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SUMMARY

Not until recently has much attention been given to deriving maximum likelihood methods for
estimating the intercept and slope parameters from a binormal ROC curve that assesses the accuracy
of a continuous diagnostic test. We propose two new methods for estimating these parameters. The first
method uses the profile likelihood and a simple algorithm to produce fully efficient estimates. The second
method is based on a pseudo-maximum likelihood that can easily accommodate adjusting for covariates
that could affect the accuracy of the continuous test.
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1. INTRODUCTION

New medical technologies promise a vast array of tools for diagnosis and screening. In recent years
there has been much focus on studying biomarkers that could potentially provide non-invasive and
accurate ways of detecting disease, predicting disease progression, and evaluating patients’ response to
treatment. Tools such as gene expression profiling and protein mass spectrometry provide a plethora of
possible biomarkers that must be studied further to assess their accuracy. Many of these biomarkers are
measured on a continuous scale. A standard statistical tool for evaluating the accuracy of a continuous
diagnostic test is a Receiver Operating Characteristic (ROC) curve (Swets and Pickett, 1982; Hanley,
1989; Begg, 1991).

The ROC curve evaluates the accuracy of diagnostic tests in separating two populations, for example
patients with a particular disease (D = 1) and patients without the disease (D = 0). Let Y be a random
variable that denotes the outcome of a diagnostic test or biomarker with the convention that higher values
of Y are more indicative of disease. We use YD and YD̄ to denote the test result for disease and non-diseased
subjects, respectively. The ROC curve is motivated as follows: if a threshold value c is used to classify
subjects as diseased or non-diseased on the basis of Y , then the true and false positive rates associated
with this classification criterion are respectively SD(c) = Pr(Y � c | D = 1) and SD̄(c) = Pr(Y �
c | D = 0). The ROC curve is a plot of the true positive rates versus the false positive rates across all
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possible thresholds. Therefore, at an attainable false positive rate u, the corresponding true positive rate
is ROC(u) = SD{S−1

D̄
(u)}. The ROC curve displays the range of possible trade-offs between the true

and false positive rates. The choice of the threshold value can be suggested based on the ROC curve, for
example, by optimizing a cost or utility function that combines the {u, ROC(u)} values.

There are a number of methods for estimating the ROC curve for a continuous test. A fully parametric
approach that results in a smooth curve models the constituent distribution functions parametrically in
order to arrive at the induced estimator of the ROC curve. A non-parametric method that results in a
step function is to use the empirical estimate whose properties have been derived by Hsieh and Turnbull
(1996). An intermediate strategy between these two is a semi-parametric approach.

Several different methods have been used to produce a semi-parametric ROC curve. For example,
Li et al. (1999) propose using a non-parametric approach to estimate the distribution of test results in
non-diseased subjects (SD̄(c)), but then assume a parametric model for the distribution of test results in
diseased subjects (SD(c)). Without assuming a functional relationship between these two distributions,
they use maximum likelihood to estimate the unknown parameters in SD(c). Qin and Zhang (2003) also
assume that the distribution of test results in non-diseased subjects is unknown, but instead assume a
functional form for the density (likelihood) ratio function relating the two distributions to each other.
Rather than modelling these distribution functions, their semi-parametric approach involves modelling
the probability of disease status conditional on the test result.

A more commonly taken strategy to semi-parametric estimation of the ROC curve is to model the
ROC curve parametrically, but avoid making additional assumptions about the distribution of test results.
These types of approaches have also been calling parametric distribution-free (Pepe, 2000; Alonzo and
Pepe, 2002). They produce smooth estimated curves while requiring less stringent assumptions than a
fully parametric approach. The binormal ROC curve is perhaps the most popular of these intermediate
strategies.

A binormal ROC curve for YD and YD̄ assumes that for some (unknown) strictly increasing transfor-
mation h, h(YD) and h(YD̄) have normal distributions. The binormal ROC model is written as

ROC(u) = �
{

a + b�−1(u)
}

, (1.1)

where �(·) is the cumulative distribution function of the standard normal distribution. This ROC curve
plays a central role as a classic model in ROC analysis similar to the way that the normal distribution
is a classic model for distribution functions (Pepe, 2003). Swets (1986) and Hanley (1996) conclude
that it provides a good approximation to a wide range of ROC curves that occur in practice. Further, it
has been used extensively in applied research as a simple tool to describe the accuracy of rating data
in radiology and psychometric research, to compare tumour markers for various types of cancer, and to
compare laboratory blood tests for the screening of prostate cancer. In this paper we consider an example
evaluating serum concentration of CA-125, a cancer antigen, as a biomarker for pancreatic cancer in a
Mayo Clinic study (Wieand et al., 1989).

This paper focuses on estimation of the binormal ROC curve which involves estimating the parameters
a and b in model (1.1). Maximum likelihood (ML) methods for fitting a binormal ROC curve to ordinal
test results have long been available (for example, Ogilvie and Creelman, 1968 and Dorfman and Alf,
1969), and an algorithm developed by Dorfman and Alf (1969) for this purpose appears to be a standard
way of estimating the binormal ROC curve for ordinal data. Not until somewhat recently, however, have
ML methods for continuous test results received much attention. Zhou et al. (2002) and more recently
Pepe (2003) provide reviews of the existing methods, so we only briefly mention some of these proposed
methods below.

Metz et al. (1998) suggested that by ranking the continuous data and then arranging them into
categories based on truth state runs (that is, the categories are based on the values that result in horizontal
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or vertical jumps in an empirical ROC curve), we can obtain the ML estimates of the binormal ROC
curve by using the Dorfman and Alf algorithm. There is disagreement, however, on whether this approach
provides true ML estimates because the number of parameters that need to be estimated increases as the
sample size increases (Metz et al., 1998 and Pepe, 2003). Furthermore, the argument in favour of the
validity of these estimates as being true ML estimates is based on using all truth state runs as categories,
which can be computationally intensive as Metz et al. (1998) point out.

Pepe (2000) followed by Alonzo and Pepe (2002) suggest two similar semi-parametric approaches
in the context of developing ROC regression methodology. The binormal ROC curve is included in the
class of models they consider. While their approaches do have some nice features, including the fact that
they facilitate adjusting the ROC curve for covariates that affect the accuracy of the test and the estimates
obtained do appear to be efficient, they are not ML estimates.

Finally, Zou and Hall (2000) develop ML rank-based estimates by ranking the data and numerically
solving the score equations derived from the likelihood function of the order statistics using a Monte
Carlo procedure. Unfortunately, software is not readily available to implement this method. Furthermore,
while this approach does result in fully efficient estimates, it is computationally intensive making it
difficult to implement. We expect that even if software were available, the computational time for
executing their method would be relatively long. Simply evaluating the score function requires Monte
Carlo approximation giving some indication as to the time required for the procedure to yield estimates.

Here, we propose two new approaches to the estimation of the location and scale parameters in the
binormal ROC model. The first is a maximum profile likelihood approach which also provides a fully
efficient estimator of θ = (a, b)T. To obtain the estimator numerically, we propose a simple algorithm
based on the method of freezing coefficients (Golub and Van Loan, 1989). We find that this algorithm is
easy to implement and works well in practice. The second approach is a pseudo maximum likelihood
approach which provides a useful alternative to the first approach with the benefit of easy extension to
incorporate covariates.

The paper is organized as follows. In Section 2, we describe the maximum profile likelihood method
for estimating θ. The pseudo-maximum likelihood approach and the corresponding procedures for making
statistical inference are outlined in Section 3. A graphical method together with a goodness-of-fit statistic
for model checking is given in Section 4. Simulation studies were performed to (i) determine if the
new estimators have increased efficiency relative to existing methods and (ii) verify the validity of the
asymptotic inference in finite samples. Results of these simulation studies are summarized in Section 5.
An illustrative example is presented in Section 6 using data from a study to evaluate antigens CA-125 and
CA 19-9 as biomarkers for the detection of pancreatic cancer. Some closing remarks and extensions to
incorporate covariates are made in Section 7.

2. MAXIMUM PROFILE LIKELIHOOD ESTIMATOR

Let {Yi : i = 1, . . . , nD} denote nD observations from the diseased population and {Y j : j =
nD + 1, . . . , nD̄ + nD} be a random sample from the disease-free population. Let fD and fD̄ denote the
respective density functions of YD and YD̄ and let �D̄ = − log SD̄ be the cumulative hazard function of YD̄.

Model (1.1) implies that there exists some (unknown) monotonic increasing transformation h(·) such
that

h(Yi ) ∼ N (α, β2) and h(Y j ) ∼ N (0, 1), (2.1)

for i = 1, . . . , nD and j = nD + 1, . . . , n, where α = a/b, β = 1/b and n = nD̄ + nD. Note that estimating
a and b directly from the mean and variance in (2.1) will produce valid estimates only if the test results are
truly normally distributed, rather than the weaker assumption that some transformation of the test results

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/5/4/573/275198 by guest on 16 August 2022
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is normally distributed. Model (1.1) implies that

SD(y) = �
[
a + b�−1{SD̄(y)}

]
, and

fD(y)

fD̄(y)
= bφ{a − bh(y)}

φ{−h(y)} ,

where φ is the probability density function for the standard normal distribution. It follows that the
likelihood of the data is

L(θ, �D̄) = L(θ, λ) =
nD∏

i=1

bφ(a − bhi )λi e−�i

φ(−hi )
×

n∏
j=nD+1

λ j e
−� j ,

where θ = (a, b)T, λ = (λ1, . . . , λn)T, for l = 1, . . . , n, λl = 
�D̄(Yl) is the jump of �D̄ at Yl if �D̄

is discrete and λl is the derivative of �D̄ at Yl if �D̄ is continuous, �l = �D̄(Yl) and hl = h(Yl) =
−�−1(e−�l ). If we restrict the estimate of �D̄ to the subspace of absolutely continuous estimates of the
cumulative hazard function, then there is no maximizer of the likelihood. By restricting the estimate of
�D̄ to the subspace of discrete estimates, however, a maximizer does exist. The ML estimator of �D̄, �̂D̄,
will then be a nondecreasing step function with jumps at the observed data points {Yl , l = 1, . . . , n}. See
Murphy et al. (1997) for a more detailed explanation of this point.

With θ̂mle and λ̂ denoting the ML estimators of L(θ, λ), the likelihood depends smoothly on the
unknowns λ. For any given λ, maximizing L(θ, λ) with respect to θ, we obtain a closed form maximizer:

θ̂(h) =
(

â(h)

b̂(h)

)
=

(
α̂(h)

β̂(h)
1

β̂(h)

)

where α̂(h) = ∑nD

i=1 hi/nD, β̂(h) =
√∑nD

i=1{hi − α̂(h)}2/nD and h = (h1, . . . , hnD)T.

The profile likelihood for θ is given by PL(θ) = L
{
θ, λ̂(θ)

}
, where λ̂(θ) maximizes the likelihood

for a fixed θ. The maximum profile likelihood estimator, θ̂mle, maximizes PL(θ). This estimator is a
function of the biomarker values only through their ranks. The profile likelihood is the same, whether
we use the Y , or replace them by their ranks. Let θ0 = (a0, b0)

T and λ0 denote the true values of θ and λ,
respectively. It follows from the properties of maximum profile likelihood estimators (Murphy and van der

Vaart, 2000) that θ̂mle is fully efficient and n
1
2 (̂θmle −θ0) converges in distribution to a zero-mean bivariate

normal with covariance matrix Σmle, where

Σmle =
−E

(
∂2 logL
n∂θ∂θT

)
+ E

(
∂2 logL
n∂θ∂λT

)
E

(
∂2 logL
n∂λ∂λT

)−1

E

(
∂2 logL
n∂λ∂θT

)
−1

∣∣∣∣∣∣∣
θ=θ0,λ=λ0

.

It also follows from Murphy and van der Vaart (2000) that

LR(θ0) ≡ 2 log
PL(̂θmle)

PL(θ0)
∼ χ2

2 , LR1(a0) ≡ 2 log
PL(̂θmle)

PL1(a0)
∼ χ2

1 , LR2(b0) ≡ 2 log
PL(̂θmle)

PL2(b0)
∼ χ2

1 ,

where PL1(a) = maxb PL(a, b), PL2(b) = maxa PL(a, b) and χ2
k denotes a chi-square distribution with

k degrees of freedom. Therefore, 100(1 − γ )% confidence intervals for the kth component of θ0 can be
obtained based on the Wald-type confidence interval: {θk : (θk − θ̂k)

2 � σ 2
k χ2

1,1−γ } or by inverting the

likelihood ratio statistic: {θk : LRk(θk) � χ2
1,1−γ }, where χ2

k,1−γ is the 100(1 − γ )th percentile of χ2
k , θ̂k

is the kth element of θ̂mle and σ 2
k is the (k, k)th element of Σmle. A joint 100(1 − γ ) confidence region for

θ can be obtained as
{
θ : (θ − θ̂)TΣ−1

mle (θ − θ̂) � χ2
2,1−γ

}
or

{
θ : LR(θ) � χ2

2,1−γ

}
.
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In general, with presence of infinite-dimensional parameters, ML estimators are difficult to obtain
numerically. Nevertheless, we find that in this particular setting, a simple algorithm works well in practice.
We adopt a commonly used method in nonlinear numerical analysis: namely, the method of freezing
coefficients. Details of the implementation procedure are given in Appendix A, and the code needed to
compute these ML estimates is available upon request. This algorithm is a computationally non-intensive
way to obtain the described ML estimates.

3. PSEUDO MAXIMUM LIKELIHOOD ESTIMATOR (PMLE)

An alternative approach to the estimation of θ is through a pseudo ML estimation procedure. If
h is given, we can obtain the ML estimator for θ by solving the score equations for θ in (A.2) of
Appendix A. To estimate the unknown transformation h, let δi (y) = I (Yi > y) + 1

2 I (Yi = y) and
Ŝ(y) = n−1 ∑n

i=1 δi (y). It follows from (2.1) that the expected value of Ŝ(y) is S {h0(y), θ0}, where
S(h, θ) = pD�(a − bh) + pD̄�(−h), h0 is the true underlying transformation function, pD̄ = nD̄/n and
pD = nD/n. This motivates the following estimating equation for h(y) at any given θ:

pD�(a − bhy) + pD̄�(−hy) = Ŝ(y). (3.1)

Note that we estimate h with data from both diseased and non-diseased subjects whereas Alonzo and Pepe
(2002) estimate h with data from non-diseased subjects only.

Let ĥ(y, θ) denote the solution to (3.1) for a given θ. Plugging ĥ to the score equation for θ,
∂L(θ,λ)

∂θ = 0, we obtain an estimating equation for θ0:

nD∑
i=1

( −a + bĥ(Yi , θ)

b−1 + aĥ(Yi , θ) − bĥ(Yi , θ)2

)
= 0. (3.2)

Let θ̂pmle denote the resulting estimator for θ0. Note that for any given θ, the Jacobian matrix for (3.1) is
diagonal. θ̂pmle can easily be obtained either by solving (3.1) for h = (h1, . . . , hnD)T and solving (3.2) for
θ iteratively or by solving for them simultaneously using the Newton–Raphson algorithm.

To make inference about θ0 based on the PMLE, we show in Appendix B that θ̂pmle is consistent and the

distribution of n
1
2
D (̂θpmle −θ0) can be approximated by a zero-mean normal random vector with covariance

matrix Σpmle, where

Σpmle = A
−1

{
n−1

D

nD∑
i=1

(v1i + v2i )(v1i + v2i )
T + n−1

D

nD+nD̄∑
j=nD+1

v2 j vT
2 j

}
A

−1, (3.3)

v1i =
( −a0 + b0h0(YDi )

b−1
0 + a0h0(YDi ) − b0h2

0(YDi )

)
v2i = −

∫ (
b0

a0 + 2b0h0(y)

)
pDei (y) dSD(y)

ṡh {h0(y), θ0} ,

ei (y) = δi (y)− S {h0(y), θ0}, ṡh is the limit of ∂S(h, θ)/∂h and A is defined in Appendix B. A consistent
estimate of Σpmle can be obtained by replacing all the theoretical quantities in Σpmle by their empirical
counterparts.

4. MODEL CHECKING PROCEDURES

The inference procedures proposed in the previous sections are valid only if the binormal ROC model
(1.1) is correctly specified. Here, we present a graphical method as well as a statistical test to assess
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whether model (1.1) is appropriate for the data in hand. Specifically, we consider the residual process

Q̂(y) ≡ �−1 {
ŜD(y)

} − â − b̂�−1 {
ŜD̄(y)

}
,

where ŜD̄(y) = n−1
D̄

∑nD+nD̄

j=nD+1 δ j (y) and ŜD(y) = n−1
D

∑nD

i=1 δi (y). This process is motivated by an

equivalent form of the ROC model: �−1{SD(y)} = a + b�−1(SD̄(y)).

We show in Appendix C that under H0, Q̂(y) → 0 almost surely, uniformly in y, and n
1
2
D Q̂(y) is

asymptotically equivalent to Q̃(y) ≡ n
− 1

2
D

∑n
i=1 O(y, Yi ), where O(y, Yi ) is defined in Appendix C.

The asymptotic equivalence between Q̂(·) and Q̃(·) allows us to approximate the limiting distribution
of Q̂(·) using the re-sampling techniques (Parzen et al., 1994) in practice. In essence, one can simulate
independent random samples Z = {Zl , l = 1, . . . , n} from the standard normal distribution, and for each
set of Z , obtain

Q̂Z (y) = n
− 1

2
D

n∑
l=1

Ô(y, Yl)Zl

where Ô(y, Yl) is obtained by replacing all the theoretical quantities in O(y, Yl) by their empirical
counterparts. It is also shown in Appendix C that Q̂Z (·) converges weakly to the same limiting process as
that of Q̂(·).

To assess how unusual the observed process Q̂(·) is under H0, one may plot the observed process
along with a few realizations from Q̂Z (·) and supplement the graphical display with an estimated p-value
from a supremum-type test statistic q ≡ supy |Q̂(y)|. We note that the test based on q is consistent
against the alternative that (1.1) does not hold. An unusually large observed value q would suggest
improper specification of (1.1). In practice, the p-value can be approximated by P (̂q � q), where q̂ =
supy |Q̂Z (y)|. We estimate P (̂q � q) by generating a large number, say 5000, of realizations from Q̂Z (·).

5. SIMULATION STUDIES

5.1 Relative efficiency

To investigate the efficiency of the new estimators relative to the existing estimators, we simulated data
from the same setting as given in Zou and Hall (2000). Specifically, Y is generated from a standard normal
for the disease-free population and for the diseased population, Y follows a normal distribution with mean
α = 1.868 and standard error β = 1.5. The induced ROC curve is

ROC(u) = �{1.245 + 0.667�−1(u)}.
The area under this ROC curve is AUC = 0.85.

We obtain both our proposed ML estimator and PMLE of θ = (a, b)T. For comparison, the LABROC
procedure described in Metz et al. (1998) and the Alonzo and Pepe (2002) binary regression approach
are also implemented. The Zou and Hall approach is not included here for the reasons explained in the
introduction. We expect their approach to yield similar results to those seen for our proposed approach.

In Table 1, we present the empirical bias and mean square error of θ̂ based on 1000 simulated datasets.
All methods yield estimators with little bias, at least for sample size nD = nD̄ > 50. The GLM and
LABROC estimators do appear to have less bias than the ML estimate and PMLE. Interestingly, the ML
estimates of α and β (the mean and standard deviation in (2)) are less biased than the GLM and LABROC
estimators (results not shown). It is possible that the re-parametrization from α and β to a and b leads to
additional bias. The increase in bias is most noticeable for smaller sample sizes, but is minimal in all the
settings we considered.
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Table 1. Estimates of a and b compared with their actual values, a = 1.245 and b =
0.667, based on four different approaches: maximum likelihood (MLE), pseudo-maximum
likelihood (PMLE), Alonzo and Pepe’s binary regression approach (GLM) and Metz’s

LABROC (LAB). The results are based on 1000 simulated data sets

nD̄ nD

Bias Mean square error ×10

MLE PMLE GLM LAB MLE PMLE GLM LAB

50 50
a 0.079 0.064 0.034 0.032 0.633 0.641 0.586 0.589

b 0.043 0.062 −0.009 0.002 0.215 0.221 0.223 0.215

200 200
a 0.026 0.018 0.013 0.002 0.125 0.138 0.126 0.128

b 0.014 0.017 −0.004 0.001 0.048 0.051 0.052 0.049

1000 500
a 0.005 0.004 0.001 −0.003 0.047 0.048 0.049 0.047

b 0.005 0.007 0.002 −0.004 0.012 0.013 0.015 0.014

1000 1000
a 0.004 0.003 0.002 −0.001 0.024 0.025 0.025 0.028

b 0.004 0.004 0.001 −0.002 0.008 0.009 0.010 0.011

The ML estimate and the PMLE are more efficient than the other estimators, however, and this
increased efficiency yields MSEs that are comparable to or smaller than the GLM and LABROC
estimators. The ML estimate and the LABROC achieve similar efficiencies in small samples. But as
the sample size increases, the LABROC estimator has a reduced efficiency relative to the ML estimate in
estimating θ. For example, when nD = nD̄ = 1000, the efficiency of the LABROC estimator relative to
the ML estimate is 85% for a and 76% for b. The PMLE has efficiencies comparable to the ML estimate.
The binary regression approach is slightly less efficient. Relative to the ML estimate, the efficiency of the
PMLE is about 98% for both a and b and the efficiency of the binary regression approach is about 96%
for a and 80% for b.

5.2 Asymptotic inference in finite samples

We also conducted simulation studies to examine the validity of the large sample approximations for
making inference in finite samples. We simulated 1000 sets of data with (nD̄, nD) = (50, 50), (100, 50),
and (200, 200) from the same model as described in Section 5.1. In Table 2, we present the bias, the
sampling standard error, the average of the standard error estimators and the coverage probability of the
95% confidence intervals for a and b (a log transformation was used when obtaining the confidence
intervals for b). The standard error estimators are reasonably close to the true sampling standard errors, at
least for sample size n > 100. For small samples, nD = nD̄ = 50, it appears that for the PMLE approach,
the estimated standard errors based on large sample approximations tend to be slightly larger than the
sampling standard errors when estimating b. Nevertheless, the empirical coverage probabilities for the
confidence intervals are close to their nominal counterparts, even in small samples. When the sample size
is 50 for each group, the empirical coverage probabilities for a and b are 95.3% and 96.4% based on the
ML estimate and are 97.4% and 96.8% based on the PMLE.

6. EXAMPLE: PANCREATIC CANCER BIOMARKER

As reported by Wieand et al. (1989), two antigens, CA-125 and CA 19-9, were studied at the Mayo
Clinic as possible biomarkers of pancreatic cancer. These two biomarkers were measured in the sera of

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/5/4/573/275198 by guest on 16 August 2022
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Table 2. Bias, sampling standard error (Sampling SE), average of the estimated
standard error estimator (Ave(ŜE)), and the coverage probability (Coverage) of the

95% confidence interval. Each entry is based on 1000 simulation samples

nD̄ nD

Bias Sampling SE Ave(ŜE) Coverage

MLE PMLE MLE PMLE MLE PMLE MLE PMLE

50 50
a 0.079 0.064 0.239 0.245 0.234 0.248 0.953 0.974

b 0.043 0.062 0.140 0.135 0.149 0.193 0.964 0.968

100 50
a 0.062 0.063 0.227 0.246 0.218 0.248 0.957 0.963

b 0.033 0.054 0.129 0.126 0.126 0.150 0.945 0.941

200 200
a 0.026 0.018 0.109 0.116 0.111 0.113 0.950 0.945

b 0.014 0.017 0.068 0.070 0.067 0.073 0.943 0.949

Table 3. Estimates (standard errors) of parameters a and b in the binormal ROC
model for CA-125

MLE PMLE Zou and Hall GLM LABROC
a 0.761(0.191) 0.719(0.198) 0.727(0.190) 0.778(0.197) 0.720(0.185)

b 1.065(0.140) 1.020(0.148) 1.007(0.142) 1.017(0.167) 1.002(0.137)

nD = 90 patients with pancreatic cancer and nD̄ = 51 healthy patients with pancreatitis. We consider
fitting a binormal ROC curve to the data for the CA-125 antigen.

Table 3 lists the resulting estimates of (a, b) and their standard errors based on our proposed ML
estimator, the PMLE, the Zou and Hall (2000) estimator, Alonzo and Pepe (2002)’s binary regression
approach and the LABROC procedure. All five methods give similar estimates of a and b. The ML
estimator provides a slightly larger estimate of â = 0.761 (s.e. = 0.191) and b̂ = 1.065 (s.e. = 0.140)
compared to â = 0.727 (s.e. = 0.190) and b̂ = 1.007 (s.e. = 0.142) based on the Zou and Hall (2000)
estimator. The observed difference in these parameter estimates is not unexpected considering that the
sample sizes are relatively small and these two methods deal with the nuisance parameter h differently
even though they are both likelihood based.

The resulting estimates of the ROC curve and their 95% confidence bands based on the ML estimate
and the PMLE are shown in Figure 1. While Figure 1 shows that the fitted binormal ROC curves overlap
the empirically estimated one, there is a slight difference between the two. To investigate whether this
discrepancy is simply due to randomness or to a true lack of fit of the binormal model (1.1), we apply the
model checking procedure discussed in Section 4. As shown in Figure 2, the observed residual process
Q̂(·) does not appear to be unusual when compared with the realizations of Q̂Z (·) (using the PMLE of
θ). Testing the hypothesis H0 using the supreme-type statistic, we obtain a p-value of 0.78 if using the
PMLE for θ and 0.36 if using the MLE for θ (based on 1000 realizations) indicating that the binormal
model is a reasonable choice.

7. DISCUSSION AND EXTENSION

In this paper, we proposed two semi-parametric approaches to the estimation of the location and scale
parameter in the binormal ROC model. The estimators of θ produced by both approaches are invariant to
monotonic increasing transformations. Simulation results suggest that the proposed pseudo ML method
has efficiency comparable to the ML estimate in estimating θ. However, since the ML estimate is fully
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Fig. 1. Estimated ROC curves (thicker curves) and their 95% confidence intervals (thinner curves) based on the MLE
(dashed curve) and PMLE (dotted curve) for CA-125. Shown also is the empirical estimate of the ROC curve (grey
solid curve). (The upper 95% confidence interval curves for the MLE and PLME ROC curves lie directly on top of
each other.)
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Fig. 2. Residual plot for testing the goodness of fit of the binormal ROC model. The observed pattern is shown by the
thick solid curve, and 20 simulated realizations under the null are shown by the dotted curves.

efficient and is not hard to obtain numerically, we recommend using the ML estimate when fitting the
binormal model without covariates.

To obtain the ML estimate numerically, we find that the algorithm based on the method of freezing
coefficients performs well in practice. The program for the estimation procedure is currently written in
S-Plus and the computation time with the current version of the software is about 4 seconds for a sample
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size of nD = nD̄ = 200. Based on our experience, this algorithm rarely fails to converge. The PMLE can
be obtained based on the Newton–Raphson algorithm. Note that, for this case, the inverse of the Jacobian
matrix can easily be obtained by inverting a nD × nD diagonal matrix and a 2 × 2 matrix.

It is difficult to extend the maximum profile likelihood approach to allow for covariates, while the
modifications needed to extend the pseudo ML approach to incorporate covariates are straightforward. In
particular, the transformation models given in (2.1) can be generalized as follows:

h(Yi ) = γT
DZi + α + βεDi and h(Y j ) = γT

D̄Z j + εD̄ j (7.1)

where εDi and εD̄ j are standard normal random variables, Zi and Z j are covariates associated with Yi

and Y j , respectively, for i = 1, . . . , nD and j = nD + 1, . . . , n. The induced ROC curve associated with
covariates Z is

ROCZ(u) = �
{

a + b�−1(u) + γTZ
}

where a = α/β, b = 1/β and γ = (γD − γ D̄)/β. As usual the parameters α and β can be interpreted
as the location and shape of the ROC curve. The parameter vector γ quantifies the covariate effect on the
ROC curve by the difference between the covariate effect in the diseased and non-diseased populations
(up to a scalar β).

Pepe (2000) incorporates covariates by modelling how the covariates in the diseased population and
the covariates in the non-diseased population affect the ROC curve. In contrast, Alonzo and Pepe (2002)
consider the comparison between the diseased and non-diseased populations with the same value for the
covariate. Our approach is similar to the Pepe (2000) approach in that we also allow the comparison
between the two populations when they are associated with different covariate levels. We estimate the
covariate effects on the distribution of Y in the two populations to induce an estimate for the covariate
effect on the ROC curve.

For a given h = (h1, . . . , hn)T, we estimate θ = (α, γT
D, γ D̄, β)T by maximizing the likelihood of the

data as a function of θ and obtain

θ̂(h) =


α̂(h)

γ̂D(h)

γ̂ D̄(h)

β̂(h)

 =


{∑nD

i=1
�Zi �ZT

i

}−1 ∑nD

i=1
�Zi hi{∑nD+nD̄

j=nD+1 Z j ZT
j

}−1 ∑nD+nD̄

j=nD+1 Z j h j

n−1
D

∑nD

i=1

{
hi − α̂(h) − γ̂D(h)TZi

}2

 , (7.2)

where �Zi = (1, Zi )
T, hi = h(YDi ) for i = 1, . . . , nD and h j = h(YD̄ j ) for j = nD + 1, . . . , n. Analogous

to (3.1), the following estimating equation can be used to estimate h(y) for any given y:

n−1
nD+nD̄∑
j=nD+1

�(−hy + γT
D̄Z j ) + n−1

nD∑
i=1

�

(−hy + α + γT
DZi

β

)
= Ŝ(y). (7.3)

The solution to (7.2) and (7.3) provides an estimator for θ and hence the ROC curve. This approach utilizes
information from both the diseased and non-diseased subjects for the estimation of h and therefore the FPR
function. In contrast, the binary regression approach proposed by Pepe (2000) and Alonzo and Pepe (2002)
estimates the FPR function based on observations from the non-diseased population only. Simulation
results suggest that this approach has higher efficiency in estimating θ compared to the binary regression
approach. For example, in one setting, we generated data from models (7.1) with one continuous covariate
Z from uniform(0, 1), h(y) = y and we set α = 1.868, β = 1.5, γD = 1 and γD̄ = 0.5. This configuration
for the data induces ROC curve

ROCZ (u) = �
{

1.245 + 0.667�−1(u) + 0.333Z
}

.
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Table 4. Estimates of a, b and γ compared with
their actual values, a = 1.245, b = 0.667 and
γ = 0.333, based on the pseudo-maximum likelihood
approach (PMLE) and Alonzo and Pepe’s binary regres-
sion approach (GLM). The results are based on 1000

simulated data sets

nD̄ nD

Bias Mean Square Error

PMLE GLM PMLE GLM
a 0.046 0.028 0.082 0.095

100 100 b 0.042 0.018 0.012 0.013
γ 0.011 0.022 0.191 0.260

a 0.025 0.012 0.038 0.049
200 200 b 0.016 0.004 0.005 0.006

γ −0.005 0.008 0.095 0.138

For each simulated data set, we obtained point estimates of θ with our pseudo-maximum profile likelihood
approach and the binary regression approach of Alonzo and Pepe (2002). In Table 4, we present the bias
and mean square error of θ̂ based on 1000 simulations. The results in Table 4 show that the new estimator
outperforms the Alonzo and Pepe (2002) estimator. At sample size of nD = nD̄ = 200, the empirical
efficiencies of the Alonzo and Pepe (2002) estimator relative to the new estimator are 78% for a, 83% for
b and 69% for γ .

In conclusion, we have presented a theoretically rigorous method to obtain maximum likelihood
estimates of the intercept and slope parameters of the binormal ROC curve. This is a semi-parametric
approach to estimating the ROC curve in the sense that it assumes a parametric binormal form for the
ROC curve, but does not assume that the test results follow any particular distribution. As discussed
in the introduction, the binormal ROC curve is not the only semi-parametric approach for obtaining an
estimate of the ROC curve. It is, however, the most popular of these semi-parametric approaches and
means of estimating it easily and efficiently deserve attention. While others have proposed methods to
estimate the necessary parameters, we feel that the methodology presented here distinguishes itself as a
computationally feasible way to obtain the fully efficient maximum likelihood estimates.

APPENDIX A

Algorithm for computing θ̂mle

Let I be the n by n matrix with the [i, j]th element I[i, j] = Ii j = I (Y j � Yi ), ID be the first nD

rows of I. Then �i = ∑n
l=1 Iilλl and hi = −�−1(e− ∑n

l=1 Iilλl ). For any vector x, we use the notation xl

to denote the lth element of x. Maximizing L(θ, λ) with respect to θ and λ is equivalent to solving the
following equations for θ and λ:

∂ logL
∂λl

= 1

λl
−

n∑
j=1

I jl −
nD∑

i=1

D1(θ, hi )Iil = 0, l = 1, . . . , n, (A.1)

∂ logL
∂θ

=
nD∑

i=1

D2(θ, hi ) = 0, (A.2)
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where

D1(θ, h) = − (h − b2h + ab)�(−h)

φ(−h)
, and D2(θ, h) =

( −a + bh
1
b + ah − bh2

)
.

To obtain the solutions to (A.1) and (A.2) numerically, we use the following algorithm:

Step 1: Choose some convergence threshold value δ0 and δ̃0. Let δ = 1, m = 1, and let λ̂
[0]

and θ̂
[0]

be the respective initial values for λ = (λ1, . . . , λn) and θ. We recommend the following initial
values:

λ̂
[0]
l = 1∑n

j=1 I jl
, for l = 1, . . . , n, ĥ[0] = −�−1(e−IDλ̂

[0]
), and θ̂

[0] = θ̂(̂h[0]).

Step 2: Compute

λ̂
[m]
l = 1∑n

j=1 I jl + ∑nD

i=1 D1(̂θ
[m−1]

, ĥ[m−1]
i )Iil

, for l = 1, . . . , n,

ĥ[m] = −�−1(e−IDλ̂
[m]

), and θ̂
[m] = θ̂(̂h[m]).

Step 3: Calculate

δ =
∥∥∥λ̂

[m] − λ̂
[m−1]∥∥∥ +

∥∥∥θ̂
[m] − θ̂

[m−1]∥∥∥
If δ > δ0, set m = m + 1 and go to step 2; otherwise calculate

δ̃ =
n∑

l=1

∥∥∥∥∥ 1

λ̂
[m]
l

−
n∑

j=1

I jl −
nD∑

i=1

D1(̂h
[m]
i , θ[m])Iil

∥∥∥∥∥ +
∥∥∥∥∥ nD∑

i=1

D2(̂θ
[m]

, ĥ[m]
i )

∥∥∥∥∥
If δ̃ > δ̃0, go to step 1 and choose a different initial value for λ and θ; otherwise ĥ = ĥ[m] and

θ̂ = θ̂
[m]

.

APPENDIX B

Consistency and asymptotic distribution of θ̂pmle

By the uniform law of large numbers (Pollard, 1990), Ŝ(y) − S{h0(y), θ0} → 0 almost surely,
uniformly in y. It follows from the monotonicity of �(·) that there exists a unique ĥ(y, θ) to equation
(3.1) for any given θ. Let V(θ) denote the left-hand side of (3.2). Since V(θ0) → 0 and there exists a
unique solution to V(θ) = 0, θ̂pmle is consistent.

To show the large sample distribution of θ̂pmle, we let Ṡh(h, θ) = ∂S(h, θ)/∂h and Ṡθ(h, θ) =
∂S(h, θ)/∂θ. By a Taylor series expansion of V(̂θpmle) around θ0, we obtain

n
1
2
D (̂θpmle − θ0) ≈ A

−1n
− 1

2
D V(θ0),

where A is the limit of −∂V(θ0)/∂θ. Again, by Taylor’s series expansion of ĥ(y, θ0) around h0(y),

n
1
2
D

{
ĥ(y, θ0) − h0(y)

} ≈ Ṡh {h0(y), θ0}−1 n
1
2
D

n∑
i=1

ei (y)
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and

n
− 1

2
D V(θ0) ≈ n

− 1
2

D

nD∑
i=1

(v1i + v2i ) + n
− 1

2
D

nD+nD̄∑
j=nD+1

v2 j .

Therefore the distribution of n
1
2
D (̂θpmle − θ0) can be approximated by a zero-mean normal random vector

with covariance matrix Σpmle.

APPENDIX C

Large sample properties of Q̂(y) under model (1.1)

We now use θ̂ to represent any consistent estimator of θ0 that has a square root nD convergence rate.
Without loss of generality, we further assume that there exist some deterministic functions ηD(·) and ηD̄(·)
such that n

1
2
D (̂θ−θ0) is asymptotically equivalent to n

− 1
2

D

∑nD

i=1 ηD(Yi )+n
− 1

2
D

∑nD+nD̄

j=nD+1 ηD̄(Y j ). It follows

from the strong consistency of θ̂, ŜD(·) and ŜD̄(·) that Q̂(y) → 0 uniformly in y.

The weak convergence of n
1
2
D (̂θ − θ0), coupled with the functional central limit theorem (Pollard,

1990), implies that

n
1
2
D Q̂(y) = n

− 1
2

D

n∑
l=1

O(y, Yl) + op(1)

and it converges weakly to a zero-mean Gaussian process Q(y), where

O(y, Yi ) = δi (y) − SD(y)

φ
{
�−1(SD(y))

} −
(

1 �−1 {SD̄(y)}
)

ηD(Yi ) for i = 1, . . . , nD,

Q(y, Y j ) = −{δ j (y) − SD̄(y)}bpD

φ
{
�−1(SD̄(y))

}
pD̄

−
(

1 �−1 {SD̄(y)}
)

ηD̄(Y j ) for j = nD + 1, . . . , n.

It is straightforward to show that the process n
1
2
D Q̂Z (y) has the same limiting covariance function as that

of n
1
2
D Q̂(y). Furthermore, conditional on the data, the process n

1
2
D Q̂Z (y) is tight (Shorack and Wellner,

1986). It follows that the distribution of n
1
2
D Q̂(y) can be approximated by the conditional distribution of

n
1
2
D Q̂Z (y).
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