UCLA
Department of Statistics Papers

Title
Semi-Parametric Estimation in Failure Time Mixture Models

Permalink
https://escholarship.org/uc/item/2i{27t7mh

Author
Jeremy M. G. Taylor

Publication Date
2011-10-24

eScholarship.org Powered by the California Diqital Library

University of California



https://escholarship.org/uc/item/2j27t7mh
https://escholarship.org
http://www.cdlib.org/

B|
S

Semi-Parametric Estimation in Failure Time Mixture Models
Author(s): Jeremy M. G. Taylor

Source: Biometrics, Vol. 51, No. 3 (Sep., 1995), pp. 899-907
Published by: International Biometric Society

Stable URL: http://www jstor.org/stable/2532991

Accessed: 25/05/2011 17:25

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at

http://www jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/action/showPublisher?publisherCode=ibs.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

International Biometric Society is collaborating with JSTOR to digitize, preserve and extend access to
Biometrics.

http://www jstor.org


http://www.jstor.org/action/showPublisher?publisherCode=ibs
http://www.jstor.org/stable/2532991?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ibs

BioMmETRICS 51, 899-907
September 1995

Semi-parametric Estimation in Failure Time Mixture Models

Jeremy M. G. Taylor

Department of Biostatistics, University of California,
Los Angeles, California 90024-1772, U.S.A.

SUMMARY

A mixture model is an attractive approach for analyzing failure time data in which there are thought
to be two groups of subjects, those who could eventually develop the endpoint and those who could
not develop the endpoint. The proposed model is a semi-parametric generalization of the mixture
model of Farewell (1982). A logistic regression model is proposed for the incidence part of the
model, and a Kaplan-Meier type approach is used to estimate the latency part of the model. The
estimator arises naturally out of the EM algorithm approach for fitting failure time mixture models
as described by Larson and Dinse (1985). The procedure is applied to some experimental data from
radiation biology and is evaluated in a Monte Carlo simulation study. The simulation study suggests
the semi-parametric procedure is almost as efficient as the correct fully parametric procedure for
estimating the regression coefficient in the incidence, but less efficient for estimating the latency
distribution.

1. Introduction

A typical assumption in survival analysis states that, if there had been no censoring, the event would
eventually occur for every subject. However, it is not infrequent, when considering endpoints other
than death, that the event would never occur for some fraction of the subjects. Some examples exist
in the field of radiation research. Patients with tumors of the head and neck are frequently treated
with radiation only. The endpoint of most interest for this treatment is local recurrence, and it is
known that only between 5 and 50% of patients will experience local recurrences depending on the
size of the tumor. The remaining patients will not have recurrences, because all the tumor cells have
been killed by the radiation. Furthermore, it is extremely unlikely, because of the kinetics of tumor
growth, that there will be any recurrences later than 5 years after treatment. Another example from
radiation research is when the endpoint is spinal cord paralysis. In an animal experiment, paralysis
can occur if a high dose of radiation is given, and if such paralysis does occur it will nearly always
be within a well defined time window. Also it is known that if the dose is small enough paralysis will
never occur. In both these situations there is a non-zero probability that the endpoint will not occur.
Analysis of examples of this type have been considered previously (Farewell, 1977, 1982; Pack and
Morgan, 1990; Sposto, Sather, and Baker, 1992; Larson and Dinse, 1985) using a ‘‘mixture model””
or “‘cure model.”

The objective in many analyses using this type of censored data is to investigate the effect of
covariates on the outcome. A natural question is whether standard methods of survival analysis,
such as the Cox proportional hazards model or accelerated failure time models, can be used for these
data. In these standard methods it is assumed that all censored observations would have eventually
developed the endpoint, although quite possibly at times beyond the observed range.

A simple example of a mixture model is a logistic-Weibull. Let (d,, £,, Z,) be the observations,
where Z; is a vector of covariates, ¢, is the observed or censored time, and 4, = 2 (if the event
occurred), d; = 1 (if it is known that the event cannot occur), and d; = 0 (for a censored observation).
In many applications there would be no observations with d; = 1. Let D, indicate the two groups;
thus D, = d, if d; = 0, and D, is unknown if d; = 0. The logistic-Weibull model is

P(D; = 2|Z;) = exp(Z,B)/[1 + exp(Z,B)],

Key words: Cure model; EM algorithm; Kaplan-Meier estimator; Latency; Logistic regression;
Long term incidence; Radiation therapy.
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and
P(T > ¢|D = 2) = exp[—(A8)”].

An attractive feature of the model is that it contains two parts which can be interpreted
separately, in particular the long term incidence and the latency distribution.

There are a number of variations on this simple logistic-Weibull mixture model. Farewell (1982)
uses a logistic-Weibull model and assumes that the latency distribution does depend on covariates.
Larson and Dinse (1985) use a proportional hazards model for the latency with a step-function for
the baseline hazard. Lo et al. (1993) uses a similar model, but with the baseline hazard determined
by piecewise linear splines. Yamaguchi (1992) uses a general class of accelerated failure time models
for the latency distribution. Bentzen et al. (1989) allow the covariates to influence both the long term
incidence and the latency, but using the same linear combination. This is achieved by assuming A is
a function of P(D = 2|Z). Another simple variation is to use other link functions, instead of the
logistic, to model the long term incidence. Kuk and Chen (1992) develop a semi-parametric model.
In their model the long term incidence depends on the covariates through a logistic link, and the
latency period depends on covariates in a proportional hazards structure with unspecified baseline
hazard function.

Despite its appeal there are a number of problems associated with the mixture model. One is the
identifiability problem (Farewell, 1986; Laska and Meisner, 1992). This can manifest itself as a very
high correlation between the intercept term of the logistic model and the shape parameter of the
Weibull or as a flat likelihood surface which is far from quadratic near its maximum. There is
sometimes very little information in the data about the tail of the latency distribution and yet this tail
plays an important role in determining the long term incidence probability. For example, if the
latency distribution has a heavy tail, with a substantial amount of probability beyond the range of the
observations, then this will force the long term incidence of the event to be higher than if the latency
distribution has a very light tail. This problem is less likely to arise in situations where there are a
substantial number of censored observations (d; = 0) at times greater than the vast majority of the
observed event times (d; = 2). It is more likely to arise if, for example, a Kaplan-Meier survival plot
of all the data does not show a clear level plateau. However, even if a Kaplan-Meier plot does show
a clear plateau, this is no guarantee of identifiability.

A second problem is that maximum likelihood estimates of 8 may be infinite for certain config-
urations of the observations. This is not unique to failure time mixture models; a similar problem
occurs with standard logistic regression.

A third problem with the logistic-Weibull mixture model is that it may be too restrictively
parametric in nature. The purpose of this paper is to describe a semi-parametric version of the failure
time mixture model. For the case in which the latency distribution does not depend on covariates,
an estimator is given in which a Kaplan-Meier type estimator replaces the Weibull distribution. This
method will be referred to as the logistic/Kaplan-Meier approach. Thus our approach is similar in
spirit to that of Kuk and Chen, but the estimation method is different. Kuk and Chen first estimate
the regression coefficients by maximizing a stochastic approximation to the marginal rank likeli-
hood, and then obtain an estimate of the baseline hazard function. An attractive feature of their
approach is that by defining a marginal rank likelihood they eliminate the large number of parameters
in the baseline latency distribution. In our approach the regression coefficients and hazard function
are jointly estimated. .

Section 2 contains a description of the estimator. The estimator arises naturally out of the EM
algorithm approach for finding the maximum likelihood estimate (MLE) as described by Larson and
Dinse (1985). Section 3 contains numerical results for a specific data set and from a simulation study.
Some important issues and possible extensions are discussed in Section 4.

2. Model and Analysis

Following the notation of Larson and Dinse (1985) there are two possible categories for each
individual denoted by D = 1 and D = 2. If the observation is censored before either type of event
D =1, 2 is observed then ¢ = 0. The incidence model is given by

eP*

P:(Z)=P(D =2|ZL) = ——5=

2(Z) = P( |Z) a7 %)

where Z are the covariates, and P(Z) = 1 — P,(Z). The survival function for the failure time in

Group 2 is denoted by S(¢) = P(T = ¢|D = 2) with associated hazard k(). There is no survival
function associated with D = 1, because it represents long term survival.
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The observation for the ith individual is the triple (d,, ¢;, Z,). If d; = 1 the contribution to the
observed data likelihood is P\(Z;), if d; = 2 the contribution to the likelihood is P5(Z;)A(t;)S(¢;), and
if d; = 0 the contribution to the likelihood is P|(Z;) + P,(Z,)S(¢;). In many applications there would
be no observations with d;, = 1.

The EM algorithm can be used to maximise the likelihood. The E-step of the algorithm consists
of assigning a fraction of each censored observation to the two categories. The assigned fraction to
category j is the conditional probability that the individual will eventually be in category j given that
no event has occurred by time 7. These weights are

) PA(Z)S(1)
WitlZ)=P(D=2Z, T>1) = Po(Z)S(t) + P,(Z) W

and W ( r[Z = 1 — W,(t|Z). From this weighting scheme the complete (or pseudo) datum {(d,, t;, Z
g). i =1,..., n}is constructed, where g, is vector of length 2 with

gy = 1(d; = ) + Id; = 0)W(¢,|Z,)

The M-step of the algorithm consists of maximizing, regarding g,; as fixed, the log-likelihood of
this complete data, which can be written as L(P) + L(S), where

" 2

L(P)= 3 3 g;logP(Z,)

i=1 j=1
and

"

L(S)= E {d; = 2)logh(t,) + g.-logS(z,)}

i=1

The attractive feature of the EM algorithm for this problem is that the two components of the
complete data log-likelihood can be maximized separately.

Larson and Dinse assumed a piecewise exponential function for A(¢); in this paper we assume a
non-parametric form for S(¢) in which jumps in S only occur at the times of events D = 2. Let 7,
T3, -+« » T be the set of distinct observed failure times, with ¢; events at 7; and m; censored in the
interval [ J,, 7;.1)- Denote this set of m; observations by H,.

Letf(n) = P(T = 7), S(t) =1 = %, f(r) and A; = P{T T 2 ) = f(7)/S(7;), then

J=1
=A [T (1=4p

S({) = 1_[ (l - )‘-j)¢

Jimp=t

S(ry=1TI (1=A,), and

S(r+0) = [T (1= A0

=1

With this notation the L(S) part of the complete data likelihood is

H o 11 wm+mrq

i=1 h e H;

where w, is the fractional weight for this censored observation determined by equation (1), i.e., for
heH.
1

PAZ,)S(7; + 0
W, = (Z,,) (T ) 2)

Py(Z,)S(7; + 0) + P\(Z,,)
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Thus

k =1

L(S)= Y jclogh, + X clog(l —A)+ X wy| X log(l—A.)|;.

i=1 =1 lheH; =1
It can be shown that this is maximized by

Ci
A= - . . 3
! Ef‘:) (Cr + Ea’u—-H,. w.l’:) ( }

Kuk and Chen (1992) obtain an analogous expression. In the denominator of (3), which represents
the number at risk, only a certain fraction of each censored observation is considered at risk. If each
wy, = 1, then (3) reduces to the Kaplan-Meier estimator. The estimators obtained from this approach
using the EM algorithm will be referred to as the logistic/Kaplan-Meier estimators.

Hypothesis tests and profile likelihood confidence intervals for the parameter B can be con-
structed by using the observed data likelihood. In particular differences in twice the log-likelihood
are compared to critical values of the chi-squared distribution. A potential problem with this
standard asymptotic inference is the large number of nuisance parameters in the hazard. This will be
addressed in a simulation study.

The estimator defined by A; in (3) does not necessarily lead to S(¢) = 0 for 7 greater than the last
event time. We found that S(¢) = 0 for ¢ > 7, occurred more often for small sample sizes, when there
was a lot of censored observations and when d; = 1 was not possible. In a small simulation study
we found that S(¢) > 0 for ¢ > 7, for more than half the data sets in some situations. This occurrence
is a manifestation of the identifiability problem in which the tail of the latency distribution is hard to
estimate. A slight modification of the estimator defined by equation (3) in the M-step is to force S(¢)
to be zero beyond the last event time. This forces the weight in equation (2) for these censored
observations to be zero, thus essentially classifying those observations as D = 1. This procedure
effectively eliminates the problem with lack of identifiability. Forcing S(¢) to be zero beyond the last
event can be justified because one would only contemplate a mixture model in situations where it is
clear that there are two groups and in which there is good follow up beyond the time when most of
the events occur. This might occur, for example, if a Kaplan—Meier plot of the observations showed
a clear plateau at long times. In this situation it might seem reasonable to assign all censored
observations beyond the last event to the long term survivor category.

3. Numerical Results

3.1 Simulation Study

Two simulation studies were performed. The first small study was to compare the properties of the
two logistic/Kaplan-Meier estimator in which S(z) is and is not forced to zero beyond the last event.
The second larger study is to compare the properties of the logistic/Kaplan-Meier estimator and the
logistic/Weibull estimator,

For both studies data sets of size n (n = 50 or 100) are generated from either a true logistic Weibull
model or a logistic uniform model. Specifically, log[P/(1 — P)] = a + bZ, where P = P(D = 1),
a = —.847,b = 0 or —3.0, and Z is uniformly distributed between —.5 and .5. The distribution of
T is either Weibull F(T|D = 2) = 1 — exp[—(AT)?], where A = .0864, y = 2.5, or T is uniform [5, 20].
The median, Sth, and 95th percentiles of the Weibull are 10, 3.5, and 18.0, respectively, and of the
uniform are 12.5, 5.75, and 19.25, respectively. The observed time is 7% = min(T, 30.0, V'), where
7 ~ exp(u). These configuration choices are designed to address a number of issues, in particular
the importance of sample size, the importance of the amount of censoring, and the robustness of the
parametric estimator to misspecification of the latency distribution. Six hundred data sets were
generated for each configuration.

For some of the simulations we assumed that it is possible for observations to be known to be in
the second group, i.e.,d = 1, when D = 1 and IV > 30. In other cases we assumed d was never equal
tol,sod =0,ifD=2and T < Torif D = 1.

The observed proportion of observations in each data set with d;, = 2 was either approximately .44
if w = 25or .65 if p = 250. The observed proportion with d; = 0 was either all of the rest or, in the
casc that d, = 1 is allowed, was .45 if p = 25 and .06 if u = 250.

The quantities considered in the Monte Carlo study were the median and interquartile range of @
and b; the power of a likelihood ratio test of b = 0; the bias, variance, and mean squared error (MSE)
of estimates of the conditional latency distribution F(¢), at ¢ = 3, 9, 15, 21; and the bias, variance,
and MSE of the predicted value of P(D = 2|Z) at Z = —.5, 0, and .5. In addition we considered the
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bias, variance, and MSE of P(D = 2|Z)(1 — S(r)), the predicted probability of the event occurring
before t = 15 and ¢ = 21 for Z = —.5, 0, and .5. The median and interquartile range of @ and b were
considered, because it is possible for the maximum likelihood estimates to be infinitely large.

In the first simulation study we found that the estimator, in which S(¢) was forced to zero beyond
the last event, had a 10-30% smaller interquartile range for ¢ and b and gave infinite estimates for
a and b less often. When S(z) was not forced to zero the estimated latency distribution was biased,
particularly at f = 21, and had larger variance. Similarly the predicted probabilities were biased and
had larger variance when S(¢) was not forced to zero. The size of a nominal 5% level test of b = 0
was in the range .04-.065 when S(¢) was forced to zero and was in the range .05-.09 when S(f) was
not forced to zero. In summary, it appeared that requiring S(¢) to be zero beyond the last event was
a better estimator with respect to every quantity considered.

In the second simulation study each data set was analyzed using both the logistic/Weibull
estimator and the logistic/Kaplan-Meier estimator with S(z) set to zero beyond the last event. For
the parameters ¢ and b and the predicted probabilities P(D = 2|Z) the performance of the logistic/
Weibull and logistic/Kaplan-Meier were almost identical, with relative efficiencies between .96 and
1.04 for all configurations. Neither method showed consistently higher bias for a, b and P(D = 2|Z).
The largest absolute bias for P(D = 2|Z) is .038 for the logistic/Kaplan-Meier and .038 for the
logistic/Weibull, both these occurred for N = 50 with a large amount of censoring.

The power of the test b = 0 was always between .043 and .077 for both estimates when the true
b was zero. Thus it appears that the likelihood ratio test has approximately the correct level despite
the large number of nuisance parameters. When the true b was —3.0 the difference in power between
the two estimators was at most .005.

When the true model was Weibull neither method showed any real bias in the estimate of F(z).
When the true distribution was uniform the bias in the estimate of F(¢) was always larger for the
logistic/Weibull estimator. For the logistic/Kaplan-Meier estimator the largest absolute bias was
.017, and 50% of the biases are greater than .002. For the logistic/Weibull estimator the largest
absolute bias is .057, and 50% of the biases are greater than .03.

The means and standard deviations of the relative mean squared errors of logistic/Weibull to
logistic/Kaplan-Meier are given in Table 1. It can be seen that the Weibull approach is appreciably
more efficient than the Kaplan-Meier approach for estimating F(¢) when the true distribution is
Weibull. The zero entries for the uniform distribution indicate that the non-parametric method
always correctly estimates that no events are possible before t = 3 or after ¢ = 21.

Table 2 shows the relative MSEs for the predicted probability of the event by ¢ = [5and ¢ = 21.
Fort = 21 the relative MSEs are very close to 1, because the estimator is almost identical to the long
term predicted probability for which the relative efficiency appears to be 1. For ¢ = 15, the properties

Table 1
Relative efficiencies of logistic/Weibull to logistic/Kaplan-Meier for estimating F(t) at
t=3,9 1521

True
distribution 3 9 15 21

(a) Weibull
Relative MSE 2.78 (.306) 1.43 (.05) 1.51 (.06) 2.32 (.36)
Mean (SD)

(b) uniform
Relative MSE 0(0) .92 (.25) 1.03 (.12) 0(0)
Mean (SD)

of the estimator of the latency distribution begin to play a role. This makes parametric method
slightly superior when the true model is Weibull and slightly inferior when the true model is uniform.
Other factors in the design of the simulation such as the true value of b, the value of z at which the
prediction is made, the amount of censoring, and the sample size had only a minimal effect of the
relative MSE.

3.2 Guinea Pig Data

Spinal cord paralysis is a potential side effect in radiation therapy if too high a dose is administered
to that region. To investigate the relationship between the absorbed dose and paralysis an experi-
ment was performed in which Guinea pigs were irradiated with a range of doses. The total dose is
administered in N separate 1.5-Gy doses followed by ten 4.5-Gy doses. There were nine different
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Table 2
Relative efficiency of logistic/Weibull to logistic/Kaplan-Meier (ratio of MSEs) for estimating
predicted probabilities of the event occurring by fixed times (t)

True distribution t=15 t =21
Weibull 1.10 (.08) 1.02 (.02)
Uniform .94 (.08) 1.00 (.07)

values for N ranging from 18 to 44. The doses are given daily except for twice daily on Saturdays
and Sundays. From previous experience it is known that if paralysis is to occur it will be between
10 and 18 weeks after the final dose of radiation.

There were 115 animals in the experiment, 58 developed paralysis between weeks 10 and 18 (d =
2), 42 did not develop paralysis at the termination of the experiment at 30 weeks (d = 1), and 15 were
censored at various times between 7 and 17 weeks (d = 0). The data were fit by the logistic/Kaplan—
Meier method. The estimates for @ and b are 7.739 and —.0862, respectively, and a 95% profile
likelihood confidence interval for b is (—.138, —.041) indicating a significant dose response relation-
ship. Figure 1 shows the estimated conditional latency distribution, and also the estimate of F(t)
from the logistic/Weibull fit for comparison. It appears for this data set that the assumption of a
Weibull for the latency distribution is appropriate. For comparison the Cox model estimated
conditional distribution given paralysis before 20 weeks at a total dose of 93 Gy is shown.

Figure 2 shows the predicted proportion free of paralysis at 20 weeks as a function of dose for the
logistic/Kaplan-Meier method. The results from the logistic/Weibull method are almost identical,
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Figure 1. Estimated conditional latency distribution for Guinea pig paralysis experiment.
Logistic/Kaplan-Meier estimator (solid step function), Logistic/Weibull estimator (dashed smooth
curve), standard Cox model (dashed step function).
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and are not shown. The data points and 95% confidence intervals are shown, calculated from
separate Kaplan-Meier plots for each dose group. For comparison the results of fitting a standard
Cox proportional hazards model are shown. The predictions are similar, although the Cox model

does suggest a less steep dose-response relationship, as has been previously observed (Taylor and
Kim, 1993).

1.0

0.8

0.6

0.4

0.2

PROPORTION FREE OF PARALYSIS

0.0 & T T T T T T T T T T
70 80 90 100 110 120
RADIATION TOTAL DOSE (GY)

Figure 2. Estimated proportion of Guinea pigs free of paralysis at 20 weeks following radiation.

Data points and approximate 95% confidence intervals are separate Kaplan—Meier estimates (%2

SE) from each dose group. Logistic/Kaplan-Meier mixture model estimate (-------- ). Cox
proportional hazards model (———).

4. Discussion

As has been noted by others (Farewell, 1986) there are potential problems in using the mixture
model in cases where it may not be adequately justified. The estimator recommended in this paper,
because of its good properties, forces S(t) to zero beyond the last event. From a practical point of
view this apparently.strong assumption may not be unreasonable if there is adequate justification for
a mixture model, and if it is not reasonable the suitability of the model might be questioned.

Our work is related to a recent article by Kuk and Chen (1992). They consider a more general
semi-parametric-mixture model in which the covariates can influence both the long term incidence
and the conditional latency, whereas we only allow the covariates to affect the incidence. The
Kaplan-Meier type estimator we use in the M-step is also derived by Kuk and Chen. The difference
between the two approaches is that we continually iterate between the incidence regression
coefficients and the Kaplan-Meier type estimator in an EM algorithm. In contrast Kuk and Chen
first obtain the regression coefficients by maximizing an approximation resulting from a simulation
to the marginal rank likelihood and then obtain the Kaplan-Meier type estimator without any
iterations. An additional difference is that we allow the possibility that for some observations it is
known that the event cannot occur. We are currently working on extending our EM approach to the
more general model assumed by Kuk and Chen. A difficulty here is that the latency regression
coefficients cannot be estimated separately from the baseline hazard.

In standard logistic regression there are situations where the regression coefficients which
maximize the likelihood are infinite (Santner and Dufty, 1989). The logistic/Kaplan-Meier model can
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also give infinite regression coefficients, especially for small sample sizes. Specifically if there is a
possible fractional allocation of the censored observations (equation 2), such that the design space
can be separated by a hyperplane into two groups, then the regression coefficients might be infinite.
We observed that including the restriction S(z) = 0 beyond the last event had the beneficial effect of
reducing, but not eliminating, the occurrence of infinite estimates.

For the situation where d = 1 is not possible, if the largest value ¢ occurs for an uncensored
observation (d = 2), then we observed that the estimate of b is infinite because the allocation of all
the censored observations to the group D = 2 is possible and maximizes the likelihood. This would
appear to be a limitation of the logistic/Kaplan-Meier approach, although in this situation one might
question whether it is really valid to think that a non-zero proportion of the subjects will never
experience the event and thus whether a mixture model is appropriate.

Because of the potential problems caused by the lack of identifiability when using the mixture
model, it is interesting to know whether a standard analysis, such as the Cox proportional hazards
model, is satisfactory for this type of data. Certain aspects of this question were investigated in a
simulation study and by applying both techniques to two real examples (Taylor and Kim, 1993). We
found that generally the methods gave similar results, and that when the true model was a mixture
model the logistic/Weibull approach gave smaller MSE than the Cox model for predicting the
probability of an event by a specific finite follow-up time for a given covariate vector. In contrast,
the Cox model was more efficient at estimating the ratio of two regression parameters. The ratio of
regression parameters has an interpretation as the substitutability (Taylor, 1989; Li and Duan, 1989)
of one covariate for another and is frequently considered in radiation research.
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RESUME

Les modeles de mélange constituent une approche intéressante pour I’analyse des données de survie
dans lesquelles deux groupes de sujets peuvent étre envisagés, ceux qui pourraient éventuellement
expérimenter I’événement d’intérét et ceux qui ne le pourraient pas. Le modele proposé est une
généralisation semi-paramétrique du modéle de mélange de Farewell (1982). Un modéle de régres-
sion logistique est proposé pour la partie du modéle concernant ’incidence et une approche de type
Kaplan-Meier est utilisée pour estimer la partie du modéle concernant le temps de latence.
L’estimateur se déduit naturellement de I'approche utilisant I"algorithme EM pour ajuster des
modé¢les de mélange en survie comme décrit par Larson et Dinse (1985). La procédure est appliquée
a des données expérimentales d’irradiation en biologie et est évaluée par une étude de simulation de
Monte Carlo. L’étude de simulation suggére que la procédure semi-paramétrique est presque aussi
efficace que la procédure paramétrique correcte pour estimer le coefficient de régression dans
I’incidence, mais moins efficace pour estimer la distribution de latence.
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