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The calculation of eddy current losses in foil windings exposed to a 2-D fringing field is a complex task because

of the current displacement along the height of the foil. For model-based optimization of magnetic components, loss

calculation with 2-D finite element method simulation is not an option because of the high computational effort. The

existing alternative calculation methods with low computational effort, rely on approximations applicable only to a cer-

tain geometrical arrangement of the windings and the air gap. Therefore, in this study, a new semi-numerical method

was developed to overcome these limitations. The method is based on the mirroring method and is applicable to ar-

bitrary air gaps and winding arrangements. The accuracy of the new method was verified by measurements, and the

deviation of the model results from the measured losses was found to be below 15%.
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1. Introduction

Foil windings feature better thermal properties and a higher

copper filling factor than Litz or round wires. On the other

hand, foil windings exposed to a 2-D magnetic fringing field

are subject to current displacement in two directions, along

the thickness thck as well as the width wdth of the foil, see

the example of a foil-inductor in Fig. 1(a) and (b). Calcu-

lation methods neglecting the influence of this current dis-

placement suffer from poor modeling accuracy (1) (2), as shown

for the foil-inductor in Fig. 1(c). To accurately predict the

losses in the foil windings, the current displacement must be

taken into account, which requires a 2-D field calculation in

the winding window. A finite element simulation (FEM) is

the most commonly applied approach to perform this 2-D

field calculation. Though FEM suffers from long calculation

times and difficult parametrization (1). The work in (3), which

applied a genetic algorithm to optimize a transformer with

foil windings, reported calculation times of 20 hours even

for a simplified FEM model considering only one harmonic

component. However, for most applications it is inevitable

to consider more than one harmonic component for accurate

loss prediction. Therefore, FEM is not considered to be an

ideal option for automatized model-based optimization. Var-

ious alternative methods are proposed in literature to consider

the effect of 2-D fringing fields. They can be categorized into

two distinct approaches.

The first approach is to derive analytical formulas, which

take into account the losses caused by the fringing field and

allow for very high calculation speed. The derived formulas
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Fig. 1. FEM Simulation of foil windings in a winding
window of a gapped magnetic core (I f oil = 5 A/30 kHz):
(a) Magnetic field (b) Non-homogeneous current density
along foil 1 (see cut-line in Fig. 1(a). The homogeneous
current density would be 2.5e6 A/m2) (c) Losses in the
foil winding at 5 Arms sinusoidal winding current at dif-
ferent frequencies in comparison to a simple 1D calcula-
tion method (4) and the DC-losses

rely on an analytical solution of the Maxwell equations in

the winding-window. However, to obtain analytically solv-

able differential-equations, approximations and restrictions

to simple geometries are required. The solid-conductor-

method proposed in (1), (2) and the method proposed by (5),

(6) are the most known methods of this kind. The solid-

conductor-method approximates the layers of a foil-winding

as one unified solid conductor. The model is shown to be
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accurate for low frequencies, but at high frequencies the ac-

curacy decreases, because the solid conductor exhibits differ-

ent eddy currents, than a foil winding would actually have.

The method described in (5), (6) approximates the eddy cur-

rent as line-current-density located at the surface of the foil

closest to the gap. This foil is assumed to absorb the whole

fringing field. The air-gap is also modelled as line-current-

density (by Fourier-decomposition in space). For either of

these two methods, the air-gaps must be located at the in-

ner core-leg and the area between the air-gap and the foil-

winding must be filled with air or a spacer only (no additional

round-conductor winding).

The second approach is often referred to as semi-empirical

or semi-numerical. A closed-form formula for the losses is

derived from a set of prior FEM simulations. This approach

tries to combine the advantages of the FEM-approach - high

accuracy and no geometrical restrictions - and the advan-

tages of the analytical-approach - high calculation speed. The

squared-field-derivative method, proposed in (7) for round-

wires is an example of such a method. The work in (8) derives

a modified Dowells-formula (4) for losses in the foil-winding

of a high-frequency transformer. The formula contains addi-

tional parameters, used to curve-fit the losses from 2-D FEM

simulations and enables fast calculation of winding losses.

Though, it is restricted to a certain geometry, analyzed prior

by FEM simulations.

To be able to effectively perform model-based optimization

of magnetic components with foil windings, a method is

needed, which features much lower calculation times than a

FEM-simulation and on the same time is not subject to re-

strictions on air-gap and winding arrangement as the existing

analytical and semi-numerical approaches. To fulfil this need,

in this work a novel, semi-numerical method is developed,

which can be applied to arbitrary winding and air-gap geome-

tries. Regarding calculation times, the new method is in be-

tween the FEM- and the existing semi-empirical approaches.

The developed method can be combined with the mirroring

method and is a true 2-D field approximation for foil wind-

ings. The method is described in Sect. 2 and its validation is

given in Sect. 3.

2. Foil- to Square-Conductor Method

In the following the principle of the calculation method is

explained with the example of an inductor with foil wind-

ings. Figure 1(a) shows a 2-D finite element simulation of

an inductor with a sinusoidal winding current of Iz, f oil =

5 A@30 kHz. |H| is the amplitude of the 2-D magnetic field

introduced by the air-gap. The x-component of the H-field,

which is perpendicular to the foils, causes an eddy current

flowing in the y-z plane. The existence of the eddy currents

results in an inhomogeneous current distribution Jz, which is

shown in Fig. 1(b) for the foil closest to the air-gap. For accu-

rate loss modelling, the investigated method must determine

the non-homogeneous Jz of every foil of the winding.

The routine to perform this task, consists of two major parts.

The first part is the calculation of the non-homogeneous cur-

rent density Jz, f oil in a single foil by the following steps

shown in Fig. 2:

( 1 ) Transformation to round-conductors: The foil is

transformed into area-equivalent round-conductors.

Fig. 2. Overview calculation procedure for non-homo-
geneous current distribution in a foil, exposed to a 2-D
transverse magnetic field: 1) Round-Conductor Transfor-
mation, 2) Calculation of round-conductor current den-
sity, 3) Calculation of foil current density, 4) Transfor-
mation to square-conductors and calculation of square-
conductor currents

( 2 ) Calculation of current Jz,round in round-conductors:

The well known formulas for round conductors are

used to calculate the eddy current in each separate

round conductor. The external magnetic field He is de-

rived using the mirroring method, as will be explained

in detail later in this section.

( 3 ) Calculation of foil current Jz, f oil: The current den-

sity in the foil is derived from the current density of the

round conductors, by postulating continuity of Jz, f oil at

the boundary of adjacent round conductors.

( 4 ) Discretize and average to square-conductors: The

foil is cut into area-equivalent square-conductors. To

each square-conductor a current Iz,sqr,k is attributed ac-

cording to Jz, f oil, whereas the current density is ap-

proximated to be constant over the cross-section of

each square-conductor. Unlike in step 1), a transfor-

mation to square-conductors is applied, as they repre-

sent the actual foil-winding more accurately. In this

way, the current displacement in the foil is taken into

account by the square-conductor currents and the mir-

roring method can be applied to calculate the H-field

and the losses in the same way as for round- and Litz-

wires (6) (9).

The second part of the routine considers the entire foil-

winding and involves a numerical iteration to determine Jz, f oil

in each foil of the winding, starting from the uniform distri-

bution. The method is applicable to arbitrary air-gaps and

winding arrangements. As the mirroring method is based on a

low-frequency approximation ( (6) chapter 5.2.1), the model

is applicable as long as the foil thickness thck fulfills the fol-

lowing condition:

thck ≤ 1.6 · δ, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (1)

where δ is the so called penetration- or skin-depth. The same

condition can be alternatively expressed as a frequency limit

at a given winding geometry:

fmax =
2.56 · ρc

µ · π · thck2
, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (2)

where ρc is the electrical resistivity of the conductor material
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and µ the permeability of the material.

The following two sections describe both parts of the routine

in detail.

2.1 Non-Homogeneous Current Density in a 2-D

Transverse Field The inhomogeneous foil current den-

sity Jz, f oil caused by the 2-D transverse field He is calculated

with the procedure shown in Fig. 2, which consists of four

steps:

2.1.1 Transformation to Round-conductors The

foil-winding is transformed into a series of aligned equiv-

alent round-conductors, using the equivalent DC-resistance

transformation ((6), chapter 5.4.1 and (10)) and postulating

equivalent width wdth of the transformed winding, see Fig. 2,

1). The constraints on surface and width can be expressed by

wdth · thck = ncond · π · (deq/2)2 and ncond · deq = wdth from

which follows:

deq =
4 ∗ thck

π
. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3)

2.1.2 Calculation of Current J z,round in Round-

conductors With the foil decomposed into aligned round

conductors, the eddy current caused by the external magnetic

field
−→
He in a round conductor can be calculated using the for-

mula derived in (11) formula (7-45):

J̄z(r, ϕ) = 4µ2He j
3
2 k

J1( j
3
2 kr)

F( j
3
2 kreq)

sin(ϕ − ϕHe). · · · · · · · (4)

where

F( j
3
2 kreq) = (µ1 + µ2)J0( j

3
2 kreq) + (µ1 − µ2)J2( j

3
2 kreq)

· · · · · · · · · · · · · · · · · · · · (5)

k =
√

(2π f )ρ1µ1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6)

and

µ1 magnetic permeability of the conductor material

ρ1 conductivity of the conductor material

µ2 magnetic permeability of material around the conduc-

tor
−→
He sinusoidal transverse magnetic field vector with am-

plitude He and ϕHe

f frequency of He.

Figure 3(a) illustrates a single round-conductor exposed to

a transverse H-field. The current density is derived on the

y-axis by evaluating the current density at the three points
(

Jz(req,
π
2
− ϕHe), Jz(req,−

π
2
− ϕHe), Jz(0, 0)

)

and linear inter-

polation, as shown in Fig. 3(b). By assuming, that the aligned

round-conductors are isolated from each other, the eddy cur-

rent Jz along the y-axis is calculated separately for each

round-conductor in the transformed foil winding, resulting

in the current density shown in Fig. 2, 2).

Fig. 3. (a) Round-conductor in a transverse H-field (b)
Linearized eddy current density Jz in the round conductor
evaluated on the y-axis: (0,−req), (0,0) and (0,req)

2.1.3 Calculation of Foil Current J z, f oil The current

density in the foil J̄z, f oil(y) (y = [0, wdth]) is derived from the

eddy currents of the separated round-conductors. Unlike be-

fore, the aligned round conductors are now assumed to be

electrically connected. Under this condition, the current den-

sity must be continuous at the boundary between two con-

ductors. This can be expressed as the following condition,

which must hold true for all conductors

J̄z,k

(

deq,
π

2

)

= J̄z,k+1

(

deq,−
π

2

)

; k = [1..ncond − 1].

· · · · · · · · · · · · · · · · · · · · (7)

As a consequence of Eq. (7), the derivative of the current den-

sity
dJz, f oil(y)

dy
is fully determined by the current density in the

round conductors

dJz, f oil(y)

dy
=

dJz,k(0, yk)

dy
; yk=mod(y, deq), k= int

(

1 +
y

deq

)

,

· · · · · · · · · · · · · · · · · · · · · · · (8)

where the function int() rounds down to the next integer. Note

that Jz,k is given in cartesian coordinates, for the sake of sim-

plicity. A second condition for Jz, f oil(y) follows from the total

current, flowing through the foil winding
∫

J̄z, f oil(y)dA = Ī f oil. · · · · · · · · · · · · · · · · · · · · · · · · · · · (9)

The foil current density J̄z, f oil(y) can be calculated consider-

ing Eqs. (8) and (9), which is shown schematically in Fig. 2,

3).

2.1.4 Discretize and Average to Square-conductors

The foil is transformed into nsqr square-conductors with

the size aeq = thck as shown in Fig. 2(f). The dimension of

the square-conductors is such, that they fulfill the low fre-

quency approximation in Eq. (1). Hence for the mirroring

method (12), the square-conductors can be treated in the same

manner as windings of round conductors. It is assumed, that

the current density in the foil is approximately linear across

the crossection of the square conductors. With this assump-

tion the current in each square conductor can be derived from

the current distribution J̄z, f oil(y) by

Īz,sqr,k = a2
eq J̄z, f oil

(aeq

2
+ aeq(k − 1)

)

.k = [1..nsqr].

· · · · · · · · · · · · · · · · · · · (10)

2.2 Numerical Iteration for entire Foil Winding In

Sect. 2.1 a single foil exposed to a sinusoidal transverse field

is modelled as nsqr aligned square-conductors with a non-

homogeneous current distribution Īz,sqr,k, k = [1..nsqr]. When

a magnetic component with an entire foil winding is mod-

elled, the correct determination of the square-conductor cur-

rents Īz,sqr becomes a non-trivial task. This is due to the fact,

that a certain calculated Īz,sqr actually affects its root cause,

being the external field
−→
He. Therefore a numerical iteration

is applied to determine Īz,sqr.

The numerical iteration will again be explained on the exam-

ple of the inductor with a foil winding, shown in Fig. 1. Each

foil is cut into nsqr square conductors. Thus the whole foil

winding is represented as nsqr,tot = nsqr · N f oil square con-

ductors, where N f oil is the turns number of the foil winding.
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Fig. 4. Overview numerical iteration for calculation of the non-homogeneous current distribution in foil
windings

Fig. 5. Numeric iteration for the current in foil 1 of the inductor with foil-winding (shown in Fig. 1): Īsqr,k and
Īsqr,calc at different iteration-steps in comparison to the current distribution Īsqr,FEM derived from the 2-D FEM
simulation of the inductor

For the winding loss calculation, an arbitrary winding current

waveform i f oil(t) is decomposed into its complex spectrum

by means of the Fourier transform. For each harmonic Ī f oil

at frequency fh, the iteration must be performed separately.

The complex array Īsqr of size (1 x nsqr,tot) contains the cur-

rent amplitudes of all square conductors. The starting point

of the iteration is the uniform current-distribution:

Īsqr,0 =

[

Ī f oil

nsqr

. . .
Ī f oil

nsqr

]

. · · · · · · · · · · · · · · · · · · · · · · · · · (11)

Figure 4 shows the overview of the numeric iteration. At the

kth iteration, the latest current-distribution Īsqr,k is used as in-

put to the mirroring method, to calculate the external H-field

at the position of each square conductor H̄e,x and H̄e,y. With

the foil-to-square-conductor method described in Sect. 2.1,

the current distribution Īsqr,calc, that is caused by this exter-

nal field, is calculated. The expression

Īsqr,k = Īsqr,calc. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (12)

is a sufficient condition for the correct current distribution.

It describes the situation, where the physical root cause and

its effect are in balance. Due to the miscellaneous approxi-

mations involved in this method, condition Eq. (12) can not

be exactly fulfilled. The goal of the iteration is therefore to

minimize the error

ēsqr =| Īsqr,calc − Īsqr,k | . · · · · · · · · · · · · · · · · · · · · · · · · · (13)

This minimization could as well be treated as a purely

mathematical problem and state of the art algorithms could be

used to determine Īsqr. Though the investigation of such algo-

rithms and the comparison of their performance to the applied

iteration-method is out of scope for this work. The applied it-

erative calculation method for Īsqr is based on a control-loop

analogy. Further it is taken advantage of the fact, that the cal-

culated current distribution Īsqr,calc exhibits, apart from a pro-

portional scaling factor, approximately the same waveform as

the correct current distribution Īsqr,end. This makes it possible

to adjust Īsqr,k by adding an increment Īsqr,incr derived from

ēsqr at each iteration. Figure 5 illustrates this on the example

of the inductor, shown in Fig. 1. The norm of the current dis-

tributions in foil 1, |Īsqr,k | and |Īsqr,calc | are shown at the very

beginning of the iteration and after 5 and 10 iteration steps.

The current distribution, |Īsqr,FEM |, derived from a 2-D FEM

simulation, is shown as comparison. From the first iteration

step on, |Īsqr,calc| and |Īsqr,FEM | exhibit similar waveforms and

|Īsqr,k | approaches |Īsqr,FEM | with advancing iteration.

The detailed function to determine Īincr from ēsqr is split

into three parts, shown in Fig. 4, which are described in the

following:
• Variable Gain Controller: To iteratively reduce the error

ēsqr, the current distribution is incremented by

∆̄Isqr = pk · ēsqr. · · · · · · · · · · · · · · · · · · · · · · · · · · · (14)
•Gain Adjustment: The proportional gain pk is adjusted in

each iteration step, in order to limit the maximal current

increment per iteration step to Istep,max,k, hence

pk =
Istep,max,k

max(ēsqr)
. · · · · · · · · · · · · · · · · · · · · · · · · · · · (15)

The limit Istep,max,k is initialized to the uniform current

distribution

Istep,max,0 =
Ī f oil

nsqr

. · · · · · · · · · · · · · · · · · · · · · · · · · · (16)

During iteration Istep,max,k is stepwise reduced to ensure,

that ēsqr converges. If the averaged error over the whole

winding ēsqr,avg,k =
∑

ēsqr,k/nsqr,tot did not diminish com-

pared to the error at the last iteration ēsqr,avg,k−1, than

Istep,max is adjusted:
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(esqr,avg,k > esqr,avg,k−1)⇒

Istep,max,k+1 =
Istep,max,k

2
.
· · · · · · · · · · · · · · · · · · (17)

• Phase Decoupling: The feedback-loop introduces

a phase-shift, see equation 4 of the foil-to-square-

conductor method. To ensure, that the current incre-

ment ∆̄Isqr will actually compensate for the error ēsqr,

the phase-shift of the current increment must be com-

pensated by:

Īincr = ∆̄Isqr · e
− jϕcalc . · · · · · · · · · · · · · · · · · · · · · · · (18)

where ϕcalc is the phase-shift of the foil-to-square-

conductor method given by:

ϕcalc = ∠Īsqr,calc − ∠Īsqr,k. · · · · · · · · · · · · · · · · · · · (19)

The iteration loop is executed and the current distribution

is adjusted by

Īsqr,k+1 = Īsqr,k + Īincr · · · · · · · · · · · · · · · · · · · · · · · · · · · (20)

until ēsqr converges to a negligible small value, having an

insignificant influence on the calculated winding losses. Al-

ternatively the winding losses in the whole foil winding can

be directly taken as convergence criteria.

P f oil,tot,k =

nsqr,tot
∑

k=1

Psqr,k, · · · · · · · · · · · · · · · · · · · · · · · · · (21)

∆P,k = 100
|P f oil,tot,k − P f oil,tot,k−1 |

|P f oil,tot,k |
· · · · · · · · · · · · · · · (22)

where Psqr,k are the eddy current losses in the kth square-

conductor calculated as described in (6). The iteration is

stopped, if ∆P,k stays below a certain threshold over 5 iter-

ations:

max(∆P,k−5, . . . ,∆P,k) ≤ 0.1%⇒ Stop · · · · · · · · · · · (23)

3. Validation of the Proposed Method

The proposed method is validated on the example of a

flyback-transformer for a PV-inverter. The whole calcula-

tion routine, including the foil-to-square-conductor method,

is implemented as software program. The losses in the con-

ductors are calculated according to (13), for Litz-wires, and

(6), for square-conductors. The air-gap fringing field is mod-

elled according to (12). The Fourier decomposition of the

flyback winding-currents is performed according to (10).

It is important to keep in mind, that the mirroring method

restricts the validity of the calculated losses. For accurate cal-

culation of the magnetic field in the winding window Eq. (1)

must be fulfilled. This constraint results in a frequency

limit fmax, that can be calculated for the considered flyback-

transformer using Eq. (2). Above this frequency limit the mir-

roring method overestimates the magnetic field in the wind-

ing window and hence the calculated winding losses are sub-

ject to a modeling error. Note that a transformer or inductor

design, optimized for low winding losses, generally fulfills

Eq. (1). Hence Eqs. (1), (2) do not restrict the applicability of

the proposed method for a practical design.

The validation is performed twofold, first with a FEM

simulation and second with measured losses of a flyback-

transformer.

Table 1. Parameters 2-D flyback transformer with foils
and Litz-wire

Core a = 15 mm, c = 7 mm, d = 11 mm

Winding Cu foil and Litz wires

N1=5, thckw1=0.2 mm, wdthw1 =10 mm

N2 = 50, ds,w2 = 0.1 mm, Ns = 7

Air-gap lairgap = 1mm

Fig. 6. 2-D Flyback transformer with foils and Litz
wires: E-core with air-gap and ‘sps’ interleaved windings
with foils on the primary and Litz wire for the secondary

Fig. 7. Flyback-Transformer as specified in Table 1,
with sinusoidal excitation of the foil-winding (Iw1 =

5 A) and open circuit on the secondary: 2D FEM sim-
ulation results compared to losses derived from the
foil-to-square-conductor method and the 1D calculation
method (4)

3.1 Validation with FEM Simulation The model for

foil-winding losses is compared to the conduction losses de-

rived from a 2-D FEM simulation. The specification of the

modelled transformer is given in Table 1 and the 2-D wind-

ing arrangement is illustrated in Fig. 6. The range of validity

for the low frequency approximation of the mirroring method

given by Eq. (2), is fmax,w1 = 270 kHz for the foil winding and

fmax,w2 = 1 MHz for the Litz-wire winding.

A first validation of the loss calculation is performed for the

case of a sinusoidal current of 5 A and various frequencies

from 10 kHz to 10 MHz flowing through the foil winding.

Whereas winding two is an open circuit. The deviation of

the new loss model to the 2D FEM simulation is shown in

Fig. 7 (in percentage, normed to the FEM simulation values).

The losses calculated with the new loss model exhibit good

accordance to the 2D FEM simulation. The difference is be-

low 7%, as long as the low frequency approximation is valid,

and up to 15% in the whole considered frequency range. Fig-

ure 7 further shows the foil losses derived from the simple 1D

calculation method (4). In the frequency range up to 400 kHz,

where a typical flyback converter would operate, this method

exhibits deviations up to 40% compared to the FEM simula-

tion. For the investigated transformer geometry, the influence

of the airgap becomes negligible in the MHz-range with the

two methods predicting approximately the same losses.
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Fig. 8. Loss-calculation for flyback-transformer as spec-
ified in Table 1: Iteration convergence of the winding
losses in the foil winding P f oil,totk,k (see Eq. (21)) and the
error in the current distribution ēsqr,avg,k (averaged over all
harmonics and normed to I f oil,rms, the foil rms-current, see
Eq. (13))

Table 2. Comparison foil-to-square-conductor method
to 2D FEM simulation for flyback transformer winding
losses

Calculation Method
2D FEM Foil-to-Square-Cond.

Simulation Method

Computer

Laptop, Intel-Core

i7-M620@2.67 GHz

Calculation time 320 s 19 s 113 s

Number of Harmonics 20 20 100

Number of Iterations - 43 42

Winding Losses Pw1 1.32 W 1.28 W 1.33 W

Winding Losses Pw2 0.576 W 0.575 W 0.67 W

The second validation is done by considering actual wind-

ing current waveforms of a DC-DC flyback converter oper-

ating in boundary conduction mode (BCM) at a switching

frequency of 100 kHz (8 A peak, 0.75 duty cycle). To limit

the FEM calculation time, only harmonics from 100 kHz to

2 MHz are considered. Figure 8 shows the convergence of

the error in the non-homogeneous current density ēsqr,avg,k

and the total foil winding losses P f oil,tot,k during the itera-

tion (see Sect. 2.2). The error ēsqr,avg,k converges step-by-step

and decreases below 3% after 40 iterations. Simultaneously

the calculated losses converge to the final value. After 43

iterations the convergence criteria for the calculated losses

Eq. (23) is fulfilled. The final value is 1.28 W, which cor-

responds to a difference of 3.5% compared to the 2D FEM

simulation, see Table 2. To demonstrate the increase in cal-

culation time, a second calculation-run of the foil-to-square-

conductor method is performed and also listed in Table 2, tak-

ing into account a larger number of harmonics from 100 kHz–

10 MHz. The winding losses in the foil increase marginally

by 4% due to the higher order harmonic currents.

3.2 Validation with Measured Flyback Transformer

The model for foil-winding losses is verified by measure-

ments on a flyback transformer. The transformer is built

with a gapped RM low-profile core and foil windings on

the primary and Litz wire on the secondary. First, the mea-

surement setup is described in the following paragraph. The

measurement results and the comparison are presented in

3.2.2.

Fig. 9. Experimental setup for winding loss measure-
ment of the flyback transformer.

Fig. 10. Overview measurement method for core- and
winding-loss measurement of a magnetic component, ac-
cording to (14)

Table 3. Winding loss measurement setup: used equip-
ment

Waveform Generator Agilent 33522A

Power Amplifier AE Techtron 7224

Oscilloscope LeCroy WaveSurfer 24MXSB

Voltage Probes LeCroy PP008

Current Probe LeCroy AP015

3.2.1 Winding Loss Measurement Method and Setup

The measurement-methods proposed in (14) are applied

for this verification, which allow to derive the losses in the

foil-winding at a sinusoidal winding-current. Figure 9 shows

the measurement setup consisting of the flyback transformer

and a resonance capacitor. The schematic of the entire mea-

surement setup is shown in Fig. 10 and the applied measure-

ment equipment is listed in Table 3. The primary winding

is put in series with a capacitor Cres to form a resonant cir-

cuit together with the transformers magnetizing inductance.

A sinusoidal voltage source, realised with a signal generator

and a power amplifier, drives the test current Itest through the

primary winding. The secondary Litz-winding is left open

circuit. The transformer has an additional sensing-winding

(0.1 mm2 Cu round-wire) having the same turns-ratio as the

primary winding, which is used for voltage measurements

only. Hence no net current is flowing through the sensing-

winding. The losses in the sensing winding are negligibly

small, due to the low turns-number and the small conductor

diameter.

The schematic in Fig. 10 shows the T-equivalent circuit of

the transformer, the parasitic cable inductance LCable and the

resonance capacitor series resistance RCES R. The equivalent

components of the sensing winding are not relevant, because

the winding does not carry any current. Lσ and Lmag are

the magnetizing- and stray-inductance referred to the primary
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winding. The resistors RCore and Rwdg model the losses in the

core and the primary winding. The aim of the setup is to de-

termine the resistive losses in Rwdg. This can be achieved by

two distinct measurements.
• The Resonant Method as proposed in (15) and described

in (14) section 1.2.4, allows to determine the total re-

sistive losses of the resonant-circuit by operating the

voltage-source at

fr =
1

2π
√

(Lmag + Lσ)Cr

. · · · · · · · · · · · · · · · · · · ·(24)

At this operating point the voltage over Lσ, Lmag and Cr

cancel out and the voltage measured at the input of the

resonant circuit VLC only contains the resistive parts

VLC = VR,wdg + VR,core + VR,C,ES R. · · · · · · · · · · · (25)

Consequently, the losses in the resonance circuit can be

split into three parts

PLC = PR,wdg + PR,core + PR,C,ES R. · · · · · · · · · · (26)

The losses caused by the resonance current PLC, f r can be

calculated from the measured voltage VLC and current IT

by

PLC, f r =
1

2
ÎT, f rV̂LC, f r cos(ϕI,T, f r − ϕV,LC, f r),

· · · · · · · · · · · · · · · · · (27)

where ÎT, f r, ϕI,T, f r and V̂LC, f r, ϕV,LC, f r are the amplitude

and phase at the resonance frequency derived from the

fourier transform.
• The Capacitive Cancellation Core Loss Method pro-

posed in (14) Sect. 2.1.2, can be applied to measure the

core losses separately. Unlike the resonant method,

where the winding losses are included in the measured

losses. The voltage Vcore is measured between the up-

per port of the sensing winding to ground, as shown in

Fig. 10. Note that the lower port of the sensing winding

is connected to the resonance capacitor and hence Vcore

can be expressed as

Vcore = VR,core + VL,mag + VR,C,ES R + VC,r.

· · · · · · · · · · · · · · · · · (28)

The frequency of the voltage-source is chosen, such that

VL,mag = −VC,r, which is the case at

fr =
1

2π
√

LmagCr

. · · · · · · · · · · · · · · · · · · · · · · · · · (29)

The measured voltage only contains the resistive parts

Vcore = VR,core + VR,C,ES R and the resistive losses caused

by the resonance current can be calculated by:

Pcore, f r =
1

2
ÎT, f rV̂core, f r cos(∆ϕ f r), · · · · · · · · · · (30)

with

∆ϕ f r = ϕI,T, f r − ϕV,core, f r. · · · · · · · · · · · · · · · · · · (31)

The losses consists of the following two parts

Pcore, f r = PR,core, f r + PR,C,ES R, f r. · · · · · · · · · · · · (32)

To obtain the magnetic losses PR,wdg, f m at a certain fre-

quency fm the losses PLC, f m and Pcore, f m are measured as ex-

plained above. For the measured transformer the stray in-

ductance Lσ is much smaller than Lmag and hence the same

resonant capacitance Cr can be used for both measurements.

The magnetic losses can be obtained from the measurements

with Eqs. (27) and (32) by:

PR,wdg, f m ≃ PLC, f m − Pcore, f m. · · · · · · · · · · · · · · · · · · · (33)

The losses in RC,ES R cancel out, though RC,ES R should not

be much higher than Rwdg to obtain a good resolution of the

measurement.

The accuracy of the performed loss measurements caused

by the deviations in the current ∆i, voltage- ∆u and phase-

angle measurements ∆ϕ can be deducted from Eqs. (27),

(30) using the second-order Taylor-series of the cosine
(

cos(x) = 1 − x2

2

)

and neglecting deviation-coefficients of

third order:

∆pmeas = ∆vI + V∆i + ∆v∆i −
P

2
∆ϕ2. · · · · · · · · · · · (34)

The phase-deviation follows from the time-delay between the

voltage- and current-probe by

∆ϕ = 2π · 16ns · fmeas, · · · · · · · · · · · · · · · · · · · · · · · · · · (35)

whereas the time-delay is derived from a reference-

measurement using a shunt-resistor. Voltage and current de-

viation are found to be

∆v ≃ 80µV,∆i ≃ 1 mA. · · · · · · · · · · · · · · · · · · · · · · · · · (36)

This is above their theoretical resolution-limit of 63 µV and

313 µA, due to the low signal-to-noise ratio at high scale-

factors of the oscilloscope. An additional measurement er-

ror introduced by the parasitic inter-winding capacitance, de-

scribed in (14) (2.11), is found to be negligible small, due to

the relatively low measuring frequencies. The deviation in

the measured winding losses follows from Eq. (33)

∆pwdg ≃ ∆pLC + ∆pcore, · · · · · · · · · · · · · · · · · · · · · · · · (37)

where ∆pcore and ∆pLC are calculated with Eq. (34).

3.2.2 Loss Measurements and Comparison The

flyback transformer loss model is parameterized to model

the measured flyback transformer. The frequency limit, up

to which the low-frequency 2-D field approximation used for

winding loss calculation applies, is determined by Eq. (2) and

equals

fmax,low, f req = 172 kHz · · · · · · · · · · · · · · · · · · · · · · · · · · (38)

for the investigated flyback transformer geometry. Above this

frequency the modelled winding losses are subject to an in-

creasing modelling error. In Table 4 the measured winding

losses are compared to the losses calculated with the model

at three different measuring points: 50 kHz, 100 kHz and

200 kHz. Further the accuracy of the measured losses is de-

termined with Eq. (37). The model exhibits a good accor-

dance to the measured losses. The winding losses predicted

by the model show a deviation below 15% for the measuring

points at 50 kHz and 100 kHz. The measuring frequency of

200 kHz is above fmax,low, f req and accordingly the deviation

increases to a value of 21%.

Table 4. Flyback transformer winding loss model vali-
dation by comparison to measured losses

Frequency: Loss Measurements: Loss Model: Deviation:

fmeas Pwdg ∆pwdg Pwdg ∆model

50 kHz 0.0136 W < ±3.9% 0.0132 W −2.6%

100 kHz 0.0046 W < ±6.2% 0.0052 W 14.9%

200 kHz 0.0022 W < ±7.5% 0.0026 W 21.3%
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Fig. 11. Flyback transformer model (specification as in
Table 1 at DC-DC BCM operation with harmonics from
100 kHz to 2 MHz): calculation complexity analysis

3.3 Calculation Time and Complexity Reducing

the calculation speed was a major motivation to develop the

foil-to-square-conductor method. The achieved evaluation

time for the whole loss-model of a flyback-transformer in

DC-DC BCM operation (see 3.1 and Table 1 for specifica-

tions), is 19 s and 113 s for a considered number of higher or-

der harmonics of nh = 20 and nh = 100 on a laptop computer

equipped with an Intel-Core-i7-620M@2.67 GHz. In com-

parison, the speed optimized FEM model, using the software

FEMM 4.2, exhibits a calculation time of 320s for nh = 20,

see Table 2 for details. Figure 11 shows the relative calcu-

lation time of the most dominant tasks of the loss-model.

The calculation complexity of the foil-to-square-conductor

method and the mirroring method scales linearly with nh and

the number of conductors, being nsqr,tot for the foil-to-square

and nsqr,tot +nwdg,2 for the mirroring method (nwdg,2 is the sec-

ondary turns number). Note, that all dominant tasks are in

the iteration loop (see Fig. 4). Thus the iteration itself is the

most time-consuming part of the loss-model, whose calcula-

tion time depends linearly on the number of iterations nnum,it.

Evaluations with different parameters showed, that the devel-

oped numerical iteration needs an average of nnum,it ≃ 45 to

converge. To further reduce calculation time, an improved

iteration-method would be most effective. While nsqr,tot and

nwdg,2 follow from the specifications, the number of harmon-

ics nh can be chosen as low as possible, depending on the con-

sidered current waveform. A further speed improvement can

be achieved in the mirroring method by reducing the num-

ber of mirroring below the currently implemented 11x11 mir-

rored basic winding windows.

4. Conclusion

A new semi-numerical method is developed for loss cal-

culation in foil windings exposed to a 2-D fringing field.

Compared to existing calculation methods it features the ad-

vantage of much faster calculation speed compared to FEM

simulations. For the considered example the calculation time

is reduced by a factor of 16. At the same time the new method

is not restricted to certain geometric arrangements as the ex-

isting analytical and semi-empirical methods. The analysis of

the calculation complexity discloses the potential of further

speed improvement. The accuracy of the method is validated

on the example of a flyback transformer by both FEM simula-

tions and measurements on a test-setup. The method exhibits

deviations below 15% in comparison to the measured losses.
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