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Abstract: The conditional independence assumption for nonparametric
multivariate finite mixture models, a weaker form of the well-known condi-
tional independence assumption for random effects models for longitudinal
data, is the subject of an increasing number of theoretical and algorithmic
developments in the statistical literature. After presenting a survey of this
literature, including an in-depth discussion of the all-important identifia-
bility results, this article describes and extends an algorithm for estimation
of the parameters in these models. The algorithm works for any number
of components in three or more dimensions. It possesses a descent prop-
erty and can be easily adapted to situations where the data are grouped in
blocks of conditionally independent variables. We discuss how to adapt this
algorithm to various location-scale models that link component densities,
and we even adapt it to a particular class of univariate mixture problems in
which the components are assumed symmetric. We give a bandwidth selec-
tion procedure for our algorithm. Finally, we demonstrate the effectiveness
of our algorithm using a simulation study and two psychometric datasets.
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1. Introduction

The analysis of longitudinal data generally involves multivariate observations
for each subject in which the correlation among observations for a given subject
must be taken into account. A common method for modeling this situation is
the so-called “conditional-independence model” [29], in which each multivariate
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observation, say Xi for 1 ≤ i ≤ n, consists of a subject-specific effect plus ran-
dom noise. The hallmark of the conditional independence model is that the noise
is independent; i.e., conditional on the subject-specific effect, the multivariate
vector consists of independent observations. Furthermore, each subject-specific
effect may depend on certain covariates that are observed, but it also depends
on an unobserved, or latent, feature of the individual. Importantly, all aspects
of the traditional random-effects model for longitudinal data—in particular, the
subject-specific effects and the independent random noise—are considered to
be realizations from some parametric model that is specified a priori, and the
parameters are the objects of statistical estimation.

Here, we relax the traditional parametric assumption of the conditional-
independence random effects model. The model we use retains the characteristic
conditional independence assumption, but instead of subject-specific effects, we
posit that the population is divided into m distinct components, each subject
belonging to one of those components, and that each multivariate observation
has independent measurements conditional on the component from which the
individual comes. Trading the usual specific-subject effect for the less-specific
component effect leads to a finite mixture model, and as we shall see below, it
allows us to do away with the parametric assumption altogether. We are there-
fore led to consider nonparametric finite mixture models under an assumption
of conditional independence.

Specifically, suppose the r-dimensional vectors X1, . . . ,Xn are a simple ran-
dom sample from a finite mixture density of m components f1, . . . , fm, with
m > 1 and known in advance. It is assumed throughout this manuscript that
each one of these densities fj is equal with probability 1 to the product of its
marginal densities:

fj(x) =

r
∏

k=1

fjk(xk). (1.1)

Taking a fully nonparametric approach with regard to the fjk, we may therefore
express the finite mixture density as

Xi ∼ gθ(xi) =
m
∑

j=1

λj

r
∏

k=1

fjk(xik), (1.2)

where λ = (λ1, . . . , λm) must satisfy

m
∑

j=1

λj = 1 and each λj ≥ 0. (1.3)

Here, we assume Xi = (Xi1, . . . , Xir)
⊤ and we let θ denote the vector of pa-

rameters to be estimated, including the mixing proportions λ1, . . . , λm and the
univariate densities fjk. Furthermore, throughout this article, j and k always
denote the component and coordinate indices, respectively; thus, 1 ≤ j ≤ m
and 1 ≤ k ≤ r.
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One attractive feature of Model (1.2) is the fact that the multivariate den-
sity functions for each mixture component may be studied via their univariate
marginal densities, since the conditional independence implies that each fj fac-
tors into the product of its marginals. This aids in the interpretation of results, as
we shall see in Section 5, since it is typically easier to analyze univariate density
functions than multivariate ones. We emphasize, however, that Model (1.2) does
not imply that the repeated measurements are independent; the dependence is
captured by component membership.

The focus of the remainder of this article will be model (1.2) in the case when
the dimension r is at least 3, for reasons that will become apparent in Section 2.
First, however, we discuss additional existing literature on the general topic of
nonparametric mixture models.

The case of univariate nonparametric mixtures, though not the cornerstone of
this manuscript, deserves some additional remarks. When r = 1, Equation (1.2)
becomes

gθ(xi) =

m
∑

j=1

λjfj(xi),

and it is not hard to see that the parameters on the right hand side are not
uniquely determined if the left hand side is known. Therefore, some additional
constraints are necessary in the univariate case. To this end, Bordes et al. [8]
and Hunter et al. [25] simultaneously propose a location-shift semiparametric
mixture model

gθ(x) =

m
∑

j=1

λjf(x− µj)

for some symmetric (about zero), but otherwise completely unspecified, den-
sity f and unknown scalar location parameters µj . These authors prove iden-
tifiability of these parameters for m ≤ 3 except in certain special cases (see
Section 4.1). Bordes et al. [8] use the so-called minimum contrast method to
estimate all of the parameters. The authors show that the mixing weight esti-
mators converge to the true weights at the

√
n rate if the location parameters

are known; if they are not known, then the entire Euclidean parameter is n1/4−α

consistent for an arbitrarily small α > 0. The proposed method is interesting
but difficult to generalize to the case of more than two component densities.

Later, Bordes et al. [7] proposed a stochastic EM-like estimation algorithm
that is easy to generalize but does not possess the descent property of a genuine
EM algorithm. We discuss in Section 4.1 an alternative algorithm that does
guarantee the descent property.

Another version of this problem is that of the mixture of the two distributions
where only one of them is unknown. Such a model can be written as

g(x) = λf(x) + (1− λ)φ(x), (1.4)

where the probability density φ is known while f is unknown. This model has
been considered in Robin et al. [38] together with its application to local false
discovery rate (FDR) estimation. The other context where this model appears
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is that of contamination, where the distribution φ for which reasonable assump-
tions can be made is contaminated by an arbitrary distribution f . Robin et al.
[38] proposed an algorithm that converges to the unique solution of the problem
but no large-sample analysis of the problem has been undertaken. A significant
step forward in that regard was made in Bordes and Vandekerkhove [9], who
considered model (1.4) with an additional assumption of the symmetry of the
unknown density f and an additional location parameter and obtained identi-
fiability together with a joint central limit theorem for the estimators of all the
components. An EM-like algorithm for FDR estimation using this model is pre-
sented in Chauveau et al. [11]. Hohmann [23] considered two additional models,
both consisting of just two components as well. One of them has an unknown
component f with an unknown location parameter µ and a known component
f0 with an unknown location parameter ν; the other is the generalization of the
previous one that also adds a scale parameter to the known component f0.

The common thread in all of the nonparametric mixture models discussed
heretofore is the assumption of a fixed, known number of components and no
parametric assumptions on the component densities. An entirely different type
of nonparametric mixture model is studied by Lindsay [32]. In this treatment,
the mixture model is given by

gQ(x) =

∫

f(x; θ)dQ(θ),

where the mixing distribution Q(θ) is completely unspecified but the component
densities f(x; θ) are known to come from a parametric family indexed by θ. In
model (1.2), by contrast, Q(·) is assumed to be supported on m points whereas
the f(x) are fully general except for the conditional independence assumption.
Throughout the rest of this article, our interpretation of “nonparametric mixture
model” is that of Equation (1.2) rather than of Lindsay [32].

The multivariate finite-mixture version of the conditional independence as-
sumption (1.2) has appeared in a growing body of literature on non- and semi-
parametric multivariate mixture models. Hettmansperger and Thomas [22] in-
troduced a more restrictive version of (1.2) in which the fjk depended only
on j. This conditionally i.i.d. (independent and identically distributed) finite
mixture model was later examined by Elmore and Wang [15] and Cruz-Medina
and Hettmansperger [12]. Hall and Zhou [21] considered (1.2) in its full gen-
erality, establishing some rudimentary results concerning the identifiability of
the parameters in this model. Other articles [16, 20] explored this identifiabil-
ity question further, until Allman et al. [1] established the fundamental result
that we elucidate fully in Section 2. Benaglia et al. [4] proposed an estimation
algorithm for (1.2), which was later modified and put on more solid theoretical
ground by Levine et al. [31], who showed that the modified algorithm possesses
a descent property, much like any EM algorithm. In Section 3 of this article,
we extend the algorithm of Levine et al. [31], and in Section 5, we summarize
numerical tests of the extended algorithm.
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2. Identifiability

Without some further restrictions, the parameters of the finite nonparametric
mixture model (1.2) are not identifiable. (NB: We avoid referring to the model
itself as identifiable or not—a model is merely a set of probability distributions
and it may in general be parameterized in multiple ways, some of which may
be identifiable and others not.) Since the lack of identifiability results probably
delayed the development of estimation and inference for these models, it is
a good idea to recall steps that led to the complete description of the finite
conditionally independent nonparametric density mixtures.

Some of the first results in this direction were obtained by Hall and Zhou [21].
This publication was, essentially, a trailblazer in that it was the first to consider
a mixture of nonparametric components without any training data available.
As the authors themselves noticed, “Very little is known of the potential for
consistent nonparametric inference in mixtures without training data and that
problem motivates the present paper”. The particular motivation in that case
was an attempt to estimate the distributions of medical test results when disease
status was unavailable. Considering only a special case of m = 2 components,
Hall and Zhou [21] also suggested an estimation approach that was somewhat
awkward and difficult to implement; a more efficient approach was suggested
later by Hall et al. [20], who also noticed what came to be known as the “curse
of dimensionality in the reverse”—for a given number of components m, there
is a lower bound rm that the dimensionality of observations must exceed for the
model to be identifiable. Hall et al. [20] showed that, if r ≥ rm and m ≥ 2, both
the component densities and mixing weights can be estimated

√
n-consistently.

Another important step on the road to the full-fledged description of iden-
tifiability conditions was the paper by Kasahara and Shimotsu [26] concerning
dynamic discrete choice models in economics. It takes a somewhat different ap-
proach to the identifiability than the above literature. One reason for that is
that the result of Hall et al. [20] has limited applicability in that context since
the number rm, as characterized in Hall and Zhou [21], is typically too large
for economic applications. Also, most models used in economics have covari-
ates whose inclusion must be accounted for and that are not considered in Hall
et al. [20]. Finally, the conditional independence, while reasonable in many ap-
plications, is sometimes difficult to justify in dynamic discrete choice models
for panel data that are commonly considered in economics. Kasahara and Shi-
motsu [26] considered a number of finite mixture models used in applied work
in economics and, under different assumptions on Markov property, stationarity
and type-invariance in transition process, obtained sufficient conditions for their
identifiability.

The fundamental result concerning identifiability of finite mixtures of non-
parametric, conditionally independent measure products is due to Allman et al.
[1]. It is based on an algebraic result of Kruskal [27, 28] that we need to present
first. J. B. Kruskal studied contingency tables in the context of his interest in
psychometrics. His work describes a 3-way contingency table that cross-classifies
a sample of n individuals with respect to three polytomous variables, the kth
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of which has a state space {1, . . . , κk}. This classification can also be described
in terms of the latent structure model. Assume that there is a latent (unob-
servable) variable Z with values in {1, . . . ,m}. Let us suppose that each of the
individuals is known to belong to one of m latent classes and, conditionally on
knowing the exact class j, j = 1, . . . ,m, the 3 observed variables are mutu-
ally independent. Then latent class structure explains relationships among the
categorical variables that we observe through the contingency table.

For a more detailed explanation, some algebraic notation is needed. For k =
1, 2, 3, let Ak be a matrix of size m × κk, with akj = (akj (1), . . . , a

k
j (κk)) being

the jth row of Ak. Later, we will see that akj (ℓ) is the probability that the kth
variable is in the ℓth state, conditional on the observation coming from the jth
mixture component. Let A1 ×A2 ×A3 be the κ1 × κ2 × κ3 tensor defined by

[A1, A2, A3] =

m
∑

j=1

a1j

⊗

a2j

⊗

a3j . (2.1)

Using simpler language, the tensor [A1, A2, A3] is a three-dimensional array
whose element with coordinates (u, v, w) is a sum of products of elements of
matrices Ak, k = 1, 2, 3, with column numbers u, v, and w, respectively, added
up over all of the m rows:

[A1, A2, A3]u,v,w =

m
∑

j=1

a1j(u)a
2
j(v)a

3
j (w).

Such a tensor describes exactly the probability distribution in a finite latent-
class model with three observed variables. To see why this is the case, imagine
that there is some latent variable Z that takes positive integer values from 1 to
some m > 1 and each of the n individuals belongs to one of m latent classes.
If the 3 observed variables are mutually independent when the specific latent
class j, 1 ≤ j ≤ m, is known, we have a mixture of m components with each

component being a product of finite measures and probabilities λj
def
=P (Z = j),

j = 1, . . . ,m being the mixing probabilities. Now, let the jth row of the matrix
Ak be the vector of probabilities of the kth variable conditioned on belonging
to jth class pjk = P (Xk = · |Z = j). Choose one of the three matrices (say, A1)

and define Ã1 = diag(λ)A1, where λ = (λ1, . . . , λm)⊤ is a vector describing the
distribution of the latent class variable Z. Then, the (u, v, w) element of the
tensor [Ã1, A2, A3] is the unconditional probability P (X1 = u,X2 = v,X3 = w)
and, therefore, the joint probability distribution in such a model is exactly
described by the tensor (2.1).

Define the Kruskal rank of a matrix A, rankKA, as the largest number I of
rows such that every set of I rows of A is independent. The following result was
established by Kruskal in the mid-1970s.

Theorem 2.1. Let Ik = rankKAk. If

I1 + I2 + I3 ≥ 2m+ 2,
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then [A1, A2, A3] uniquely determines the Aj, up to simultaneous permutation
and rescaling of rows.

Kruskal’s result is very general and is a cornerstone of several subsequent re-
sults establishing identifiability criteria for various latent structure models with
multiple observed variables. The one that follows most directly is the identifia-
bility result of finite mixtures of finite measure products. Mixtures of that type
have been widely used to model data in biological taxonomy, medical diagno-
sis or classification of text documents [for some practical examples, see 18, 36].
It was understood long ago that finite mixtures of Bernoulli products are not
identifiable in a strict sense [see 19]; however, these mixtures are known to be
well behaved in practice with respect to statistical parameter inference [see, for
example, 10]. Allman et al. [1] explained this seeming contradiction by provid-
ing exact sufficient conditions for generic identifiability of these mixtures, up to
label swapping. Generic identifiability here is understood to mean identifiabil-
ity on the entire parameter set except a subset of Lebesgue measure zero. The
subset can be precisely described using terminology from algebraic geometry.
For more details, see Allman et al. [1].

Models that can also be viewed from the same latent structure viewpoint in-
clude random graph mixture models, hidden Markov models, and finite mixtures
of nonparametric measure products. An important contribution of Allman et al.
[1] is that, for the first time, all of these various latent class models have been
shown to be generically identifiable and that all of these identifiability results are
derived using just one fundamental result from algebraic geometry—Kruskal’s
theorem 2.1.

Let us recall that we are specifically interested in finite mixtures of nonpara-
metric measure products. We consider a nonparametric model of finite mixtures
of m probability distributions. Each distribution is specified as a measure µj on
Rr, 1 ≤ j ≤ m. Assume that the dimensionality r (the number of classification
variables) is at least 3. The kth marginal of µj is denoted µk

j . As before, let Z be
the variable defining the latent structure of the model with values in {1, . . . ,m}
and P (Z = j) = λj for any j = 1, . . . ,m. Then, the mixture model becomes

P =

m
∑

j=1

λjµj =

m
∑

j=1

λj

r
∏

k=1

µk
j . (2.2)

This model implies that the r variates are, yet again, independent conditional
on a latent structure. The next theorem can be proved by using cut points to
discretize the continuous distribution described by the measure P and using
Kruskal’s theorem. The details can be found in Allman et al. [1].

Theorem 2.2. Let P be a mixture of nonparametric measure products as defined
in (2.2) and, for every variate k ∈ {1, . . . , r}, assume the marginal measures
{µk

j }1≤j≤m are linearly independent in the sense that the corresponding (uni-
variate) distribution functions satisfy no nontrivial linear relationship. Then, if
the number of variates r ≥ 3, the parameters {λj , µ

k
j }1≤j≤m,1≤k≤r are uniquely

identifiable from P , up to label swapping.
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3. Parameter estimation via EM-like algorithms

We do not attempt here to document the full history of the development of al-
gorithms for estimating the model parameters of Equation (1.2) and the various
special cases of that model that have been considered in the literature, since
many if not most of the theoretical articles cited in Sections 1 and 2 introduce
estimation algorithms of one sort or another. However, we do trace one par-
ticular line of algorithmic development, a sequence of algorithms of increasing
flexibility and theoretical grounding that culminates in the novel contributions
of the current article. This line of algorithms combines the well-known tech-
niques of kernel density estimation and EM algorithms for (parametric) finite
mixture models.

Bordes et al. [7] was the first article to introduce an EM-like algorithm that
incorporates a kernel density estimator of the unknown component densities.
The idea of that article, which specifically considered the particular univariate
nonparametric finite mixture model described in Section 4.1, is that each ob-
servation in the dataset may be randomly assigned, at every iteration of the
algorithm, to one of the mixture components. This assignment is based on the
probabilities of component membership for each observation, which are a natural
byproduct of a finite-mixture EM algorithm, resulting in a stochastic algorithm.
Benaglia et al. [4] extends this algorithm to the case of Equation (1.2) in its full
generality and refines it by replacing the random assignment of observations to
components by a deterministic algorithm that assigns observations fractionally
to the various components according to their component membership probabili-
ties. This EM-like algorithm, which was published even before the identifiability
result of Allman et al. [1], was by far the most efficient estimation algorithm in
the literature for Equation (1.2) that existed at the time. Yet it lacked one cru-
cial feature of any true EM algorithm: It did not possess any provable descent
property. This flaw was remedied by Levine et al. [31], who modified the algo-
rithm slightly and put it on more solid theoretical footing by proving a descent
property. It is this modified algorithm that we discuss here, along with some
novel extensions. First, however, it is necessary to introduce some notation.

3.1. Notational conventions

Let Ω be a compact subset of Rr and define the linear vector function space

F = {f = (f1, . . . , fm)⊤ : 0 < fj ∈ L1(Ω), log fj ∈ L1(Ω), j = 1, . . . ,m}.

Take K(·) to be a kernel density function on the real line and, with a slight
abuse of notation, define the product kernel function K(u) =

∏r
k=1 K(uk). For

a row-vector h = (h1, . . . , hr), define the rescaled version of K by Kh(u) =
∏r

k=1 h
−1
k K(h−1

k uk). For f ∈ L1(Ω), the smoothing operator Sh is defined by

Shf(x) =

∫

Ω

Kh(x− u)f(u) du
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and its corresponding nonlinear operator Nh by

Nhf(x) = exp {(Sh log f)(x)} = exp

∫

Ω

Kh(x− u) log f(u) du.

This Nh operator is strictly concave [13, Lemma 3.1] and also multiplicative
in the sense that Nhfj =

∏

k Nhk
fjk for fj defined as in Equation (1.1). Let-

ting H denote the m × r bandwidth matrix (h⊤
1 , . . . ,h

⊤
m)⊤, we may extend

S to F by defining SH f = (Sh1
f1, . . . ,Shm

fm)⊤. Similarly, we let NHf =
(Nh1

f1, . . . ,Nhm
fm)⊤.

Define the finite mixture operator

Mλf (x)
def
=

m
∑

j=1

λjfj(x),

whence we also obtain Mλf (x) = gθ(x) as in Equation (1.2), and

MλNHf (x)
def
=

m
∑

j=1

λjNhj
fj(x).

The introduction of the bandwidth matrix H above is an extension of the nota-
tion used in Levine et al. [31], where each component and coordinate is assumed
to use the same scalar bandwidth h.

3.2. The descent property

Let g(x) now represent a known target density function. Following Levine et al.
[31], we define the functional

ℓH(θ, g) =

∫

Ω

g(x) log
g(x)

[MλNHf ](x)
dx, (3.1)

which can be viewed as a penalized Kullback-Leibler distance between g(x)
and (MλNHf)(x). Suppose we wish to find parameter values θ that minimize
ℓH(θ, g). Letting θ0 = (λ0, f0) denote the starting values we use in our iterative
algorithm, define

f̂jk(u) = αjk

∫

Khjk
(xk − u)g(x)w0

j (x) dx, (3.2)

where

w0
j (x)

def
=

λ0
jNhj

f0
j (x)

Mλ0NHf0(x)
, (3.3)

which implies
∑m

j=1 w
0
j (x) = 1, and αjk is a constant chosen to ensure that

∫

f̂jk(u) du = 1. Furthermore, let

λ̂j =

∫

g(x)w0
j (x) dx

∑m
a=1

∫

g(x)w0
a(x) dx

=

∫

g(x)w0
j (x) dx. (3.4)
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The newly updated θ̂ = (λ̂, f̂) then satisfies the following descent property:

ℓH(θ̂, g) ≤ ℓH(θ0, g). (3.5)

This fact may be verified by proving that the algorithm defined by iterating
Equations (3.2) and (3.4) is an example of a so-called MM algorithm, which
stands for majorization-minimization algorithm [24], a class of algorithms that
generalizes the well-known EM algorithms. The proof is nearly identical to a
result of Levine et al. [31] except for the presence of the different bandwidth
values H . The analogous result for sample data, in which g(x) dx is replaced by
the empirical distribution dG̃n(x), is discussed in the next section and proved
in Appendix A.

3.3. Estimation of parameters

We now assume that we observe a simple random sample x1, . . . ,xn distributed
according to some r-dimensional density g(x). One may posit that g ≡ gϑ, where
ϑ represents the “true” parameter values and gϑ is defined as in Equation (1.2),
or one may instead take the view that the truth is not contained in our model
class and that the goal of estimation is to find in some sense a “best” vector θ
to approximate the truth by a density of the form (1.2). Since we do not discuss
any notion of consistency in the current article, either point of view will work
here.

Letting G̃n(·) denote the empirical distribution function of the sample and
ignoring the term

∫

g(x) log g(x) dx that does not involve any parameters, a
discrete version of (3.1) is

ℓH(θ)
def
=

∫

log
1

[MλNHf ](x)
dG̃n(x)

= −
n
∑

i=1

log {[MλNHf ](xi)} . (3.6)

For the sake of notational simplicity, we drop the explicit dependence of ℓH
on G̃n(·) here; we trust that this re-definition of ℓH will not cause confusion,
as it is essentially the same function as in Equation (3.1). In its new form,
Equation (3.6), it resembles a loglikelihood function except for the presence of
the nonlinear smoothing operator NH and the fact that with the negative sign
preceding the sum, our goal is minimization rather than maximization.

Here, we recall the Maximum Smoothed Likelihood (MSL) algorithm from
Levine et al. [31]: In that algorithm, it is possible to fix certain subsets of the
coordinates in the x vectors to be identically distributed, in addition to being
conditionally independent. This idea, first introduced by Benaglia et al. [4],
generalizes the assumptions of earlier work such as Hettmansperger and Thomas
[22] and Elmore et al. [17], who assumed that the coordinates are conditionally
independent and identically distributed, as well as Hall and Zhou [21], who
assumed only conditional independence as in Model (1.2). The assumption that
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some coordinates have identical marginal densities, if realistic, allows for more
precise estimation because data on these coordinates may be pooled. As we
illustrate in Section 5, some applications naturally suggest certain subsets of
coordinates that may reasonably be assumed to be identically distributed.

To formalize these ideas, we say that groups identically distributed coordi-
nates belong to the same “block”. Let bk denote the block index of the kth
coordinate, where 1 ≤ bk ≤ B and B is the total number of such blocks, so that
the model is

gθ(xi) =

m
∑

j=1

λj

r
∏

k=1

fjbk(xik). (3.7)

A simplification is possible when bk = k for all k, whereby (3.7) becomes (1.2).
Assuming model (3.7) and letting hjℓ be the bandwidth used in the jth compo-
nent and the ℓth block, the objective function of Equation (3.6) may be written

ℓH(θ) = −
n
∑

i=1

log
m
∑

j=1

λj exp

{

r
∑

k=1

∫

Khjbk
(xik − u) log fjbk(u) du

}

. (3.8)

With initial parameter values θ0 = (f0,λ0) and fixed bandwidths H , our
modified MSL algorithm iterates the following steps for t = 0, 1, . . . :

• Majorization step: Define, for each i and j,

wt
ij =

λt
jNhj

f t
j (xi)

∑m
a=1 λ

t
aNha

f t
a(xi)

=
λt
j

∏r
k=1 Nhjbk

f t
jbk

(xik)
∑m

a=1 λ
t
a

∏r
k=1 Nhabk

f t
abk

(xik)
. (3.9)

• Minimization step, part 1: Set, for j = 1, . . . ,m,

λt+1
j =

1

n

n
∑

i=1

wt
ij (3.10)

• Minimization step, part 2: For each component j and block ℓ ∈
{1, . . . , B}, let

f t+1
jℓ (u) =

1

nhjℓλ
t+1
j Cℓ

r
∑

k=1

n
∑

i=1

wt
ijI{bk=ℓ}K

(

u− xik

hjℓ

)

, (3.11)

where Cℓ =
∑r

k=1 I{bk=ℓ} is the number of coordinates in the ℓth block, and hjℓ

is the bandwidth for the kernel density estimate corresponding to the ℓth block
in the jth component. It appears at first glance that the bandwidths hjℓ in the
second M-step (3.11) need not be the same as those in the E-step (3.9). However,
in order to prove that our new algorithm retains the desirable descent property,
we require an analogue of Equation (3.2), which means that these bandwidths
must indeed match. We demonstrate in the Appendix how to adapt a method of
proof given by Levine et al. [31] to show that ℓH(θt) is nonincreasing in t using
the algorithm in this section. In other words, equations (3.9) through (3.11)
ensure the descent property

ℓH(θt+1) ≤ ℓH(θt). (3.12)
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3.4. Bandwidth selection

As discussed in Benaglia et al. [4], the selection of a bandwidth in a mixture
setting like (3.7) can be an intricate problem, and there are several reasons
that using a single, fixed bandwidth or set of bandwidths throughout an iter-
ative algorithm, as is implicit in Equations (3.9) through (3.11), is not always
appropriate. An iterative bandwidth scheme adapting the well-known rule of
Silverman [39, p. 46] is proposed in Benaglia et al. [5] for a similar algorithm.
Briefly, it amounts to replacing, in Silverman’s rule

h = 0.9min

{

SD,
IQR

1.34

}

n−1/5 (3.13)

for a simple random sample, the sample size (n), interquartile range (IQR), and
standard deviation (SD) by corresponding block- and component-wise versions.
These estimates are to be iteratively defined using the posterior probabilities.
This scheme can be applied straightforwardly to the MSL algorithm and gives
estimated bandwidths at the (t+ 1)th iteration,

ht+1
jℓ = 0.9min

{

σt+1
jℓ ,

IQRt+1
jℓ

1.34

}

(nCℓλ
t+1
j )−1/5, (3.14)

where nCℓλ
t+1
j estimates the sample size for the ℓth block of coordinates in the

jth component, and σt+1
jℓ and IQRt+1

jℓ are the weighted standard deviation and
empirical interquartile range for the jth component and ℓth block, as introduced
in Benaglia et al. [5], but using here the wt

ij to weight the data.
Since the adaptive bandwidth selection strategy of Equation (3.14) was orig-

inally tailored for estimation of Gaussian distributions, it may not be the best
choice in our nonparametric setting. Another strategy frequently used in the
literature is the cross validation (CV) approach. As explained in Eggermont
and LaRiccia [14, Section 7.2], the “leave-one-out” method for cross-validation
in the case of a univariate sample y1, . . . , yn minimizes the function

CV(h) =
∥

∥

∥
f̂nh

∥

∥

∥

2

2
− 2

n

n
∑

i=1

fnh
(i) (yi),

where fnh is the kernel density estimator using bandwidth h and

fnh
(i) (y) =

1

n− 1

∑

j 6=i

Kh(y − yi). (3.15)

In other words, the leave-one-out CV method basically relies on n + 1 ker-
nel density estimators. It is therefore straightforward, though computationally
intensive, to derive bandwidths ht

jℓ using n + 1 weighted KDEs as in Equa-
tion (3.11) for each component j, block ℓ, and iteration t. A computationally
faster approach arises if we partition the individuals among the components
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at each iteration, then apply the fast bw.ucv() function available in R. We
may achieve this partitioning either stochastically, by taking zti to be a single
random draw from a multinomial distribution with probability vector wt

i, or
deterministically, by setting

ztij0 = 1, where j0 = argmax
j=1,...,m

{

wt
ij

}

and ztij = 0 for j 6= j0. We refer to the latter strategy as the maximum a poste-
riori (MAP) method. For well-separated mixtures and for individuals belonging
clearly to one component, the MAP approach should result in zt very close to
the weights wt, so the “adaptive MAP CV” bandwidth should be close to the
weighted CV bandwidth, but computationally simpler and faster. We implement
the leave-one-out MAP CV strategy in our experiments in Section 5.1. We have
also experimented with a “leave-k-out” CV strategy in which ⌊n/k⌋ different
subsets of size n − k are used to produce kernel density estimates in place of
Equation (3.15), but the final results are similar and so we omit the details here.
For all CV approaches, including both leave-one-out and leave-k-out for k > 1,
it is straightforward to derive an adaptive method for bandwidth estimation
based on weighted kernel density estimates.

The major difference between our MSL algorithm and the Benaglia et al. [4]
algorithm or some modified version that uses a different bandwidth updating
scheme such as a cross-validation algorithm is that the former satisfies a descent
property when the bandwidths hjℓ are fixed throughout. It remains an open
question whether there is any sort of descent property that is satisfied by a
modified MSL in which the bandwidths are iteratively updated. We do not
tackle this difficult question in the current article.

Nonetheless, it is possible in theory to implement a two-stage algorithm in
which the bandwidths are allowed to change for several iterations, until a rea-
sonable estimate of the mixture structure and thus the set of bandwidths is
achieved, then the bandwidths are fixed and the algorithm allowed to converge.
Such a scheme allows for both a reasonable set of bandwidth estimates and the
guaranteed descent property beginning from the point at which the bandwidths
are fixed. In practice, however, we find that a slightly different scheme works
well: Simply run the first stage, in which bandwidths are allowed to change, un-
til our convergence criterion is satisfied. (The result is, in fact, the same for the
two schemes, since the second stage makes no changes because the convergence
criterion is already satisfied.)

4. Extensions of the estimation algorithm

Here, we discuss two novel extensions of the basic idea of the algorithm of Sec-
tion 3.3 to situations related to model (3.7). The first is a univariate case in
which a more stringent assumption is required for identifiability. The second
is multivariate but with an assumption that the components and/or the coor-
dinates differ only by a location or a scale parameter. Proofs of the descent
properties of the algorithms in this section are given in the Appendix.
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4.1. The univariate symmetric location model

In this chapter we denote λ = (λ1, . . . , λm)
′

and µ = (µ1, . . . , µm)
′

. Both Bordes
et al. [8] and Hunter et al. [25] showed that, for univariate

X ∼
m
∑

j=1

λjf(x− µj), (4.1)

where each λj is positive, all µj are distinct,
∑

j λj = 1, and f is some density
function on R that is symmetric about zero, the parameters λ, µ, and f are
uniquely identifiable when m = 2 (up to label-switching) from the density of X
as long as λ1 6= 1/2. Furthermore, Hunter et al. [25] showed that for m = 3,
the parameters are uniquely identifiable except when λ and µ take values in a
particular set of Lebesgue measure zero, conjecturing that a similar result may
be shown for general m.

Although both Bordes et al. [8] and Hunter et al. [25] propose methods for
estimating the parameters in (4.1) given a simple random sample x1, . . . , xn

distributed according to (4.1), these methods are inefficient and not easily gen-
eralizable beyond the case m = 2. Bordes et al. [7] propose a stochastic EM-like
estimation algorithm that is easily generalizable to any m and that works well
in practice; however, this algorithm does not possess the descent property of
a typical EM algorithm. Here, we discuss an estimation algorithm that does
guarantee a descent property.

Given a bandwidth h and initial parameter values θ0 = (f0,λ0,µ0), iterate
the following steps for t = 0, 1, . . . :

• Majorization step: Define, for each i and j,

wt
ij =

λt
jNhf

t(xi − µt
j)

∑m
a=1 λaNhf t(xi − µt

a)
(4.2)

• Minimization step, part 1: Set, for j = 1, . . . ,m,

λt+1
j =

1

n

n
∑

i=1

wt
ij (4.3)

• Minimization step, part 2: For any u ∈ R, let

f t+1(u) =
1

2nhλt+1
j

m
∑

j=1

n
∑

i=1

wt
ij

[

K

(

xi − µt
j − u

h

)

+K

(

xi − µt
j + u

h

)

]

. (4.4)

• Minimization step, part 3: For j = 1, . . . ,m, let

µt+1
j = argmax

µ

∫ n
∑

i=1

wt
ijK

(

xi − u

h

)

log f t+1(u− µ) du. (4.5)
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Equation (4.4) assures that f(u) = f(−u), which is required due to the
symmetry assumption. This algorithm guarantees that ℓh(θ

t) of Equation (3.6)
is nonincreasing in t, where in this model we may express this objective function
in the form

ℓh(θ
t) = −

n
∑

i=1

log
m
∑

j=1

λt
j [Nhf

t](xi − µt
j). (4.6)

In other words, this algorithm has a provable descent property. However, the
“minimization” step in this algorithm is slightly misnamed, since parts 1 through
3 do not result in a global minimization of the majorizing function. Instead, as
verified in the Appendix, part 2 minimizes only as a function of f , while holding
µ fixed at µt. Then part 3 minimizes as a function of µ, while holding f fixed at
f t+1. Thus, each of these parts results in a lowering of the value of the majorizing
function, which in turn guarantees a decrease in ℓh(θ). It is a small drawback
that the maximization of Equation (4.5) must be accomplished numerically, but
since this is merely a one-dimensional maximization for each j, it can easily be
accomplished as long as the integral in Equation (4.5) is inexpensive to calculate
for a given µ. In practice, there is a tradeoff to be made here between accuracy
of the integral and speed of implementing the algorithm.

Although we do not implement this variant in the code we test in Section (5),
one could modify the algorithm by alternating between iterations that imple-
ment only parts 1 and 2 and iterations that implement only parts 1 and 3 of the
maximization step. Because this idea holds part of the parameter vector fixed
at each iteration and optimizes only with respect to the rest of the parameters,
it produces something that might be called an MCM (majorization-conditional
maximization) algorithm, analogous to the ECM (expectation conditional max-
imization) algorithm of Meng and Rubin [33].

4.2. The location-scale model

It is not difficult to restrict model (3.7) somewhat while still retaining the es-
sential nonparametric character of the estimation: We may assume that the
various univariate density functions in Equation (3.7) have the same shape, not
assumed to follow any parametric form, but that they differ from one another
in a parametric way. There are various ways in which this may be accomplished.
For example, the idea of “exponential tilting” assumes that log[fjℓ(x)/f1ℓ(x)]
follows a specified parametric form in x for all components j > 1 and blocks ℓ.
This idea in which the log-ratio of densities is linear in x was introduced in
the mixture setting by Anderson [2], then extended by Leung and Qin [30],
among others. These authors all employ the least restrictive block structure in
Equation (3.7), i.e., bk = k.

By contrast, we assume here, as in Benaglia et al. [4], that

fjℓ(x) =
1

σjℓ
fj

(

x− µjℓ

σjℓ

)

(4.7)
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for unknown parameters (µj ,σj , fj), j = 1, . . . ,m. We thus assume that the co-
ordinates within each individual have the same shape of distribution (depending
on the individual’s mixture component) but may differ by a location and scale
factor. One may restrict the model of Equation (4.7) even further by assuming
that all µj or all σj are the same, in which case we have either a scale-only or
a location-only model, respectively. Alternatively, we may assume that

fjℓ(x) =
1

σjℓ
fℓ

(

x− µjℓ

σjℓ

)

, (4.8)

in which case the individual differences, i.e., the mixture components, only ac-
count for differences up to a location and scale parameter, but otherwise the
distributions of different blocks of coordinates do not relate to one another in
any way. Although Equation (4.7) differs from Equation (4.8) by only a sin-
gle subscript on the density f , the interpretations of the two models are quite
different.

As a special case of both (4.7) and (4.8), if all fjk are assumed to have the
same shape, then we may require that

fjℓ(x) =
1

σjℓ
f

(

x− µjℓ

σjℓ

)

(4.9)

for a single unspecified density function f(·).
Because fj in equation (4.7) is completely unspecified, the location and scale

parameters may be absorbed into fj , so the parameters are not uniquely iden-
tifiable even if each fjℓ is known. Therefore, one may assume some additional
constraints on the µjℓ and σjℓ, such as

∑

ℓ µjℓ = 0 and
∑

ℓ σjℓ = 1. In practice,
however, the algorithm may work even if these constraints are not enforced.
Similar arguments can be made for the parameters in equations (4.8) and (4.9).

We may modify the algorithm of Section 3.3 to incorporate the block structure
of Equation (3.7). Equations (3.9) and (3.10) remain unchanged, but we must
modify Equation (3.11) to either

f t+1
j (u) =

1

nrhjλ
t+1
j

r
∑

k=1

n
∑

i=1

wt
ijK

(

u− xik + µt
jbk

hjσt
jbk

)

(4.10)

or

f t+1
ℓ (u) =

1

nhℓλ
t+1
j Cℓ

r
∑

k=1

n
∑

i=1

m
∑

j=1

wt
ijI{bk=ℓ}K

(

u− xik + µt
jbk

hℓσt
jbk

)

, (4.11)

where Cℓ =
∑r

k=1 I{bk=ℓ}, depending upon whether we take Equation (4.7) or
Equation (4.8) as our assumption. In addition, the updates to the µ and σ

parameters would take place in a separate part of the minimization step, as in
Equation (4.5). The resulting algorithm would be similar to the one described
in Section 4.1: It is not an MM algorithm exactly, but it is very similar and most
importantly it guarantees a decrease in the desired objective function (3.8).
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5. Numerical examples

5.1. A synthetic example

To illustrate the iterative and block- and component-specific bandwidths, we
choose first a simulated example with heavy-tailed distributions and different
scales among the coordinates. The model is multivariate with r = 5 repeated
measures grouped into B = 2 blocks of sizes 3 and 2 (b1 = b2 = b3 = 1 and
b4 = b5 = 2) and m = 2 components. Block 1 corresponds to a mixture of two
non-central Student t distributions, t(2, 0) and t(10, 4), where the first parameter
is the number of degrees of freedom and the second is the non-centrality. Block 2
corresponds to a mixture of Beta distributions, B(1, 1) (which is actually the
uniform distribution over [0, 1]) and B(1, 5). The first component weight is λ1 =
0.4. This example, in which the coordinate densities are on different scales, is
specifically designed so that the bandwidth should depend on the blocks and
components.

A simple run of the original MSL algorithm on a sample of size n = 300
results in a single fixed bandwidth h = 0.511, while a run with the adaptive
Silverman’s rule gives the following (final) bandwidth matrix:

component 1 component 2
block 1 0.330 0.332
block 2 0.085 0.037

A run of the same sample using the adaptive MAP CV strategy gives very
similar results:

component 1 component 2
block 1 0.360 0.350
block 2 0.036 0.0077

The estimates of the component and block densities using Silverman’s rule
are shown in Figure 1, where we see nearly identical estimates of the densities
in the first block, whereas the two algorithms produce dramatically different
estimates in the second block. The reason for this is clear in this example:
A fixed bandwidth estimate of h ≈ 0.5 is over-estimated for both blocks, but
dramatically so for the second block, in which the support of the mixture is
[0, 1] and therefore a much smaller bandwidth is appropriate. On the other
hand, adjusting the single bandwidth downward to fit the second block will
result in more variable estimates in the first block, and in any event it is not
obvious how to redesign the automatic bandwidth selector if we constrain h to
be the same for every block and component.

Remark. The choice of the Gaussian kernel K in Figure 1 may explain the
“leaking” of mass seen at the edges of the second block’s density estimates.
Though choice of kernel function is not generally very influential, a different
choice such as a triangle density might prevent such leakage. Studying such a
boundary correction could be the subject of future work.
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Fig 1. Solid and dashed lines show fixed-single-bandwidth and adaptive-multiple bandwidth
MSL solutions, respectively. The two components are displayed in different colors.

5.2. The water-level dataset

To illustrate the adaptive block- and component-wise bandwidth approach,
we consider a benchmark dataset previously analyzed by Hettmansperger and
Thomas [22] and Elmore et al. [17] with a conditionally i.i.d. (independent and
identically distributed) assumption, and more recently by Benaglia et al. [4] and
Levine et al. [31] under the same assumptions we make here. This experiment
involves n = 405 children aged 11 to 16 years subjected to a written test as ini-
tially described by Thomas et al. [40]. In this test, each child is presented with
eight rectangular drawings of a vessel on a sheet of paper, each tilted to one
of r = 8 clock-hour orientations: 11, 4, 2, 7, 10, 5, 1, and 8 o’clock, in order of
presentation to the subjects. The children’s task was to draw a line representing
the surface of still liquid in the closed, tilted vessel in each picture. The acute
angle, in degrees, formed between the horizontal and this line was measured for
each response, the associated sign being the sign of the slope of the line. The
water-level dataset is available in the mixtools package [41, 6].

As in Benaglia et al. [4] and Levine et al. [31], it seems reasonable to weaken
the conditionally i.i.d. assumption, assuming instead that only opposite clock-
face orientations lead to conditionally independent and identically distributed
responses. Thus the eight coordinates may be organized into four blocks of two
each, which is model (3.7) with B = 4. According to the ordering of the clock-
hour orientations, we thus define b = (4, 3, 2, 1, 3, 4, 1, 2). For instance, we see
that b4 = b7 = 1, which means block 1 relates to coordinates 4 and 7, corre-
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Fig 2. The water-level data analyzed using the MSL algorithm with m = 3 mixture components
and a fixed bandwidth h = 4.

sponding to clock orientations 1:00 and 7:00. An alternative to this particular
pairing of clock-hour orientiations is to consider each of the eight orientations
as distinct. As we show in Appendix B, treating the dataset in this way pro-
vides evidence that the pairing approach is reasonable; thus, we proceed with
the four-block assumption.

We first consider here the 3-component model as studied in Levine et al. [31]
to compare the MSL with fixed bandwidth against the adaptive strategy. Fig-
ure 2 gives the solution returned by the MSL algorithm with a fixed bandwidth
preset to h = 4, as in Benaglia et al. [4] and Levine et al. [31]. This value has
been chosen by trial an error by these authors, instead of allowing the algorithm
compute a fixed bandwidth value using Silverman’s rule as in (3.13). However,
using that rule would result in a fixed bandwidth value of h = 1.47, and corre-
spondingly more jagged component densities, but qualitatively the same overall
solution. The interpretation of this solution is that component 2 (green) repre-
sents the 46.5% of the subjects who know how to do the task—the “competent
group”—whereas component 3 (blue) represents the 6.4% of the subjects who
always draw the line parallel to the vessel bottom. The first component (red,
with 47%) is perhaps the most interesting: These subjects in the “slightly con-
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Fig 3. The water-level data analyzed using the MSL algorithm with m = 3 mixture components
and adaptive bandwidths given in Table 1.

Table 1

Adaptive bandwidths per block and components for the Water level data, at the MSL last
iteration

component 1 component 2 component 3
block 1 12.17 1.46 0.975
block 2 14.0 2.74 2.276
block 3 19.19 2.55 2.276
block 4 12.36 1.28 1.63

fused group” appear to perform the task nearly correctly for the more vertically
oriented vessels (1, 5, 7, and 11 o’clock) but tend to allow the water level to slant
somewhat with the vessel itself when the vessel is tipped to a more horizontal
orientation.

Figure 3 gives the solution returned by the MSL algorithm with the adaptive
bandwidth given by (3.14). The corresponding bandwidth matrix is displayed
in Table 1, which shows that the bandwidth differences are mostly between
components.

The qualitative interpretation appears simpler here, since the competent
group now represents 83% of the subjects (but seems to encompass most of
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Fig 4. The water-level data analyzed using the MSL algorithm with m = 4 mixture components
and adaptive bandwidths strategy.

the previous slightly confused group), while the group of subjects who always
draw the line parallel to the vessel bottom lowers to 4.6%, with more clear peaks
on ±30 and ±60 due to this component smaller bandwidths. An interesting fact
is that the first (red) component is far less important (12%) and appears to
retain qualities of the previous slightly confused group but also includes some
even stranger behavior that is close to uniform, or “totally guessing.” Hence in
this example, allowing bandwidth to change adaptively results in a very different
qualitative interpretation.

However, if we fit a 4-component model with the MSL algorithm and adaptive
bandwidth strategy, we identify all four previously mentioned groups. A typical
result is in Fig. 4, and the final bandwidth matrix is omitted for brevity. The
competent group again comprises 45% of the subjects, as distinct from the 43%
slightly confused group. The group that always draws the line parallel to the
vessel bottom drops to 3.7%, more in accordance with the result from Fig. 3,
and distinct from the 7% totally guessing group.
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Fig 5. Density estimates for the simple RT task with B = 3 blocks of 8 coordinates each, and
m = 2 components: MSL with fixed bandwidth (dashed line), and adaptive bandwidths (solid
line). The component weights are (0.72, 0.28).

5.3. A psychometric data example

The data in this section come from a large-scale psychometrics study exploring
cognitive task performances for children with specific language impairments,
presented in Miller et al. [34]. Response (or reaction) times (RT) with which the
children respond to a range of tasks are recorded in milliseconds. We focus in
particular on one experiment that Miller et al. [34] call a “simple RT task”: The
child is instructed to strike a key as quickly as possible in response to a visual sig-
nal, which itself is emitted after a delay following the word “ready” spoken by the
child. There are 8 trials for each of three time delays of 1, 2 and 5 seconds. Tasks
are mixed into a much longer sequence of trials so that the child does not know
exactly what the next task will be and independence of the repeated measures for
each child may reasonably be assumed. This dataset with n = 82 subjects and
r = 24 coordinates is available in the mixtools package [41, 6] for the R statistical
software environment [37], and is loaded by the data(RTdata2) command.

This experiment supports a model with B = 3 blocks of 8 coordinates each,
each block corresponding to a delay between the “ready” sign and the stimulus.
This data set is interesting because it illustrates the potential interest of the
conditional independence model for multivariate data with a large number of
coordinates and block structure suggested by scientific considerations.

We ran the MSL algorithm with fixed and adaptive bandwidth strategies.
Results in Fig. 5 show that there is almost no difference between the two, which
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is not surprising because the component densities have similar scaling properties.
However, one can see that the third block, which corresponds to the longer delay
of 5 seconds, shows densities slightly shifted to the right. We find that no matter
what the delay is, we can essentially describe the two groups as a “faster group”
and a “slower group”, where the former represents 72% of the subjects.

5.4. Measurements on abalone

Nash et al. [35] report measurements on a large dataset of n = 4177 abalone,
which are a type of marine life akin to large snails that are often harvested for
food. The dataset is publicly available at the Machine Learning Repository at
the University of California, Irvine [3].

There are m = 7 continuous measurements made on each animal in the
dataset, many of which (e.g., whole weight, shucked weight, and viscera weight)
are highly correlated with one another. Since this correlation is likely to persist
even within each mixture component, one might reasonably suspect that the
conditional independence assumption is violated in this dataset. Thus, we use
principal components (PC) analysis to find a linear transformation of the origi-
nal dataset, then apply the modified MSL algorithm of Levine et al. [31], which
assumes conditional independence and allows for different bandwidths for each
component/coordinate combination, to the PC scores obtained from the PC
analysis. Figure 6 plots the 4177 measurements on their original scale but using
labelings derived from the analysis of the PC scores only. According to Bache
and Lichman [3], it is of interest to use the seven measurements (as well as the
animals’ sex, which we ignore in our analysis) to try to predict the number of
rings counted after cutting the shell through the cone, staining it, and observing
the animal through a microscope. The number of rings is related to the age of
the animal. In Figure 7, we see the ring distributions for each of the three com-
ponents after classifying animals according to their highest posterior probability.

Our choice here of m = 3 is arbitrary and more detailed analyses might
explore different numbers of components. We have successfully run our algorithm
on this dataset with up to m = 20 components. One interesting facet of our
analysis of these data is that it is the first dataset for which we have noticed a
qualitative difference between the results of the EM-like algorithm of Benaglia
et al. [4] and the smoothed version of the algorithm presented by Levine et al.
[31]. For now, we cannot explain this difference, but its presence suggests a topic
for future study.

6. Discussion

This manuscript reviews the justification for the conditional independence as-
sumption in multivariate finite mixture models and summarizes what is known
about the identifiability of parameters in these models when no assumption
is made about the parametric form of the component densities. In particular,
we review the important results in Allman et al. [1], who prove that condi-
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Fig 6. Pairwise scatterplots for seven different measurements on a sample of 4177 abalone.
Colors indicate the mixture component of highest posterior probability according to the model
fit applied to the principal component scores. Estimates of the three population proportions
are 0.415 for component 1 (black), 0.403 for component 2 (red), and 0.182 for component 3
(green).

tional independence implies identifiability under weak assumptions as long as
the multivariate observations have dimension at least three.

We review the MSL algorithm of Levine et al. [31] and introduce multiple
methods for selecting bandwidths, an important aspect of the practical imple-
mentation of this algorithm. In addition, we extend the idea of Levine et al. [31]
to the special cases of a univariate location mixture of symmetric components
and a multivariate location-scale mixture. These special cases require a gen-
eralization of the notion of MM (majorization-minimization) algorithms since
it is impossible to achieve a closed-form global minimization with respect to
all parameters in the second “M” step. Finally, we give proofs of the descent
properties of our algorithms when the bandwidths are held constant.



Semi-parametric multivariate mixture models 25

Component 1

Number of Rings

F
re

q
u

e
n

c
y

0 5 10 15 20 25 30

0
1

0
0

2
0

0
3

0
0

Component 2

Number of Rings

F
re

q
u

e
n

c
y

0 5 10 15 20 25 30

0
1
0
0

2
0
0

Component 3

Number of Rings

F
re

q
u

e
n

c
y

0 5 10 15 20 25 30

0
4
0

8
0

Fig 7. Distribution of ring count for abalone classified into three groups according to their
maximum posterior component probabilities.

The important feature of the MSL algorithm and the extension we introduce
in the current article is that it is shown to minimize (at least locally) a particular
objective function. This function may be considered a nonlinearly smoothed
version of the nonparametric likelihood function. The fact that our estimators
may be shown to optimize this function opens the door for potential results
on asymptotic properties of the algorithm, such as consistency and convergence
rates. Such results appear much more difficult to establish for the algorithm of
Benaglia et al. [4, 5] because that algorithm does not appear to optimize any
type of a loglikelihood-like function despite its resemblance to an EM algorithm.

Appendix A: Proofs of descent properties

Recall throughout this section that the parameter vector θ consists of the mixing
weights λ and the univariate densities fjℓ, 1 ≤ j ≤ m and 1 ≤ ℓ ≤ B. For a
given (fixed) θt, let the constants wt

ij be defined as in Equation (3.9). We first
state and prove two lemmas, each based on the following definition:

btH(θ) = −
n
∑

i=1

m
∑

j=1

wt
ij log

{

λj [Nhj
fj ](xi)

}

. (A.1)
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Lemma A.1. Let ℓH(θ) be defined as in Equation (3.6). Then

ℓH(θ)− ℓH(θt) ≤ btH(θ)− btH(θt). (A.2)

Proof.

ℓH(θ)− ℓH(θt) = −
n
∑

i=1

log

m
∑

j=1

λj [Nhj
fj ](xi)

[MλtNH f t](xi)

= −
n
∑

i=1

log

m
∑

j=1

wt
ij

λj [Nhj
fj](xi)

λt
j [Nhj

f t
j ](xi)

≤ −
n
∑

i=1

m
∑

j=1

wt
ij log

λj [Nhj
fj](xi)

λt
j [Nhj

f t
j ](xi)

= btH(θ)− btH(θt),

where the inequality follows from the convexity of the negative logarithm func-
tion and the fact that

∑

j w
t
ij = 1 for each i.

Remark. In the terminology of MM algorithms [see, for example, 24], the result
of Lemma A.1 means that btH(θ) is said to majorize ℓH(θ) at the point θ = θt.

Lemma A.2. If θt+1 = (λt+1, f t+1), where λt+1
j and f t+1

jℓ are defined as in

Equations (3.10) and (3.11), respectively, then θt+1 minimizes btH(θ).

Proof. As a function of λ,

btH(θ) = −
m
∑

j=1

logλj

(

n
∑

i=1

wt
ij

)

+ something not involving λ.

Subject to the constraint
∑

j λj = 1, this is straightforward to minimize via a

standard argument using a Lagrange multiplier. Since
∑

i

∑

j w
t
ij = n, Equa-

tion (3.10) gives the minimizer.
As a function of fjℓ,

btH(θ) = −
n
∑

i=1

wt
ij

r
∑

k=1

I{bk=ℓ} log
{

[Nhjℓ
fjℓ](xik)

}

+ something not involving fjℓ. (A.3)

The piece involving fjℓ may be rewritten

−
∫ n
∑

i=1

r
∑

k=1

wt
ijI{bk=ℓ}Khjℓ

(xik − u) log fjℓ(u) du,

which is a constant times −
∫

f t+1
jℓ (u) log fjℓ(u) du if we define f t+1

jℓ as in Equa-
tion (3.11). However, this is merely the Kullback-Leibler divergence between
f t+1
jℓ and fjℓ plus something not involving fjℓ. We conclude that (A.3) is mini-

mized for each j and ℓ by setting fjℓ = f t+1
jℓ .
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Putting the two lemmas together, we obtain the following:

Theorem A.1. Let ℓH(θ) be defined as in Equation (3.6). Then the algorithm
given in steps (3.9) through (3.11) imply the descent property (3.12).

Proof. Since Lemma A.2 implies that btH(θt+1) ≤ btH(θt), Lemma A.1 gives

ℓH(θt+1)− ℓH(θt) ≤ btH(θt+1)− btH(θt) ≤ 0.

Corollary A.1. For the univariate symmetric location model of Equation (4.1),
the algorithm of Equations (4.2) through (4.5) guarantees ℓh(θ

t+1) ≤ ℓh(θ
t),

where ℓh(θ) is defined in Equation (4.6).

Proof. In this case, the observations x1, . . . , xn are not vector-valued (i.e., r = 1),
so there is only a single block and we may drop the subscript ℓ wherever it occurs
in Lemmas A.1 and A.2 and Theorem A.1. Since Equation (3.6) is the same as
Equation (4.6) for this special case, Lemmas A.1 and A.2 imply that the desired
result holds whenever bth(θ

t+1) ≤ bth(θ
t), where bth(θ) is the appropriately mod-

ified form of Equation (A.1). Using a simple change of variable together with
the fact that f(u) = f(−u), we may rewrite

log {[Nhfj ](xi)} =

∫

Kh(xi − u) log f(u− µj) du

=
1

2

∫

[Kh(xi − µj − u) +Kh(xi − µj + u)] log f(u) du.

Thus, bth(θ) becomes

−
∫

1

2

n
∑

i=1

m
∑

j=1

wt
ij [Kh(xi − µj − u) +Kh(xi − µj + u)] log f(u) du

+

n
∑

i=1

m
∑

j=1

wt
ij logλj .

Using the same argument as in Lemma A.2, if µ is fixed at µt, then bth(θ) is
minimized as a function of λ and f only by λt+1 and f t+1 of Equations (4.3)
and (4.4). Then, Equation (4.5) can only ensure a further decrease in the value
of bth(θ) when f is fixed at f t+1.

Remark. Similar reasoning to that used in the preceding proof, but without
the extra step required because of the symmetry of f in that proof, demon-
strates that the algorithms described in Section 4.2 also guarantee the descent
properties as claimed in that section.

Appendix B: Justification of four-block assumption in water-level

dataset

In the water-level example in Section 5.2, we pair the eight repeated measure-
ments into four pairs of two clock angles each. As shown in Figure 8 for the
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Fig 8. This analysis of the water-level data uses the MSL algorithm with m = 3 assuming that
each of the eight clock angle orientations follows its own distinct set of component densities.
The orientations are paired so that the similarities in each of the four rows are obvious.
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three-component solution, this choice is justified by the fact that when we as-
sume that each of the eight orientations follows a distinct set of component
densities, the similarities between the pairs of orientations are clear. The re-
sults are similar when we consider the four-component solution, so we omit the
corresponding plots for the four-component solution here.
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