h(a∇ + tnan)− h(a0)

tn
=

g
(
f(a∇ + tnan)

)
− g
(
f(a∇)

)

tn
=

g
(
b∇ + bntn)

)
− g
(
b∇
)

tn
(10)

where

b∇ = f(a∇) and bn :=
f(a∇ + tnan)− f(a∇)

tn
→ b0 := ∇A0

f(a∇, a0) ∀ tn → 0 and an → a0 ∈ A0,

(11)
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with the convergence bn → b0 ∈ B0 being implied by differentiability of f : Af → B at a∇ ∈ A∇

tangentially to A0. As a result, by differentiability of g at b∇ ∈ B∇ tangentially to B0,

g
(
b∇ + tnbn)

)
− g
(
b∇
)

tn
→ ∇B0

g(b∇, b0) = ∇B0
g
(
f(a∇),∇A0

f(a∇, a0)
)

∀ tn → 0 and bn → b0 ∈ B0

By (10) this implies the desired result that,

h(a∇ + tnan)− h(a∇)

tn
→ ∇A0

h(a∇, a0) ∀ tn → 0 and an → a0 ∈ A0.

Now, differentiability of the derivative function ∇A0
h := ∇B0

g(f,∇A0
f) : Af → L(A0,C) at

every point of A∇ tangentially to A0 follows by a similar argument. In particular, differentiability of

∇A0
f : A∇ → L(A0,B) at every point of A∇ tangentially to A0 implies convergence of the sequence

{Ln}n∈N ⊂ L(A0,B), defined below, to a point L0 ∈ L0(A0,B) := ∇2
A0
f(A∇,A0) ⊆ L(A0,B),

Ln :=
∇A0

f(a∇ + tnan)−∇A0
f(a∇)

tn
→ L0 := ∇2

A0
f(a∇, a0) ∀ tn → 0 and an → a0 ∈ A0.

Furthermore, differentiability of ∇B0
g : B∇ × L∇(A0,B) → L(A0,C) at every point of its domain

B∇×L∇(A0,B) := f(A∇)×∇A0
f(A∇) tangentially to B0×L0(A0,B) := ∇A0

f(A∇,A0)×∇2
A0
f(A∇,A0)

implies that,

∇B0
g
(
(b∇, L∇) + tn(bn, Ln)

)
−∇B0

g
(
(b∇, L∇)

)

tn
→ ∇2

B0
g
(
(b∇, L∇) , (b0, L0)

)

for every sequence tn → 0 and (bn, Ln) → (b0, L0) ∈ B0 × L0(A0,B) with (b∇, L∇) + tn(bn, Ln) ∈
B∇ × L∇(A0,B) ∀n ∈ N. The desired result now follows by noting precisely that,

∇A0
h(a∇ + tnan)−∇A0

h(a∇, ·)
tn

=
∇B0

g
(
f(a∇ + tnan),∇A0

f(a∇ + tnan)
)
−∇B0

g
(
f(a∇),∇A0

f(a∇)
)

tn

=
∇B0

g
(
(b∇, L∇) + tn(bn, Ln)

)
−∇B0

g
(
(b∇, L∇)

)

tn
,

so that ∇A0
h := ∇B0

g(f,∇A0
f) : Af → L(A0,C) is differentiable with derivative,

∇2
A0
h = ∇2

B0
g
((

f,∇A0
f
)
,
(
∇A0

f,∇2
A0
f
))

: Af → L2(A0 × A0,C).

Lemma 39. [Luenberger 1997, Theorem 1, p.240] (Generalized Inverse Function Theorem) Let (A, ‖·
‖A) and (B, ‖ · ‖B) be Banach spaces and f : Af → B be continuously Frechet differentiable on an open

set A∇ ⊂ Af . Let a∇ ∈ A∇ be a regular point of f , then f is invertible with derivative f−1 defined

on an ǫ-ball S(b∇, ǫ) centered at b∇ = f(a∇) for some ǫ > 0 and there exists c > 0 such that

‖a− a∇‖A ≤ c‖f(a)− f(a∇)‖
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In what follows, Corrolary 18 below states an immediate implication of the definition of Hadamard

differentiability encountered above. Next, Proposition 9 establishes trivially that ∇A0
f(a0, ·) is simply

a restriction of ∇A0
f(a0, ·) onto A0.

Corollary 18. (Differentiability Sub-Tangentially) Let (A, ‖ · ‖A) and (B, ‖ · ‖B) be normed vector

spaces. Let f : A → B be Hadamard differentiable at a0 ∈ A tangentially to A0 ⊆ A. Then, f is also

Hadamard differentiable at a0 ∈ A tangentially to A1 ⊆ A0.

Proposition 9. (Equivalence of Sub-Tangential Derivative) Let (A, ‖ · ‖A) and (B, ‖ · ‖B) be normed

vector spaces and f : A → B be Hadamard differentiable at a0 ∈ A tangentially to A0 ⊆ A. Let

∇A0
f(a0, ·) : A0 → B and ∇A1

f(a1, ·) : A1 → B denote the Hadamard derivatives of f : A → B at

a0 ∈ A and a1 ∈ A tangentially to A0 and A1 respectively with A1 ⊆ A0 ⊆ A. Then a1 = a0 implies

∇A1
f(a1, a) = ∇A0

f(a0, a) ∀a ∈ A1 and furthermore, there exists a continuous linear extension of

∇A1
f(a1, ·) denoted ∇A0

A1
f(a1, ·) : A0 → B such that a1 = a0 implies ∇A0

A1
f(a1, a) = ∇A0

f(a0, a) ∀a ∈
A0.

Proof. The proof is trivial. Existence of ∇A1
f(a1, ·) : A1 → B is guaranteed by Proposition 18. The

first claim, that a1 = a0 implies ∇A1
f(a1, a) = ∇A0

f(a0, a) ∀a ∈ A1, follows immediately from Lemma

33. The second claim, that there exists an extension of ∇A1
f(a1, ·) denoted ∇A0

A1
f(a1, ·) : A0 → B

such that a1 = a0 implies ∇A0

A1
f(a1, a) = ∇A0

f(a0, a) ∀a ∈ A0, follows from the first claim and by

setting ∇A0

A1
f(a0, a) = ∇A0

f(a0, a) ∀a ∈ A0\A1. Finally, the implicit claim that ∇A0

A1
f(a1, ·) : A0 → B

is a continuous linear map on A0 is a straightforward implication of the fact that ∇A0

A1
f(a0, a) =

∇A0
f(a0, a) ∀a ∈ A0 and that ∇A0

f(a0, ·) is linear and continuous by construction.

Since a0 and a1 above were arbitrary elements of A. It follows also immediately that ∇A1
f is

simply a restriction of ∇A0
f onto A × A0. For the sake of completeness, this trivial implication is

recorded as a corollary below.

Corollary 19. (Equivalence of Sub-Tangential Derivative) Let (A, ‖ · ‖A) and (B, ‖ · ‖B) be normed

vector spaces and f : A → B be Hadamard differentiable at a0 ∈ A tangentially to A0 ⊆ A. Then

the maps ∇A0
f : A × A0 → B and ∇A1

f : A × A1 → B satisfy ∇A1
f(a, a′) = ∇A0

f(a, a′) ∀ (a, a′) ∈
A × A1 and furthermore, there exists an extension of ∇A1

f denoted ∇A0

A1
f : A × A0 → B such that

∇A0

A1
f(a, a′) = ∇A0

f(a, a′) ∀ (a, a′) ∈ A× A0.

Proposition 10. (Convergence of Hadamard Derivatives) Let (A, ‖·‖A) and (B, ‖·‖B) be normed vector

spaces and let {AT }T∈N be a sequence of compact subsets of A satisfying AT ⊆ AT+1 ⊆ A0 ⊆ A with

A∞ :=
⋃

T∈N
AT such that cl(A∞) ⊇ A0. Let f : A → B be continuously Hamadamard differentiable

on an open ball of radius ǫ > 0 centered at a0 and denoted Sa0
(ǫ) ⊆ A tangentially to A0. Finally,

let {a0T }T∈N be a sequence in A satisfying aT ∈ AT ∀T ∈ N and a0T → a0. Then ∇AT
f(a0T , aT ) →

∇A0
f(a0, a) for every sequence {aT }T∈N satisfying aT ∈ AT ∀T ∈ N and aT → a ∈ A0.
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Proof. Choose T ∗ large enough so that a0T ∈ Sa0
(ǫ) ∀T > T ∗. Then, by assumption, f is Hadamard

differentibale at a0T tagentially to A0 for every T > T ∗. By Corrolary 18, since AT ⊆ A0 ∀T inf N, it

follows that f is also Hadamard differentibale at θ0
T tagentially to AT for every T > T ∗, and hence

∇AT
f is a well defined for every T > T ∗. Now,

∣∣∣∇AT
f(a0T , aT )−∇A0

f(a0, a)
∣∣∣ ≤

∣∣∣∇AT
f(a0T , aT )−∇A0

f(a0T , aT )
∣∣∣

+
∣∣∣∇A0

f(a0T , aT )−∇A0
f(a0, aT )

∣∣∣

+
∣∣∣∇A0

f(a0, aT )−∇A0
f(a0, a)

∣∣∣

and hence
∣∣∣∇AT

f(a0T , aT ) − ∇A0
f(a0, a)

∣∣∣ → 0 is deduced from the fact that (i) by Corrolary 19,∣∣∣∇AT
f(a0T , aT ) − ∇A0

f(a0T , aT )
∣∣∣ = 0 ∀ (a0T , aT ) ∈ AT and every T > T ∗; (ii)

∣∣∣∇A0
f(a0, aT ) −

∇A0
f(a0, a)

∣∣∣ → 0 by continuity of ∇A0
f(a0, aT ), convergence aT → a and the continuous mapping

theorem; and finally (iii)
∣∣∣∇A0

f(a0T , aT )−∇A0
f(a0, aT )

∣∣∣→ 0 by uniform convergence of ∇A0
f(a0T , ·)

to ∇A0
f(a0, ·) on A0 which follows from the following argument. Define gT (a) = ∇A0

f(a0T , a) ∀a ∈ A0

and g(a) = ∇A0
f(a0, a) ∀a ∈ A0. Note that {gT} is thus a sequence of Bounded linear operators on

A0. By the continuous mapping theorem, gT (a) → g(a) pointwise for every a ∈ A0. Finally, since AT

compact for every T ∈ N, by Proposition ... gT (a) → g(a) uniformly on A0 and the desired result is

obtained.

Lemma 40. (Injective Linear Operator) Let T : V → W be a linear map. Then T is injective if and

only if Ker(T ) = {0}.

Lemma 41. (Bounded Inverse) [Kolmogorov and Fomin 1975, Theorem 2, p.229] Let f be an

invertible bounded linear operator mapping from a Banach space A onto another Banach space B.

Then the inverse operator f−1 is itself bounded.

Lemma 42. (Bounded Linear Operator) [ Sviridyuk and Fedorov 2003, Theorem 1.1.1, p.3] Let an

operator f : A → B be linear. Then the following statements are equivalent: (i) the operator f is

continuous at one point; (ii) the operator f is continuous; (iii) the operator f is bounded.

Lemma 43. (Inverse of Linear Operator) [Kolmogorov and Fomin 1975, Theorem 1, p. 228, Luen-

berger 1997, Proposition 1, p.174] The inverse of a linear operator between topological vector spaces

is itself linear.

The following Corrolary follows immediately from Lemmas 41, 42 and 43.

Corollary 20. (Continuous Inverse) Let f be an invertible continuous linear operator. Then f−1 is

continuous.
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Definition 25. (Continuously Invertible Operator) Let (A, ‖ · ‖A) and (B, ‖ · ‖B) be normed vector

spaces. A bounded linear operator f ∈ L(A,B) is said to be continuously invertible if its inverse is

an operator f−1 ∈ L(B,A), i.e. if it is defined and bounded on the range of f . In other words, let

f ∈ L(A,B), f(A) = B and f be invertible. Then, the operator f is continuously invertible.

Lemma 44. (Continuous Invertibility and Bounded Inverse) [Sviridyuk and Fedorov 2003] Let

(A, ‖ · ‖A) and (B, ‖ · ‖B) be Banach spaces and f : Af ⊆ A → B be a bounded linear operator from

Af into B, i.e. f ∈ L(Af ,B). Then, the inverse operator f−1 : f(Af ) → Af exists and is bounded on

f(Af ) if and only if there exists m ∈ R+ such that ‖f(a)‖B ≥ m‖a‖A ∀a ∈ Af .

Definition 26. (Uniformly Continuously Invertible Operator) Let (A, ‖ ·‖A) and (B, ‖ ·‖B) be Banach

spaces and fi ∈ L(A,B) for every i ∈ I. Building on Lemma 44, the family f : I × A → B is said to

be continuously invertible uniformly in i ∈ I if and only if fi : L(A,B) is continuously invertible for

every i ∈ I and there exists m ∈ R+ such that ‖fi(a)‖B ≥ m‖a‖A ∀ (a, i) ∈ A× I.

Proposition 11. (Continuously Invertible Composition)) Let (A, ‖ · ‖A), (B, ‖ · ‖B) and (C, ‖ · ‖C) be

Banach spaces and f ∈ L(A,B) and g ∈ L(B,C) be continuously invertible bounded linear operators.

Then h := g ◦ f : A → C is also a continuously invertible bounded linear operator.

Proof. By Lemma 37, h := g ◦ f is a linear map. By Lemma 44, ∃ (mf ,mg) ∈ R+ × R+ such

that ‖f(a)‖B ≥ mf‖a‖A ∀a ∈ A and ‖g(b)‖C ≥ mg‖b‖B ∀ b ∈ B. It thus follows that ‖h(a)‖C =

‖g(f(a))‖C ≥ mg‖f(a)‖B ≥ mgmf‖a‖A = mh‖a‖A ∀a ∈ A and again by Lemma 44 that h is

continuously invertible.

Proposition 12. (Uniformly Continuously Invertible Composition)) Let (A, ‖ · ‖A), (B, ‖ · ‖B) and

(C, ‖ · ‖C) be Banach spaces. Furthermore, let fi ∈ L(A,B) be continuously invertible uniformly in

i ∈ I and g ∈ L(B,C) be continuously invertible. Then hi := g ◦ fi : A → C is a bounded linear

operator continuously invertible in i ∈ I.

Proof. By Lemma 37, hi := g ◦ fi is a linear map for every i ∈ I. By Lemma 44 and Definition 26,

∃ (mf ,mg) ∈ R+ × R+ such that ‖fi(a)‖B ≥ mf‖a‖A ∀ (a, i) ∈ A× I and ‖g(b)‖C ≥ mg‖b‖B ∀ b ∈ B.

It thus follows that ‖hi(a)‖C = ‖g(fi(a))‖C ≥ mg‖fi(a)‖B ≥ mgmf‖a‖A = mh‖a‖A ∀ (a, i) ∈ A × I

and again by Lemma 44 that hi is continuously invertible uniformly in i ∈ I.

Lemma 45. (Banach Space of Bounded Linear Operators) [Sviridyuk and Fedorov 2003] Let B be

a Banach space. Then the space L(A,B) is a Banach space when equipped with the supremum norm.

Lemma 46. (Linearity of Pointwise Limit of Sequence of Linear Functions) [Denkowski et al. 2003,

Proposition 3.2.3, p.267] If (A, ‖·‖A) is a Banach space, (B, ‖·‖B) is a normed vector space, {fn}n∈N ⊆
L(A,B) and for every a ∈ A, f(a) = lim fn(a) exists in B, then f ∈ L(A,B).
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Proposition 13. (Uniform Bound on Bounded Linear Operators) Let (A, ‖ · ‖A) a normed vector

space and {AT }T∈N be a sequence of compact subsets of A satisfying AT ⊆ AT+1 ⊆ A ∀T ∈ N.

Furthermore, let fT : AT → R be a continuous linear map satisfying |fT (a)| ≥ cT ‖a‖A ∀a ∈ AT for

every T ∈ N, and let f : A → R be also a continuous linear map satisfying f(a) ≥ c‖a‖A∀a ∈ A.

Finally, suppose that fT (aT ) → f(a) for every sequence aT → a ∈ A with aT ∈ AT ∀T ∈ N. Then

∃ c∗ > 0 and T ∗ ∈ N such that, for every T > T ∗, |fT (aT )| ≥ c∗‖aT ‖A for every sequence aT → a ∈ A

with aT ∈ AT ∀T ∈ N.

Proof. Set c∗ = c/2. Suppose by contradiction that ∄ T ∗ ∈ N such that |fT (aT )| ≥ c∗‖aT ‖A ∀T > T ∗

and every aT → a. Then for every T ∗ ∈ N we can always find a sequence {aT }T∈N and some T > T ∗

such that |fT (aT )| < c∗‖aT ‖A. Together with the fact that f(a) ≥ c‖a‖A∀a ∈ A, this implies that,

for every T ∗ ∈ N there exists a sequence {aT }T∈N and some T > T ∗ such that,

|fT (aT )− f(aT )| ≥ |c∗‖aT ‖A − c‖aT ‖A|
= |(c/2)‖aT ‖A − c‖aT‖A|
= (c/2)‖aT ‖A.

But this contradicts the Assumption that fT (aT ) → f(a) for every sequence aT → a ∈ A with

aT ∈ AT ∀T ∈ N except when aT → 0.

Definition 27. (Partial Frechet/Hadamard Differentiability Uniformly on a Parameter) Let (A, ‖·‖A),
(B, ‖ · ‖B) and (C, ‖ · ‖C) be normed vector spaces. A map f : A × B → C is said to be Hadamard

differentiable at a0 ∈ A tangentially to A0 ⊆ A uniformly in b ∈ B if there exists a continuous map

∇A0
fa0

: A0 × B → C, linear in the first argument, such that,

f(a0 + tnhn, bn)− f(a0, b0)

tn
→ ∇A0

fa0
(h0, b0)

holds for every sequence tn → 0, an → a0 and bn → b0 with a0 + tnhn ∈ A and bn ∈ B for all n ∈ N.

Remark 8. In general, the requirement of existence of a map ∇A0
fa0

satisfying the conditions in

Definition 27 is more or less restrictive depending on the convergence rate of the sequence {bn}n∈N to

its limit b0. If {bn}n∈N converges at a fast rate then there is a large class of functions satisfying the

property of partial Frechet/Hadamard differentiability uniformly on B. If {bn}n∈N converges slowly

then fewer maps satisfy this definition. Some characterization of the family of maps satisfying this

property is thus useful. Proposition 14 below shows that bilinear maps are partially differentiable

uniformly on a parameter regardless of the converge rate of {bn}n∈N.

Proposition 14. (Partial Differentiability of Continuous Bilinear Operator) Let A1, A2 and B be

vector spaces and f : A1 × A2 → B be a continuous bilinear map. Then f(·, a) is partially Hadamard

differentiable at a0 ∈ A uniformly in a ∈ A. In particular,

f(a0 + tnan, ān)− f(a0, ān)

tn
→ ∇fa0

(a, ā)
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for every tn → 0, an → a ∈ A1 and ān → ā ∈ A2 with (tn + an) in compact subsets of A1.

Proof. Immediate by setting ∇fa0
(a, ā) = f(a, ā), in which case,

f(a0 + tnan, ān)− f(a0, ān)− tnf(a, ā)

tn
=

f(a0, ān) + f(tnan, ān)− f(a0, ān)− tnf(a, ā)

tn

=
tnf(an, ān)− tnf(a, ā)

tn

= f(an, ān)− f(a, ā) → 0

where the first and second equalities involve linearity of f in the first argument and the last step

follows by continuity and the continuous mapping theorem.

Lemma 47. (Delta Method) [Van der Vaart and Wellner 1996, Theorem 3.9.4, p.374] Let A and

B be metrizable topological vector spaces. Let f : Af ⊂ A → B be Hadamard differentiable at a0

tangentially to A0. Let Xn : Ωn → Af be maps with rn(Xn − a0)
d→ X for some constants rn → ∞,

where X is separable and takes its values in A0. Then rn(f(Xn)− f(a0))
d→ f ′

a0
(X). If f ′

a0
is defined

and continuous on the whole of A then the sequence rn(f(Xn) − f(a0)) − f ′
θ(rn(Xn − a0)) converges

to zero in outer probability.

Lemma 48. (Banach-Steinhaus Theorem) [Dudely, Theorem 6.5.1, p.212] Let (A, ‖·‖A) be a Banach

space and (B, ‖ · ‖B) a normed vector space. Let fT : A → B be a bounded linear operator for every

T ∈ N. If supT∈N ‖fT (a)‖B < ∞ ∀a ∈ A then supT∈N ‖fT ‖ < ∞ in operator norm ‖ · ‖.

B Proofs

B.1 Proof of Theorem 1

Proof. Clearly, the F/B(BL)-measurability of each auxiliary estimators β̃
L

T,s(·, θ) : Ω → BL for every

(θ, T, s, L) ∈ Θ×N×{1, ..., S}×L, postulated in Assumption 4, implies the F/B(BL)-measurability

of the average β̃
L

T,S(·, θ) : Ω → BL obtained as β̃
L

T,S(·, θ) = 1/S
∑S

s=1 β̃
L

T,s(θ), for every (θ, T, S, L) ∈
Θ×N×N×L by the continuity of vector addition and scalar multiplication under Assumption 3 (see

Definition 8) and measurability of continuous functions (Lemma 3 and Corollary 10). This implies

in turn that, given Assumption 3, β̃T,S(·, θ) : Ω → B is F/B(B)-measurable ∀ (θ, T, S) ∈ Θ× N× N

(Lemma 6 and Corollary 13). By the same argument, the F/B(BL)-measurability of the auxiliary

estimators β̂
L

T : Ω → BL ∀ (T, L) ∈ N×L implies the F/B(B)-measurability of β̂T : Ω → BL ∀ (T, L) ∈
N. Furthermore, Assumption 6 implies that µ : B ×B → R is B(B)/B(R)-measurable (Lemma 3 and

Corollary 10), and hence, together with the measurability of β̃T,S(·, θ) : Ω → B ∀ (θ, T, S) ∈ Θ×N×N

and β̂T ∀T ∈ N, we have that QT,S(θ) := µ ◦
(
β̂T , β̃T,S(θ)

)
: Ω → R is F/B(R)-measurable for

every (θ, T, S) ∈ Θ× N× N by measurability of measurable compositions (Lemma 5).
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Now, Assumption 5 implies immediately the continuity the average map β̃
L

T,S(ω, ·) : Θ → BL on

Θ ∀ (ω, T, S, L) ∈ Ω × N × N × L (under Assumption 3, Definition 8 and Lemma 15). This in turn

implies that (under Assumption 3) the continuity of β̃T,S(ω, ·) : Θ → BL on Θ ∀ (ω, T, S) ∈ Ω×N×N

(Lemma 7). Together with the continuity of µ postulated in Assumption 5 this implies the continuity

of QT,S(ω, ·) := µ ◦
(
β̂T (ω) , β̃T,S(ω, ·)

)
: Θ → R on Θ for every (ω, T, S) ∈ Ω× N× N (Lemma 15).

Finally, F/B(R)-measurability of QT,S(θ) : Ω → R for every (θ, T, S) ∈ Θ×N×N and continuity

of QT,S(ω, ·) : Θ → R on Θ for every (ω, T, S) ∈ Ω×N×N implies by Lemma 16 that QT,S : Ω×Θ → R

is F ⊗B(Θ)/B(R)-measurable. Together with Assumptions 1 and 2 the desired result follows from

Lemmas 17, 18 and Corollary 14 adapted from Debreu (1967, Theorem 4.5), Hildenbrand (1974, p.55)

and White and Wooldrige (1991, Theorem 2.2, p.646), i.e. that there exists a θ̂T,S : Ω → ΘT satisfying

(3) for every T ∈ N and S ∈ N that is F/B(ΘT )-measurable.21

B.2 Proof of Theorem 2

Proof. The F/B(B)-measurability of β̃T,S(·, θ) : Ω → B ∀ (θ, T, S) ∈ Θ × N × N and β̂T : Ω →
BL ∀ (T, L) ∈ N is obtained by the same argument as in the proof of Theorem 1. Assumption 7

implies that µT : B × B → R is B(B)/B(R)-measurable (Corollary 10) for every T ∈ N, and hence,

together with the measurability of β̃T,S(·, θ) : Ω → B ∀ (θ, T, S) ∈ Θ×N×N and β̂T ∀T ∈ N, we have

that QT,S(θ) := µT ◦
(
β̂T , β̃T,S(θ)

)
: Ω → R is F/B(R)-measurable for every (θ, T, S) ∈ Θ×N×N

by measurability of measurable compositions (Lemma 5).

Now, the continuity of β̃T,S(ω, ·) : Θ → BL on Θ ∀ (ω, T, S) ∈ Ω × N × N is again obtained by

following the argument in the proof of Theorem 1. Together with the continuity of µT postulated in

Assumption 7 this implies the continuity of QT,S(ω, ·) := µT ◦
(
β̂T (ω) , β̃T,S(ω, ·)

)
: Θ → R on Θ for

every (ω, T, S) ∈ Ω× N× N.

Finally, F ⊗B(Θ)/B(R)-measurability of QT,S : Ω × Θ → R is by the same argument as in the

proof of Theorem 1, and once more, together with Assumptions 1 and 2 the desired result follows,

by Corollary 14, that there exists a θ̂T,S : Ω → ΘT satisfying (3) for every T ∈ N and S ∈ N that is

F/B(ΘT )-measurable.

B.3 Proof of Theorem 3

Proof. First, note that given Assumptions 1, 3 and 10 the product binding function β∗ : Θ → B is a

homeomorphism and thus injective, continuous and open (Proposition 2). By injectivity β∗
0 = β∗(θ0)

21Note how Lemmas 17 and 18 allow for random sieves to be considered. Note also that, in what near-measurability

is concerned, completeness and separability of Θ could be weakened to the requirement that Θ be a Souslin measurable

space; see Stinchcombe and White (1992).
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and β∗
0 6= β∗(θ) ∀θ ∈ Θ\{θ0}, which implies, by the properties of divergences (Definition 13) that,

Q∞(θ0) := µ
(
β∗
0 , β

∗(θ0)
)
= 0 and Q∞(θ) := µ

(
β∗
0 , β

∗(θ)
)
> 0 ∀θ ∈ Θ\{θ0}. (12)

By openness, β∗
(
Sθ0

(ǫ)
)
⊂ B is open for every open ball Sθ0

(ǫ) ⊂ Θ, ǫ > 0, and thus there exist an

open ball Sβ
0
(ǫ′) ⊂ B centered at β0 with radius ǫ′ > 0 such that,

Sβ
0
(ǫ′) ⊂ β∗

(
Sθ0

(ǫ)
)
⊂ B.

It thus follows immediately that θ0 is identifiably unique since, for every ǫ > 0,

inf
θ∈Sc

θ0
(ǫ)

∣∣∣Q∞(θ)−Q∞(θ0)
∣∣∣ = inf

θ∈Sc
θ0

(ǫ)

∣∣∣µ
(
β∗
0 , β

∗(θ)
)
− µ

(
β∗
0 , β

∗(θ0)
)∣∣∣

= inf
θ∈Sc

θ0
(ǫ)

∣∣∣µ
(
β∗
0 , β

∗(θ)
)∣∣∣ = inf

β∈β∗

(
Sc
θ0

(ǫ)
)
∣∣∣µ
(
β∗
0 , β

)∣∣∣

≥ inf
β∈Sβ0

(ǫ′)⊂β∗

(
Sc
θ0

(ǫ)
)
∣∣∣µ
(
β∗
0 , β

)∣∣∣ > 0 ∀ ǫ′ : Sβ
0
(ǫ′) ⊆ β∗

(
Sc
θ0
(ǫ)
)
,

(13)

where the second equality follows by identity of inderscernibles of divergences (Definition 13) and the

last inequality by Assumption 11.

Now, given the Lipschitz weakness of δB postulated in Assumption 8, the uniform convergence of

β̃
L

T,s over Θ (Assumption 9) implies the uniform convergence of the product empirical binding function

β∗ on Θ. Indeed, for every ǫ > 0, it holds true that,

P
(

sup
θ∈ΘT

δB

(
β̃T,S(θ) , β

∗(θ)
)
> ǫ
)
≤ P

(
sup
θ∈ΘT

k · sup
L∈L

δBL

(
β̃
L

T,S(θ) , β
∗
L(θ)

)
> ǫ
)

= P
(
k · sup

θ∈ΘT

sup
L∈L

∥∥∥β̃L

T,S(θ)− β∗
L(θ)

∥∥∥
BL

> ǫ
)

= P
(
k · sup

θ∈ΘT

sup
L∈L

∥∥∥1/S
S∑

s=1

β̃
L

T,s(θ)− 1/S

S∑

s=1

β∗
L(θ)

∥∥∥
BL

> ǫ
)

≤ P
(
k · sup

θ∈ΘT

sup
L∈L

1/S

S∑

s=1

∥∥∥β̃L

T,s(θ)− β∗
L(θ)

∥∥∥
BL

> ǫ
)

≤ P
(
k/S

S∑

s=1

sup
θ∈ΘT

sup
L∈L

∥∥∥β̃L

T,s(θ)− β∗
L(θ)

∥∥∥
BL

> ǫ
)

(14)

as T → ∞ for every S ∈ N and some k ∈ R+, and where the first inequality follows by Assumption 8,

the second by norm sub-additivity, and the third by supremum sub-additivity. Hence, by Assumption

3 the continuous mapping Theorem (Corollary 15, see also Definition 8 and note that a degenerate

random variable is separable) and part (ii) of Assumption 9 we have that, for every ǫ > 0,

lim
T→∞

P
(
k/S

S∑

s=1

sup
θ∈ΘT

sup
L∈L

∥∥∥β̃L

T,s(θ)− β∗
L(θ)

∥∥∥
BL

> ǫ
)
= 0.
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This implies by (14) and Lemma 24 that,

lim
T→∞

P
(

sup
θ∈ΘT

δB

(
β̃T,S(θ) , β

∗(θ)
)
> ǫ
)
= 0 ∀ ǫ > 0. (15)

For almost sure uniform convergence simply note that following the argument in (14) and Lemma 24,

lim
T→∞

sup
θ∈ΘT

δB

(
β̃T,S(θ) , β

∗(θ)
)

≤ lim
T→∞

k/S

S∑

s=1

sup
θ∈ΘT

sup
L∈L

∥∥∥β̃L

T,s(θ)− β∗
L(θ)

∥∥∥
BL

,

and hence, since by Assumption 3 the continuous mapping Theorem (Corollary 15) and part (ii) of

Assumption 9,

P
(

lim
T→∞

k/S

S∑

s=1

sup
θ∈ΘT

sup
L∈L

∥∥∥β̃L

T,s(θ)− β∗
L(θ)

∥∥∥
BL

> ǫ
)
= 0 ∀ ǫ > 0,

we have by Lemma 24,22

P
(

lim
T→∞

sup
θ∈ΘT

δB

(
β̃T,S(θ) , β

∗(θ)
)
> ǫ
)
= 0 ∀ ǫ > 0. (16)

Convergence in probability and a.s. of β̂T is implied by Assumption 8, part (i) of Assumption 9

and Lemma 24 since it follows immediately from δB
(
β̂T , β∗

0

)
≤ k · supL∈L δBL

(
β̂
L

T , β∗
L(θ0)

)
that,

lim
T→∞

P
(
δB
(
β̂T , β∗

0

)
> ǫ
)
≤ lim

T→∞
P
(
k · sup

L∈L
δBL

(
β̂
L

T , β∗
L(θ0)

)
> ǫ
)
= 0 ∀ ǫ > 0, (17)

and also that,

P
(

lim
T→∞

δB
(
β̂T , β∗

0

)
> ǫ
)
≤ P

(
lim

T→∞
k · sup

L∈L
δBL

(
β̂
L

T , β∗
L(θ0)

)
> ǫ
)
= 0 ∀ ǫ > 0. (18)

Uniform convergence in probability of the centered empirical binding function ∆T,S(θ) := β̂T −
β̃T,S(θ) to ∆∞(θ) := β∗(θ0)−β∗(θ) across the sequence of sieves {ΘT }T∈N now follows immediately

22It is also clear that under appropriate regularity conditions, the almost sure convergence of the product binding

function β∗ uniformly on Θ is also obtained directly by convergence of the projection maps under Assumption 3 and

Corollary 11 without the need for Assumption 8.
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from (15) and (17) since it holds true that,

P
(

sup
θ∈ΘT

δB
(
∆T,S(θ) , ∆∞(θ)

)
> ǫ
)
= P

(
sup
θ∈ΘT

∥∥∆T,S(θ)−∆∞(θ)
∥∥
B
> ǫ
)

= P
(

sup
θ∈ΘT

∥∥β̂T − β̃T,S(θ)− β
∗(θ0) + β

∗(θ)
∥∥
B
> ǫ
)

≤ P
(

sup
θ∈ΘT

∥∥β̂T − β∗(θ0)
∥∥
B
+
∥∥β̃T,S(θ)− β∗(θ)

∥∥
B
> ǫ
)

≤ P
(

sup
θ∈ΘT

∥∥β̂T − β∗(θ0)
∥∥
B
+ sup

θ∈ΘT

∥∥β̃T,S(θ)− β∗(θ)
∥∥
B
> ǫ
)

= P
(∥∥β̂T − β

∗(θ0)
∥∥
B
+ sup

θ∈ΘT

∥∥β̃T,S(θ)− β
∗(θ)

∥∥
B
> ǫ
)

≤ P
(∥∥β̂T − β∗(θ0)

∥∥
B
> ǫ/2

)

+ P
(

sup
θ∈ΘT

∥∥β̃T,S(θ)− β∗(θ)
∥∥
B
> ǫ/2

)

(19)

where the first inequality follows from norm sub-additivity, the second by sub-additivity of the supre-

mum, and the third by the fact that {a+ b > ǫ} ⊆ {a > ǫ/2}∪{b > ǫ/2} and that, for random events,

this implies P(a + b > ǫ) ≤ P(a > ǫ/2) + P(b > ǫ/2). Finally, by the convergence results obtained in

15 and 17, the last two terms converge to zero which implies by Lemma 24 the convergence of the

centered empirical binding function,

lim
T→∞

P
(

sup
θ∈ΘT

δB
(
∆T,S(θ) , ∆∞(θ)

)
> ǫ
)
= 0 ∀ ǫ > 0. (20)

The almost sure counterpart of this result is obtained by following the same argument as in (19)

to conclude that, for every ǫ > 0,

P
(

lim
T→∞

sup
θ∈ΘT

δB
(
∆T,S(θ) , ∆∞(θ)

)
> ǫ
)
≤ P

(
lim

T→∞

∥∥β̂T − β∗(θ0)
∥∥
B
> ǫ/2

)

+ P
(

lim
T→∞

sup
θ∈ΘT

∥∥β̃T,S(θ)− β∗(θ)
∥∥
B
> ǫ/2

)

and thus obtain by the a.s. convergence results in (16) and (18),

P
(

lim
T→∞

sup
θ∈ΘT

δB
(
∆T,S(θ) , ∆∞(θ)

)
> ǫ
)
= 0 ∀ ǫ > 0. (21)

Now, uniform convergence across {ΘT}T∈N of the composition criterion QT,S(θ) := µ
(
∆T,S(θ)

)

can be obtained from (20) under the uniform continuity of µ on B by making use of the fact that uni-

form continuous compositions preserve uniform convergence in probability and almost surely (Proposi-

tion 3).23 If µ : B → R is uniformly continuous on B then, ∀ ǫ > 0 , ∃ ǫ′ > 0 such that, ∀ (β,β′) ∈ B×B
23Given the continuity of µ postulated in Assumption 6, uniform continuity of µ on B can be obtained e.g. by

compactness of B (compactness of every BL under Tychonoff’s topology) or Holder continuity of µ on a possibly

non-compact B.
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satisfying δB(β,β
′) < ǫ′ we have that |µ(β)− µ(β′)| < ǫ, and this implies that for every pair of maps

β : Θ → B and β
′ : Θ → B and every ǫ > 0, ∃ǫ′ > 0 such that,

sup
θ∈ΘT

δB

(
β(θ)− β′(θ)

)
< ǫ′ ⇒ sup

θ∈ΘT

∣∣∣µ
(
β(θ)

)
− µ

(
β′(θ)

)∣∣∣ < ǫ.

Now, since for every (ω, T, S) ∈ Ω× N× N and every ∀ ǫ > 0, ∃ǫ′ > 0 such that,

sup
θ∈ΘT

δB
(
∆T,S(ω, θ)−∆∞(θ)

)
< ǫ′ ⇒ sup

θ∈ΘT

∣∣∣µ
(
∆T,S(ω, θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ, (22)

it follows immediately that, ∀ (T, S) ∈ N× N, ∀ ǫ > 0, ∃ǫ′ > 0 such that,

P
(

sup
θ∈ΘT

δB
(
∆T,S(θ)−∆∞(θ)

)
< ǫ′

)
≤ P

(
sup
θ∈ΘT

∣∣∣µ
(
∆T,S(θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ
)
.

because the first implies the second ∀ (ω, T, S) ∈ Ω× N× N. Finally, since by (20),

lim
T→∞

P( sup
θ∈ΘT

δB

(
∆T,S(θ)−∆∞(θ)) < ǫ′

)
= 1 ∀ ǫ′ > 0,

it follows immediately that limT→∞ P
(
supθ∈ΘT

∣∣∣µ
(
∆T,S(θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ
)

= 1 ∀ ǫ > 0, and

hence, for every S ∈ N,

lim
T→∞

P
(

sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ > ǫ

)
= 1− lim

T→∞
P
(

sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ < ǫ

)

= 1− lim
T→∞

P
(

sup
θ∈ΘT

∣∣∣µ
(
∆T,S(θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ
)
= 0 ∀ ǫ > 0.

(23)

The almost sure counterpart of this result follows by the same argument. In particular by (22) for

every (ω, S) ∈ Ω× N and every ǫ > 0, ∃ǫ′ > 0 such that,

lim
T→∞

sup
θ∈ΘT

δB
(
∆T,S(ω, θ)−∆∞(θ)

)
< ǫ′ ⇒ lim

T→∞
sup
θ∈ΘT

∣∣∣µ
(
∆T,S(ω, θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ,

and hence, for every ǫ > 0, ∃ǫ′ > 0 such that,

P
(

lim
T→∞

sup
θ∈ΘT

δB
(
∆T,S(θ)−∆∞(θ)

)
< ǫ′

)
≤ P

(
lim

T→∞
sup
θ∈ΘT

∣∣∣µ
(
∆T,S(θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ
)
.

because the first implies the second ∀ω ∈ Ω. Finally, since by (21),

P( lim
T→∞

sup
θ∈ΘT

δB

(
∆T,S(θ)−∆∞(θ)) < ǫ′

)
= 1 ∀ ǫ′ > 0,

it follows immediately that P
(
limT→∞ supθ∈ΘT

∣∣∣µ
(
∆T,S(θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ
)

= 1 ∀ ǫ > 0, and

hence,

P
(

lim
T→∞

sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ > ǫ

)
= 1− P

(
lim

T→∞
sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ < ǫ

)

= 1− P
(

lim
T→∞

sup
θ∈ΘT

∣∣∣µ
(
∆T,S(θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ
)
= 0 ∀ ǫ > 0.

(24)
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To see that the same result holds given only the continuity of µ on B (Assumption 6) and the

uniform convergence of the centered empirical binding function supθ∈ΘT
δB

(
∆T,S(θ)−∆∞(θ)

)
p→ 0

obtained in probability in (20) and almost surely in (21), let B0(ǫ
′) ⊂ B denote a closed ball of

radius ǫ′ centered at the zero element of B, i.e. B0(ǫ
′) := {β ∈ B : δB(β) ≤ ǫ′}. By Assumption

6, the compactness of B0(ǫ
′) and the well known Heine–Cantor Theorem (Lemma 25), for every

(ω, T, S) ∈ Ω× N× N and every ǫ > 0, ∃ǫ′ > 0 such that,
{
∆T,S(ω,ΘT )−∆∞(ΘT )

}
⊂ B0(ǫ

′) ⇒ sup
θ∈ΘT

∣∣∣µ
(
∆T,S(ω, θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ

This in turn implies that ∀ (T, S) ∈ N× N and every ǫ > 0, there exists ǫ′ > 0, such that,

P
(

sup
θ∈ΘT

∣∣∣µ
(
∆T,S(θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ
)
≥ P

({
∆T,S(ΘT )−∆∞(ΘT )

}
⊂ B0(ǫ

′)
)
.

Now, for every (ω, T, S) ∈ Ω × N × N, having supθ∈ΘT
δB
(
∆T,S(ω, θ),∆∞(θ)

)
< 2ǫ′ implies by

construction that
{
∆T,S(ω,ΘT )−∆∞(ΘT )

}
⊆ B0(ǫ

′). Hence, ∀T ∈ N we have that,

P
({

∆T,S(ΘT )−∆∞(ΘT )
}
⊂ B0(ǫ

′)
)
≥ P

(
sup
θ∈ΘT

δB

(
∆T,S(θ)−∆∞(θ)

)
< 2ǫ′

)
.

The two previous inequalities can now be used to conclude that, for every T ∈ N,

P
(

sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ < ǫ

)
= P

(
sup
θ∈ΘT

∣∣∣µ
(
∆T,S(θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ
)

≥ P
(

sup
θ∈ΘT

δB
(
∆T,S(θ),∆∞(θ)

)
< 2ǫ′

)

and hence, by (20) and Lemma 24 we finally obtain the uniform convergence in probability (25) of

the sequence of SNPII criterion functions {QT,S}T∈N across the sieves {ΘT }T∈N for every S ∈ N,

lim
T→∞

P
(

sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ > ǫ

)
= 0 ∀ ǫ > 0. (25)

The almost sure counterpart of this result is obtained in a similar way by noting that, for every

(ω, S) ∈ Ω× N and every ǫ > 0, ∃ǫ′ > 0 such that,

lim
T→∞

{
∆T,S(ω,ΘT )−∆∞(ΘT )

}
⊂ B0(ǫ

′) ⇒ lim
T→∞

sup
θ∈ΘT

∣∣∣µ
(
∆T,S(ω, θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ

which implied immediately,

P
(

lim
T→∞

sup
θ∈ΘT

∣∣∣µ
(
∆T,S(θ)

)
− µ

(
∆∞(θ)

)∣∣∣ < ǫ
)
≥ P

(
lim

T→∞

{
∆T,S(ΘT )−∆∞(ΘT )

}
⊂ B0(ǫ

′)
)
.

Now, for every (ω, T, S) ∈ Ω × N × N, having limT→∞ supθ∈ΘT
δB
(
∆T,S(ω, θ),∆∞(θ)

)
< 2ǫ′ implies

by construction that limT→∞

{
∆T,S(ω,ΘT )−∆∞(ΘT )

}
⊆ B0(ǫ

′). Hence, ∀T ∈ N we have that,

P
(

lim
T→∞

{
∆T,S(ΘT )−∆∞(ΘT )

}
⊂ B0(ǫ

′)
)
≥ P

(
lim

T→∞
sup
θ∈ΘT

δB

(
∆T,S(θ)−∆∞(θ)

)
< 2ǫ′

)
.
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The two previous inequalities can now be used to conclude that, for every T ∈ N,

P
(

lim
T→∞

sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ < ǫ

)
≥ P

(
lim

T→∞
sup
θ∈ΘT

δB
(
∆T,S(θ),∆∞(θ)

)
< 2ǫ′

)

and hence that, by (21) and Lemma 24, for every S ∈ N,

P
(

lim
T→∞

sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ > ǫ

)
= 0 ∀ ǫ > 0. (26)

Continuity of the limit criterion function Q∞ on Θ follows by (i) the continuity of the product

binding function β∗ on Θ which is implied by Assumptions 1, 3, 10 and Lemma 7 or Proposition 2;

(ii) the continuity of the divergence criterion µ on B × B, postulated in Assumption 5, and (iii) the

continuity of continuous compositions (see Lemma 15).

Q∞(·) := µ
(
β∗
0 , β

∗(·)
)
: Θ → R is continuous in θ ∈ Θ. (27)

Finally, recall from Theorem 1 that measurability of θ̂T,S defined in (3) and (4) follows from 1-6.

Now, given Assumptions 1-6 and 8-11 and the intermediate results of (i) identifiable uniqueness of θ0

obtained in (13), and (ii) continuity of the limit criterion function Q∞ derived in (27); the desired

conclusion that the approximate SNPII estimator θ̂T,S defined in (3) and (4) satisfies δΘ(θ̂T,S , θ0)
p→

0 follows by uniform convergence in probability of the criterion function QT,S established in (25)

and Lemma 26 adapted from Theorem 3.1 in Chen (2007) (see also Proposition 2.4 and Corollary

2.6 in White and Wooldrige (1991)). The convergence δΘ(θ̂T,S , θ0)
a.s.→ 0 follows by the uniform

a.s. convergence of the criterion function QT,S established in (26) and Lemma 26 (see Theorem 3.1

and Remark 3.2 in Chen (2007)).

B.4 Proof of Theorem 4

Proof. Note first that the identifiable uniqueness of θ0 obtained in (13) and the continuity of the limit

criterion function Q∞ derived in (27) in the proof of Theorem 3 still apply here. Uniform convergence

of the criterion function QT,S must however be derived from the new set of conditions. In particular,

by Assumptions 1, 3 and convergence in probability in part (ii) of Assumption 12 we obtain by the

Continuous Mapping Theorem (Corollary 15),

lim
T→∞

P
(
δBL

(
β̃
L

T,S(θ),β
∗
L(θ)

)
> ǫ
)
= 0 ∀ ǫ > 0 and every (θ, L) ∈ Θ× L; (28)

The a.s. counterpart of (28) follows also from the same set of Assumptions 1, 3, the a.s. convergence

in part (ii) of Assumption 12, and Corollary 15,

P
(

lim
T→∞

δBL

(
β̃
L

T,S(θ),β
∗
L(θ)

)
> ǫ
)
= 0 ∀ ǫ > 0 and every (θ, L) ∈ Θ× L; (29)
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The pointwise convergence in probability of the empirical binding function β̃T,S(θ) then follows from

(28), Assumptions 1, 3, Lemma 28 and Proposition 4 (see also Remark 3 and Lemmas 29 and 5),

lim
T→∞

P
(
δB
(
β̃T,S(θ),β

∗
L(θ)

)
> ǫ
)
= 0 ∀ ǫ > 0 and every (θ) ∈ Θ; (30)

Almost sure convergence of β̃T,S(θ) can be easily deduced, given Assumption 3, from (29), Lemma 6

and Corollary 11,

P
(

lim
T→∞

δB
(
β̃T,S(θ),β

∗
L(θ)

)
> ǫ
)
= 0 ∀ ǫ > 0 and every (θ) ∈ Θ; (31)

The pointwise convergence in probability of β̂T follows naturally from Assumption 3, part (i) of

Assumption 12, Lemma 28 and Proposition 4,

lim
T→∞

P
(
δB
(
β̂T ,β

∗
0

)
> ǫ
)
= 0 ∀ ǫ > 0. (32)

Likewise its a.s. counterpart follows from Assumption 3, the a.s. convergence in part (i) of Assumption

12 and Corollary 11,

P
(

lim
T→∞

δB
(
β̂T ,β

∗
0

)
> ǫ
)
= 0 ∀ ǫ > 0. (33)

The pointwise convergence of the centered product binding function ∆T,S(θ) := β̂T − β̃T,S(θ) (in

probability and almost surely) to the limit centered binding function ∆∞(θ) := β∗
0 − β∗

0(θ), by (30),

(32) and the Continuous Mapping Theorem (Corollary 15),

lim
T→∞

P
(
δB
(
∆T,S(θ),∆∞(θ)

)
> ǫ
)
= 0 ∀ ǫ > 0 and every (θ) ∈ Θ; (34)

P
(

lim
T→∞

δB
(
∆T,S(θ),∆∞(θ)

)
> ǫ
)
= 0 ∀ ǫ > 0 and every (θ) ∈ Θ; (35)

Ultimately, we obtain the pointwise convergence in probability of the criterion function QT,S to its

limit Q∞ by (34), Assumption 14 and the Continuous Mapping Theorem,

lim
T→∞

P
(∣∣∣QT,S(θ)−Q∞(θ)

∣∣∣ > ǫ
)
= 0 ∀ ǫ > 0 and every θ ∈ Θ. (36)

The same applies to a.s. convergence by (35), Assumption 14 and the Continuous Mapping Theorem,

P
(

lim
T→∞

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ > ǫ

)
= 0 ∀ ǫ > 0 and every θ ∈ Θ. (37)

Furthermore, under the weak Lipschitz product metric condition on δB (Assumption 8), the uniform

generalized stochastic Lipschitz condition on β̃
L

T,s (Assumption 13) is naturally inherited by (i) the

average empirical product binding function β̃T,S ; (ii) the centered empirical product binding function
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∆T,S ; and ultimately (iii) the SNPII criterion function QT,S . Indeed, note first that for every T > T ∗,

δB

(
β̃T,S(θ) , β̃T,S(θ

′)
)
≤ k · sup

L∈L
δBL

(
β̃
L

T,S(θ) , β̃
L

T,S(θ
′)
)

= k · sup
L∈L

∥∥∥1/S
S∑

s=1

β̃
L

T,s(θ)− 1/S

S∑

s=1

β̃
L

T,s(θ
′)
∥∥∥
BL

≤ k · 1/S
S∑

s=1

sup
L∈L

∥∥∥β̃L

T,s(θ)− β̃
L

T,s(θ
′)
∥∥∥
BL

≤ k · 1/S
S∑

s=1

ζT ξ
(
δΘ(θ, θ

′)
)
= k · ζT ξ

(
δΘ(θ, θ

′)
)

a.s. ∀ (θ, θ′) ∈ ΘT ×ΘT ,

(38)

where the first inequality follows by Assumption 8, the second by the sub-additivity of ‖ · ‖BL
and

supL∈L, and the third by the uniform generalized stochastic Lipschitz condition postulated in As-

sumption 13. Now, ∆T,S inherits immediately the same form of stochastic smoothness from β̃T,S

since for every T > T ∗,

δB
(
∆T,S(θ) , ∆T,S(θ

′)
)
=
∥∥∥
(
β̂T − β̃T,S(θ)

)
−
(
β̂T − β̃T,S(θ

′)
)∥∥∥

B

=
∥∥∥β̃T,S(θ)− β̃T,S(θ

′)
∥∥∥
B
= δB

(
β̃T,S(θ)− β̃T,S(θ

′)
)

≤ k · ζT ξ
(
δΘ(θ, θ

′)
)

a.s. ∀ (θ, θ′) ∈ ΘT ×ΘT ,

(39)

where the inequality was obtained in (38). Finally, under Assumption 14, the SNPII criterion QT,S

is also generalized Lipschitz continuous. In particular, it holds for every T > T ∗ that,
∣∣∣QT,S(θ)−QT,S(θ

′)
∣∣∣ =

∣∣∣µ(∆T,S(θ))− µ(∆T,S(θ
′))
∣∣∣

≤ ξµ

(
δB(∆T,S

(
θ),∆T,S(θ

′)
))

surely ∀T ∈ N

≤ ξµ

(
k · ζT ξ

(
δΘ(θ, θ

′)
))

a.s. ∀T > T ∗

= ζµ

(
k · ζT

)
ξµ

(
ξ
(
δΘ(θ, θ

′)
))

= ζQT ξQ
(
δΘ(θ, θ

′)
)

a.s. ∀ (θ, θ′) ∈ ΘT ×ΘT ,

(40)

where the first inequality follows from generalized Lipschitz smoothness of µ on B (Assumption 14),

the second from (39), and the last two equalities by the ζµ-homogeneity of ξµ (Assumption 14) and

by defining ζQT := ζµ

(
k · ζT

)
and ξQ(x) := ξµ ◦ ξ(x) ∀x ∈ R. Clearly, by condition (i) in Assumption

13 and Definition 15 on obtains ζQT = Op(1), whereas by condition (ii) in Assumption 13 on obtains

lim supt∈N ζQT < ∞ a.s.. Also, by Assumptions 13 and 14 we have that limx→0 ξ
Q(x) = 0. Now,

a straightforward adaptation of Lemma 1 and Theorem 1 in Andrews (1992) (see also Davidson

Davidson (1994, Theorem 21.9 and Theorem 21.10, p.337,339) for a textbook treatment) yields the
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desired uniform convergence if the SNPII criterion across sieves. First, we obtain that the sequence

{QT,S−Q∞}T∈N is Asymptotically Uniformly Stochastically Equicontinuous (AUSE) across the sieves

{Θ}T∈N. In particular, by (40) it holds true that, for every ǫ′ > 0,

sup
θ∈ΘT

sup
θ′∈ΘT :δΘ(θ,θ′)≤ǫ′

|QT,S(θ)−QT,S(θ
′)| ≤ ζT ξ(δΘ(θ, θ

′)) ≤ ζT ξ(ǫ
′) a.s. ∀T > T ∗, (41)

and hence, using (i) in Assumption 13 for every ǫ > 0, there exists ǫ′ > 0 such that,

lim sup
T→∞

P
(

sup
θ∈ΘT

sup
θ′∈ΘT :δΘ(θ,θ′)≤ǫ′

|QT,S(θ)−QT,S(θ
′)| > ǫ

)
≤ lim sup

T→∞
P
(
ζT > ǫ/ξ(ǫ′)

)
< ǫ (42)

where the last inequality follows since ζT = Op(1) and ǫ/ξ(ǫ′) → ∞ as ǫ′ → 0. Alternatively, using

(ii) in Assumption 13 it follows in a similar fashion that for every ǫ > 0, there exists ǫ′ > 0 such that,

P
(
lim sup
T→∞

sup
θ∈ΘT

sup
θ′∈ΘT :δΘ(θ,θ′)≤ǫ′

|QT,S(θ)−QT,S(θ
′)| > ǫ

)
≤ P

(
lim sup
T→∞

ζT > ǫ/ξ(ǫ′)
)
< ǫ (43)

since lim supn∈N ζT < ∞ a.s. and ǫ/ξ(ǫ′) → ∞ as ǫ′ → 0. Second, define ∆QT,S(θ) = QT,S(θ) −
Q∞(θ) ∀θ ∈ Θ. By Assumption 1, the sieves ΘT ⊂ Θ are compact and therefore totally bounded for

every T ∈ N. Let ST := {S(θi, ǫ
′), i = 1, ..., IT (ǫ

′)} be a finite cover for ΘT for every T ∈ N. Then,

for every ǫ > 0,

P
(
sup
θ∈ΘT

|∆QT,S(θ)| > 2ǫ
)
= P

(
max

i≤IT (ǫ′)
sup

θ∈S(θi,ǫ′)

|∆QT,S(θ)| > 2ǫ
)

≤ P
(

max
i≤IT (ǫ′)

sup
θ∈S(θi,ǫ′)

[
|∆QT,S(θ)−∆QT,S(θi)|+ |∆QT,S(θi)|

]
> 2ǫ

)

≤ P
(

max
i≤IT (ǫ′)

sup
θ∈S(θi,ǫ′)

|∆QT,S(θ)−∆QT,S(θi)| > ǫ
)

+ P
(

max
i≤IT (ǫ′)

|∆QT,S(θi)| > ǫ
)

(44)

where the first inequality is obtained by adding and subtracting ∆QT,S(θi) and by norm sub-additivity.

Now, since Q∞ is a fixed limit deterministic function, (42) implies immediately that {∆QT,S}∞T=1 is

AUSE, and thus, for every ǫ > 0, there exists ǫ′ > 0 such that,

lim sup
T→∞

P
(

max
i≤IT (ǫ′)

sup
θ∈S(θi,ǫ′)

|∆QT,S(θ)−∆QT,S(θi)| > ǫ
)

= lim sup
T→∞

P
(

sup
θi∈ΘT

sup
θ∈S(θi,ǫ′)

|∆QT,S(θ)−∆QT,S(θi)| > ǫ
)
< ǫ.

Furthermore, by Assumption 15, ∃ {IT (ǫ′)}T∈N : IT (ǫ
′) = O(1) ∀ ǫ′ > 0 (Definition 21). This is

satisfied in particular by the sequence of covering numbers of {ΘT}T∈N (Definition 20)) Hence, for

every ǫ′ > 0, ∃ I(ǫ′) ∈ N such that supT∈N IT (ǫ
′) < I(ǫ′). It thus follows by (34) and the Continuous
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Mapping Theorem that,

lim sup
T→∞

P
(

max
i≤IT (ǫ′)

|∆QT,S(θi)| > ǫ
)
≤ lim sup

T→∞
P
( ⋃

i≤IT (ǫ′)

|∆QT,S(θi)| > ǫ
)

= lim sup
T→∞

∑

i≤IT (ǫ′)

P
(
|∆QT,S(θi)| > ǫ

)

≤ lim sup
T→∞

∑

i≤I(ǫ′)

P
(
|∆QT,S(θi)| > ǫ

)
< ǫ ∀ ǫ′ > 0.

Thus, taking lim supT→∞ on both sides of (44) yields, lim supT→∞ P
(
supθ∈ΘT

|∆QT,S(θ)| > 2ǫ
)
≤ ǫ

which implies,

lim
T→∞

P
(
sup
θ∈ΘT

|QT,S(θ)−Q∞(θ)| > ǫ
)
= 0 ∀ ǫ > 0.

Finally, the desired conclusion that the approximate SNPII estimator θ̂T,S defined in (3) and (4)

satisfies δΘ(θ̂T,S , θ0)
p→ 0 follows by Theorem 4.

For almost sure convergence we note that the a.s. counterpart of (44) is,

P
(

lim
T→∞

sup
θ∈ΘT

|∆QT,S(θ)| > 2ǫ
)
≤ P

(
lim

T→∞
max

i≤IT (ǫ′)
sup

θ∈S(θi,ǫ′)

|∆QT,S(θ)−∆QT,S(θi)| > ǫ
)

+ P
(

lim
T→∞

max
i≤IT (ǫ′)

|∆QT,S(θi)| > ǫ
) (45)

and that by (43) for every ǫ > 0, there exists ǫ′ > 0 such that,

P
(
lim sup
T→∞

max
i≤IT (ǫ′)

sup
θ∈S(θi,ǫ′)

|∆QT,S(θ)−∆QT,S(θi)| > ǫ
)
< ǫ.

Also, by the same argument there exists supT∈N IT (ǫ
′) < I(ǫ′) ∀ ǫ′ > 0 and hence, by (35) it follows

that,

P
(
lim sup
T→∞

max
i≤IT (ǫ′)

|∆QT,S(θi)| > ǫ
)
≤

∑

i≤I(ǫ′)

P
(
lim sup
T→∞

|∆QT,S(θi)| > ǫ
)
< ǫ ∀ ǫ′ > 0.

and hence,

P
(

lim
T→∞

sup
θ∈ΘT

|QT,S(θ)−Q∞(θ)| > ǫ
)
= 0 ∀ ǫ > 0.

Finally, the desired conclusion that the approximate SNPII estimator θ̂T,S defined in (3) and (4)

satisfies δΘ(θ̂T,S , θ0)
a.s.→ 0 follows by Theorem 4.

B.5 Proof of Theorem 5

Proof. Identifiable uniqueness of θ0 ∈ Θ w.r.t. the limit criterion divergence µ∞ follows by applying

the same argument as that encountered in the proof of Theorem 3, only this time to µ∞. In particular,

given Assumptions 1, 3 and 10 the product binding function β∗ : Θ → B is a homeomorphism and
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thus injective, continuous and open (Proposition 2). By injectivity β∗
0 = β∗(θ0) and β∗

0 6= β∗(θ) ∀θ ∈
Θ\{θ0}, which implies,

Q∞(θ0) := µ∞

(
β∗
0 , β

∗(θ0)
)
= 0 and Q∞(θ) := µ∞

(
β∗
0 , β

∗(θ)
)
> 0 ∀θ ∈ Θ\{θ0} (46)

and also, by openness, β∗
(
Sθ0

(ǫ)
)

is open for every open ball Sθ0
(ǫ) ⊂ Θ, ǫ > 0, and thus there exist

an open ball Sβ
0
(ǫ′), ǫ′ > 0 such that,

Sβ
0
(ǫ′) ⊂ β∗

(
Sθ0

(ǫ)
)
⊂ B.

Together with Assumption 17 it thus follows immediately that θ0 is identifiably unique since,

inf
θ∈Sc

θ0
(ǫ)

∣∣∣Q∞(θ)−Q∞(θ0)
∣∣∣ = inf

θ∈Sc
θ0

(ǫ)

∣∣∣µ∞

(
β∗
0 , β

∗(θ)
)
− µ∞

(
β∗
0 , β

∗(θ0)
)∣∣∣

= inf
θ∈Sc

θ0
(ǫ)

∣∣∣µ∞

(
β∗
0 , β

∗(θ)
)∣∣∣ = inf

β∈β∗

(
Sc
θ0

(ǫ)
)
∣∣∣µ∞

(
β∗
0 , β

)∣∣∣

≤ inf
β∈Sβ0

(ǫ′)⊂β∗

(
Sc
θ0

(ǫ)
)
∣∣∣µ∞

(
β∗
0 , β

)∣∣∣ > 0 ∀ ǫ′ > 0.

(47)

The uniform convergence of the centered empirical binding function derived in the proof of Theorem

3 in (20) follows exactly by the same argument and hence requires no further explanation.

Now, the uniform convergence across {ΘT }T∈N of the composition criterion QT,S(θ) := µT

(
∆T,S(θ)

)

is obtained by noting that, for every T ∈ N and every ǫ > 0, it holds true that,

P
(

sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ > ǫ

)
= P

(
sup
θ∈ΘT

∣∣∣µT

(
∆T (θ)

)
− µ∞

(
∆∞(θ)

)∣∣∣ > ǫ
)

≤ P
(

sup
θ∈ΘT

∣∣∣µT

(
∆T (θ)

)
− µ∞

(
∆T (θ)

)∣∣∣

+ sup
θ∈ΘT

∣∣∣µ∞

(
∆T (θ)

)
− µ∞

(
∆∞(θ)

)∣∣∣ > ǫ
)

≤ P
(

sup
θ∈ΘT

∣∣∣µT

(
∆T (θ)

)
− µ∞

(
∆T (θ)

)∣∣∣ > ǫ/2
)

+ P
(

sup
θ∈ΘT

∣∣∣µ∞

(
∆T (θ)

)
− µ∞

(
∆∞(θ)

)∣∣∣ > ǫ/2
)

(48)

where the first inequality is obtained by simply adding and subtracting µ∞(∆T (θ)) and by norm

sub-additivity of the absolute value and supremum functions. Now,

P
(

sup
θ∈ΘT

∣∣∣µT

(
∆T (θ)

)
− µ∞

(
∆T (θ)

)∣∣∣ > ǫ/2
)
→ 0 (49)

holds true by the sure uniform convergence of µT (Assumption 16), and

P( sup
θ∈ΘT

∣∣∣µ∞

(
∆T (θ)

)
− µ∞

(
∆∞(θ)

)∣∣∣ > ǫ/2
)
→ 0 (50)
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is implied by the uniform convergence of the centered empirical binding function in (20) and by uniform

continuity of µ∞ on compact sets (Assumption 16 and Lemma 25), namely on B0(ǫ
′) ⊂ B, a closed ball

of radius ǫ′ centered at the zero element of B, i.e. B0(ǫ
′) := {β ∈ B : δB(β) ≤ ǫ′}. In particular, we have

as before that, for every ω ∈ Ω and every ǫ > 0, ∃ǫ′ > 0 such that,
{
∆T (ω,ΘT )−∆∞(ω,ΘT )

}
⊂ B0(ǫ

′)

implies that supθ∈ΘT

∣∣∣µ∞

(
∆T (ω, θ)

)
− µ∞

(
∆∞(ω, θ)

)∣∣∣ < ǫ and hence it follows immediately that,

P
(

sup
θ∈ΘT

∣∣∣µ∞

(
∆T (θ)

)
− µ∞

(
∆∞(θ)

)∣∣∣ < ǫ
)
≥ P

({
∆T (ΘT )−∆∞(ΘT )

}
⊂ B0(ǫ

′)
)
.

We note also that, for every ω ∈ Ω and every T ∈ N, having supθ∈ΘT
δB
(
∆T (ω, θ),∆∞(ω, θ)

)
< 2ǫ′

implies by construction that ∆T (ω,ΘT )−∆∞(ω,ΘT ) ⊆ B0 Hence, ∀T ∈ N we have that,

P
({

∆T (ΘT )−∆∞(ΘT )
}
⊂ B0(ǫ

′)
)
≥ P

(
sup
θ∈ΘT

δB

(
∆T (θ)−∆∞(θ)

)
< 2ǫ′

)
.

The two previous inequalities can now be used to conclude that, for every T ∈ N,

P
(

sup
θ∈ΘT

∣∣∣µ∞

(
∆T (θ)

)
− µ∞

(
∆∞(θ)

)∣∣∣ < ǫ
)
≥ P

(
∆T (ΘT )−∆∞(ΘT ) ⊂ B0(ǫ

′)
)

≥ P
(

sup
θ∈ΘT

δB
(
∆T (θ),∆∞(θ)

)
< 2ǫ′

)
.

As a result, (20) and Assumption 16 implies (50). Finally, (49) and (50) imply by (48) that

lim
T→∞

P
(

sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ > ǫ

)
= 0. (51)

The almost sure counterpart of this result is obtained by the same argument. In particular,

similarly to (48),

lim
T→∞

sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ ≤ lim

T→∞
sup
θ∈ΘT

∣∣∣µT

(
∆T (θ)

)
− µ∞

(
∆T (θ)

)∣∣∣

+ lim
T→∞

sup
θ∈ΘT

∣∣∣µ∞

(
∆T (θ)

)
− µ∞

(
∆∞(θ)

)∣∣∣
(52)

and then,

P
(

lim
T→∞

sup
θ∈ΘT

∣∣∣µT

(
∆T (θ)

)
− µ∞

(
∆T (θ)

)∣∣∣ > ǫ/2
)
= 0 ∀ ǫ > 0 (53)

holds also true by the sure uniform convergence of µT (Assumption 16), and

P( lim
T→∞

sup
θ∈ΘT

∣∣∣µ∞

(
∆T (θ)

)
− µ∞

(
∆∞(θ)

)∣∣∣ > ǫ/2
)
= 0 ∀ ǫ > 0 (54)

is implied by the uniform convergence in (20) and uniform continuity of µ∞ on compact sets by

applying the well known result that uniform continuity preserves uniform convergence of deterministic
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sequences to every ω ∈ Ω∗ where P(Ω∗) = 1. As a result, (21) and Assumption 16 implies (54). Finally,

(53) and (54) imply by (52) that

P
(

lim
T→∞

sup
θ∈ΘT

∣∣∣QT,S(θ)−Q∞(θ)
∣∣∣ > ǫ

)
= 0. (55)

Continuity of the limit criterion function Q∞ on Θ follows by applying the same argument encoun-

tered in the proof of Theorem 3 to the limit divergence µ∞. In particular, continuity of Q∞ follows

from (i) the continuity of the product binding function β∗ on Θ (implied by Assumptions 1, 3, 10 and

Lemma 21 since a homeomorphism is continuous by definition), (ii) the continuity of µ∞ on B × B
(postulated in Assumption 16), and (iii) the continuity of continuous compositions (Lemma 15).

Q∞(·) := µ∞

(
β∗
0 , β

∗(·)
)
: Θ → R is continuous in θ ∈ Θ. (56)

Finally, obtain measurability of θ̂T,S follows from 1-6 and Theorem 1. Given Assumptions 1-6 and

8-11 and the intermediate results of (i) identifiable uniqueness of θ0 obtained in (47), (ii) uniform

convergence of the criterion function QT,S established in (51) and (iii) the continuity of the limit

criterion function Q∞ derived in (56), the desired conclusion that the approximate SNPII estimator

θ̂T,S defined in (3) and (4) satisfies δΘ(θ̂T,S , θ0)
p→ 0 [a.s.] follows by Lemma 26 adapted from

Theorem 3.1 in Chen (2007) (see also Proposition 2.4 and Corollary 2.6 in White and Wooldrige

(1991)).

B.6 Proof of Theorem 6

Proof. Identifiable uniqueness of θ0 ∈ Θ is obtained in Theorem 5 in (47) from Assumptions 1, 3, 10

and 17. The pointwise convergence in probability (and almost surely) of the SNPII criterion function

QT,S is derived in Theorem 4 in (34) and (35) from Assumptions 1, 3, 12 and 14. Now, given the

stochastic smoothness of the empirical binding function ∆T,S derived in Theorem 4 in (39) under

Assumptions 8, 13, 13 and 14, the uniform convergence of QT,S across {ΘT}T∈N follows from a simple

adaptation of the argument found in (40) in Theorem 4. Indeed, note first that for every T > T ∗,

∣∣∣QT,S(θ)−QT,S(θ
′)
∣∣∣ =

∣∣∣µT (∆T,S(θ))− µT (∆T,S(θ
′))
∣∣∣

≤ ξµ

(
δB(∆T,S

(
θ),∆T,S(θ

′)
))

surely ∀T ∈ N

≤ ξµ

(
k · ζT ξ

(
δΘ(θ, θ

′)
))

a.s. ∀T > T ∗

= ζµ

(
k · ζT

)
ξµ

(
ξ
(
δΘ(θ, θ

′)
))

= ζQT ξQ
(
δΘ(θ, θ

′)
)

a.s. ∀ (θ, θ′) ∈ ΘT ×ΘT ,

(57)

where the first inequality follows from generalized Lipschitz smoothness of µT ∀T ∈ N on B (Assump-

tion 14), the second from (39), and the last two equalities by the ζµ-homogeneity of ξµ (Assumption
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14) and by defining ζQT := ζµ

(
k · ζT

)
and ξQ(x) := ξµ ◦ ξ(x) ∀x ∈ R. Now, following the argument in

Theorem 4, we obtain the desired result that,

lim
T→∞

P
(
sup
θ∈ΘT

|QT,S(θ)−Q∞(θ)| > ǫ
)
= 0 and P

(
lim

T→∞
sup
θ∈ΘT

|QT,S(θ)−Q∞(θ)| > ǫ
)
= 0 ∀ ǫ > 0.

Also, continuity of Q∞ is obtained as in Theorem 5 in (56) under Assumptions 1, 3, 10, 16. Finally,

measurability of θ̂T,S and consistency δΘ(θ̂T,S , θ0)
p→ 0 [a.s.] of the SNPII estimator θ̂T,S defined in

(3) and (4) follows by the same argument as in Theorem 5.

B.7 Proof of Theorem 7

Proof. Obtain first the a.s. continuous Frechet (Hadamard) differentiability of the criterion function

QT,S on Θ tangentially to ΘT for every (T, S) ∈ N× N. In particular, given the product topology on

B (Assumption 3) and the a.s. continuously Frechet (Hadamard) differentiability of β̃
L

T,S : Ω×Θ → B
on Θ tangentially to ΘT , ∀(T, S, L) ∈ N×N×L (part (i) of Assumption 22), it follows immediately

by Proposition 7 and Corollary 17 that the empirical binding function β̃T,S : Ω × Θ → B is likewise

a.s. continuously Frechet (Hadamard) differentiable on Θ tangentially to ΘT , ∀(T, S) ∈ N×N. Trivial

algebra shows that the same holds for the centered empirical binding function ∆T,S : Ω × Θ → B.

Finally, by the continuous Frechet (Hadamard) differentiability of µ : B → R (part (iii) of Assumption

22), the chain rule (Lemma 38), and the continuity of continuous compositions (Lemma 15) we obtain

the desired result that QT,S is a.s. continuously differentiable on Θ tangentially to ΘT with derivative,

∇ΘT
QT,S(θ, ·) = ∇BT

µ
(
∆T,S(θ),∇ΘT

∆T,S(θ, ·)
)

for every θ ∈ Θ where BT := ∆T,S(ΘT ). We thus state for future reference that,

QT,S : Ω×Θ → R is a.s. continuously Frechet (Hadamard) differentiable

in θ ∈ Θ tangentially to ΘT ∀ (T, S) ∈ N× N.
(58)

By a similar argument, equivalent smoothness results are also available for the limit criterion

function Q∞ and its derivative function ∇ΘQ∞ : Θ → L(ΘT ,R). In particular, by Proposition 7

and Corollary 17, the continuous Frechet (Hadamard) differentiability of β∗
L : Θ → BL ∀L ∈ L on Θ

implies the same property for β∗ : Θ → B and, by trivial algebra, the same holds for ∆∞ : Θ → B.

By the continuous partial Frechet (Hadamard) differentiability of µ : B → R (part (iii) of Assumption

22), the chain rule (Lemma 38) and continuity of continuous compositions (Lemma 15) we then have

that Q∞ is differentiable with derivative given by,

∇ΘQ∞(θ, ·) = ∇Bµ
(
∆∞(θ),∇Θ∆∞(θ, ·)

)

which is continuous on Θ, and hence the desired result follows. For reference we state,

Q∞ : Θ → R is continuously Frechet (Hadamard) differentiable in θ ∈ Sθ0
(ǫ) for some ǫ > 0. (59)
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An analogous result can be derived for the criterion’s derivative function ∇ΘT
Q∞ : Θ → L(ΘT ,R)

from the continuous Frechet (Hadamard) differentiability of ∇ΘT
β
∗
L : Θ → L(ΘT ,BL) ∀L ∈ L on

Θ tangentially to ΘT (part (ii) of Assumption 22) and the continuous Frechet (Hadamard) differ-

entiability of µ : B × L(ΘT ,B) → L(BT ,R) (part (iii) of Assumption 22). In particular, given the

product topology on B (Assumption 3), it follows immediately by Proposition 7 and Corollary 17

that ∇ΘT
β∗ : Θ → L(ΘT ,BL) is continuously Frechet (Hadamard) differentiable on Θ tangentially

to ΘT , ∀T ∈ N. The same holds for ∇ΘT
∆∞ : Θ → L(ΘT ,B) since ∇ΘT

∆∞ = ∇ΘT
β∗ trivially on

Θ. Finally, by the continuous Frechet (Hadamard) differentiability of ∇Bµ : ×L(ΘT ,B) → L(BT ,R)

(part (iii) of Assumption 22), Proposition 8, and the continuity of continuous compositions (Lemma

15) we obtain the desired result that ∇ΘT
Q∞ : Θ → L(ΘT ,R) is continuously differentiable on Θ

tangentially to ΘT .

∇ΘT
Q∞ : Θ → L(ΘT ,R) is continuously Frechet (Hadamard) differentiable on Θ tangentially to ΘT .

(60)

Now, using (59), (60) and the
√
T sieves’ expansion rate ‖πT (θ0) − θ0‖Θ (Assumption 21) it is

easy to derive an identical
√
T convergence rate for the “sieve approximation error” term ‖θ0

T − θ0‖Θ.

In particular, note that by Lemma 39 from the differentiability of ∇ΘT
Q∞ derived in (60) and the

regularity of θ0 ∈ Θ w.r.t. ∇ΘT
Q∞, it follows that, for every T ∈ N, ∃ ct > 0 such that,24

‖θ0
T − θ0‖Θ ≤ ct

∣∣∣∇ΘT
Q∞(θ0

T , θ
0
T − θ0)−∇ΘT

Q∞(θ0, θ
0
T − θ0)

∣∣∣ ≤ c̄
∣∣∣∇ΘT

Q∞(θ0
T , θ

0
T − θ0)

∣∣∣, (61)

were the second inequality follows from having ∇ΘT
Q∞(θ0, θ

0
T −θ0) = 0 ∀T ∈ N (Proposition 5) and

also because ∇ΘT
Q∞ is a restriction of ∇Q∞ (Proposition 9), by convergence of tangential derivatives

(Proposition 10), the fact that ∇Q∞ also satisfies Lemma 39 and hence that bounded convergence

holds (Proposition 13). As a result, it follows that,

‖θ0
T − θ0‖Θ ≤ c̄

∣∣∣Q∞(θ0
T )−Q∞(θ0)

∣∣∣+ o(‖θ0
T − θ0‖Θ)

≤ c̄
∣∣∣Q∞(πTθ0)−Q∞(θ0)

∣∣∣+ o(‖θ0
T − θ0‖Θ)

≤ o(‖πTθ0 − θ0‖Θ) + o(‖θ0
T − θ0‖Θ)

where the first inequality follows from (61) and by differentiability of Q∞ at θ0
T ∈ Θ derived in (59)

and the implied tangential differentiability (Corollary 18), the second inequality is obtained since

Q∞(πTθ0) > Q∞(θ0
T ) by construction, and the last inequality follows again simply by applying the

definition of differentiable operator. Finally, since o(‖πTθ0 − θ0‖Θ) = O(T−1/2) (Assumption 21), we

obtain,

‖θ0
T − θ0‖Θ(1 + o(1)) = o(‖πTθ0 − θ0‖Θ)

⇔ ‖θ0
T − θ0‖Θ =

1

(1 + o(1))
O(T−1/2) = O(T−1/2).

(62)

24Regularity of θ0 is obtained from the identifiable uniqueness of θ0 derived in (13) from Assumptions 1, 3, 10 and

11.

54



From this result it follows easily that
∣∣∣∇ΘT

Q∞(θ0
T , θ)

∣∣∣ converges to zero at an appropriate rate

for every θ ∈ ΘT . In particular,

∣∣∣∇ΘT
Q∞(θ0

T , θ)
∣∣∣ =

∣∣∣∇ΘT
Q∞(θ0

T , θ)−∇ΘT
Q∞(θ0, θ)

∣∣∣ ∀θ ∈ ΘT

≤ ct,θ‖θT − θ0‖ = o(‖θT − θ0‖) ∀θ ∈ ΘT

= o(O(−1/2)) = o(T−1/2) ∀θ ∈ ΘT .

(63)

where the first equality follows from the fact that ∇ΘT
Q∞(θ0, θ) = 0 ∀θ ∈ ΘT (Proposition 5) and

the inequality inequality by the differentiability of ∇ΘT
Q∞ derived in (60).

Finally, a similar result completes an approximate Z-estimator formulation of θ̂T,S as follows. First,

by the a.s. Frechet (Hadamard) differentiability of ∇ΘT
QT,S and the regularity of θ∗

T,S , it follows by

Proposition 5 that,

‖θ̂T,S − θ∗
T,S‖Θ ≤ ct

∣∣∣∇ΘT
QT,S(θ̂T,S , θ̂T,S − θ∗

T,S)−∇ΘT
QT,S(θ

∗
T,S , θ̂T,S − θ∗

T,S)
∣∣∣

≤ ct

∣∣∣∇ΘT
QT,S(θ̂T,S , θ̂T,S − θ

∗
T,S)

∣∣∣+
∣∣∣∇ΘT

QT,S(θ
∗
T,S , θ̂T,S − θ

∗
T,S)

∣∣∣

≤
∣∣∣QT,S(θ̂T,S)−QT,S(θ

∗
T,S)

∣∣∣+ o(‖θ̂T,S − θ∗
T,S‖Θ)

+
∣∣∣QT,S(θ̂T,S)−QT,S(θ

∗
T,S)

∣∣∣+ o(‖θ̂T,S − θ∗
T,S‖)

where the second inequality follows by norm sub-additivity and the third by applying the definition

of Frechet (Hadamard) differentiable map. This implies since ηT =
∣∣∣QT,S(θ̂T,S) − QT,S(θ

∗
T,S)

∣∣∣ =
Op(T

−1/2) that,

‖θ̂T,S − θ∗
T,S‖Θ(1 + o(1)) ≤ 2ηT ⇔ ‖θ̂T,S − θ∗

T,S‖Θ ≤ 2Op(T
−1/2)

1 + o(1)
= Op(T

−1/2).

Finally, the desired result follows by noting that,

∣∣∣∇ΘT
QT,S(θ̂T,S , θ)

∣∣∣ =
∣∣∣∇ΘT

QT,S(θ̂T,S , θ)−∇ΘT
QT,S(θ

∗∗
T,S , θ)

∣∣∣

≤
∣∣∣∇ΘT

QT,S(θ̂T,S , θ)−∇ΘT
QT,S(θ

∗
T,S , θ)

∣∣∣

+
∣∣∣∇ΘT

QT,S(θ
∗
T,S , θ)−∇ΘT

QT,S(θ
∗∗
T,S , θ)

∣∣∣

= o(‖θ̂T,S − θ∗
T,S‖Θ) + o(‖θ∗

T,S − θ∗∗
T,S‖Θ) ∀θ ∈ ΘT ,

where the first inequality follows by adding and subtracting ∇ΘT
QT,S(θ

∗
T,S , θ) and by norm sub-

additivity, and the second inequality follows by differentiability of ∇ΘT
QT,S . Now since, ∇ΘT

QT,S(θ
∗
T,S

is Frechet (Hadamard) differentiable and θ
∗
T,S is a regular point, it follows that,

‖θ∗
T,S − θ

∗∗
T,S‖Θ ≤ ct

∣∣∣∇ΘT
QT,S(θ

∗
T,S , θ

∗
T,S − θ

∗∗
T,S)−∇ΘT

QT,S(θ
∗∗
T,S , θ

∗
T,S − θ

∗∗
T,S)

∣∣∣
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which implies that,

‖θ∗
T,S − θ∗∗

T,S‖Θ ≤
∣∣∣∇ΘT

QT,S(θ
∗
T,S , θ

∗
T,S − θ∗∗

T,S)
∣∣∣

≤
∣∣∣QT,S(θ

∗
T,S)−QT,S(θ

∗∗
T,S)

∣∣∣+ o(‖θ∗
T,S − θ

∗∗
T,S‖Θ)

≤
∣∣∣QT,S(πT (θ

∗∗
T,S))−QT,S(θ

∗∗
T,S)

∣∣∣+ o(‖θ∗
T,S − θ∗∗

T,S‖Θ)

≤ o(‖πT (θ
∗∗
T,S)− θ

∗∗
T,S‖Θ) + o(‖θ∗

T,S − θ
∗∗
T,S‖Θ)

where the first inequality follows immediately by (B.7) and the fact that ∇ΘT
QT,S(θ

∗∗
T,S , θ) = 0 ∀θ ∈

ΘT , the second inequality by applying the definition of Frechet (Hadamard) differentiability, the

third inequality is obtained since QT,S(πT (θ
∗∗
T,S)) ≤ QT,S(θ

∗
T,S)−QT,S(θ

∗∗
T,S)

∣∣∣+ o(‖θ∗
T,S and the last

inequality by differentiability of QT,S . It thus follows by (B.7) that

∇ΘT
QT,S(θ̂T,S , θ) = op(T

−1/2) ∀θ ∈ ΘT . (64)

An appropriate characterization of the convergence of the convergence rate of the limit criterion

function evaluated at the sequence of projection points {θT
0 }T∈N is also In particular, .... It thus

follows that

∇ΘT
Q∞(θ0

T , θ) = o(T−1/2) ∀θ ∈ ΘT and ∇ΘQ∞(θ0, θ) = 0 ∀ (θ, T ) ∈ ΘT × N. (65)

Given the
√
T sieve expansion rate (Assumption 21) and suitable generalized Lipschitz smoothness

conditions on the auxiliary estimators, their limits and derivatives below, we shall obtain an important

intermediate condition, namely,

√
T
[(
∇ΘT

Q0
T,S(θ̂T,S)−∇ΘT

Q0
∞(θ̂T,S)

)
−
(
∇ΘT

Q0
T,S(θ

0
T )−∇ΘT

Q0
∞(θ0

T )
)]

= op
(√

T‖θ̂T,S − θ0
T ‖Θ

)
.

The conditions (i)
∥∥∥∇ΘT

β̃
L

T,S(θ
′, 0)− ∇ΘT

β̃
L

T,S(θ
′′, 0)

∥∥∥
B
≤ ζ∇,T ξ∇

(
‖θ′ − θ′′‖Θ

)
; (ii)

∥∥∥β̃L

∞(θ′) −

β̃
L

∞(θ′′)
∥∥∥
B
≤ ξ∞

(
‖θ′ − θ′′‖Θ

)
; and (iii)

∥∥∥∇ΘT
β̃
L

∞(θ′, 0)−∇ΘT
β̃
L

∞(θ′′, 0)
∥∥∥
B
≤ ξ∞∇

(
‖θ′ − θ′′‖Θ

)
; hold

a.s. ∀ (θ′, θ′′) ∈ Sθ0
(δ) × Sθ0

(δ) ⊂ Θ × Θ for some δ > 0 and every L ∈ L and T > T ∗ ∈ N with

ζ∆∇,T = Op(1) and ξ∇, ξ∞ and ξ∞∇ satisfying ξ∇(x) → 0, ξ∞(x) → 0 and ξ∞∇ (x) → 0 as x → 0.

By Assumption AC1, there exists T ∗ ∈ N such that θ0
T ∈ Sθ0

(ǫ) ∀T ≥ T ∗. Assumption AC8

then ensures that ∇2
ΘQ

0
∞(θ0

T , ·) is defined for every T > T ∗. Furthermore, by Corolarry 18, the

tangential derivative ∇2
ΘT

Q0
∞(θ0

T , ·) is equally defined for all T > T ∗. Now, by Assumption AC9,

∇2
ΘT

Q0
∞(θ0

T , ·) has an inverse defined on the range of ∇2
ΘT

Q0
∞(θ0

T , ·) for every T > T ∗. Since the

inverse of a continuous linear map is itself both linear and continuous, then that same inverse is also

bounded. Finally, it holds true that, for every T > T ∗,

∃ cT ∈ R+
0 such that

∣∣∣∇2
ΘT

Q0
∞(θ0

T , θ − θ0
T )
∣∣∣ ≥ cT ‖θ − θ0

T ‖Θ ∀θ : (θ − θ0
T ) ∈ lin(ΘT ).
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Furthermore, by the same argument, under Assumption AC10,

∃ c̄ ∈ R+
0 such that

∣∣∣∇2
ΘQ

0
∞(θ0, θ − θ0)

∣∣∣ ≥ c̄‖θ − θ0‖Θ ∀θ : (θ − θ0) ∈ lin(Θ).

Also, Assumptions AC1 and AC8 together imply that,
∣∣∣∇2

ΘT
Q0

∞(θ0
T , θT )−∇2

ΘQ
0
∞(θ0, θ)

∣∣∣ = o(‖θ0
T − θ0‖A), (66)

and in particular by Proposition 10,
∣∣∣∇2

ΘT
Q0

∞(θ0
T , θT ) − ∇2

ΘQ
0
∞(θ0, θ)

∣∣∣ → 0 as T → ∞ for every

sequence θT → θ ∈ Θ with θT ∈ lin(ΘT ) ∀T > T ∗. This in turn implies by Proposition 13 that

∃ c > 0 such that, ∣∣∣∇2
ΘT

Q0
∞(θ0

T , θT − θ0
T )
∣∣∣ ≥ c‖θT − θ0

T ‖Θ (67)

holds for every sequence {θT − θ0
T }T∈N such that (θT − θ0

T ) ∈ lin(ΘT ) ∀T > T ∗.

Now, the continuous Frechet differentiability of ∇ΘQ
0
∞ : Θ → R on Sθ0

(ǫ) postulated in Assump-

tion AC8 implies that ∇ΘQ
0
∞ is uniformly Frechet differentiable along every sequence θ0

T → θ0. In

particular,25

∣∣∣∇ΘT
Q0

∞(θT )−∇ΘT
Q0

∞(θ0
T )−∇2

ΘQ
0
∞(θ0, θT − θ0

T )
∣∣∣ = o(‖θT − θ0

T ‖Θ) (68)

holds for every sequence {θT − θ0
T }T∈N such that (θT − θ0

T ) ∈ lin(ΘT ) ∀T > T ∗. Hence, using (67),

it follows immediately that,
∣∣∣∇ΘT

Q0
∞(θT )−∇ΘT

Q0
∞(θ0

T )
∣∣∣−
∣∣∣∇2

ΘQ
0
∞(θ0, θT − θ0

T )
∣∣∣ = o(‖θT − θ0

T ‖Θ)

⇔
∣∣∣∇ΘT

Q0
∞(θT )−∇ΘT

Q0
∞(θ0

T )
∣∣∣ =

∣∣∣∇2
ΘQ

0
∞(θ0, θT − θ0

T )
∣∣∣− c‖θT − θ0

T ‖Θ

+ c‖θT − θ
0
T ‖Θ + o(‖θT − θ

0
T ‖Θ)

⇔
∣∣∣∇ΘT

Q0
∞(θT )−∇ΘT

Q0
∞(θ0

T )
∣∣∣ ≥ c‖θT − θ0

T ‖Θ + o(‖θT − θ0
T ‖Θ)

holds also for every sequence {θT − θ0
T }T∈N such that (θT − θ0

T ) ∈ lin(ΘT ) ∀T > T ∗, where the first

equality follows from (68) by norm sub-additivity, the first equivalence by adding and subtracting

c‖θT − θ0
T ‖Θ, and the second by (67). Finally, we can conclude that,

∣∣∣∇ΘT
Q0

∞(θ̂T,S)−∇ΘT
Q0

∞(θ0
T )
∣∣∣ ≥ c‖θ̂T,S − θ0

T ‖Θ + o(‖θ̂T,S − θ0
T ‖Θ)

⇔ ‖θ̂T,S − θ0
T ‖Θ

(
c+ o(1)

)
≤
∣∣∣∇ΘT

Q0
∞(θ̂T,S)−∇ΘT

Q0
∞(θ0

T )
∣∣∣

⇔
√
T‖θ̂T,S − θ0

T ‖Θ
(
c+ o(1)

)
≤

√
T
∣∣∣∇ΘT

Q0
T,S(θ

0
T )−∇ΘT

Q0
∞(θ0

T )
∣∣∣ + op(

√
T‖θ̂T,S − θ0

T ‖Θ)

⇔
√
T‖θ̂T,S − θ0

T ‖Θ
(
c+ o(1)− op(1)

)
≤ Op(1)

⇔
√
T‖θ̂T,S − θ0

T ‖Θ ≤ Op(1)

c+ op(1)
= Op(1)

(69)

25Here continuous differentiability is not really required since for asymptotically tight sequences ‖θT − θ0
T ‖Θ, def-

erentiability at the limit point θ0 is sufficient. However, continuous differentiability is required above for independent

reasons and hence we make arbitrary use of it.
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holds again for every sequence {θ̂T,S}T∈N and {θ0
T }T∈N such that (θ̂T,S − θ0

T ) ∈ ΘT ∀T ∈ N. Here,

the first equivalence in (69) is obtained simply by rewriting c‖θ̂T,S − θ
0
T ‖Θ − o(‖θ̂T,S − θ

0
T ‖Θ) as

‖θ̂T,S − θ0
T ‖Θ

(
c + o(1)

)
. The second equivalence is obtained by multiplying both sides by

√
T and

substituting
√
T
∣∣∣∇ΘT

Q0
∞(θ̂T,S)−∇ΘT

Q0
∞(θ0

T )
∣∣∣ by

√
T
∣∣∣∇ΘT

Q0
T,S(θ

0
T )−∇ΘT

Q0
∞(θ0

T )
∣∣∣+op(

√
T‖θ̂T,S−

θ0
T ‖Θ), which follows from the fact that,

√
T
[
∇ΘT

Q0
∞(θ̂T,S)−∇ΘT

Q0
∞(θ0

T )
]
=

√
T∇ΘT

Q0
∞(θ̂T,S)

=
√
T∇ΘT

Q0
∞(θ̂T,S)−

√
T∇ΘT

Q0
T,S(θ̂T,S) + op(1)

= −
√
T
(
∇ΘT

Q0
T,S(θ

0
T )−∇ΘT

Q0
∞(θ0

T )
)

+ op(
√
T‖θ̂T,S − θ0

T ‖Θ)

(70)

where the first equality in (70) holds by definition (since ∇ΘT
Q0

∞(θ0
T ) = 0 in Assumption AC5), the

second by adding and subtracting
√
T∇ΘT

Q0
T,S(θ̂T,S) and noting that

√
T∇ΘT

Q0
T,S(θ̂T,S) = op(1)

(since ∇ΘT
Q0

T,S(θ̂T,S) = op(T
−1/2) in Assumption AC5), and the third follows immediately from

Assumption AC6. Finally, the third equivalence in (69) is obtained by taking the term op(
√
T‖θ̂T,S −

θ0
T ‖Θ) to the left-hand-side and rewriting

√
T‖θ̂T,S − θ0

T ‖Θ
(
c + o(1)

)
− op(

√
T‖θ̂T,S − θ0

T ‖Θ) as√
T‖θ̂T,S −θ0

T ‖Θ
(
c+o(1)−op(1)

)
, and also, by noting that

√
T
(
∇Q0

T,S(θ
0
T )−∇ΘT

Q0
∞(θ0

T )
)
= Op(1)

(Assumption AC7).

Finally,
√
T‖θ̂T,S − θ0

T ‖Θ = Op(1) implies by Assumption AC1 that,

√
T‖θ̂T,S − θ0‖Θ =

√
T‖θ̂T,S − θ0

T + θ0
T − θ0‖Θ

≤
√
T‖θ̂T,S − θ0

T ‖Θ +
√
T‖θ0

T − θ0‖Θ = Op(1) + op(1) = Op(1).

B.8 Proof of Theorem 8

[to be completed]
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